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Self-Segregation of Competitive Chaotic Populations

Renate Wackerbauer,1 Hongyan Sun,1,2 and Kenneth Showalter1,*
1Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045

2Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315
(Received 26 January 2000)

The dynamical behavior of species competing for a common resource is studied with a reaction-
diffusion system based on cubic autocatalysis. Randomly seeded populations self-segregate to form a
complex network of domains separated by distinct interfaces. For chaotic populations in one-dimensional
media, the interfaces exhibit irregular motions on long time scales. In two-dimensional media, the
interface motions are governed by curvature-induced drift.

PACS numbers: 87.23.Ge, 05.45.Ac, 82.40.Bj, 87.23.Kg

Pattern formation in competitive environments has been
the subject of numerous studies in chemistry, ecology, soci-
ology, and genetics [1–5]. Nonclassical phenomena, such
as spontaneous cluster formation, reactant segregation,
and depletion-zone formation, have been investigated in
diffusion-controlled chemical reactions [1]. Another class
of systems, in which two populations compete for a
common sustaining resource, has yielded the ecologically
motivated and controversially discussed “competitive
exclusion principle” [2], where two species with similar
characteristics are unable to coexist. In this context,
closed reaction-diffusion systems exhibit exclusive prod-
uct selectivity when the species have different diffusivities
or different rates of autocatalysis [4], or, in the case of
open Lotka-Volterra kinetics (with equal diffusivities),
segregation of steady-state populations [5].

In this Letter, we present a reaction-diffusion system
with chaotic dynamics that exhibits complex interface
patterns arising from self-segregation behavior. We study
the evolution of coupled reactions, each governed by
cubic autocatalysis [6], which compete for a common
resource [7,8]. Self-segregating domains of uncorrelated
chaotic populations, separated by interfaces that exhibit
irregular motions on long time scales, spontaneously
arise in one-dimensional configurations with random
initial conditions. Localized interfaces are exhibited
for steady state populations or for correlated chaotic
populations arising from symmetric initial conditions.
Curvature-induced interface drift governs the pattern
evolution in two-dimensional configurations, which
develops on a time scale much longer than that of the
population dynamics and yields complex reorganizations
at interface junctions in the case of three or more
autocatalytic species.

Competitive spatiotemporal chaos.—We begin by
examining the dynamics of two autocatalytic species, B
and C, which compete for a common sustaining resource,
A, and then decay to products, P and Q: A 1 2B ! 3B,
B ! P, A 1 2C ! 3C, C ! Q. Dimensionless reaction-
diffusion equations for this system in an open spatial
reactor are derived following previous studies of the

two-variable Gray-Scott model [8,9], where a, b, and c
represent the dimensionless concentrations:

≠ta � Da 1 1 2 a 2 ma�b2 1 c2� ,

≠tb � dbDb 1 b0 2 Fb 1 mab2,

≠tc � dcDc 1 c0 2 Fc 1 mac2.

(1)

D is the Laplacian operator, and F and m are bifurcation
parameters of the system, determined by the flow rate and
concentrations of the species in the reservoir. Throughout
this study, we assume equal diffusivities, db � DB�DA �
1 and dc � DC�DA � 1, and equal growth rates for auto-
catalysis in B and C, in order to focus on behavior arising
from competitive species with similar characteristics. For
simplicity, we also assume that there is no supply of the
autocatalysts from the reservoir, b0 � c0 � 0.

Within the parameter range of interest, where the
dynamics of the single-autocatalyst system [c � 0 in
Eqs. (1)] exhibits chaotic behavior [8,9], the coupled
system is characterized by the steady states SA � �1, 0, 0�,
SB

6 � �a6, h6, 0�, and SC
6 � �a6, 0, h6�, where a6 �

�1 6
p

1 2 4F2�m ��2 and h6 � F�� ma6� correspond
to the two unstable steady states �a6, h6� of the single au-
tocatalyst system. S

B,C
6 exist for m above the saddle node

bifurcation, msn � 4F2. (Another pair of steady states,
arising for m . 8F2, is not relevant to this study.) A
stability analysis of the spatially homogeneous system
shows that SA is a stable node for all parameter values,
S

B,C
1 are saddle points, and SB,C

2 are unstable (saddle) foci
that become stable for m . mH at the Hopf bifurcation
point, mH � F4��F 2 1�. We note that the additional,
third eigenvalue of Eqs. (1)—compared to the single
autocatalyst system—is negative �2F� for each steady
state. The particular symmetry and stability of these
states imply that the system is characterized by either
an extinct state, SA, or an exclusive state, S

B,C
6 , where

one competing species survives and the other becomes
extinct. From the analysis of the bifurcation structure of
the single-autocatalyst system presented in [9], it follows
that a traveling wave solution with a positive velocity
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exists only for m above a critical value, mc � 33 for
F � 2.8, which restricts the parameter space of interest
to �mc, mH� in our study.

Self-segregation in one-dimensional media.—The spa-
tiotemporal evolution of Eqs. (1) is shown in Fig. 1. After
a brief transient period, spatially localized domains de-
velop from randomly distributed perturbations initiating
autocatalysis in B and C. Species B is restricted to do-
mains where species C is extinct, while species C exists
only in domains where species B is extinct. The relative lo-
cation of the interfaces between the domains is robust with
respect to changes in the parameters, as long as traveling
wave solutions exist and both autocatalytic species have
the same growth rates and diffusivities. The particular lo-
cation of the interfaces, however, is a consequence of the

FIG. 1. Spatiotemporal pattern of reactant concentration a
(top), and autocatalyst concentrations b (middle) and c (bottom)
of Eqs. (1) for db � dc � 1, F � 2.8, and m � 33.15. A
concentration of 1 �0� is represented in white (black). The re-
actant A is initially distributed homogeneously, a � 1, over the
entire domain. Species B and C are randomly seeded, indicated
by the white � b � 1� and gray �c � 1� rectangles at the top of
the figure, with the following constraints: the seeds are each 20
grid points, they are separated by a minimum of 60 grid points,
and there is a total of 200 occupied grid points per species.
An explicit Euler method, with a three-point approximation
of the Laplacian operator and periodic boundary conditions,
was used for the numerical integration (dt � 0.0003) of the
one-dimensional array of length L � 600 (2400 grid points).
Each panel consists of 5000 layers, with each layer plotted
every 200dt. Time increases from top to bottom in each panel.

initial perturbation distribution. The chaotic populations
in each of the domains are uncorrelated except when sym-
metric initial conditions give rise to reflecting symmetries
between domains. The local perturbations must exceed a
concentration threshold to initiate autocatalysis, as well as
cover a sufficiently large region. Once autocatalysis is ini-
tiated, the local trajectory approaches the extinct state, SA.
Such transient activity appears in the spatiotemporal pat-
tern as triangular white zones below the initial seeds, where
the reactant concentration a � 1. Waves propagating into
the nonreaction zones give rise to domain interfaces when
two different autocatalytic species collide. There is, how-
ever, a minimum domain size below which a species cannot
survive, which depends on the particular parameter values.
With these considerations, it is possible to predict the loca-
tion of the segregation interfaces for different initial seed
configurations (for example, as in Fig. 1).

Figure 2(a) shows representative concentration profiles
of reactant A and autocatalysts B and C from Fig. 1. We
see the transitions between domains as well as excursions
away from the unstable focus SB,C

2 within the domains.
The domain interfaces are characterized by a high concen-
tration of A and low concentrations of B and C as the wave
fronts of each species intersect. While the exact profile at
the interface depends on the system parameters and the be-
havior in adjacent domains, small fluctuations are typically
observed around a state determined by continuity con-
straints of the neighboring steady states SB,C

2 [Fig. 2(b)].
Within a domain, the dynamical behavior can range from
regular to chaotic, depending on the domain size and con-
figuration of the initial local perturbations. For example,
limit cycle behavior is exhibited for a periodic distribution
of the initial perturbations and a relatively small domain
size (65 grid points and m � 33.15). In contrast, the be-
havior in Fig. 1, arising from random initial perturbations,
yields the chaotic trajectory shown in Fig. 2(b), which dis-
plays frequent excursions from the unstable focus SB,C

2 to
approach the SA state. This spatiotemporal chaos is much
like that observed in the two-variable, single-autocatalyst
system [8].

Even though the domain boundaries appear to be com-
pletely localized on the time scale of the local dynamics
within a domain, Fig. 1, the long-time behavior reveals
irregular motions of these interfaces, as shown in Fig. 3.
These motions, which occur only for chaotic populations,
are most pronounced when the system is close to the wave
propagation threshold where large-scale pulse structures
are exhibited, such as in Figs. 1 and 3. The interfaces are
characterized by a state that moves closer to the SA state
as the parameter m is decreased. Concentration fluctua-
tions at the interface are larger for smaller m and, conse-
quently, injections of the trajectory to the neighborhood
of the unstable focus are more likely. In contrast, steady-
state behavior above the Hopf bifurcation point, m . mH ,
is accompanied by interfaces that are completely localized
(spatially stationary) with constant concentrations (a, b, c)
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FIG. 2. (a) Representative concentration profile from Fig. 1 for reactant A (upper full line) and autocatalysts B (lower full line)
and C (dotted line) taken at the final time step of Fig. 1. Horizontal lines show the concentrations a (upper), b, c (lower) at the
unstable focus SB,C

2 . Domains with B�C� activity are indicated by white (black) bars at top. (b) Characteristic phase portraits of the
dynamics at a domain interface (full line localized near a � 0.9) and within a chaotic domain (dotted line) of Fig. 1.

for any random initial seeding. We also note that interface
boundaries are always localized for symmetrical initial per-
turbations, even for chaotic populations, when the neigh-
boring populations are dynamically in phase. Randomly
seeded autocatalyst populations, on the other hand, yield
domains of neighboring populations with out-of-phase os-
cillations that generate spatially asymmetric perturbations
to the interface.

The qualitative features of the self-segregation and
domain interfaces are not dependent on the boundary
conditions or the numerical method, although quantitative
differences appear for no-flux and periodic boundary con-
ditions. Furthermore, the qualitative behavior is preserved
when inputs of each autocatalyst are provided from outside
reservoirs �b0 fi 0, c0 fi 0�. In this case, however, a very
low concentration of the “minor” species is present in the
domains. Additional considerations arise for predicting
the appearance of segregation interfaces if we abandon the
requirement of nonoverlapping perturbations initiating au-
tocatalysis. In this case, the autocatalytic species with the
larger concentration survives at sites where overlapping
perturbations have different concentrations. For equal
initial concentrations, however, the reaction-diffusion
waves of both species die out (even when b 1 c , 1).
These results point to the existence of a planar separatrix
in the phase space, defined by b � c, which partitions

FIG. 3. Long-term spatiotemporal dynamics of reactant con-
centration a for the dynamical system in Fig. 1. The panel con-
sists of 2500 layers with each layer plotted every 2 3 104dt.
Other parameters are the same as in Fig. 1.

the orthogonal manifolds of the competing autocatalysis
subsystems. Trajectories starting on this separatrix move
to the stable steady state SA. When the autocatalytic
species have different diffusivities �DB fi DC , Di # DA�,
the interfaces become less irregular and domains with the
faster diffusing autocatalyst shrink, with the interfacial
motion dependent on the difference in the diffusivities.
An increase of the parameter m for the inferior species,
however, can compensate for the disadvantage in the
diffusivity. Finally, we note that a significant qualitative
change in behavior occurs when the reaction kinetics in
Eqs. (1) is modified from cubic to quadratic autocatalysis
[4]. The self-segregation is replaced by a coexistence of
the two species (when they are governed by the same
kinetics and diffusivities) throughout the medium.

Self-segregation in two-dimensional media.—The com-
petitive autocatalysis system can be readily generalized to
two-dimensional media with two, three, or more species.
As shown in Fig. 4, self-segregating populations are also
found in two-dimensional media for the case of three com-
peting autocatalytic species. The appearance of chaotic be-
havior and more ordered behavior in smaller domains, as
well as the local concentration profiles at interfacial bound-
aries, are similar to those observed in the one-dimensional
case, Fig. 2. A new feature appearing in two-dimensional
media is the drift of domain boundaries such that con-
vex curvature is reduced, following the curve-shortening
mechanism discussed in [5,10]. For a closed interface, this
yields the collapse of a convex domain. Approximately cir-
cular domains obey a paraboliclike decrease in radius with
time for chaotic as well as steady-state (m . mH) behav-
ior. The interface drift occurs on a much slower time scale
than that of the chaotic behavior within a domain.

Interface junctions, which occur with three or more com-
peting species, as well as isolated interface loops and do-
mains connected to the medium boundaries, can be seen
in the segregation patterns shown in Fig. 4. The evolu-
tion shown in successive panels reveals curvature-induced
shrinking and ultimate extinction of domains, giving rise
to the local breakup and reorganization of interface junc-
tions. Domains of the same species merge (sometimes only
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FIG. 4. Spatiotemporal evolution of concentration a when
three autocatalytic species compete for the reactant. From upper
left: t � 41, 176, 239, 364, 655, and 1154. The white patches
within the domains correspond to local reaction dynamics close
to the extinct state SA. Initial conditions: 20 seeds of each
species (B, C, D) with a cell size of 20 3 20 grid points were
randomly distributed on the array of L 3 L � 200 3 200
(800 3 800 grid points) with a uniform reactant concentration
a � 1. A five-point approximation of the Laplacian operator,
no-flux boundary conditions, and an integration time step of
dt � 0.0052 were used. Other parameters are the same as in
Fig. 1.

after a long and complex transient period) and small do-
mains diminish in number during such reorganizations. At
the same time, irregular interfaces tend to straighten and
the angles at the interface junctions tend to equalize. The
counterpart to the irregular interface motions for chaotic
populations in one-dimensional media is not readily ap-
parent in two-dimensional media, although slight motions
in nearly linear interfaces are observed. For interfaces with
significant curvature, however, interfacial drift dominates
the behavior and the irregular interface motions are sup-
pressed. Although the evolution of the interface reorgani-
zation varies with the parameter m, the qualitative features
of the asymptotic states are very similar. We note that a
similar interface evolution has been found for competitive
steady-state populations [5].

In summary, the n species of reaction-diffusion sys-
tems such as Eqs. (1) compete for a common sustain-
ing resource and segregate into domains of uncorrelated,
chaotic populations over a range of parameter values. Ir-
regular motions of the interfaces occur due to the influ-
ence of out-of-phase oscillatory behavior of neighboring
populations, while completely localized interfaces are ob-

served for adjacent steady-state populations or in-phase os-
cillatory populations arising from symmetrical initial per-
turbations. In two-dimensional media, curvature-induced
interface drift gives rise to shrinking and, ultimately, ex-
tinction of domains as well as domain reorganizations aris-
ing from the breakup of interface junctions.

The self-segregation behavior found in this study is rele-
vant to systems composed of species with similar char-
acteristics, and we have focused on the case of identical
diffusivities and growth rates of autocatalysis. Examples of
such systems include competing populations in biological
ecologies as well as isomers or isotopically labeled species
in competing chemical reactions. As the diffusivities and
rate constants are allowed to differ, the self-segregation
behavior is retained only transiently, with the lifetime of
the transient dependent on the similarity of the competing
species.

Ever more complicated self-segregation behavior, with
topological features determined by domain interface mo-
tions and the stability of interface junctions, should be
found in the generalization of Eqs. (1) to n . 3 chaotic
populations.

We thank the National Science Foundation (Grant
No. CHE-9974336), the Office of Naval Research, and
the Petroleum Research Fund for supporting this research.
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