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Abstract

We show that weak (Eulerian) solutions for the Semi-Geostrophic system in physical space
exhibiting some mild regularity in time cannot yield point masses in dual space. However,
such solutions are physically relevant to the model. Thus, we discuss a natural generalization
of weak Lagrangian solutions in the physical space to include the possibility of singular mea-
sures in dual space. We prove existence of such solutions in the case of discrete measures in
dual space. We also prove that weak Lagrangian solutions in physical space determine solu-
tions in the dual space. This implies conservation of geostrophic energy along the Lagrangian
trajectories in the physical space.

1 Introduction

The Semi-Geostrophic (abbreviated SG in this work) equations have been proposed as simplifi-
cations of the primitive equations (Boussinesq) when the rate of change of momentum is much
smaller than the Coriolis “force” (small Rossby number) [16]. The advected quantity momentum
is approximated by its geostrophic value, but the trajectories are not.

Throughout the entire paper, Ω ⊂ IR3 is a given open, bounded set, and T ∈ (0,∞) is fixed. A

∗Key words: SG system, flows of maps, optimal mass transport, Wasserstein metric, optimal maps, absolutely
continuous curves.
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version of the 3D Semi-Geostrophic system [6, 9] is

DtX = J
[
X − x

]
,

X = ∇P,
∇ · u = 0,
u · ν = 0, on [0, T )× ∂Ω,
P (0, ·) = P0 in Ω,

(1)

where P0 is convex defined on Ω. One looks for solutions (P, u) satisfying the Cullen-Purser
stability condition (see, e.g., [10]), which amounts to imposing that Pt(·) := P (t, ·) be convex
for all t ∈ [0, T ). Here,

J =

 0 −1 0
1 0 0
0 0 0

 .

Henceforth, we shall assume without loss of generality that L3(Ω) = 1 (otherwise all the measures
considered will have total mass equal to the volume of Ω) and denote

χ := L3|Ω.

If ∇Pt#χ =: αt are all absolutely continuous with respect to L3, then one can use the Legendre-
Fenchel transforms P ∗t of Pt to formally rewrite (1) as the so-called SG in dual variables

∂tα+∇ · (Uα) = 0 in [0, T )× IR3, (2)

∇P (t, ·)#χ = α(t, ·) for any t ∈ [0, T ); (3)

U(t,X) = J [X −∇P ∗(t,X)], (4)

α(0, X) = α0(X) for a.e. X ∈ IR3. (5)

Existence of solutions of the problem recast in dual variables was obtained by J. D. Benamou,
Y. Brenier [6], and for some related models by M. Cullen and W. Gangbo [10], and M. Cullen
and H. Maroofi [12]. They considered case when α0 ∈ Lq(Ω) for some q > 1, and the solution
satisfies α(t, ·) ∈ Lq for all t. These results were extended to the case q = 1 in [18].

These solutions are not known to be regular enough to be translated into Eulerian solutions
of the problem in physical space. Recently, existence of Eulerian solutions for a class of initial
data, where the conditions include the requirement that the support of α0 = ∇P0#χ in the
dual space is the whole space, was obtained by L. Ambrosio, M. Colombo, G. De Philippis, A.
Figalli [2, 3] based on the results of G. De Philippis and M. Figalli [13] on regularity of solutions
for the Monge-Ampere equation. Existence of Eulerian solutions in physical space for more
general initial data, when the support of α0 in the dual space may have a non-empty boundary,
is presently not known.

Another approach is to consider Lagrangian solutions in the physical space. Such solutions
were introduced by M. Cullen and M. Feldman [9], and existence of Lagrangian solutions of (1)
was shown in [9] for the case α0 = ∇P0#χ ∈ Lq(Ω) for q > 1, on the basis of Ambrosio’s theory
on transport equations and flows of BV vector fields [1]. These results were extended to the
case q = 1 in [14]. The definition of weak Lagrangian solutions in the physical space is following
(where we slightly modify the definition given in [9] by relaxing assumptions on P ).

Definition 1.1. Let P0 ∈ H1(Ω) be convex, F : [0, T ) × Ω → Ω be a Borel map such that
F ∈ C([0, T );L2(Ω; IR3)), and let P ∈ C([0, T );H1(Ω)). Assume P (t, ·) is convex in Ω for each
t ∈ [0, T ). Then the pair (P, F ) is called a weak Lagrangian solution of (1) in [0, T )× Ω if
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i. F (0, x) = x, P (0, x) = P0(x) for a.e. x ∈ Ω,

ii. for any t > 0 the mapping Ft = F (t, ·) : Ω → Ω is Lebesgue measure preserving, in the
sense that Ft#χ = χ;

iii. There exists a Borel map F ∗ : [0, T )×Ω→ Ω such that for every t ∈ (0, T ) the map F ∗t =
F ∗(t, ·) : Ω → Ω is Lebesgue measure preserving: F ∗t#χ = χ, and satisfies F ∗t ◦ Ft(x) = x
and Ft ◦ F ∗t (x) = x for a.e. x ∈ Ω;

iv. The function
Z(t, x) = ∇P (t, Ft(x)) (6)

is a distributional solution of

∂tZ(t, x) = J
[
Z(t, x)− F (t, x)

]
in [0, T )× Ω,

Z(0, x) = ∇P0(x) in Ω.
(7)

Note that the sense in which (7) must be satisfied is∫ T

0

∫
Ω

[Z(t, x) · ∂tϕ(t, x) + J
[
Z(t, x)− F (t, x)

]
· ϕ(t, x)]dxdt+

∫
Ω
∇P0(x) · ϕ(0, x)dx = 0 (8)

for any ϕ ∈ C1
c ([0, T )× Ω; IR3).

In this paper we consider the case of singular initial data, i.e. when α0 = ∇P0#χ is a singular
measure. The dual problem in this case was studied by G. Loeper [17], and L. Ambrosio and
W. Gangbo [4].

Note that equation (2) represents the fact that the dual flow t→ αt is weakly (in the sense
of distributions) transported by the dual velocity U defined by (4). The change of variable
X = ∇Pt(x) is reversible (although there may not be enough smoothness to transport the dual
space solutions back to physical space even in this case) if and only if ∇P ∗t pushes αt forward
to χ, one such situation being provided if αt � L3. In general, if ∇P ∗t is not necessarily the a.e.
inverse of ∇Pt, then ∇P ∗t may not necessarily push αt forward to χ, αt may not necessarily be
absolutely continuous with respect to L3 and the equation (4) in the dual-variable system must
be generalized to (see [4])

U(t,X) = J
[
X − γ̄t(X)

]
, (9)

where γ̄t is the barycentric projection onto αt of the (unique) optimal Kantorovich plan [20]
γt :=

(
∇Pt× Id

)
#
χ having αt and χ as first and second marginals, respectively. It is defined by

(see [4], [5]) ∫
IR3

ξ(X) · γ̄t(X)dαt(X) =

∫∫
IR3×Ω

ξ(X) · ydγt(X, y) (10)

for all continuous ξ : IR3 → IR3 of at most quadratic growth. Since χ is absolutely continuous
with respect to L3, we deduce∫

IR3
ξ(X) · γ̄t(X)dαt(X) =

∫
Ω
ξ(∇Pt(x)) · xdx. (11)

To justify generalizing (4) to (9), let us assume (1) has a smooth, stable solution (P, u). Set
Y := ∇P and compute, for any ζ ∈ C∞c (IR3),

d

dt

∫
IR3

ζ(X)dαt(X) =

∫
Ω
∂tYt(x) · ∇ζ(Yt(x))dx

= −
∫

Ω

[
(u(t, x) · ∇)Yt(x)

]
· ∇ζ(Yt(x))dx+

∫
Ω
J
[
Yt(x)− x

]
· ∇ζ(Yt(x))dx.
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Since u is divergence-free and ∇Yt = ∇2Pt is symmetric, we deduce that the first integral in the
right hand side of the second equation of the above display is∫

Ω

[(
∇Yt(x)

)t
u(t, x)

]
· ∇ζ(Yt(x))dx = −

∫
Ω

[(
∇Yt(x)

)t∇ζ(Yt(x))
]
· u(t, x)dx

= −
∫

Ω
∇
[
ζ(Yt(x))

]
· u(t, x)dx = 0.

As for the second integral, we have, due to J t = −J , Yt#χ = αt and (11),∫
Ω
J
[
Yt(x)− x

]
· ∇ζ(Yt(x))dx = −

∫
Ω
Yt(x) · (J∇ζ)(Yt(x))dx+

∫
Ω
x · (J∇ζ)(Yt(x))dx

=

∫
IR3

(JX) · ∇ζ(X)dαt(X)−
∫
IR3

[Jγ̄t(X)] · ∇ζ(X)dαt(X).

Thus,
d

dt

∫
IR3

ζ(X)dαt(X) =

∫
IR3

J
[
X − γ̄t(X)

]
· ∇ζ(X)dαt(X), (12)

which implies
∂tα(t,X) +∇X ·

(
J
[
X − γ̄(t,X)

]
α(t,X)

)
= 0 (13)

is satisfied in the sense of distributions.

Existence of a solution for the dual problem (2), (3), (9), (5) for any probability measure α0

with finite second moment was proved in [4].

In this paper we define weak Lagrangian solutions in physical space for any convex initial
data P0 (i.e. any initial probability measure α0 = ∇P0#χ), and prove existence of such solutions
in the case of discrete measures. Moreover, we show conservation of geostrophic energy along
the Lagrangian trajectories in the physical space.

One stand-out feature of Lagrangian solutions in physical space in the case of singular initial
data is the absence of the Lebesgue measure preserving property for the flow map Ft, given in
(ii) of Definition 1.1. Heuristically, since the solution of the dual problem (2), (3), (9), (5) does
not provide enough information to separate the particle paths (in physical space) within the
subgradient set ∂P ∗t (X) ⊂ Ω for X ∈ suppαt, we define the flow map Ft which collapses the set
∂P ∗t (X) to one point, its “αt-barycenter” γ̄t(X) ∈ ∂P ∗t (X), and thus the χ-measure carried by
the set ∂P ∗t (X) should now be concentrated at the point γ̄t(X). Then the measure preserving
property Ft#χ = χ is replaced by

Ft#χ = µt for t > 0, where µt := (γ̄t ◦ ∇Pt)#χ. (14)

Note that in the case when αt is absolutely continuous with respect to the Lebesgue measure, we
have (γ̄t(X) ◦ ∇Pt)(x) = (∇P ∗t ◦ ∇Pt)(x) = x for a.e. x ∈ Ω, and thus we recover the Lebesgue
measure preserving property of Ft given in (ii) of Definition 1.1. We justify this definition of
Ft in the case of singular data, and its generalized measure-preserving property (14), by giving,
in Section 4.1 below, an explicit example of a sequence of Lagrangian solutions (P (i), F (i)) in

the sense of Definition 1.1 with absolutely continuous initial measures αi0 := ∇P (i)
0#χ in the dual

space, such that the sequence (P (i), F (i)) converges weakly to a Lagrangian solution (P, F ) in the
sense of Definition 4.12 with a singular initial measure ∇P0#χ = δz0 . We show that this limiting
solution (P, F ) satisfies the (generalized) measure-preserving property (14), yet does not satisfy
(ii) of Definition 1.1. Thus, Definition 4.12 appears to be a natural extension of Definition 1.1
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to the case of singular initial data if we expect to have stability of weak Lagrangian solutions
in physical space. We note that in the case of Lagrangian solutions with absolutely continuous
initial measure α0 = ∇P0#χ, a stability property was proved in [14]. For solutions with singular
initial data α0, stability is not proved at present, although the example described above suggests
that some stability properties may be expected in this case too.

The rest of the paper is organized as following. In the next section we collect some results
on the existence and properties of solutions in dual space. In Section 3 we prove that, under
a mild time-regularity assumption, Eulerian solutions do not exist if the dual-space solutions
have point masses at non-negligibly many times. This will advocate finding a suitable notion
of weak Lagrangian solutions in physical case that makes sense in the general case of measure-
valued solutions α in the dual space. This will be achieved in Section 4. There we will also
prove that such solutions exist in the case where αt are convex combinations of point masses,
or equivalently, when P0 is the maximum of finitely many affine functions. In Section 5 we will
show that weak Lagrangian solutions in physical space can be translated into weak solutions of
the problem in the dual space. This will lead to conservation of energy for weak Lagrangian
solutions for the Semi-Geostrophic system.

2 Solutions in dual space

In this section we collect a number of results on the existence and some properties of solutions
in dual space. Our main source is [4]. Before that, let us recall the definitions of some important
objects. In the spirit of [5], one defines ACp(0, T ;P2(IR3)) (for 1 ≤ p ≤ ∞) as the set of all
paths µ : [0, T ] 3 t→ µt ∈ P2(IR3) for which there exists β ∈ Lp(0, T ) such that

W2(µs, µt) ≤
∫ t

s
β(τ)dτ for all 0 ≤ s ≤ t ≤ T,

where W2 is the quadratic Wasserstein distance [20]. The smallest of the functions β satisfying
the inequality above is called the metric derivative of the curve µ, it is denoted by |µ′| and it
satisfies [5] that

|µ′|(t) = lim
s→t

W2(µs, µt)

|s− t|
for a.e. t ∈ (0, T ).

There exists a Borel velocity v : (0, T )× IR3 → IR3 transporting µ in the sense of distributions,
i.e.

∂tµ+∇x · (vµ) = 0 in D′((0, T )× IR3), (15)

such that v(t, ·) ∈ L2(µt; IR
3) and ‖vt‖L2(µt;IR3) = |µ′|(t) for a.e. t ∈ (0, T ). It turns out that this

velocity (called “of minimal norm”) minimizes ‖vt‖L2(µt;IR3) among all possible Borel velocities
(i.e. satisfying (15)), and it can be uniquely selected (µt–a.e.) for a.e. t ∈ (0, T ) by requiring
that it belong to the closure of ∇C∞c (IR3) in L2(µt; IR

3), which is denoted [5] by TµtP2(IR3) and
called the tangent space to P2(IR3) at µt. Finally, if F : P2(IR3) → IR is lower semicontinuos
with respect to the topology induced by the Wasserstein distance W2, then we can define the
subdifferential of F at some µ ∈ P2(IR3) as the set of all ξ ∈ L2(µ; IR3) such that

F (ν) ≥ F (µ) +

∫∫
IR3×IR3

ξ(x) · (y − x)γ(dx, dy) + o
(
W2(µ, ν)

)
for all ν ∈ P2(IR3) and all the optimal transport plans [20] γ between µ and ν. This set is
denoted by ∂F (µ) and its element of minimal L2(µ; IR3)–norm is denoted by ∇wF (µ) and called
[4] the Wasserstein gradient of F at µ.
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Adapting to our context (by, for example, replacing J by J t = −J which still satisfies the
required orthogonality property in [4]), a Hamiltonian ODE solution/trajectory for the lower
semicontinuous “Hamiltonian” H : P2(IR3)→ IR is defined as follows.

Definition 2.1. A curve µ ∈ AC1(0, T ;P2(IR3)) with the property that there exists a vector
field v : (0, T )× IR3 → IR3 such that

(0, T ) 3 t→ ‖vt‖L2(µt;IR3) belongs to L1(0, T ) (16)

and

∂tµ−∇ · (Jvµ) = 0, µ0 = µ̃ as distributions, (17)

vt ∈ TµtP2(IR3) ∩ ∂H(µt) for a.e. t ∈ (0, T ), (18)

is called a solution of the Hamiltonian ODE associated to the Hamiltonian H, starting at µ̃.

Fix ν ∈ P2(IR3) and define

Hν : P2(IR3)→ IR, Hν(µ) = −1

2
W 2

2 (µ, ν), (19)

which is, obviously, continuous. Then ∂Hν(µ) consists of all functions of the type γ̄ − Id, where
γ is any optimal plan between µ and ν [20], and γ̄ is its barycentric projection onto µ, i.e. given
by (see, e.g. [5]) ∫∫

IR3×IR3
y · ξ(x)γ(dx, dy) =

∫
IR3

γ̄(x) · ξ(x)µ(dx)

for all ξ ∈ C(IR3; IR3) of at most quadratic growth. In light of the fact that the y–marginal of
γ is ν, the above definition implies ‖γ̄‖L2(µ;IR3) ≤ ‖Id‖L2(ν;IR3). Thus,

W 2
2 (µ, ν) =

∫
IR3
|x|2µ(dx) +

∫
IR3
|y|2ν(dy)− 2

∫
IR3

x · γ̄(x)µ(dx) ≥ ‖γ̄ − Id‖2
L2(µ;IR3)

for all such optimal plans, which implies

‖∇wHν(µ)‖L2(µ;IR3) ≤ 1 +
√
−2Hν(µ̃) =: a(µ̃) whenever W2(µ, µ̃) ≤ 1. (20)

Then one combines Lemma 7.6 [4] and Theorem 7.4 [4] to obtain on [0, 1/a(µ̃) =: T ] a solution
µ ∈ AC∞(0, T ;P2(IR3)) (Lipschitz curve) of the Hamiltonian ODE starting at µ̃ and satisfying
that it is a(µ̃)–Lipschitz and conservative, i.e. [0, T ] 3 t → Hν(µt) is constant. Thus, a(µT ) =
a(µ̃), which means that (20) is also satisfied with the same bounds if we replace µ̃ by µT . Thus,
in light of the same results from [4], we infer that we can extend the solution to [T, 2T ] (whereas
it preserves the Lipschitz bound and conserves the Hamiltonian). By induction, we obtain:

Theorem 2.2. For any µ̃ ∈ P2(IR3) there exists a solution µ ∈ AC∞(0,∞;P2(IR3)) of (17)
and (18), which starts at µ̃, conserves [0,∞) 3 t→ Hν(µt), and is globally a(µ̃)–Lipschitz.

Let us now specialize to the case ν = χ (defined in the introduction) and denote

H : P2(IR3)→ IR, H(µ) = −1

2
W 2

2 (µ, χ). (21)

The absolute continuity of χ with respect to L3 adds the benefit of the fact that there is a unique
optimal plan now between µ and χ for every µ ∈ P2(IR3), namely γµ = (∇Φ × Id)#χ, where
∇Φ is the optimal map pushing χ forward to µ. Thus, we have

∂H(µ) ∩ TµP2(IR3) = {γ̄µ − Id} = {∇wH(µ)} for all µ ∈ P2(IR3).

This means that Theorem 2.2 has the following:
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Corollary 2.3. Let α0 ∈ P2(IR3) be given. Then there exists a distributional solution α ∈
AC∞(0,∞;P2(IR3)) for (13) with α(0) = α0, where γ̄t is the barycentric projection of the
optimal plan between αt and χ. In other words, the curve α is globally Lipschitz and satisfies
the system (2), (3), (9), (5) in the sense of distributions in (0,∞)× IR3. Also, the Hamiltonian
energy t→ H(αt) is conserved.

Remark 2.4. Since [0,∞) 3 t → αt ∈ P2(IR3) is continuous, we use Proposition 3.2 [19]
to conclude that there is a family P ∈ C([0,∞);H1(Ω)) of convex functions P (t, ·) such that
∇xP (t, ·) =: ∇Pt pushes χ forward to αt optimally for all t ≥ 0.

3 Lagrangian vs Eulerian

As of this date, the only weak Lagrangian solutions in the physical space have been shown to
exist in the case ∇P0#χ =: α0 ∈ L1(Ω). This is achieved in [14] by improving the Lq (q > 1)
result in [9]. The solution (P, F ) constructed in these references satisfies ∇Pt#χ =: αt ∈ Lq(Ω)
for almost all t ∈ (0, T ). We work with solutions that may not satisfy any of these conditions,
i.e. the measures αt (for t ∈ [0, T )) may be singular. In particular, αt can be Dirac measures
δz(t) as in the example given in [14] (see also Section 4.1 below).

An interesting question is existence of Eulerian solutions in physical space. Recently, exis-
tence of such solutions for a class of initial data, where the conditions include the requirement
that the support of the function α0 = ∇P0#χ in the dual space be the whole space, was obtained
by L. Ambrosio, M. Colombo, G. De Philippis, A. Figalli in two-dimensional periodic case [2]
and in three-dimensional case with Ω = IR3 [3], based on the results of G. De Philippis and A.
Figalli [13] on the regularity of solutions for the Monge-Ampere equation. Existence of Eulerian
solutions in physical space for more general initial data α0 ∈ Lq(Ω), when the support of α0 in
the dual space may have a non-empty boundary, or if α0 is a singular measure, is presently not
known.

In this section, we show that Eulerian solutions in the physical space exhibiting some mild
regularity in time cannot give rise to “very irregular” solutions in dual space. Let us begin by
recalling the definition of a weak solution of (1).

Definition 3.1. Let u : [0, T )×Ω→ IR3 and P : [0, T )×Ω→ IR satisfy u ∈ L1([0, T )×Ω; IR3),
∇P ∈ L∞([0, T ) × Ω) ∩ C([0, T );L1(Ω)), and P (t, ·) is convex in Ω for every t ∈ [0,∞). The
pair (P, u) is a weak Eulerian solution of (1) if∫ T

0

∫
Ω
{∇P (t, x) · [∂tφ(t, x) +∇φ(t, x)u(t, x)] (22)

+J [∇P (t, x)− x] · φ(t, x)}dxdt+

∫
Ω
∇P0(x) · φ(0, x)dx = 0

for any φ ∈ C1
c ([0, T )× Ω; IR3), and∫ T

0

∫
Ω
u(t, x) · ∇ψ(t, x)dxdt = 0 (23)

for any ψ ∈ C1
c ([0, T )× Ω).

In what follows, we show that one cannot have weak Eulerian solutions exhibiting mild time
regularity and spatial “flat parts” except, possibly, at negligibly many times. We begin with
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Proposition 3.3 below, whose proof is a relatively straight-forward adaptation of Corollary 2.3
and Proposition 2.4 in [19]. The only difference is that in the said reference the set O is a subset
of (0, T )× Ω of full measure.

Before stating the result, we need some preliminary observations. IfX ∈ H1(0, T ;L2(Ω; IR3)),
we denote by Ẋ ∈ L2(0, T ;L2(Ω; IR3)) its functional derivative, defined by

lim
h→0

∥∥∥∥Xt+h −Xt

h
− Ẋt

∥∥∥∥
L2(Ω;IR3)

= 0 for L1 − a.e. t ∈ (0, T ).

In the next lemma, we extend X to a map in AC2(IR;L2(Ω; IR3)) by setting Xt = X0+ for t ≤ 0
and Xt = XT− for t ≥ T .

Lemma 3.2. Let X ∈ H1(0, T ;L2(Ω; IR3)) and Ẋ be its functional derivative. Then

lim
h→0

∫ T

0

∫
Ω

∣∣∣∣Xt+hx−Xtx

h
− Ẋtx

∣∣∣∣2dxdt = 0. (24)

As a consequence, there exist sequences h+
k → 0+, h−k → 0− and a measurable subset A ⊂ IR×Ω

such that L4((IR× Ω) \ A) = 0 and

lim
k→∞

Xt+h+k
x−Xtx

h+
k

= lim
k→∞

Xt+h−k
x−Xtx

h−k
= Ẋtx (25)

for all (t, x) ∈ A.

The proof in [15] needs no modification. The philosophy behind this result is that, in some
specified sense, Ẋ can be viewed as almost a classical pointwise time-derivative of X. Also, since
X ∈ H1(0, T ;L2(Ω; IR3)), we have that it admits a Borel representative. Equation (24) shows
that Ẋ itself has that property. Throughout the paper we identify both X and Ẋ with their
Borel representatives.

Proposition 3.3. Let X ∈ H1(0, T ;L2(Ω; IR3)) be such that Xt = ∇Pt, where Pt is convex for
all t ∈ (0, T ). Let A ⊂ (0, T )×Ω as in Lemma 3.2. Furthermore, let O ⊂ A be a Borel set with
L4(O) > 0 and such that L3([Xtx]) > 0 for all (t, x) ∈ O, where [Xtx] := {y ∈ Ω : Xty = Xtx}.
Then, there exists a Borel map w : (0, T )× IR3 → IR3 such that

Ẋ(t, x) = w(t,X(t, x)) for L4 − a.e. (t, x) ∈ O. (26)

Proof: Let λ denote the L4–measure restricted to O, Ψ : O → (0, T )× IR3 given by Ψ(t, x) =(
t,X(t, x)

)
, and set ϑ := Ψ#λ. Denote by η the vector-measure whose density with respect

to λ is Ẋ, then set σ := Ψ#η. Clearly, σ � ϑ, which means there exists a Borel vector field
w : (0, T )× IR3 → IR3 such that dσ = wdϑ.
The disintegration theorem (see, for example, Theorem 5.3.1 [5]) applies to the Borel vector
field Ψ and the measure λ. Thus, for ϑ–a.e. (t, y) ∈ (0, T ) × IR3, there exists a unique Borel
probability measure λt,y on O such that the map (t, y) → λt,y(B) is Borel measurable for each
Borel set B ⊂ O. Furthermore, λt,y

(
Ψ−1(t, y)

)
= 1 for ϑ–a.e. (t, y) ∈ (0, T )× IR3 and∫ ∫

O
f(t, x) dλ(t, x) =

∫ T

0

∫
IR3

(∫
Ψ−1(t,y)

f(t, x) λt,y(dt, dx)

)
ϑ(dt, dy)
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for every Borel measurable f : (0, T )× Ω→ [0,∞]. We showed in [19], Theorem 2.2, that

w(t,X(t, x)) =

∫
Ψ−1(t,X(t,x))

Ẋ(t, z) dλt,X(t,x)(t, z) for λ− a.e. (t, x) ∈ O. (27)

Note that (t, z) ∈ Ψ−1(t,X(t, x)) is equivalent to (t, z) ∈ O and X(t, z) = X(t, x), so we have
Ψ−1(t,X(t, x)) = O∩ [Xtx]. Then we apply Proposition 2.4 in [19] to get that Ẋ(t, x) = Ẋ(t, z)
for all (t, z) ∈ O ∩ [Xtx]. According to (27), we get(26). QED.

Before proving the main theorem of this section, we need a measurability lemma.

Lemma 3.4. Let α ∈ AC2(0, T ;P2(IR3)) for some T > 0. Then the set

D(α) :=
{

(t,X) ∈ (0, T )× IR3 : X is an atom of αt
}

(28)

is Borel.

Proof: Denote by C+
c the nonnegative cone of Cc(IR

3). Consider, for every positive integer m
and every ξ ∈ C+

c , the set

Dξm :=

{
(t,X) ∈ (0, T )× IR3 :

∫
IR3

ξ(Y )dαt(Y ) ≥ 1

m
ξ(X)

}
.

Note that the absolute continuity in time of the left hand side of the above inequality [5] and
the continuity in X of the right hand side imply that the difference is a continuous function of
(t,X). Therefore, Dξm is the nonnegative set of a continuous function, which makes it a closed
subset of (0, T )× IR3. Thus,

Dm :=

{
(t,X) ∈ (0, T )× IR3 :

∫
IR3

ξ(Y )dαt(Y ) ≥ 1

m
ξ(X) for all ξ ∈ C+

c

}
is closed as well, by being an arbitrary intersection of closed sets. Since

D(α) = ∪m≥1Dm,

the proof is concluded. QED.

Now we prove the main result of this section: that weak (Eulerian) solutions in the physical
space exhibiting some mild regularity in time cannot give rise to “very irregular” solutions in
dual space.

Theorem 3.5. Let (P, u) be a weak solution for the Semi-Geostrophic system in the physical
space such that ∇P ∈ H1(0, T ;L2(Ω; IR3)). Then αt := ∇Pt#χ is atom-free for L1–a.e. t ∈
(0, T ).

Proof: Set Ψ(t, x) := (t,X(t, x)). Since Ψ is a Borel map on (0, T )× Ω, due to Lemma 3.4 we
infer that

O := Ψ−1
(
D(α)

)
is a Borel subset of (0, T )× Ω.

One can see that
O = {(t, x) ∈ (0, T )× Ω : L3

(
[Xtx]

)
> 0}.
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By Fubini’s Theorem and by the convexity of the potentials whose gradients push χ forward to
αt, we infer that there exists a Borel subset T ⊂ (0, T ) such that

O = ∪t∈T
(
{t} × Ot

)
, (29)

where Ot is the union of all (at most countably many) convex subsets of Ω of positive L3 measure
on each of which Xt is constant. Assume by contradiction that L1(T ) > 0. We further throw
out of T the L1–negligible set of times at which∫

Ω
∇ζ(x)u(t, x)dx 6= 0 ∈ IR3 (30)

for all ζ ∈ C∞c (Ω; IR3) (via the separability of this space with respect to the sup norm), but
we keep the notation T for the remaining subset. Consider A as the Borel subset of (0, T )× Ω
of full measure defined in Lemma 3.2, i.e. where the time pseudo-derivative of X in the sense
of (25) exists. The set A ∩ O is a Borel set (which we still denote by O) with L4(O) > 0.
According to Proposition 3.3, we infer there exists a Borel map w : (0, T )× IR3 → IR3 such that
(26) is satisfied. By taking φ(t, x) = ξ(t)ζ(x) with ξ ∈ C∞c (0, T ) and ζ ∈ C∞c (Ω; IR3) in (22) we
discover that

t→
∫

Ω
X(t, x) · ζ(x)dx is absolutely continuous

and
d

dt

∫
Ω
X(t, x) · ζ(x)dx =

∫
Ω
{X(t, x) · [∇ζ(x)u(t, x)] + J [X(t, x)− x] · ζ(x)}dx

for a.e. t ∈ (0, T ) and every ζ ∈ C∞c (Ω; IR3) (via the usual argument involving the separability
of this space endowed with the sup–norm). Throwing out, if necessary, a negligible set of times,
we conclude∫

Ω
Ẋ(t, x) · ζ(x)dx =

∫
Ω
{X(t, x) · [∇ζ(x)u(t, x)] + J [X(t, x)− x] · ζ(x)}dx

for a.e. t ∈ (0, T ) and every ζ ∈ C∞c (Ω; IR3). Choose such a t0 that also lies in T and consider
now only test functions ζ ∈ C∞c (ω0; IR3), where ω0 is a connected component of Ot0 (which is
a convex subset of Ω of positive L3–measure on which Xt0 is constant). Since Xt0 ≡ c ∈ IR3 in
ω0, we infer

w(t0, c) ·
∫
ω0

ζ(x)dx = c ·
∫
ω0

∇ζ(x)u(t, x)dx+

∫
ω0

J [c− x] · ζ(x)}dx

for all ζ ∈ C∞c (ω0; IR3). Due to (30) the first term in the right hand side vanishes and since the
equality holds for all ζ ∈ C∞c (ω0; IR3), we deduce

w(t0, c) = J [c− x] for a.e. x ∈ ω0,

which contradicts the fact that ω0 has nonempty interior. QED.

Remark 3.6. Thus, in order to accommodate singular solutions in dual space, we see the need
for defining Lagrangian solutions instead of Eulerian ones in the physical space. Whereas solu-
tions in the dual space may come in any form or shape (from pure Dirac deltas to functions),
only the absolutely continuous ones with respect to the Lebesgue measures have been so far known
to give rise to Lagrangian solutions in the physical space [9], [14]. In the next section we discuss
an extension to this notion and prove some existence results.
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4 Weak Lagrangian solutions in physical space for the case of
singular initial data

In [9], Lagrangian solutions in the physical space with initial data ∇P0#χ = α0 ∈ Lp(IR3)
(p > 1), were constructed by the following procedure. First, time-stepping approximation from
[10] combined with results of [1] yield existence of a solution (α, P ) of the dual space system
(2)–(4) with initial data (5), and a locally bounded map Φ : (0, T )× IR3 → IR3 satisfying

Φ̇ = U(·,Φ), L4 − a.e. in (0, T )×∇P0(Ω), Φ(0, X) = X for α0 − a.e. X ∈ IR3, (31)

such that
αt = Φt#α0 for all t > 0.

There also exists a Borel map Φ∗ such that Φ∗t preserve L3 and Φt ◦ Φ∗t = Id = Φ∗t ◦ Φt a.e. in
IR3. The physical space flow is defined as

Ft := ∇P ∗t ◦ Φt ◦ ∇P0. (32)

Then it is shown that (P, F ) satisfies all the requirements of Definition 1.1.

In order to see what can be expected in the case of general initial data, we consider an
example in which α0 is a point mass.

4.1 An example: a limit of Lagrangian solutions, with initial measures weakly
converging to a point mass

We discuss the case α0 = 4
3πδz0 for some z0 ∈ IR3 by considering a sequence of approximations

α
(ε)
0 =

1

ε3
χBz0 (ε), where ε > 0,

where χA denotes the indicator function of the set A. This is a version of the counterexample
in [14]. For notational simplicity, we drop the requirements that αt be probability measures
and that L3(Ω) = 1; thus, αt are measures of total mass equal to L3(Ω). We fix the domain in
physical space to be the ball Ω = B1(0) ⊂ IR3, which means χ = L3|B1(0). It is easy to see that

α0 = ∇P0#χ and α
(ε)
0 = ∇P (ε)

0#χ, where

P0(x) = z0 · x,

P
(ε)
0 (x) = z0 · x+ ε

|x|2

2
.

(33)

Following the calculations in [14], we find that for each ε > 0, one Lagrangian solution (P (ε), F (ε))

in the sense of Definition 1.1 with initial data P
(ε)
0 , can be obtained as follows. Let z(t) be

determined by solving ż(t) = Jz(t), z(0) = z0; thus, z(t) = L1(t)z0, where

Lc(t) =

 cos ct − sin ct 0
sin ct cos ct 0

0 0 1

 for c ∈ IR. (34)

Then

P
(ε)
t (x) = z(t) · x+ ε

|x|2

2
,

F
(ε)
t (x) = Lc(t)x, with c = 1− 1

ε
.

(35)
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We also note that the Legendre transform (over Ω) of P
(ε)
t is

(P
(ε)
t )∗(X) =


|X − z(t)|2

2ε
, if X ∈ Bz(t)(ε);

|X − z(t)| − ε

2
, if X /∈ Bz(t)(ε),

and the flow map in the dual variables is

Φ
(ε)
t (X) = z(t) +Mc(t)(X − z0), with c = 1− 1

ε
,

where

Mc =

 cos ct − sin ct 0
sin ct cos ct 0

0 0 0

 . (36)

Expression (35) was obtained by (32) using (P
(ε)
t )∗, Φ

(ε)
t given above.

Now we take limits as ε→ 0+. Clearly,

∇P (ε)
t → ∇Pt uniformly in Ω for all t ≥ 0, (37)

where

Pt(x) = z(t) · x for x ∈ Ω, t ≥ 0. (38)

Note that by taking t = 0 in (38) we obtain the function P0 in (33). On the other hand, as far

as F
(ε)
t is concerned, we see that

F
(ε)
0 (x) = x for all x ∈ Ω, ε > 0,

yet, for any t > 0 the sequence F
(ε)
t (·) does not converge even in a weak sense. Then we consider

a limit of F (ε) as functions of (t, x), and we note that, as ε→ 0+,

F (ε) ⇀ 0 weakly in L2([0, T ]× Ω; IR3) for any T > 0. (39)

(39) determines the limit F (ε) only up to the set of points (t, x) of L4-measure zero. However,
since the initial measure α0 for the limiting problem is a point mass, it is natural to expect that
the flow map for such problem is sensitive to changes on sets of L4-measure zero. In particular,
we cannot take the flow map of the form F ≡ 0 for the limiting problem, since we require
F (0, ·) ≡ Id. Thus, in the following lemma we note some properties which are satisfied by any
map F̂ : [0, T )×Ω→ Ω which is a weak limit of F (ε). We first note the following: for Pt in (38)
we have

αt := ∇Pt#χ =
4

3
πδz(t),

and the Kantorovich optimal plan γt :=
(
∇Pt × Id

)
#
χ is defined by γt(A × B) = δz(t)(A)χ(B)

for all Borel A ⊂ IR3, B ⊂ Ω. Then (10) implies that the barycentric projection of γt onto αt is

γ̄t(z(t)) = 0, (40)

which defines γ̄t(X) for αt-a.e. X ∈ IR3.
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Lemma 4.1. Let T > 0 and F̂ : [0, T )× Ω→ Ω be a Borel map such that

F (ε) ⇀ F̂ weakly in L2([0, T ]× Ω; IR3) for any T > 0

as ε→ 0+, where F (ε) is defined by (35). Then

i. F̂t#χ =
4

3
πδ0 for a.e. t > 0. In particular, the map F̂t does not preserve L3|Ω for a.e. t.

ii. (P, F̂ ) satisfies property (14) for a.e. t > 0. Here P is defined by (38).

Proof: Assertion (i) follows from (39) and Fubini Theorem.

To show (ii), we fix any t > 0 and note that (38), (40) imply γ̄t(∇Pt(x)) = γ̄t(z(t)) = 0 for
every x ∈ Ω, which implies (γ̄t ◦ ∇Pt)#χ = 4

3πδ0. Now (ii) follows from (i). QED.

Remark 4.2. Lemma 4.1 suggests that for the case of singular initial measure α0, the L3-
measure preserving property of Ft#χ = χ of Ft should be replaced by (14) if we expect to have
stability of weak Lagrangian solutions in physical space.

Now we discuss a possible construction of a Lagrangian solution in physical space for the
limiting initial data P0(x) = z0 · x, i.e. with α0 = 4

3πδz0 , and compare it with the limit of

(P (ε), F (ε)) obtained above. We use Pt in (38) to see that αt := ∇Pt#χ = 4
3πδz(t). One can

readily check that the property ż(t) = Jz(t), z(0) = z0 implies that α is a weak solution of the
SG in dual space, i.e. of the problem (2), (3), (9), (5).

In order to construct a flow map Ft in in physical space, let us go back to the definition of
Ft = ∇P ∗t ◦ Φt ◦ ∇P0 from [9]. Since in the general case (when αt is a measure) the place of
∇P ∗t is taken by the barycentric projection γ̄t (see (13)), it is natural to ask if one can obtain a
solution by putting

F0 ≡ Id,

Ft := γ̄t ◦ Φt ◦ ∇P0 for t > 0.
(41)

Of course, for this function to be well-defined, one needs the Lagrangian flow in dual space Φt

to be defined at z0 for all t ∈ [0, T ]. Thus, we solve

Φ̇(t,X) = J [Φ(t,X)− γ̄t(Φ(t,X))] with Φ(0, X) = X (42)

for X = z0. Using (40) we rewrite this as

Φ̇(t, z0) = JΦ(t, z0) with Φ(0, z0) = z0.

Since ż(t) = Jz(t), z(0) = z0, then uniqueness for the Cauchy problem associated to this ODE
system implies

Φ(t, z0) = z(t).

Now, Ft is well-defined by (41), and explicitly is

F (t, x) = Ft(x) =

{
x, if t = 0, x ∈ Ω,
0, if t > 0, x ∈ Ω.

(43)
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From (39), (43) we conclude that, as ε→ 0+,

F (ε) ⇀ F weakly in L2([0, T ]× Ω; IR3), for any T > 0,

F
(ε)
0 ≡ F0 ≡ Id in Ω, for any ε > 0.

(44)

We also notice that

Ft#χ =
4

3
πδ0 for all t > 0. (45)

Moreover, we showed in the proof of Lemma 4.1 that

(γt ◦ ∇Pt)#χ =
4

3
πδ0 for t > 0.

Then (45) implies that Ft satisfies the generalized measure-preserving property (14) for all t > 0.
Furthermore, since ż(t) = Jz(t), z(0) = z0, and Z(t, x) := (∇Pt)(F (t, x)) = z(t), it follows that
(P, F ) satisfies equation (7) in the sense (8). Consequently, we have arrived to:

Lemma 4.3. Let P be defined by (38). Then F defined by (41) has the explicit form (43), and
(P, F ) satisfies the following:

(a) (P, F ) is a weak limit (in the sense of (37), (44)) as ε → 0+, of a family of Lagrangian
solutions (P (ε), F (ε)) in the sense of Definition 1.1;

(b) (P, F ) satisfies equation (7) in the sense (8);

(c) For all t > 0, (P, F ) satisfies property (14), which takes the form (45).

In other words, the limit (P, F ) satisfies the properties of Lagrangian solution (as in Definition
1.1) except for the L3-measure preserving property of Ft, which is replaced by (14). An important
remaining issue, the continuity of t→ Ft(·), will be clarified in the next section.

Remark 4.4. The above computations of the Lagrangian flow in dual space highlight the diffi-
culty in applying the theory of regular Lagrangian flows [1] to the case of singular initial measures
α0. One can extend γ̄t, defined by (40), to all IR3 by using that P ∗t (X) = |X − z(t)| is differen-
tiable for X 6= z(t), defining

γ̄t(X) := ∇P ∗t (X) =
X − z(t)
|X − z(t)|

if X 6= z(t).

Then one can easily check that U(t,X) := J [X − γ̄t(X)] satisfies the conditions in [1], therefore
a unique solution to the ODE (42) exists and is unique for Lebesgue-a.e. X ∈ IR3 such that Φt

preserves L3. However, when α0 is singular, the set {X ∈ IR3 : Φ(t,X) exists and is unique}
may not contain all (if any) of the support of α0. In the case α0 = δz0, the solution Φ(·, z0) can
be found explicitly by solving the ODE system, and this defines Φ(·, X) for α0-a.e. X ∈ IR. In
general, for singular measures α0, it is not clear how to find a suitable Lagrangian flow Φ(t,X)
in the dual space that is defined for α0-a.e X.

4.2 Definition of Lagrangian solutions with singular initial data, and exis-
tence results

In order to see the motivation for Definition 4.12 of Lagrangian solutions for the case of singular
initial data given below, we first study properties of flows in physical space given by (41) in the
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case when α0 = ∇P0#χ is possibly a singular measure, under the following assumptions:

(i) P0 ∈ H1(Ω) is convex, α0 = ∇P0#χ ∈ P2(IR3);

(ii) There exists a Borel map Φ : [0, T ]× IR3 → IR3 such that (42) holds in the

integral sense for α0-a.e. X ∈ IR3;

(iii) The family of measures αt := Φt#α0 for t ∈ [0, T ) is a solution in D′((0, T )× IR3)

for the equation (2) with U defined by (9), (10), where γt is the unique optimal

transport plan between αt and χ. This also defines a convex Pt in Ω (for each t) such

that γt :=
(
∇Pt × Id

)
#
χ;

(iv) α ∈ AC∞(0,∞;P2(IR3)).

(46)

Note that assumptions (46) say that there exists a Lagrangian solution of the dual problem
with initial data P0. In the case when P0 ∈W 1,∞(Ω) and α0 = ∇P0#χ ∈ Lp(IR3) for p ∈ (1,∞]
existence of Φt such that (46) is satisfied is shown in [9].

Below it is convenient to work with a Borel representative of the barycentric projection γ̄.
That is why we prove the following lemma:

Lemma 4.5. There exists a Borel measurable function defined on (0, T )× IR3 which for L1-a.e.
t ∈ (0, T ) coincides with γ̄(t,X) for α(t, ·)-a.e. X ∈ IR3.

Proof: Let ϑ ∈ P
(
(0, T )× IR3 × Ω

)
be the Borel probability given by∫ T

0

∫
IR3

∫
Ω
ϕ(t,X, y)ϑ(dt, dX, dy) =

1

T

∫ T

0

∫
IR3

∫
Ω
ϕ(t,X, y)γ(t, dX, dy)dt

for any continuous and bounded ϕ. Since α(t, ·) is the X-marginal of γ(t, ·, ·), the (t,X) marginal
of ϑ is ϑ̃ ∈ P

(
(0, T )× IR3

)
given by∫ T

0

∫
IR3

ζ(t,X)ϑ̃(dt, dX) =
1

T

∫ T

0

∫
IR3

ζ(t,X)α(t, dX)dt.

Thus, by disintegrating ϑ we get∫ T

0

∫
IR3

∫
Ω
ϕ(t,X, y)ϑ(dt, dX, dy) =

1

T

∫ T

0

∫
IR3

(∫
Ω
ϕ(t,X, y)ϑ(t,X; dy)

)
α(t, dX)dt,

where ϑ(t,X; ·) are Borel probabilities on Ω such that the map (t,X)→ ϑ(t,X;B) is Borel for
any Borel set B ⊂ Ω. In particular, the maps

(t,X)→
∫

Ω
f(y)ϑ(t,X; dy)

are Borel for all f ∈ Cb
(
Ω; IR3

)
. By taking ϕ(t,X, y) = u(t)ξ(X) · y and using (10), we conclude

that

γ̄(t,X) =

∫
Ω
yϑ(t,X; dy) for L1 − a.e. t ∈ (0, T ) and α(t, ·)− a.e. X ∈ IR3.

This finishes the proof. QED.
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Remark 4.6. In light of Lemma 4.5 and equation (9), we see immediately that there exists a
Borel measurable function defined on (0, T ) × IR3 which for L1-a.e. t ∈ (0, T ) coincides with
U(t,X) for α(t, ·)-a.e. X ∈ IR3.

Remark 4.7. In view of the above lemma, from now on we shall use the notation γ̄ to denote
the Borel representative of the barycentric projection defined by (10). Likewise, by following
the same proof, it is easy to see that the barycentric projection of

(
Id × ∇Pt

)
#
χ onto its first

marginal (namely, χ) can also be extended to a Borel map from (0, T )× Ω into IR3. Since this
coincides with ∇Pt(x) for L4-a.e. (t, x) ∈ (0, T ) × Ω, we shall assume in the remainder of the
paper that ∇P is Borel measurable in both variables.

We also note the following:

Lemma 4.8. For (t,X) ∈ [0, T )× IR3 denote

Ωt,X := {x ∈ Ω : ∇Pt(x) exists and ∇Pt(x) = X}.

Then
γ̄t(X) ∈ Ωt,X for α(t, ·)-a.e. X ∈ IR3. (47)

In particular,

(∇Pt ◦ γ̄t)(X) = X for every t ∈ [0, T ) and α(t, ·)-a.e. X ∈ IR3. (48)

Proof: Fix t ∈ [0, T ). Since γt = (∇Pt × Id)#χ and π1#γt = αt, by disintegrating γt as in
Theorem 5.3.1 [5], we get

γt =

∫
IR3

γt,X dαt(X),

where γt,X is a family of probability measures on Ω such that the map X → γt,X(B) is Borel
for any Borel set B ⊂ Ω, and

γt,X(IR3 \ Ωt,X) = 0 for α(t, ·)-a.e. X ∈ IR3.

From (10) and the disintegration, we get

γ̄t(X) =

∫
Ω
y dγt,X(y) =

∫
Ωt,X

y dγt,X(y) for α(t, ·)-a.e. X ∈ IR3.

The convexity of Pt(·) implies that Ωt,X is a convex set (of dimension k(t,X) ∈ {0, 1, 2, 3}) for
every X such that Ωt,X 6= ∅. Thus,

γ̄t(X) ∈ Ωt,X for α(t, ·)-a.e. X ∈ IR3,

and for such X we get (∇Pt ◦ γ̄t)(X) = X. QED.

The continuity of F in time was proved in [9], [14] in the case of absolutely continuous αt. In
general we cannot expect that, which is clear from the structure (41) of Ft, especially looking at
the example when P0 is linear, i.e. α0 = δz0 discussed above: streamlines in the physical space
are concentrated on the barycenters γ̄t(X) of the sets ∂P ∗t (X) where X ∈ supp (αt). Thus it is
natural to expect continuity of Ft “relative to ∇Pt”. Indeed, we have the following:
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Proposition 4.9. Assume that (46) hold. Then the map F defined in (41) satisfies

lim
t→t0

∫
Ω
ξ(∇Pt ◦ Ft(x)) · Ft(x)dx =

∫
Ω
ξ(∇Pt0 ◦ Ft0(x)) · Ft0(x)dx (49)

for all t0 ∈ [0,∞) (which we define as meaning t→ 0+ if t0 = 0) and all ξ ∈ Cc(IR3; IR3).

Furthermore,

lim
t→t0

∫
Ω
ξ(∇Pt0 ◦ Ft0(x)) · Ft(x)dx =

∫
Ω
ξ(∇Pt0 ◦ Ft0(x)) · Ft0(x)dx, (50)

and

lim
t→0+

∫
Ω
ξ(∇P0(x)) · Ft(x)dx =

∫
Ω
ξ(∇P0(x)) · x dx (51)

for all t0 ∈ [0,∞) and all ξ ∈ Cc(IR3; IR3).

Proof: The (unique) optimal transport plan between its X-marginal αt and it y-marginal χ
is γt = (∇Pt × Id)#χ. Let t0 ∈ [0,∞). Since W2(αt, αt0) → 0 as t → t0 (which we define as
meaning t→ 0+ if t0 = 0), by stability of optimal plans [5], we infer that γt converges to γt0 in
P2(IR3 × Ω). We use the definition (41) of Ft, the fact that ∇P0#χ = α0 and Φt#α0 = αt, and
(10) to get for t > 0∫

Ω
ξ(Φt ◦ ∇P0(x)) · Ft(x)dx =

∫∫
IR3×IR3

ξ(X) · yγt(dX, dy).

For t = 0, we use F0 = Id, Φ0 = Id, ∇P0#χ = α0 and (10) to get the equality displayed above.
Now, by the continuity of t→ γt proved above, we deduce for t0 ∈ [0,∞)

lim
t→t0

∫
Ω
ξ(Φt◦∇P0(x))·Ft(x)dx =

∫
IR3

∫
Ω
ξ(X)·yγt0(dX, dy) =

∫
Ω
ξ(Φt0◦∇P0(x))·Ft0(x)dx. (52)

Next we note that (Φt ◦∇P0)#χ = αt. Combining this with (48), we obtain for every t ∈ (0, T ):

∇Pt ◦ γ̄t ◦ Φt ◦ ∇P0(x) = Φt ◦ ∇P0(x) for a.e. x ∈ Ω.

Then using (41) we obtain for every t ∈ (0, T )

∇Pt ◦ Ft(x) = Φt ◦ ∇P0(x) for a.e. x ∈ Ω. (53)

For t = 0, we deduce (53) from F0 = Id, Φ0 = Id. Now (52) implies (49).

Furthermore, (31) implies

Φt(X) = Φt0(X) +

∫ t

t0

U(s,Φs(X))ds for α0 − a.e. X ∈ IR3 and all 0 ≤ t0 ≤ t.

This yields

|ξ(Φt(X))− ξ(Φt0(X))|2 ≤ ‖∇ξ‖2∞
(∫ t

t0

|U(s,Φs(X))|ds
)2

≤ (t− t0)‖∇ξ‖2∞
∫ t

t0

|U(s,Φs(X))|2ds
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for α0-a.e. X ∈ IR3. Note that (0, T ) × IR3 3 (t,X) → U(t,Φt(X)) is Borel (as composition of
Borel maps). Next we use ∇P0#χ = α0 and Φs#α0 = αs to get

‖ξ ◦ Φt ◦ ∇P0 − ξ ◦ ∇Φt0 ◦ ∇P0‖L2(Ω;IR3) ≤
√
t− t0‖∇ξ‖∞

(∫ t

t0

∫
IR3
|U(s, Y )|2dαs(Y )ds

)1/2

.

Then, using (53) we obtain

‖ξ ◦ ∇Pt ◦ Ft − ξ ◦ ∇Pt0 ◦ Ft0‖L2(Ω;IR3) ≤
√
t− t0‖∇ξ‖∞

(∫ t

t0

∫
IR3
|U(s, Y )|2dαs(Y )ds

)1/2

.

Since ‖Ut‖L2(αt;IR3) ∈ L∞(0,∞) and F is bounded uniformly in time-space, we use (49) and the
inequality displayed above to deduce (50). For t0 = 0 we use the fact that F0(x) = x for a.e. x
to get (51) from (50). QED.

Remark 4.10. In the case αt � L3 and 1 < p < ∞, note that the strong Lp-continuity in
time ‖Ft − Ft0‖Lp(Ω) → 0 as t → t0 is equivalent to weak Lp-continuity, since all the maps Ft
share the same Lp-norm (by being measure-preserving). In fact, we can further prove that when
αt � L3 for all t ≥ 0, (50) is equivalent to this weak Lp-continuity. Thus, our result above
simply generalizes the Lp-continuity obtained in [9].

Proof: Let 1 < q <∞ be such that 1/p+ 1/q = 1. First, one can easily check that

ζ ∈ Lq(αt0 ; IR3)⇔ ζ◦Φt0◦∇P0 ∈ Lq(Ω; IR3), ξ ∈ Lq(Ω; IR3)⇔ ξ◦∇P ∗0 ◦Φ∗t0 ∈ L
q(αt0 ; IR3). (54)

Thus, pick ξ ∈ Lq(Ω; IR3) and a sequence {ξn}n ⊂ C1
c (IR3; IR3) which converges to ξ ◦∇P ∗0 ◦Φ∗t0

strongly in Lq(αt0 ; IR3), i.e. ξn ◦ Φt0 ◦ ∇P0 converges strongly to ξ in Lq(Ω; IR3). We have∣∣∣∣ ∫
Ω
ξ · (Ft − Ft0)dx

∣∣∣∣ ≤ ∣∣∣∣ ∫
Ω
ξn ◦ Φt0 ◦ ∇P0 · (Ft − Ft0)dx

∣∣∣∣+ C(p,Ω)‖ξn ◦ Φt0 ◦ ∇P0 − ξ‖Lq(Ω;IR3).

We choose n0 sufficiently large such that the last term in the right hand side is sufficiently small.
Then use (50) for ξ = ξn0 to conclude that (50) implies the weak Lp-continuity for t→ Ft at t0.
A similar argument can be used to prove the converse.

QED.

Proposition 4.9 motivates the following

Definition 4.11. Let P : [0,∞) × Ω → IR be such that P ∈ C([0,∞);H1(Ω)) and P (t, ·) is
convex in Ω for each t ∈ [0,∞). A map F : [0,∞) × Ω → Ω is called weakly P–continuous if
(50), (51) hold for all t0 ∈ (0,∞) and all ξ ∈ Cc(IR3; IR3).

Furthermore, we note that considering the example of initial data in the dual space being
a linear combination of Dirac masses (see also Proposition 4.14 below), the solution αt at each
time t is also a linear combination of Dirac masses concentrated in the time-dependent location,
it is not clear whether distinct initial location of Dirac masses should imply that their locations
are distinct at all times. Thus we cannot expect existence of the map F ∗ as in Definition 1.1(iii).

In light of the above, we are ready to generalize Definition 1.1 as follows:
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Definition 4.12. Let P : [0,∞) × Ω → IR be such that P ∈ C([0,∞);H1(Ω)) and P (t, ·) is
convex in Ω for each t ∈ [0,∞). Let F : [0,∞) × Ω → Ω be a weakly P -continuous Borel map.
Denote by γ̄t the barycentric projection of the measure γt :=

(
∇Pt× Id

)
#
χ, defined in (10), and

set
αt := ∇Pt#χ, µt := γ̄t#αt. (55)

Then the pair (P, F ) is called a weak Lagrangian solution of (1) in [0, T )× Ω if

i. F (0, x) = x and P (0, x) = P0(x) for all x ∈ Ω;

ii. for any t > 0 the mapping Ft = F (t, ·) : Ω→ Ω satisfies Ft#χ = µt and Ft#µ0 = µt;

iii. The function Z : (0, T )× Ω→ IR3 defined by

Zt = ∇Pt ◦ Ft (56)

lies, along with F , in L∞(0, T ;L2(Ω; IR3)) and is a distributional solution of (7) in the
sense of (8).

The following proposition gives sufficient conditions for the existence of weak Lagrangian
solutions in physical space. Note that these conditions are exactly what was proved in [9] in the
case αt ∈ Lq(IR3).

Proposition 4.13. Assume that (46) hold. Define F by (41). Then the pair (P, F ) is a weak
Lagrangian solution in physical space in the sense of Definition 4.12.

Furthermore, if there exists a Borel map Φ∗ : [0, T ]× IR3 → IR3 such that Φ∗#αt = α0 for all
t ∈ [0, T ), then

there exists a Borel mapping F ∗ : [0, T ]× Ω→ Ω satisfying

F ∗t#µt = µ0 and F ∗t ◦ Ft = Id µ0-a.e., and Ft ◦ F ∗t = Id µt-a.e.
(57)

Proof: Proposition 4.9 implies that F is weakly P -continuous.

From (48) and since ∇Pt#χ = αt, we have:

∇Pt ◦ γ̄t ◦ ∇Pt(x) = ∇Pt(x) for every t ∈ (0, T ) and χ− a.e. x ∈ Ω. (58)

Now, in order to prove (i) of Definition 4.12 for F , we find that

γ̄0 ◦ (Φ0 ◦ ∇P0 ◦ γ̄0) ◦ ∇P0(x) = γ̄0 ◦ ∇P0(x) for χ-a.e. x ∈ Ω,

due to (58) for t = 0 and the hypothesis on Φ0. Since µ0 = γ̄0 ◦ ∇P0#χ, then (i) follows.

To prove (ii) we check that for t > 0

Ft#χ = (γ̄t ◦ Φt ◦ ∇P0)#χ = (γ̄t ◦ Φt)#α0 = γ̄t#αt = µt,

where we used the definitions (55), and that Φt#α0 = αt. Similarly, for t > 0

Ft#µ0 = (γ̄t ◦ Φt ◦ ∇P0)#µ0

= (γ̄t ◦ Φt ◦ ∇P0 ◦ γ̄0)#α0

= (γ̄t ◦ Φt)#α0

= γ̄t#αt = µt,
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where we used in the second line that (∇P0 ◦ γ̄0)#α0 = α0 by (48) for t = 0.

Next we prove (iii) of Definition 4.12. We first note that Z and F are Borel (therefore,
Lebesgue) measurable as compositions of Borel maps (see Lemma 4.5). By the definition of γ̄,
we have ∣∣∣∣ ∫

IR3
ξ(X) · γ̄t(X)dαt(X)

∣∣∣∣ ≤ (∫
IR3
|ξ(X)|2dγt(X, y)

)1/2(∫
Ω
|y|2dγt(X, y)

)1/2

= ‖ξ‖L2(αt;IR3)

(∫
Ω
|y|2dy

)1/2

.

It follows that for all t ∈ (0, T ) we have

γ̄t ∈ L2(αt; IR
3) with ‖γ̄t‖L2(αt;IR3) ≤ R0(L3(Ω))1/2, (59)

where 0 < R0 < ∞ is large enough such that Ω ⊂ B(0, R0). Thus, there exists C ∈ IR
independent of t such that∫

Ω
|Ft(x)|2dx =

∫
IR3
|γ̄t ◦ Φt|2dα0 =

∫
IR3
|γ̄t|2dαt = ‖γ̄t‖2L2(αt;IR3)

≤ C.

Also, using that Ft#χ = µt as proved above, and also using (48), we have for Zt = ∇Pt ◦ Ft:∫
Ω
|Zt(x)|2dx =

∫
Ω
|∇Pt(y)|2dµt(y) =

∫
Ω
|∇Pt(γ̄t(X))|2dαt(X)

=

∫
IR3
|X|2dαt(X) =

∫
Ω
|∇Pt(x)|2dx ≤ C̃,

where C̃ <∞ is a constant coming from the fact that P ∈ C([0, T ];H1(Ω)). Thus, both Z and
F belong to L∞(0, T ;L2(Ω; IR3)). Next we note that assumption (ii) of (46) implies that for for
χ-a.e. x ∈ Ω, the function Φ̇(·,∇P0(x)) is a weak solution of the problem

Φ̇(t,∇P0(x)) = J [Φ(t,∇P0(x))− γ̄t(Φ(t,∇P0(x)))] with Φ(0,∇P0(x)) = ∇P0(x). (60)

From (53), for each t ∈ [0, T ) the equality Zt(x) = Φt ◦ ∇P0 holds for a.e. x ∈ Ω. Thus using
the integrability of Z and F proved above, using a function ϕ ∈ C1

0 ([0, T ) × IR3) in the weak
form of (60) and integrating with respect to x, we get (8).

Finally, in order to prove (57) under the additional assumption of the existence of Φ∗, we set

F ∗0 (x) = x, F ∗t (x) := γ̄0 ◦ Φ∗t ◦ ∇Pt for t > 0.

Then property (57) is obvious for t = 0. Thus we fix t > 0 and and compute

F ∗t#µt = (γ̄0 ◦ Φ∗t ◦ ∇Pt ◦ γ̄t)#αt = (γ̄0 ◦ Φ∗t )#αt = γ̄0#α0 = µ0. (61)

To finish proving (57), note that F ∗t ◦ Ft(y) = y for µ0-a.e. y ∈ Ω amounts to

F ∗t ◦ Ft ◦ γ̄0 ◦ ∇P0(x) = γ̄0 ◦ ∇P0(x) (62)

for χ-a.e. x ∈ Ω. Since

(F ∗t ◦ Ft ◦ γ̄0)(∇P0(x)) = (γ̄0 ◦ Φ∗t ◦ ∇Pt ◦ γ̄t ◦ Φt ◦ ∇P0 ◦ γ̄0)(∇P0(x))
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and ∇Pt ◦ γ̄t, ∇P0 ◦ γ̄0, Φ∗t ◦ Φt are all equal to the identity on the corresponding domains, we
deduce (62).
QED.

In the case of discrete measures we can prove that the construction works. Even though not ex-
plicitly present in [4], a simple argument inserted in the proof of Theorem 7.4 from said reference
yields that the solutions to the Hamiltonian ODE constructed there are convex combinations of
point masses provided that the initial measures are of the same form (coefficients of the convex
combinations are time-invariant). Our Hamiltonian in (21) satisfies all the requirements for
Theorem 7.4 [4] to apply (see Lemma 7.6 [4]).

Proposition 4.14. Let x0 = (x1
0, ..., x

n
0 ) ∈ IR3n be arbitrary for some integer n ≥ 1, and let

µ̄ =
n∑
i=1

ciδxi0
(63)

be a convex combination of the Diracs at these points, i.e. nonnegative constants ci satisfy∑n
i=1 ci = 1. Then the solution constructed in Theorem 7.4 [4] for the initial-value problem

associated to the Hamiltonian ODE as in Definition 2.1 for the Hamiltonian in (21) is of the
form

αt =

n∑
i=1

ciδxi(t), (64)

where [0, T ] 3 t→ x(t) is in W 1,∞(0, T ; IR3n) and x(0) = x0.

Proof: Let m be a positive integer and set h = T/m. Then take wm0 := −J∇H(ᾱ), where
∇H(α) denotes the element of ∂H(α) with least L2(α; IR3)-norm, and set, for all t ∈ [0, h],

αmt = (Id + twm0 )#ᾱ, ν
m
t = (Id + twm0 )#(wm0 ᾱ) and wmt :=

dνmt
dαmt

,

where we used the fact (see Lemma 7.1 [4]) that νmt � αmt to get the Radon-Nykodim derivative
wmt . On the next time subinterval [h, 2h] one defines αmt and wmt similarly by using αmh and
wmh instead of ᾱ and wm0 , and t − h instead of t. In general, the construction can be extended
to [kh, (k + 1)h] for k = 0, ...,m − 1 by using αmkh and wmkh, t − kh instead of t, and repeating
the steps above. It is proved in [4] that the paths of measures t → αmt are uniformly bounded
in P2(IR3) and uniformly Lipschitz continuous. For a subsequence mj →∞ we have a limiting
t→ αt, which is shown to satisfy the Hamiltonian ODE with α0 = ᾱ. Since

α
mj

t = [Id + (t− kh)w
mj

kh ]#α
mj

kh

for t ∈ [kh, (k + 1)h], we deduce that all probabilities α
mj

t are convex combinations of n Dirac
masses if α

mj

kh is (with same coefficients). This is true for all k = 0, ...,mj − 1, so we deduce that
it holds for α

mj

t all t ∈ [0, T ]. The uniform bounds on αmt mentioned above translate into the
uniform L∞(0, T ; IR3n) bounds on t → xmj (t) = (xmj ,1(t), ..., xmj ,n(t)) (where xmj ,i(t) are the
points in the support of α

mj

t ). Furthermore, the uniform Lipschitz continuity of the paths t→ αmt
in the Wasserstein space P2(IR3) gives a finite constant C > 0 for which W2(α

mj

t , α
mj
s ) ≤ C|t−s|

for all t, s ∈ [0, T ]. Now fix t0 ∈ (0, T ). Note that xm are piecewise linear and continuous in
time, thus it is clear that

C2|t− t0|2 ≥W 2
2 (α

mj

t , α
mj

t0
) =

n∑
i=1

ci|xmj ,i(t)− xmj ,i(t0)|2 for all t close enough to t0.
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Thus, the vector functions t → xmj (t) are uniformly Lipschitz. By Ascoli-Arzela’s theorem, a
subsequence converges in the sup norm to a function x ∈ W 1,∞(0, T ; IR3n), which implies the
limiting measures αt found above must have the form (64) for all t ∈ [0, T ]. This follows from

W 2
2 (α

mj

t , βt) ≤
n∑
i=1

ci|xmj ,i(t)− xi(t)|2 → 0 as j →∞,

where βt is the convex combination of the Dirac masses at xi(t) with coefficients c1, ..., cn. QED.

So far we are not aware of any reason why distinct initial xk0 should give rise to distinct xk(t)
at all later times. As a consequence, existence of the map Φ∗ is uncertain (since transport maps
from an average of n points masses to one of m point masses exist if and only if n ≥ m).

Proposition 4.15. Let n be a positive integer and

αt :=
n∑
i=1

ciδxi(t), for t ∈ [0, T )

be the solution of SG in dual space constructed in Proposition 4.14 with initial data

α0 :=
n∑
i=1

ciδxi0
,

where xi0 are arbitrary in IR3, i = 1, ..., n, and ci are nonnegative and
∑n

i=1 ci = 1. Then the map
Φn : [0, T ] × IR3 → IR3 given by Φn(t,X) = X if X 6= xi0, and Φn(t, xi0) = xi(t) for t ∈ [0, T ],
i = 1, ..., n satisfies (46), (ii)–(iii).

Proof: It is obvious that Φn is Borel and Φn satisfies Φn
t#α0 = αt. To show that Φn solves (42)

we start from the fact that αt solves the system (17), (18). In fact, the Hamiltonian (21) has
the property that TαP2(IR3)∩ ∂H(α) =

{
γ̄ − Id

}
(see, e.g. [4]), so αt solves (13) in the sense of

distributions. This is equivalent to

t→
∫
IR3

ξ(X)dαt(X) is absolutely continuous

and for a.e. t ∈ (0, T ) we have

d

dt

∫
IR3

ξ(X)dαt(X) =

∫
IR3
∇ξ(X) · U(t,X)dαt(X) for all ξ ∈ C1

c (IR3),

for U given in (9). According to Proposition 4.14, we have that t→ xi(t) is in W 1,∞(0, T ; IR3)
for all i = 1, ..., n, which implies

n∑
i=1

ci∇ξ(xi(t)) · ẋi(t) =

n∑
i=1

ci∇ξ(xi(t)) · U(t, xi(t)) for all ξ ∈ C1
c (IR3).

This leads to the desired conclusion. QED.

We are now in a position to formulate:
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Corollary 4.16. Let P0 be the maximum of finitely many affine functions: for some integer
n ≥ 1 and ai ∈ IR3, bi ∈ IR1 for i = 1, . . . , n

P0(x) = max
i=1,...,n

(ai · x+ bi), for x ∈ Ω.

Then there exists a weak Lagrangian solution for (1) in the sense of Definition 4.12 with P (0, ·) =
P0 a.e. in Ω.

5 Return to dual space and conservation of energy

We show that weak Lagrangian solutions give rise to solutions in dual space.

Theorem 5.1. Let (P, F ) be a weak Lagrangian solution of (1) in the sense of Definition 4.12
and set αt := ∇Pt#χ. Then α is a distributional solution of (13).

Proof: We need to show that for every ϕ ∈ C∞0 ((0, T )× IR3)∫ T

0

∫
IR3

(∂tϕ+ J [X − γ̄t(X)] · ∇ϕ)dαt(X)dt = 0. (65)

By the density argument, it is sufficient to show that for

ϕ(t,X) = ζ(t)ξ(X), for all ξ ∈ C∞0 (IR3), ζ ∈ C∞0 (0, T ).

Fix such ξ, ζ.

From (55), (∇Pt ◦ γ̄t)#αt = ∇Pt#µt. Then (48) yields

∇Pt#µt = αt.

Then Ft#χ = µt implies Zt#χ = (∇Pt ◦ Ft)#χ = ∇Pt#µt = αt, i.e.

Zt#χ = αt. (66)

Now we calculate using (66):∫ T

0

∫
Ω
ζ ′(t)ξ(Zt(x))dxdt =

∫ T

0

∫
IR3

ζ ′(t)ξ(X)dαtdt. (67)

On the other hand, we can show that integrating by parts in t and using the regularity of Z,F
and equation (8), we get∫ T

0

∫
Ω
ζ ′(t)ξ(Zt(x))dxdt = −

∫ T

0

∫
Ω
ζ(t)∇ξ(Zt(x)) · J [Zt(x)− Ft(x)]dxdt. (68)

Indeed, let ηε(t, x) be the family of standard mollifiers in time-space. We extend Z(t, x) to
IR1 × IR3 by defining it to be zero outside of (0, T ) × Ω, and define Zε = ηε ∗ Z(t, x) on
(0, T )× IR3, where the convolution is with respect to (t, x). Then Zε ∈ C∞((0, T )× IR3). Also,
(8) implies that the distributional derivative ∂tZ(t, x) in (0, T )× IR3 is J(Z − F ) (extended by
zero outside of [0, T ] × Ω), and the functions Z, Z − F are in L2((0, T ) × Ω; IR3) by (iii) of
Definition 4.12. Let [a, b] ⊂ (0, T ) be such that supp (ζ) ⊂ [a, b]. Then for sufficiently small ε,
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∂tZ
ε = J(Z−F )∗ηε(t, x) in (a, b)×IR3, and (Zε, ∂tZ

ε)→ (Z, J(Z−F )) in L2((a, b)×Ω; IR3×IR3)
as ε→ 0. Then, integrating by parts to get∫ T

0

∫
Ω
ζ ′(t)ξ(Zεt (x))dxdt = −

∫ T

0

∫
Ω
ζ(t)∇ξ(Zεt (x)) · ∂tZεt (x)dxdt, (69)

and using that ξ,∇ξ,D2ξ are bounded, we get that the left and right hand sides of the above
equality converge to the left and right hand sides of (68), respectively. Indeed, denoting by Rε
and R the right-hand sides of (69) and (68) respectively, we have

|R−Rε| ≤
∫ b

a

∫
Ω

(
‖D2ξ‖L∞(IR3)|Z

ε
t (x)− Zt(x)||Zt(x)− Ft(x)|

+ ‖Dξ‖L∞(IR3)|∂tZ
ε
t (x)− J [Zt(x)− Ft(x)]|

)
dxdt

≤ C
(
‖Zt(x)− Ft(x)‖L2((0,T )×Ω)‖Zεt − Zt‖L2((a,b)×Ω)

+ ‖∂tZεt (x)− J [Zt(x)− Ft(x)]‖L2((a,b)×Ω)

)
→ 0.

Convergence of the left-hand sides is proved similarly. This shows (68).

Next, (48) implies

(γ̄t ◦ ∇Pt ◦ γ̄t)(X) = γ̄t(X) for every t ∈ (0, T ) and α(t, ·)-a.e. X ∈ IR3.

Using γ̄t#αt = µt, we get

γ̄t ◦ ∇Pt(x) = x for every t ∈ (0, T ) and µt-a.e. x ∈ Ω.

In view of Ft#χ = µt, we have

γ̄t ◦ Zt(x) = γ̄t ◦ ∇Pt ◦ Ft(x) = Ft(x) for every t ∈ (0, T ) and χ-a.e. x ∈ Ω.

Then we can rewrite (68) as∫ T

0

∫
Ω
ζ ′(t)ξ(Zt(x))dxdt = −

∫ T

0

∫
Ω
ζ(t)∇ξ(Zt(x)) · J [Zt(x)− γ̄t ◦ Zt(x)]dxdt,

and using (66) to change variables in the right-hand side, we get∫ T

0

∫
Ω
ζ ′(t)ξ(Zt(x))dxdt = −

∫ T

0

∫
IR3

ζ(t)∇ξ(X) · J [X − γ̄t(X)]dαt(X)dt,

Combining with (67), we get∫ T

0

∫
IR3

ζ ′(t)ξ(X)dαtdt = −
∫ T

0

∫
IR3

ζ(t)∇ξ(X) · J [X − γ̄t(X)]dαt(X)dt

which is (65) in the case ϕ(t,X) = ζ(t)ξ(X). QED.

We finish with an observation concerning energy conservation along weak Lagrangian solu-
tions of (1).
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Corollary 5.2. Let (P, F ) be a weak Lagrangian solution of (1) in the sense of Definition 4.12.
Then

the function [0, T ) 3 t→
∫

Ω

∣∣y −∇Pt(y)
∣∣2dy is constant. (70)

Proof: Due to (59), we infer that the dual-space velocity U(t,X) = X − γ̄t(X) satisfies

‖U(t, ·)‖L2(αt;IR3) ≤ R0[L3(Ω)]1/2 +

(∫
IR3
|X|2dαt(X)

)1/2

.

But ∫
IR3
|X|2dαt(X) = ‖∇Pt‖2L2(Ω;IR3)

for all t ∈ [0, T ),

which, since P ∈ C([0,∞);H1(Ω)), implies the local boundedness in time of the L2(αt; IR
3)–

norm of the velocity U(t, ·), boundedness required by Theorem 5.2 in [4]. Furthermore, it follows
that the path t→ αt lies in AC2(0, T ;P2(IR3)), see e.g. [4, page 24]. Thus, in light of Theorem
5.1, we can apply Theorem 5.2 in [4] to conclude. QED.
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