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Tight-binding study of thermal expansions for Mo3Si
Ning Maa� and Bernard R. Cooper
Department of Physics, West Virginia University, Morgantown, West Virginia 26506

Bruce S. Kang
Mechanics and Aerospace Engineering Department, West Virginia University, Morgantown,
West Virginia 26506

�Received 17 January 2005; accepted 23 January 2006; published online 8 March 2006�

We implemented a tight-binding parameter extraction scheme that is suitable for the modeling of
intermetallic alloy systems. Using Mo3Si as an example, we obtained the Slater-Koster tight-binding
parameters directly from results of full-potential linear muffin-tin orbital calculation by using a
modification of the approach of McMahan and Klepeis �Phys. Rev. B 56, 12250 �1997��. The
transferability and accuracy of these parameters were tested against ab initio results. Augmented by
a fitted repulsive energy contribution that takes the form of embedded atom potential, the
tight-binding total energy method was applied in Monte Carlo simulations to compute the
coefficients of thermal expansion for Mo3Si. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2178401�

I. INTRODUCTION

Formulated in the classic work of Slater and Koster1 half
a century ago, tight-binding �TB� methods have experienced
a renewed popularity in the recent literature. In contrast to
the original method, which was mainly an experimental data
interpolation scheme, modern TB methods have been devel-
oped to predict electronic structure with accuracy compa-
rable to first-principles electronic methods. The success of
TB is due not only to its advantage of theoretical simplicity
and numerical efficiency, but also to its real-space approach,
which makes it widely applicable to systems that lack perfect
crystalline symmetry �e.g., defects, impurities, surfaces, and
interfaces�. Unlike other classical-potential-based empirical
methods, TB is based on a quantum-mechanical formulation
and is therefore more appropriate to explore the quantum
nature of chemical bonding properties and to describe com-
plicated materials such as transition metals.

In the past, TB method has achieved considerable suc-
cess in the modeling of single elements2 and some semicon-
ducting alloy systems. However, the application of TB in
intermetallic alloy systems3,4 has been very limited, prima-
rily due to the lack of quality TB parameters. The conven-
tional means to obtain TB parameters is to fit the TB energy
bands to those obtained either from first-principles theoreti-
cal calculations or experimental results. The numerical fitting
procedure, which performs the standard nonlinear minimiza-
tion on the merit function, works well for single element
materials where the number of independent parameters is
relatively small. In contrast, a typical binary intermetallic
material requires over 300 independent parameters. To fit so
many parameters simultaneously is prohibitively tedious, and
the merit function can easily be trapped into local minima,
resulting in unphysical TB parameters that produce energy
bands having little resemblance to the original ones.

In this article, we present a TB parameter extraction
scheme which avoids the aforementioned difficulties, and is
particularly suitable for the modeling of intermetallic alloy
materials. In this scheme, we first follow the method of Mc-
Mahan and Klepeis5,6 to extract the intersite Slater-Koster
�SK� parameters directly from the Hamiltonian and overlap
matrices, which are computed by the first-principles full-
potential linear muffin-tin orbital �FP-LMTO� method.7,8

Precalibration of energy is applied on Hamiltonian matrices
to ensure transferability. We obtain the on-site SK parameters
based on a simplifying assumption about the crystal fields.
Finally, we augment the band energy with a repulsive con-
tribution to account for the difference of the first-principles
total energy and TB band energy. We note in passing that the
idea of obtaining TB parameters directly from first-principles
calculation actually dates back to Andersen and Jepsen,9 and
has been continued by other groups.10 The application to
intermetallic alloy materials has been performed by Djajapu-
tra and Cooper for NiAl,8 where the Hamiltonian matrix el-
ements were used as input to real-space calculation of the
local density of states �DOS� using the recursion method.

To be specific, we choose A15 cubic Mo3Si �Fig. 1� as
our example material. A number of molybdenum-silicide al-
loys are being developed as high-temperature ��1000 °C�

a�Author to whom correspondence should be addressed; electronic mail:
n�ma12@yahoo.com

FIG. 1. The cubic A15 structure for Mo3Si: The Mo atoms �black circles�
form lines bisecting the cubic surfaces, and Si atoms �white circles� occupy
the bcc lattice.
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structural materials for many important fossil energy
applications.11 A promising alloy system currently under
substantial investigation12 is the ternary phase
Mo5SiB2�T2�–Mo3Si–Mo. It is known that the anisotropy
and incompatibility of the thermal expansions of the ternary
phase field causes thermal stress and this can lead to micro-
cracking. To tailor the mechanical properties and oxidation
resistance within the ternary phase field, it is highly desirable
to be able to predict the off-stoichiometry temperature de-
pendence of the thermal expansions of the three components
up to very high temperatures. In this paper we will use
Monte Carlo simulation based on TB method to predict the
temperature-dependent coefficients of thermal expansion
�CTE� for Mo3Si.

In the following sections, we shall first present a detailed
description of the method in Sec. II, then the test results of
accuracy and transferability of the TB parameters will be
presented in Sec. III, which are followed by the Monte Carlo
simulation results for CTE in Sec. IV, and finally a brief
summary in Sec. V.

II. METHODOLOGY

As usual, we separate the total energy into TB band en-
ergy and repulsive potential,

Etot = Eband + Erep. �1�

The above separation of total energy involves some arbitrari-
ness. In some TB total energy schemes �notably Cohen
et al.13�, the repulsive potential is entirely absorbed by the
band energy as a chemical potential shift of the site energies.
While this treatment simplifies the expression for the total
energy, it obscures the physical meaning of each individual
component. We shall keep both terms in the total energy
expression. The issue of the energy separation will be ad-
dressed later in the procedure of energy calibration.

A. The band energy

In the nonorthogonal TB model, one computes the
Hamiltonian and overlap matrices, H and S, and solves the
generalized eigenproblem,

�H − �iS��i = 0. �2�

The band energy is obtained by summing up all the energy
eigenvalues weighted by Fermi distribution function,

Eband = �
i

�i f��i� . �3�

Based on the two center approximation, Slater and
Koster1 expressed the Hamiltonian and overlap matrix ele-
ments as linear combinations of a set of parameters known as
SK parameters. For example, an intersite �R�0� Hamil-
tonian or overlap matrix element may be written as �here we
used the McMahan convention5�

�0lm�H�Rl�m�� = �
�

g��lm,l�m�,R̂�tll���R� �4�

and

�0lm�S�Rl�m�� = �
�

g��lm,l�m�,R̂�sll���R� , �5�

where g�’s are the linear coefficients that describe the geo-
metric alignment of the participating atomic orbitals, and
tll��’s and sll��’s are the Hamiltonian and overlap SK param-
eters that depend only upon the intersite distance R.

The inverse problem, namely, to determine SK param-
eters from given Hamiltonian and overlap matrices, has been
studied by McMahan and Klepeis.5,6 They found an orthogo-
nality relationship among the g�’s that can be used to invert
Eqs. �4� and �5�,

tll���R� =
1

2 − ���
�

m,m�

g��lm,l�m�,R̂��0lm�H�Rl�m�� , �6�

sll���R� =
1

2 − ���
�

m,m�

g��lm,l�m�,R̂��0lm�S�Rl�m�� . �7�

Thus, the procedure of obtaining intersite SK parameters is
made straightforward: One first computes the k-space Hamil-
tonian and overlap matrices for the material using first-
principles method. The matrices are then anti-Fourier trans-
formed into the real space. Using Eqs. �6� and �7�, the
intersite TB parameters for a particular structure are thus
obtained. In our implementation, we have used the FP-
LMTO �Ref. 7� method with single-kappa minimal basis to
deduce the TB parameters. The kappa decay parameter is set
to be −0.4, and the muffin-tin �MT� radii are 2.1912 bohr for
Mo and 2.4560 bohr for Si, respectively. The TB basis con-
sists of Mo’s 5s, 4p, and 3d orbitals and Si’s 3s, 3p, and 3d
orbitals.

The crucial difference between this procedure and con-
ventional schemes through parameter fitting is the following.
Conventional schemes start with the total energy and band
structure, which are essentially the eigenvalues of the Hamil-
tonian and overlap matrices. One then proceeds to probe the
TB parameter space for the set that will generate these ei-
genvalues. From a mathematics point of view, it is easy to
have different sets of TB parameters, or different TB matri-
ces, that produce the same set of eigenvalues. Therefore, the
results of a conventional scheme are usually not unique, and
are dependent on initial trial parameters. In contrast, this ab
initio based parameter retrieving scheme starts directly from
the matrix elements themselves �rather than their derived ei-
genvalues�. The subsequent procedure of inverting these ma-
trix elements to obtain their corresponding TB parameters
will guarantee the results to be unique. Thus, by abandoning
the eigenvalues and by working directly with the physically
more informative matrix elements, we eliminate the uncer-
tainties inherited from numerical fitting procedures.

When relating the intersite parameters prepared at differ-
ent lattice volumes, some caution must be taken. This is be-
cause the SK parametrization implicitly assumes a fixed set
of basis. However, the FP-LMTO method searches for the
optimal basis that minimizes the density functional which is
not fixed. In practice, we find that fixing the MT radii usually
results in a relatively fixed basis. This can be seen from Fig.
2, where the overlap SK parameters s�R� obtained at a series
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of lattice volumes collapse into a common curve. We note in
passing that the authors in Ref. 1 performed an explicit uni-
tary rotation transformation on the TB orbital basis to ensure
a fixed set of overlap parameters. In that case, the issues of
transferability were entirely relegated to the transformed
Hamiltonian parameters.

In contrast to Fig. 2, the Hamiltonian parameters ob-
tained at different lattice volumes show noticeable disagree-
ment �see Fig. 3�. In many other implementations, explicit
environment dependent TB parametrization schemes14 have
been invoked to resolve this discrepancy. Here, however, we
are aware that the discrepancy only occurs in Hamiltonian
parameters and not in overlap parameters. We therefore be-
lieve that the cause of discrepancy is mostly due to the arbi-
trariness of the total energy separation mentioned at the be-
ginning of Sec. II. In FP-LMTO calculation, the energy
reference of the band energy term is not fixed. This causes

arbitrary separation of total energy in Eq. �1� when the cal-
culations are performed at different lattice volumes. There-
fore, it is necessary to calibrate the energy references for the
Hamiltonian matrices prior to SK parameter extraction.

To perform the energy calibration, we assume the lowest
energy level of the core electron �1s to be unaffected by the
variations of lattice volume. Its calculated value is then used
as a reference to measure the corresponding potential matrix.
This leads to the following transformation on the Hamil-
tonian parameters:

t̃ = t�a� − ��1s�a�s , �8�

where a is the lattice constant at which the Hamiltonian pa-
rameters are obtained. After the calibration, the transformed
Hamiltonian parameters are plotted in Fig. 4, where an im-
proved agreement over Fig. 3 is apparent.

We fit the overlap and calibrated Hamiltonian SK param-
eters into the following form:

t�R� = �a0 + a1R�e−a2R, �9�

s�R� = �b0 + b1R�e−b2R. �10�

Results of intersite SK parameters are tabulated in Table I.
We now turn to the on-site �R=0� matrix elements. The

on-site overlap matrix is simply unity if the TB orbitals are
properly orthonormalized. For the on-site Hamiltonian ma-
trix, we assume that the off-diagonal mixings produced by
crystal field potentials are negligibly small �they are usually
three orders of magnitude smaller than the diagonal terms�.
Thus the remaining problem is to determine the diagonal
Hamiltonian matrix elements, which are the site energies of
the corresponding orbital plus crystal field corrections. In
contrast to the case of intersite SK parameters, neither the
site energy nor the crystal field correction can be directly
extracted from the FP-LMTO results. It was found in Ref. 1
that certain sums of these parameters remain directly com-
putable. However, these sums are structure dependent, i.e.,
nontransferable. To obtain a transferable set of TB on-site

FIG. 2. The overlap intersite parameters s�R� obtained at various lattice
constants: circles �a0=8.608 bohr�, squares �a0=9.121 bohr�, and triangles
�a0=9.707 bohr�.

FIG. 3. The Hamiltonian intersite parameters t�R� obtained at various lattice
constants: circles �a0=8.608 bohr�, squares �a0=9.121 bohr�, and triangles
�a0=9.707 bohr�.

FIG. 4. The Hamiltonian intersite parameters t�R�, after the calibration Eq.
�8�, obtained at various lattice constants: circles �a0=8.608 bohr�, squares
�a0=9.121 bohr�, and triangles �a0=9.707 bohr�.
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parameters, we used an alternative scheme described as the
following: First, we approximate the crystal field potential as
a superposition of a mesh of delta functions situated at
atomic sites. Thus the corrections to the site energy are par-
ticularly easy to evaluate, and the resulting diagonal matrix
elements now take the form

elm = el
0 + �

R�0
h��lm�R��2. �11�

Here el
0 is the site energy, h is the coefficient of the delta

functions, or the strength of the crystal fields, and �lm is the
wave function of the orbital. The summation is carried out
over all atomic sites excluding the hosting site. For R much
larger than the MT radius, we can replace �lm�R� with its
asymptotic behavior. It is parametrized in the following
Gaussian form:

��l,m�R��2 = c0e−�R − c1�2/c2
2
�Ym

l �R̂��2. �12�

In this form, orbitals that differ only in magnetic number
share a common radial part. This enables us to significantly
reduce the number of parameters in the fitting while still
retaining the correct angular dependence of these orbitals.

A few remarks are in order: First, the fitting is individu-
ally performed for each orbital set having a common angular
momentum. This fitting is to be contrasted to the conven-
tional fitting scheme in that we are fitting directly to the
diagonal matrix elements one at a time, rather than fitting to
the entire set of eigenvalues or the band structure. Therefore,
the results are still unique. Second, energy calibration is nec-
essary to obtain correctly behaved on-site parameters. To see
this, we note that Eq. �11� suggests that the volume depen-
dence of elm vanish at large lattice volume, since the crystal
field corrections eventually vanish. Without appropriate cali-
bration, the computed diagonal Hamiltonian matrix elements
may not behave this way due to the floating energy reference
point.

B. The repulsive potential

The TB band energy is purely attractive. To explain the
bonding behavior, we need a repulsive contribution that ac-
counts for the ion-ion repulsions and the correction for the
overcounting of electron-electron interactions.

TABLE I. Intersite SK parameters obtained for Mo3Si. All energies are in rydberg �1 Ry=13.6 eV� and all lengths are in bohr.

Type a0 a1 a2 Type b0 b1 b2

tss� Mo–Mo 2.394 958 −0.100 570 0.302 562 sss� Mo–Mo 2.184 894 −0.088 982 0.313 869
tsp� Mo–Mo 1.647 918 −0.515 773 0.484 199 ssp� Mo–Mo −1.339 309 0.048 700 0.336 927
tsd� Mo–Mo 0.348 992 −0.017 912 0.232 544 ssd� Mo–Mo 0.619 274 −0.027 074 0.319 371
tpp� Mo–Mo 13.018 420 −1.945 851 0.682 066 spp� Mo–Mo −1.016 580 0.042 324 0.363 162
tpp� Mo–Mo −3.348 075 0.628 334 0.693 988 spp� Mo–Mo 1.031 993 0.000 000 0.566 343
tpd� Mo–Mo −10.525 070 1.618 473 0.719 870 spd� Mo–Mo 0.686 851 −0.035 697 0.372 834
tpd� Mo–Mo 8.390 044 −1.585 033 0.811 952 spd� Mo–Mo −1.196 728 0.000 000 0.599 605
tdd� Mo–Mo −9.190 844 1.808 697 0.804 322 sdd� Mo–Mo 0.599 902 −0.032 720 0.415 515
tdd� Mo–Mo 17.143 060 −3.624 188 0.922 667 sdd� Mo–Mo −1.090 491 0.061 161 0.528 445
tdd� Mo–Mo 0.055 455 −0.004 009 0.281 229 sdd� Mo–Mo 0.764 905 −0.000 000 0.746 754
tss� Si–Si 1.486 036 −0.065 194 0.272 349 sss� Si–Si 2.440 944 −0.023 419 0.381 072
tsp� Si–Si −1.225 072 0.055 517 0.256 089 ssp� Si–Si −2.248 722 −0.000 000 0.392 436
tsd� Si–Si 0.482 761 −0.022 647 0.232 424 ssd� Si–Si 1.268 798 −0.000 000 0.407 302
tpp� Si–Si −1.043 286 0.048 141 0.242 436 spp� Si–Si −2.132 760 −0.000 000 0.400 005
tpp� Si–Si 2.150 527 0.000 000 0.512 786 spp� Si–Si 1.254 798 −0.000 000 0.481 017
tpd� Si–Si 0.467 511 −0.022 066 0.227 411 spd� Si–Si 1.632 812 −0.000 000 0.441 305
tpd� Si–Si −1.925 275 0.070 190 0.465 273 spd� Si–Si −1.216 405 0.000 000 0.495 945
tdd� Si–Si 0.298 144 −0.014 322 0.237 251 sdd� Si–Si 1.830 145 −0.000 000 0.506 001
tdd� Si–Si −1.360 566 0.076 854 0.391 682 sdd� Si–Si −1.889 483 0.000 000 0.561 865
tdd� Si–Si 3.581 653 −0.000 000 0.773 526 sdd� Si–Si 0.507 738 0.000 000 0.584 228
tss� Mo–Si 1.793 413 −0.086 824 0.270 998 sss� Mo–Si 2.165 409 −0.086 853 0.319 271
tsp� Mo–Si −1.848 177 0.087 301 0.282 404 ssp� Mo–Si −1.786 073 0.076 326 0.305 213
tsd� Mo–Si 1.807 832 0.000 000 0.420 076 ssd� Mo–Si 0.944 423 −0.043 515 0.305 460
tps� Mo–Si −8.851 011 1.956 687 0.620 730 sps� Mo–Si 1.386 815 −0.042 992 0.354 105
tpp� Mo–Si 10.807 530 −2.136 544 0.632 395 spp� Mo–Si −1.412 994 0.037 192 0.373 450
tpp� Mo–Si 0.137 332 −0.007 643 0.222 102 spp� Mo–Si 1.418 044 −0.000 000 0.545 895
tpd� Mo–Si −14.657 200 2.668 261 0.745 364 spd� Mo–Si 1.368 426 0.000 000 0.468 398
tpd� Mo–Si 18.359 460 −3.801 283 0.845 518 spd� Mo–Si −1.737 418 0.000 000 0.582 592
tds� Mo–Si 0.249 246 −0.012 073 0.223 387 sds� Mo–Si 0.718 059 −0.024 245 0.356 363
tdp� Mo–Si −0.413 028 0.016 745 0.291 659 sdp� Mo–Si −0.676 139 0.031 602 0.332 821
tdp� Mo–Si 0.382 101 −0.024 287 0.293 396 sdp� Mo–Si 1.420 029 −0.000 000 0.564 451
tdd� Mo–Si 1.229 843 −0.000 000 0.529 222 sdd� Mo–Si 0.941 093 −0.034 755 0.438 201
tdd� Mo–Si −0.483 843 0.032 590 0.315 845 sdd� Mo–Si −2.255 753 0.000 000 0.639 634
tdd� Mo–Si 0.306 421 −0.022 542 0.420 954 sdd� Mo–Si 0.989 172 0.000 000 0.711 395
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We implement the repulsive potential in an embedded
atom method �EAM� scheme,15 where the repulsive energy is
a sum of embedding energies that depend on the local elec-
tron densities at each atomic site,

Erep = �
R

f�	�R�� . �13�

The form of the embedding function f is unknown, and is
determined by fitting. The electron density 	 at site R is
taken to be a linear superposition of first-principles com-
puted electron densities of corresponding isolated atoms,

	�R� = �
R��R

	0�
�R� − R�� . �14�

In practice, we find that the use of bare atomic density
superposition yields a repulsive contribution that is often too
short ranged. Therefore, we introduce a scaling factor 
 for
interatomic distance in Eq. �14�, and we find 
=0.74 gives
the optimal results. The need of a longer-ranged density may
be explained by the presence of the long-range Coulomb
interactions.

Once the local densities at all sites are available, we fit
the embedding function f in Eq. �13� to a piecewise third-
order polynomial function. The left-hand side of Eq. �13� is
taken to be the difference between first-principles FP-LMTO
total energy and TB band energy. The database contains uni-
form contractions and expansions of the lattice about the
equilibrium volume. In the FP-LMTO calculation, we treat
the 4p semicore electrons of Mo as valence electrons in a
separate energy window �to be distinguished from 5p elec-
trons�, and use four-kappa linked basis to describe each va-
lence orbital to achieve maximum accuracy. The four kappas
are set to be −0.9, 0.3, 1.2, and −1.2, respectively �the last
kappa is used exclusively in the second energy window�. The
resulting embedding function is shown in Fig. 5. Since our
goal is to estimate thermal expansions that require only small
deviations about the equilibrium structure, we find a com-
mon embedding function for Mo and Si is sufficient.

III. TESTS OF PARAMETERS

In this section, we discuss various tests on our param-
eters for their accuracy and transferability.

A. Accuracy tests for small lattice deviations around
A15 Mo3Si

To test the accuracy of the parameters on A15 Mo3Si and
some deviations from that structure, we first calculated the
band structure and density of states for A15 Mo3Si at the
equilibrium lattice volume, and compared the results with
those obtained using first-principles FP-LMTO method. In
the FP-LMTO method, we used a single-kappa basis that was
originally used in developing the TB parameters. The pur-
pose here is to provide a measure of the overall accuracy of
the two center approximation plus the crystal field effects
included in the TB parametrization scheme. The results are
shown in Figs. 6 and 7, respectively. In the band-structure
calculation, the agreement between the two methods are gen-
erally good for bands below and around the Fermi level.
Farther above the Fermi level the accuracy becomes ques-
tionable, which is a usual problem of this and many other
electronic structure methods. In Fig. 7 qualitative agreement
on DOS is maintained, despite several discrepancies about
the precise positions and weights of the DOS peaks predicted
by both methods.

Next, we conducted some elastic moduli calculations us-
ing both the first-principles FP-LMTO method and the TB
total energy formula. In this case, we used four-kappa linked
basis in FP-LMTO method and separate energy window
treatment for Mo’s semicore 4p electrons, to achieve maxi-
mum accuracy. For A15 cubic structure, there are three inde-
pendent elastic moduli: c11, c12, and c44. These elastic moduli
were obtained by applying the following three types of small
strains to the equilibrium lattice and determining the result-
ing change in the total energy:16

• uniform volume expansion and contraction;

FIG. 5. The embedding function for Mo3Si. With lattice constant of Mo3Si
varied from 8.24 to 9.52 bohr, the ranges of 	Mo and 	Si are 0.595–0.246
and 0.658–0.273 bohr−3, respectively.

FIG. 6. Calculated band structures for A15 Mo3Si, using �a� FP-LMTO with
single-kappa basis and �b� TB method. Shown in the figure are Mo’s 5s,
�partial� 3d, and Si’s 3p bands. The dashed lines are the Fermi levels.
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• volume-conserving tetragonal shear;
• volume-conserving monoclinic strain.

The above three strains will correspond to c11+2c12,
c11−c12, and c44, respectively. The converted elastic moduli
are compared and tabulated in Table II. Note that in the te-
tragonal and monoclinic distortions, we have not performed
any internal relaxations. Therefore, the calculated results
would give upper bounds for c11−c12 and c44.

For tetragonal strain, there is a large discrepancy be-
tween the TB method and FP-LMTO method. We believe the
discrepancy mainly originates from the assumption of direct
superposition of the atomic density. Had the atomic density
been allowed to relax, for example, to have an anisotropic
decay rate according to the applied strain, the resulting c11

−c12 should yield a closer value as predicted by FP-LMTO.
This atomic density relaxation effect is less prominent under
the more isotropic monoclinic strain, where better agreement
of c44 between the two methods is seen.

Finally, in addition to calculating the elastic moduli,
which are related to the zone center acoustic-phonon modes,
we also estimated the energy associated with an optical-
phonon mode. In this mode, the nearest Mo pairs are oscil-
lating with respect to each other, while Si atoms are fixed in
space. Clearly this is a normal vibrational mode since it pre-
serves many symmetries of the original lattice. We computed
the total energy change and fit it to a quadratic form of the
vibration amplitude. The coefficient of the quadratic form is

related to the mode frequency as m�2 /2. The mode fre-
quency is predicted to be 15.72 and 17.03 THz by TB and
FP-LMTO, respectively.

B. Transferability tests of TB parameters

In this section, we shall address the transferability issues,
namely, how the obtained SK TB parameters can be applied
to crystal structures other than the A15 Mo3Si. We shall limit
our discussion to those of the TB parameters only. In this
work, no efforts have been made to make the EAM param-
eters transferable.

In the first test, we consider pure Mo �bcc� and pure Si
�cubic diamond �cd��. For these two structures, we indepen-
dently develop another set of intersite SK parameters using
the same scheme �with the same FP-LMTO parameters�. The
newly developed SK parameters are then compared to those
originally developed for A15 Mo3Si in Figs. 8 �bcc Mo� and
9�cd Si�, respectively. We see good agreement in Mo param-
eters. This demonstrates the uniqueness of the TB parameters
resulting from our scheme. However, there are significant
discrepancies in Si parameters. To explain the poor transfer-
ability for Si, we note that in developing the TB parameters
for cd Si, we have used a single-kappa minimal basis. While
such a basis set works well for close-packed bcc and A15
structures, it can be very bad for the open structures, in par-
ticular, for the cd Si. In addition, we noticed that the equi-
librium nearest Si–Si distance is about 4.2 Å in Mo3Si while
it is about 2.3 Å in cd Si.

As an additional measure, we have considered two other
crystal structures with the same Mo3Si composition: L12 and
D03. We calculated their band structures and compared them
with those obtained from first-principles FP-LMTO �using
single-kappa basis� in Figs. 10 and 11. Consistent agreement
is seen.

FIG. 7. Calculated density of states for A15 Mo3Si, using FP-LMTO with
single-kappa basis �solid line� and TB method �dashed line�. The TB results
have been shifted in energy in order to be compared with FP-LMTO results.

TABLE II. Elastic moduli �in GPa� for Mo3Si calculated by FP-LMTO and
TB methods.

FP-LMTO TB

c11 539 939
c12 147 42
c44 118 220

FIG. 8. The comparison of two sets of parameters for Mo. The circles are
obtained for A15 Mo3Si, and the triangles are obtained for bcc Mo. The lines
are fits to �a0+a1x�e−a2x.
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IV. MONTE CARLO SIMULATION

In this section, we discuss Monte Carlo �MC� simulation
based on the TB total energy scheme. Our goal is to predict
CTEs for A15 Mo3Si at various elevated temperatures. Cal-
culating CTEs using MC simulation presents a numerical
challenge, because the energy is near its minimum when the
lattice constants are sampled. The lattice constant can fluc-
tuate widely without suffering a large energy penalty.

The A15 Mo3Si system simulated consists of 216 atoms
�3�3�3 supercells�. We set eight such systems at tempera-
tures ranging from 1200 through 1900 K, incremented by
100 K. These systems are started from the same initial equi-
librium configuration. At each MC step, we attempt to either
displace a randomly selected atom, or change the lattice con-
stant. After 100 000 MC steps, when all systems have
achieved thermal equilibrium, lattice constants are sampled

at every 20 MC steps. Five hundred samples are taken and
averaged, and their temperature dependence is plotted in Fig.
12. For the specified temperature range, the material’s ther-
mal expansions are fairly linear. The CTEs can be easily read
off from the figure, which is roughly about 9.0�10−6 /K.

To relate our theoretical work with experimental results,
we have also simulated a Mo53Si system �i.e., one out of 54
Mo atoms in a bcc 
-Mo is replaced by a Si atom�, using the
same set of parameters. Figure 13 shows the sampled aver-
age lattice constants at eight different temperature points.
The data are compared with the experiment,17 which was on
a Mo39Si alloy �containing 2.5 at. % of Si�. The reason we
consider Mo53Si rather than Mo39Si is purely geometrical:
Mo53Si can be easily realized using 3�3�3 supercell. Our
theoretical prediction of CTE for Mo53Si is about 5.0
�10−6 /K, while the experimental CTE for Mo39Si is about
6.5�10−6 /K. Comparing to the published CTE result18 for
pure Mo, which is 4.2�10−6–5.0�10−6 /K, we thus predict

FIG. 9. The comparison of two sets of parameters for Si. The circles are
obtained for A15 Mo3Si, and the triangles are obtained for cubic diamond
Si. The lines are fits to �a0+a1x�e−a2x.

FIG. 10. Calculated band structures for L12 Mo3Si, using �a� FP-LMTO
with single-kappa basis and �b� TB method. Shown in the figure are Mo’s
5s, �partial� 3d, and Si’s 3p bands. The dashed lines are the Fermi levels.

FIG. 11. Calculated band structures for D03 Mo3Si, using �a� FP-LMTO
with single-kappa basis and �b� TB method. Shown in the figure are Mo’s
5s, �partial� 3d, and Si’s 3p bands. The dashed lines are the Fermi levels.

FIG. 12. The averaged change in lattice constants for Mo3Si at eight tem-
perature points. Data obtained from MC simulation.
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the trend that having a Si-rich compound causes larger CTE.
Considering the error range associated with a typical MC
method, the agreement of our theoretical prediction and ex-
perimental work is satisfactory.

V. SUMMARY

We modified McMahan’s scheme of obtaining TB pa-
rameters directly from FP-LMTO calculations, and devel-
oped a set of TB parameters for A15 Mo3Si. Our TB param-
eters are reasonably accurate for computing various static
properties, and quite transferable for close-packed structures.
We used these parameters in MC simulation to compute the
CTEs of Mo3Si and Mo53Si. The result of the latter material
is in good agreement with our experiments.
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