
Faculty Scholarship

2012

Compositional stability and diversity of vascular
plant communities following logging disturbance
in Appalachian forests
R. Travis Belote

Robert H. Jones

Thomas F. Wieboldt

Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications

This Article is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Faculty Scholarship
by an authorized administrator of The Research Repository @ WVU. For more information, please contact ian.harmon@mail.wvu.edu.

Digital Commons Citation
Belote, R. Travis; Jones, Robert H.; and Wieboldt, Thomas F., "Compositional stability and diversity of vascular plant communities
following logging disturbance in Appalachian forests" (2012). Faculty Scholarship. 95.
https://researchrepository.wvu.edu/faculty_publications/95

https://researchrepository.wvu.edu?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/faculty_publications?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/faculty_publications?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/faculty_publications/95?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ian.harmon@mail.wvu.edu


Ecological Applications, 22(2), 2012, pp. 502–516
� 2012 by the Ecological Society of America

Compositional stability and diversity of vascular plant communities
following logging disturbance in Appalachian forests

R. TRAVIS BELOTE,1,2,4 ROBERT H. JONES,2,3 AND THOMAS F. WIEBOLDT
2

1The Wilderness Society, Research Department, Northern Rockies Regional Office, Bozeman, Montana 59715 USA
2Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061 USA

3Eberly College of Arts and Sciences, West Virginia University, Morgantown, West Virginia 26506 USA

Abstract. Human-caused changes in disturbance regimes and introductions of nonnative
species have the potential to result in widespread, directional changes in forest community
structure. The degree that plant community composition persists or changes following
disturbances depends on the balance between local extirpation and colonization by new
species, including nonnatives. In this study, we examined species losses and gains, and entry of
native vs. exotic species to determine how oak forests in the Appalachian Mountains might
shift in species composition following a gradient of pulse disturbances (timber harvesting). We
asked (1) how compositional stability of the plant community (resistance and resilience) was
influenced by disturbance intensity, (2) whether community responses were driven by
extirpation or colonization of species, and (3) how disturbance intensity influenced total and
functional group diversity, including the nonnative proportion of the flora through time. We
collected data at three spatial scales and three times, including just before, one year post-
disturbance, and 10 years post-disturbance. Resistance was estimated using community
distance measures between pre- and one year post-disturbance, and resilience using
community distance between pre- and 10-year post-disturbance conditions. The number of
colonizing and extirpated species between sampling times was analyzed for all species
combined and for six functional groups. Resistance and resilience decreased with increasing
timber-harvesting disturbance; compositional stability was lower in the most disturbed plots,
which was driven by colonization, but not extirpation, of species. Colonization of species also
led to increases in diversity after disturbance that was typically maintained after 10 years
following disturbance. Most of the community-level responses were driven by post-
disturbance colonization of native forbs and graminoids. The nonnative proportion of plant
species tended to increase following disturbance, especially at large spatial scales in the most
disturbed treatments, but tended to decrease through time following disturbance due to
canopy development. The results of this study are consistent with the theory that resources
released by disturbance have strong influences on species colonization and community
composition. The effects of management activities tested in this study, which span a gradient
of timber-harvesting disturbance, shift species composition largely via an increase in species
colonization and diversity.

Key words: Appalachian Mountains, USA; colonization; compositional stability; disturbance; forest
management.

INTRODUCTION

Sustaining both natural resources and biological

diversity requires understanding of the factors influenc-

ing responses of ecosystems to human-caused distur-

bances. Disturbances influence species composition and

diversity through a variety of mechanisms that vary with

the frequency, intensity, and spatial and temporal extent

of the disturbance (Grubb 1977, Roberts 2004), and

which interact with the life history and physiological

traits of individual species (McGill et al. 2006).

Disturbance may directly affect community composition

by increasing mortality of individuals or groups of

species, or indirectly by altering environmental condi-

tions or resource availability and heterogeneity, which in

turn permit colonization of new species (Pickett and

White 1985), including nonnatives (Belote et al. 2008).

The study of community assembly following disturbance

has been instrumental to understanding the relative

importance of biotic and environmental processes

determining composition and diversity of communities

and their change through time (Clements 1916, Gleason

1926, Egler 1954, Simberloff and Wilson 1969).

The stability of communities in response to distur-

bance has intrigued ecologists for decades (Odum 1969,

Chapin et al. 1996, McCann 2000). Community stability

can be defined as a function of both resistance and

resilience (sensu Halpern 1988). Ecological resistance
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and resilience may be conceptualized using ecosystem-

level functions (i.e., productivity or water retention) or

community-level structure (i.e., species composition). In

this paper, we consider resistance of communities as the

ability of a community to maintain compositional

integrity immediately following a disturbance event (cf.

Sankaran and McNaughton 1999, Foster et al. 2002),

and resilience as a measure of return to pre-disturbance

conditions (Fig. 1). The relative resistance and resilience

of communities is likely a function of the initial species

composition of communities (Halpern 1988) as well as

regional species pools (Belote et al. 2009), which

influence losses and gains of species.

Land managers deliberately apply a variety of

disturbances to forests to direct ecological structure or

function to meet a variety of management objectives

(Roberts and Gilliam 1995). For example, forest

managers use fire and tree harvesting to maintain

wildlife habitat (McShea et al. 2007) and vegetation

structure (Franklin et al. 2003), and to promote

regeneration of favored tree species (Loftis 1990). If

maintaining biodiversity is a goal of forest management,

it is important to understand how various silvicultural

practices and timber harvesting intensities affect shifts in

species composition of forest vegetation (Simberloff

1999), including the introduction of nonnative species

(Belote et al. 2008). This is especially true in biologically
rich areas that are embedded within regions of high

human population growth and development, such as
hardwood forests of the Appalachian Mountains, USA.

In this study, we investigated how an experimentally
applied, replicated forest canopy disturbance gradient

influenced species composition and diversity of all
vascular plants in Appalachian oak-dominated forests
immediately after disturbance, and 10 years following

disturbance during canopy development (see Plate 1).
The disturbance gradient represents silvicultural treat-

ment alternatives used in the Appalachian Mountains to
facilitate oak regeneration and harvest timber resources

(Fox et al. 2006). Our goal was to understand how
disturbance intensity representing management alterna-

tives influenced stability and diversity of the vascular
plant community.

We formulated three overarching predictions related
to how stability, turnover, and diversity of the plant

community would vary with disturbance intensity and
through time.

Prediction 1.—We predicted that greater disturbance
intensity would lead to greater shifts in species

composition that would be sustained through time via
colonization and extirpation of species. In other words,

we predicted that the most disturbed communities would
be the least compositionally stable (resistant and
resilient).

Prediction 2.—To better understand the processes that
influence compositional stability, we investigated species

turnover (i.e., colonization and extirpation) of all species
and functional groups of species in response to

disturbance and through time. We predicted that both
colonization and extirpation of species would mediate

compositional stability.
Prediction 3.—We further predicted that balances

between colonization and extirpation in response to
disturbance would alter native and nonnative plant

diversity. We assessed the proportion of species that are
nonnative among disturbance treatments through time

to investigate whether human-applied disturbance shifts
community composition toward a more nonnative-

dominated community (i.e., are nonnative species
persistent passengers of forest change?). We investigated

these predictions at various spatial scales to determine
whether patterns depended on scale of observation.

METHODS

Study sites

The study sites are part of an experimental manipu-

lation of canopy disturbance in Appalachian oak
forests. Disturbances were applied to examine the

influences of regeneration harvesting intensities on
multiple system components including plant (Wender

2000, Hood 2001) and animal diversity and composition
(Knapp et al. 2003, Homyack and Haas 2009), invasions
by nonnative species (Belote et al. 2008), oak regener-

FIG. 1. Conceptual figure of resistance and resilience as
changes in species composition and return to pre-disturbance
conditions in plots before disturbance (a); one year post-
disturbance (b); and 10 years post-disturbance (c). Panel A
shows compositional differences among sampling times and
conceptual resistance and resilience. Panel B illustrates a
situation where community species composition is resistant to
disturbance but not resilient. Panel C represents a community
that is not resistant to disturbance but is relatively resilient (i.e.,
nearly returns to pre-disturbance composition). Panel D
represents a community that is both resistant and resilient.
Larger values of compositional dissimilarity represent less
resistant and resilient communities.
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ation (Atwood et al. 2009), and soil ecosystem processes

(Sucre and Fox 2008). Seven sites (experimental blocks)

were chosen in the Ridge and Valley province and

Appalachian Plateau region of southwest Virginia and

northeastern West Virginia located on the Jefferson

National Forest and the MeadWestvaco Corporation

(501 South 5th Street, Richmond, Virginia, USA)

Wildlife and Ecosystem Research Forest, respectively

(Fig. 2). Sites were selected to represent similar

overstory composition and age and were dominated by

Quercus spp. (red and white oaks), Acer rubrum L. (red

maple), yellow-poplar (Liriodendron tulipifera L.), and

Carya spp. (hickories). The sites are floristically diverse

with richness exceeding 700 species, including a variety

of understory trees (e.g., Sassafras albidum (Nutt.) Nees,

Amelanchier arborea (Michx. f.) Fernald, Nyssa sylvatica

(Marsh.)), shrubs (e.g., Rhododendron spp., Vaccinium

spp.), graminoids (e.g., Carex spp., Dichanthelium spp.),

herbaceous monocots (e.g., members of Liliaceae and

Orchidaceae) and dicots (e.g., species from Asteraceae

and Roseaceae; hereafter forbs), vines (e.g., Smilax

spp.), and ferns (e.g., Osmunda spp., Dennstaedtia

punctilobula (Michx.) T. Moore). Sites were located on

similar topographic positions with generally south-

facing, moderate slopes (10–40%) and intermediate

elevations (600–1200 m). Soils at all sites are rocky,

well drained, acidic, and derived from sandstone and

shale residuum and colluvium. Precipitation is generally

evenly distributed throughout the year.

At each of the seven sites, seven 2-ha experimental

units (EUs) were established with no buffer between

units. The experimental design includes seven treatments

(Knapp et al. 2003), but we focus on five treatments in

this study (Fig. 2). Nested within each EU, three

permanent 576-m2 (24 3 24 m) plots were randomly

arranged so that they were 23 m from the EU edge and

were separated by an azimuth of 1208 from EU center.

Six 1-m2 subplots were nested within each 576-m2 plot;

there were thus 18 subplots per experimental unit (Fig.

2). For additional information about the sites, distur-

bance treatments, and plot designs see Knapp et al.

(2003), Belote et al. (2008, 2009), Homyack and Haas

(2009), and Atwood et al. (2009, 2011).

Disturbance treatments

Disturbance treatments were applied to the 2-ha

experimental units between 1993 and 1998, during the

nongrowing season. Treatments were randomly assigned

to EUs within each site, and included a gradient of

overstory removal including clearcut (95% basal area

removed), leave-tree harvest (74% of basal area removed

leaving a few dominants), shelterwood harvest (56% of

basal area removed to thin the stand), understory

herbicide (removal of suppressed trees via basal appli-

cation of herbicide), and uncut control (see Atwood et

al. 2011 for additional details on treatments). During

tree harvest, limbs and branches were removed from

main stems and typically scattered and left in situ.

Control treatments were intended to represent areas that

experience no disturbance related to timber harvesting.

However, during treatment application of nearby EUs,

some minor disturbance associated with skid trails and

diffuse light from adjacent treatments occurred within

some uncut control EUs. These disturbances were

mostly restricted to the edges of the EUs (cf. Matlack

and Litvaitis 1999). One West Virginia site did not

include the understory herbicide treatment and we were

not able to resample the leave-tree treatment at 10 years

post-disturbance because of time constraints; thus the

experimental setup is an unbalanced randomized block

design consisting of 33 EUs.

Data collection

Pre-disturbance and initial post-disturbance data were

collected one year prior to and one or two years

following disturbance treatment application, with the

exception of one site where pre-disturbance data were

collected two years prior to harvesting disturbance

(Hammond et al. 1998, Wender 2000, Hood 2001). Sites

and permanently marked plots were revisited and

sampled 9 or 11 years following disturbance, depending

on the site (Atwood et al. 2009). Here, we refer to the

9- or 11-year post-disturbance sampling effort as 10-year

post-disturbance. Presence of all herbaceous and woody

plant species was recorded at each of the three scales (EU,

plot, and subplot). At the subplot scale, species-specific

canopy cover was estimated using modified Daubenmire

cover classes (Daubenmire 1959). All scales were sampled

twice during the growing season to account for seasonal

differences in species composition and to ensure species

were reliably identified; data were collected in May or

June and again in late August or September. Species lists

from both samples were combined and analyzed together.

For subplots, the maximum cover estimated for a species

during the sampling times was used in analyses. Using

number of species present, we generated estimates of

richness of native and nonnative species at each scale and

at each sampling time. We classified all species as native

or nonnative and as six functional groups based on

typical growth form and life history characteristics

including tree, shrub, forb, graminoid, vine, or fern based

on classifications in the PLANTS database (USDA,

NRCS 2008).

Statistical analysis

Using the nested sampling design within each

experimental unit, we calculated frequency and impor-

tance values of all species observed in plots and

subplots, respectively. Plot frequency was calculated as

the number of plots a species occurred in within each

EU. Subplot importance values (IV) were calculated as

the sum of relative cover (cover of species/total cover)

and relative frequency (frequency/total frequency) as

described in Mueller-Dombois and Ellenberg (1974).

Prediction 1: community resistance and resilience.—We

used a blocked multi-response permutation procedure

R. TRAVIS BELOTE ET AL.504 Ecological Applications
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(MRPP) to investigate overall compositional differences

between the disturbance treatments while accounting for

experimental blocking by site. MRPP uses distance

measures and randomization tests to investigate whether

assigned groups (e.g., disturbance treatments) are

compositionally different (McCune and Grace 2002).

We ran separate MRPPs for pre-disturbance, 1-year

post-disturbance, and 10-year post-disturbance data to

investigate if compositional differences between treat-

ments were detected at each of the sampling periods.

Separate analyses were also performed on the commu-

nity data collected at the plot and subplot scales using

relative frequency data and importance values, respec-

tively, so that six total MRPPs were conducted (three

sampling times 3 two spatial scales). Because blocked

MRPPs require balanced designs, we omitted data from

the WV1 site for this analysis; WV1 is the only

incomplete site without all treatments.

To quantify community resistance and resilience

following disturbance, we calculated Sørensen dissimi-

larity measures on the sample 3 species matrix using

relative frequency data at the plot scale and importance

values at the subplot scale as abundance measures.

Sørensen dissimilarity is calculated as a percentage

difference in species composition considering species

presence and abundance (McCune and Grace 2002) by

summing differences in abundance between two samples

and dividing by the product of the sum of species

abundance within samples. Resistance is defined as the

inverse of the initial displacement following disturbance.

(Small shifts in community composition represent

greater resistance than larger shifts; Fig. 1.) Resilience

is defined as the inverse of the distance between pre-

disturbance and 10-year post-disturbance. (Composi-

tional return to near pre-conditions indicates greater

resilience; Fig. 1.) Plot and subplot analyses were

performed separately to investigate the effects of spatial

scale on community stability.

We performed nonmetric multidimensional scaling

(NMS) using Sørensen dissimilarity values to display

compositional relationships. Successional vectors that

connect repeatedly measured samples through time were

overlaid onto the ordination to visualize compositional

shifts of samples from pre-disturbance, to one year post-

disturbance, and 10 years post-disturbance (Fig. 3). All

multivariate distance measures were calculated using

PC-ORD v. 5 (MjM Software, Gleneden Beach,

Oregon, USA).

We analyzed the effects of disturbance treatment on

resistance and resilience estimates with a mixed analysis

of covariance (ANCOVA) using PROC MIXED (SAS

9.1; Littell et al. 2006, SAS Institute 2007) with the

following model:

Sørensen dissimilarity ¼ lþ treatmentþ diversity

þ treatment 3 diversityþ siteþ e

where treatment is the fixed effect of disturbance

treatment; diversity is pre-disturbance species richness;

and site is the random block effect. Pre-disturbance

species richness was included in the model as a covariate

to account for effects of initial species richness on

compositional responses to disturbance. Initial species

richness of sites has been shown to be related to post-

disturbance responses (Belote et al. 2008). After plotting

FIG. 2. Typical site and sampling layout of permanently marked experimental units, plots, and subplots in an experiment
investigating effects of disturbance on diversity and stability of the plant community in oak forests of the southern Appalachian
Mountains, USA. Codes within 2-ha experimental units represent examples of treatment layout: CON, control; HB, herbicide; SW,
shelterwood; LV, leave-tree; CC, clearcut. Treatments were randomly applied to each experimental unit within each site.
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the data we observed that several relationships between

pre-disturbance diversity and distances followed a

quadratic form, so we tested both linear and quadratic

diversity terms in the models. We also investigated

species compositional shifts using Euclidean distances to

investigate the potential that different multivariate

distance measures would yield different results. Because

of similarities in results we report only patterns using

Sørensen dissimilarity here, but see Appendices A–D

and Belote (2008) for resistance and resilience measures

using Euclidean distances in species composition be-

tween sampling times.

To investigate whether initial compositional changes

were related to compositional return to pre-disturbance

conditions, we calculated Pearson correlation coeffi-

cients between values of resistance and resilience. We

also used t tests within treatments to determine whether

initial compositional resistance differed from composi-

tional resilience. Specifically, we tested whether initial

compositional differences between pre-disturbance and

one year post-disturbance increased, decreased, or

remained the same after 10 years. At the subplot scale,

we calculated change in species evenness (Pielou’s J

[McCune and Grace 2002]) between pre-disturbance and

one year post-disturbance and plotted pre-disturbance

richness against initial change in evenness, and change in

evenness against initial compositional change, using

Sørensen dissimilarity to investigate how dominance

influenced patterns of community stability.

Prediction 2: species turnover.—We determined turn-

over of species within each functional group between

each sampling time and at each spatial scale. In other

words, we calculated the number of species that were

‘‘gained’’ (i.e., established from soil seed bank or

colonized) or ‘‘lost’’ (i.e., locally undetected or extirpated)

within each functional group between pre-disturbance

and one year post-disturbance and between one year

post- and 10 years post-disturbance sampling times (i.e.,

ephemeral species that colonized but did not persist). For

the two nested scales, we composited the species lists

across the plots and subplots within each experimental

unit to generate richness values from the three 576-m2

plots and 18 1-m2 subplots per EU. We investigated

whether turnover of species (i.e., species gained and lost)

within functional groups differed between disturbance

treatments with mixed-model ANOVAs with site entered

as a random blocking factor. We calculated Spearman

rank correlation coefficients between pre-disturbance

richness and total species turnover (i.e., species gained

and lost) to investigate how colonization and ‘‘extirpa-

tion’’ were related to initial diversity. We also calculated

Spearman rank correlation coefficients between species

turnover of functional groups with measures of resistance

and resilience to investigate whether colonization or

extirpation may have been responsible for the patterns of

compositional stability.

Prediction 3: richness of native and nonnative species.—

Total species richness was calculated as the number of

species encountered at each spatial scale. Effects of

disturbance on total species richness were analyzed

separately at each spatial scale through time using a

repeated-measures randomized complete block

ANCOVA with the mixed model

richness ¼ lþ treatmentþ siteþ timeþ treatment 3 time

þ pre� treatmentrichness þ e

where l is the overall mean; richness is the number of

species observed at each scale; treatment is the effect of

each disturbance treatment; site is the random block

effect of site; time is the effect of time; pre-treatment

richness is a covariate to account for variation in initial

richness; and e is the residual error. Residuals of all

models were tested for normality using Shapiro-Wilks’

FIG. 3. DCA ordination of subplots with ‘‘successional
vectors’’ (sensu Halpern 1988) connecting repeatedly sampled
subplots receiving five disturbance treatments within six of the
seven sites. Control treatments are represented as circles,
herbicide treatments as hexagons, shelterwood treatments as
triangles, leave-tree treatments as diamonds, and clearcuts as
black crosses. The figure panels provide a depiction of
compositional changes through time. (The arrowheads point to
the 10-year post-disturbance samples.) Each panel is scaled for
only one site. (BB1 is Blacksburg site 1; BB2 is Blacksburg site 2;
CL1 is Clinch site 1; CL2 is Clinch site 2; NC is New Castle site;
WV2 is West Virginia site 2; West Virginia site 1 is not shown).
Visual distances should not be compared across sites.
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W statistic (Shapiro and Wilk 1965); data not meeting

this assumption were log-transformed.

We calculated the proportion of species (presented as

percentage) that were nonnative (nonnative richness

divided by total species richness 3100) within experi-

mental units, plots, and subplots and investigated how

this proportion varied through time within disturbance

treatments and among our broad life history classifica-

tion. In other words, we used this analysis to ask how

the proportion of nonnative species varied along the

disturbance gradient and through time and whether

patterns depended on scale (EUs, plots, subplots) and

among trees, shrubs, forbs, graminoids, vines, and ferns.

RESULTS

Prediction 1: community resistance and resilience

Differences in species composition at the plot and

subplot scales were apparent between sites and revealed

differences in physiographic provinces of the Appala-

chian region (patterns not shown); these compositional

differences between sites were accounted for in the

blocked MRPP analysis. As expected, compositional

differences between treatments were not detected using

MRPP before disturbances were applied for either plot

(P ¼ 0.85) or subplot (P ¼ 0.98) scales. Following

disturbance, treatments differed in species composition

at the plot (P ¼ 0.0003) but not the subplot scale (P ¼
0.14). After 10 years, compositional differences between

treatments were still apparent at the plot (P¼ 0.02) and

still not detected at the subplot scale (P ¼ 0.23).

The most disturbed plots tended to be less resistant

and resilient (Figs. 3 and 4). Specifically, species

composition in more-disturbed treatments was more

different after both 1 and 10 years than less-disturbed

treatments (Fig. 4). Relationships between stability and

pre-disturbance species richness were complex and were

accounted for as a covariate in the ANOVA model. See

Belote (2008) and Appendices A–D for additional

details.

Resistance and resilience values were positively

correlated (r � 0.70, P , 0.0001); the least resistant

plots and subplots were also the least resilient. In other

words, plots and subplots that experienced large shifts in

species composition tended to remain different 10 years

after disturbance. In fact, resistance and resilience values

did not differ in most treatments (Fig. 4) at either scale,

with some exceptions. At the plot scale, the leave-tree

and clearcut sites tended to be more similar to pre-

disturbance conditions after 10 years than after one

year. At the subplot scale, we found little difference

between resistance and resilience values, although the

control treatment tended to be more dissimilar after 10

years than after one year following disturbance (Fig. 4).

Relationships between change in evenness and initial

shifts in composition were nonlinear. Subplots that

experienced a decrease in evenness tended to shift

composition more, whereas increases in evenness had

little effect on compositional shifts (Appendix E).

Prediction 2: species turnover

Colonization of all species tended to be greater in

more disturbed treatments and at all spatial scales

(Table 1, Fig. 5). Colonization of all functional groups,

except vines and ferns, increased at the EU and plot

scale with greater disturbance intensities. At the subplot

scale, only the colonization of trees and forbs increased

as disturbance increased. One year after disturbance the

number of species lost across all species or any

functional group did not differ by treatment at any

scale (Table 1, Fig. 5).

After 10 years and across all treatments, 42%, 51%,

and 57% of the initial colonizers were not detected (i.e.,

were ephemeral) in EUs, plots, and subplots, respective-

ly. Loss of initial colonizers was higher in more

disturbed plots (Table 2, Fig. 6). We refer to these

species as ‘‘ephemeral,’’ because they were only observed

FIG. 4. Resistance and resilience of community composi-
tion within each disturbance treatment as measured by
Sørensen dissimilarity index (mean 6 SE) measured at plot
(panel A) and subplot (panel B) scales. Resistance (black bars)
is the difference in species composition from pre-disturbance to
one year post-disturbance. Resilience (gray bars) is the
difference in species composition from pre-disturbance to 10
years post-disturbance. Larger values represent greater compo-
sitional differences and thus less resistant and resilient
communities. Statistics for disturbance treatment effects are in
Appendices A and B; P values are shown above resistance and
resilience values within a treatment when they are ,0.10 to
highlight changes in compositional difference between 1 and 10
years post-disturbance.
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one year after disturbance, not one year before or 10

years after. Tree and forb colonizers were lost in the

most disturbed sites at all scales, and colonizing

graminoids at EU and plot scales after 10 years of

canopy development (Table 2, Fig. 6). Total coloniza-

tion of all species between one and 10 years post-

disturbance did not vary between treatments. During

this time, colonization of tree species tended to be

greater in the herbicide treatments than in other

treatments at the plot scale, and graminoid species

colonized leave-tree and clearcut more than other

treatments at the subplot scale.

Colonization by all species led to greater initial shifts

in species composition and was related to compositional

differences after 10 years. In other words, plots were less

resistant and resilient where more species colonized

FIG. 5. Contribution of six plant functional groups to total richness of colonizers one year after disturbance (1-year colonizers;
top row) and contribution of functional groups to total richness of extirpated species one year after disturbance (1-year extirpated
species; bottom row) in five disturbance treatments and three spatial scales (experimental units, plots, subplots). Statistics for the
total and within-functional-group tests are in Table 1.

TABLE 2. P values for a mixed model investigating disturbance
treatment effects.

Colonized or
ephemeral species

Experimental
unit Plot Subplot

10-year colonizers

All 0.84 0.05 0.49
Tree 0.18 0.01 0.87
Shrub 0.27 0.85 0.05
Forb 0.73 0.17 0.27
Graminoid 0.99 0.37 ,0.01
Vine 0.01 0.88 0.54
Fern 0.86 0.12 0.55

Ephemeral species

All ,0.01 ,0.01 ,0.01
Tree 0.01 0.03 ,0.01
Shrub 0.62 0.35 0.31
Forb ,0.01 ,0.01 ,0.01
Graminoid ,0.01 ,0.01 0.32
Vine 0.39 0.57 0.05
Fern 0.86 0.41 0.37

Notes: The effects studied were on the number of species that
colonized between 1 and 10 years post-disturbance (10-year
colonizers) and species that colonized after one year but were
absent 10 years following experimental forest harvests treat-
ment (ephemeral species). Means for each treatment and scale
are in Fig. 6.

TABLE 1. P values for a mixed model investigating disturbance
treatment effects on the number of species colonized (1-year
colonizers) and extirpated (1-year extirpated) at three spatial
scales one year after experimental forest harvests treatment
applications.

Colonized or extirpated
Experimental

unit Plot Subplot

1-year colonizers

All ,0.01 ,0.01 ,0.01
Tree 0.08 ,0.01 ,0.01
Shrub 0.02 0.02 0.54
Forb ,0.01 ,0.01 0.02
Graminoid ,0.01 ,0.01 0.16
Vine 0.49 0.39 0.61
Fern 0.75 0.50 0.26

1-year extirpated

All 0.19 0.64 0.50
Tree 0.83 0.14 0.32
Shrub 0.07 0.06 0.29
Forb 0.30 0.73 0.60
Graminoid 0.56 0.24 0.32
Vine 0.68 0.38 0.33
Fern 0.29 0.88 0.06

Note: Means for each treatment and scale are in Fig. 5.
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(Table 3, Fig. 7). When we analyzed relationships

between colonization and compositional differences by

species functional groups, we found that all functional

groups, except vines, were strongly positively correlated

with initial species compositional shifts and differences

at the plot scale (Table 3; data on individual functional

groups not shown). Colonization of all functional

groups except vines and ferns were related to resilience

measures (difference in composition between pre-distur-

bance and 10 years post-disturbance). At the subplot

scale, colonization of trees, forbs, and graminoids were

correlated with initial compositional shifts after one year

(Table 3, Fig. 8). Total initial species extirpation, or

extirpation of functional groups, were uncorrelated with

resistance and resilience at either scale, but loss of trees

was positively correlated with resilience metrics (i.e., loss

of trees led to less resilience).

Pre-disturbance richness and richness of colonizing

species were not correlated at the plot (r ¼ 0.01, P ¼
0.96) or subplot (r ¼ 0.24, P ¼ 0.19) scale. Pre-

disturbance richness was not correlated with richness

of species loss at the plot scale (r¼�0.15, P¼ 0.42), but

was positively correlated with richness of species loss at

the subplot scale (r¼ 0.68, P , 0.01).

Prediction 3: richness of native and nonnative species

Richness of all native and nonnative species sampled

at the EU scale increased following disturbance (Table

4, Fig. 9). Native species richness increased and was

maintained through time, but nonnative species richness

decreased 10 years after disturbance (Table 4, Fig. 9).

Neither native nor nonnative richness at the EU scale

depended on a treatment 3 time interaction. Native

richness at the plot scale depended on a disturbance

treatment 3 time interaction (Table 4, Fig. 9). Nonna-

tive richness was greater in more disturbed plots but did

FIG. 6. The contribution of six plant functional groups to total richness of species that colonized after 10 years (10-year
colonizers; top row) and richness of functional groups that colonized sites after one year but did not persist after 10 years
(ephemeral species; bottom row) in five disturbance treatments and at three spatial scales (experimental units, plots, subplots).
Statistics for total and within-functional-group tests are in Table 2.

TABLE 3. Spearman correlation coefficients relating the
number of initial extirpated and colonized species.

Extirpated or
colonized

Resistance Resilience

Plot Subplot Plot Subplot

Extirpated

All �0.13 0.00 �0.13 0.08
Trees 0.06 �0.14 0.20 �0.08
Shrubs �0.35 0.16 �0.23 0.10
Forbs �0.16 �0.01 �0.22 0.08
Graminoids �0.17 0.13 �0.11 0.26
Vines 0.20 0.13 0.13 0.04
Ferns �0.10 �0.17 �0.27 0.03

Colonized

All 0.83 0.63 0.71 0.39
Trees 0.60 0.45 0.61 0.17
Shrubs 0.52 �0.02 0.44 0.02
Forbs 0.75 0.52 0.74 0.34
Graminoids 0.86 0.56 0.45 0.33
Vines 0.09 �0.03 0.13 �0.12
Ferns 0.38 0.28 0.19 0.24

Notes: Coefficients related the number of initial extirpated
and colonized species (total and functional groups) one year
after disturbance to resistance and resilience of community
composition (Sørensen dissimilarity index) at two spatial scales.
Values in boldface type indicate significant correlations (P ,
0.05). Plots showing relationships between all colonizers and
extirpated species and resistance and resilience are in Fig. 7;
subplot data are in Fig. 8. Positive correlations suggest that
more colonizing species caused a greater shift in species
composition (i.e., community composition was less resistant).
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not depend on time. At the subplot scale, native richness

depended on disturbance treatment and time, but not on

their interaction (Table 4, Fig. 9). Nonnative richness in

the subplots only marginally depended on disturbance

treatment.

The percentage of nonnative plant species to total

richness varied by disturbance treatment, through time,

and by spatial scale and plant functional group. The

proportion of nonnative to native species increased

following disturbance, especially in the more intensively

harvested units, but declined following 10 years of forest

canopy development (Appendix F). Nonnative propor-

tion also increased with spatial scale: as the size of

sampling scale increased, nonnative species made up

proportionally more of the total species composition,

especially of graminoids and forbs.

DISCUSSION

As observed elsewhere throughout the Appalachian

Mountains (Elliott and Knoepp 2005) and other

forested regions (Reiners 1992, Thomas et al. 1999,

Halpern et al. 2005, McDonald et al. 2008), timber

harvesting tended to shift species composition, which

lasted at least 10 years, and increased overall plant

diversity. Resistance and resilience of community

composition following disturbance were mediated by

several factors including intensity of timber-harvesting

disturbance, increases in light availability (Atwood et al.

2011), and regional species pools (Belote et al. 2009),

which allowed colonization of new species into the sites.

Our first prediction that community resistance and

resilience would depend on disturbance intensity was

supported. As in other forested systems (Halpern 1988,

Rydgren et al. 2004), species composition tended to shift

more dramatically and remained more dissimilar in the

most disturbed treatments, even after 10 years, when

stump sprouting and seed regeneration formed a dense

stand of small-diameter trees with a closed canopy

(Atwood et al. 2009). Compositional differences caused

by the initial colonization of species immediately

following disturbance prevented many sites from re-

turning to pre-disturbance compositions, even though

nearly half of the colonizers were ephemeral and not

observed during canopy closure 10 years after distur-

bance.

The number of colonizing species was not correlated

with the number of species present before disturbance

(i.e., species occurring before disturbance did not

exclude colonizers after disturbance). However, coloniz-

ing species did influence composition and diversity after

disturbance. Despite differences across our sites, we

found that treatments of increasing disturbance tended

to increase colonization and diversity, supporting our

second prediction. Colonization was greatest in the most

FIG. 7. The relationship between initial (i.e., 1-year) colonizing and extirpated species richness, and resistance or resilience
based on the Sørensen dissimilarity index at the plot scale. Correlation statistics are shown in Table 3.
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disturbed treatments, and most colonizing species were

forbs and graminoids. Graminoids and forbs are also

the most diverse functional groups across all of the sites

and typically possess traits that make them good

dispersers into new habitats (Gilliam and Roberts

2003). Many of these colonizing species did not persist

through canopy closure, probably because of their

intolerance to shade cast by tree regeneration. After 10

years, extirpation of colonizers (i.e., ephemeral species)

led to a decrease in diversity at smaller spatial scales.

However, at the largest spatial scale, diversity of native

species did not tend to decrease after 10 years, but

nonnative species richness decreased.

In subplots, pre-disturbance richness and richness of

species extirpation were correlated, suggesting that

species-rich sites may be more prone to local extirpation

events than species-poor sites at small scales. Sankaran

and McNaughton (1999) found similar patterns in

savanna–grassland communities of India, which they

attribute to the presence of greater numbers of

infrequent species in the most diverse sites before

disturbance. Infrequent species had a greater tendency

to be locally extirpated after disturbance, which is likely

true in our system. While species loss was greater in

more diverse sites, richness of lost species was not

related to resistance or resilience and did not vary by

treatment.

Other studies have documented potential long-term

effects of extirpation of species in the Appalachian

region following timber harvesting (Duffy and Meier

1992), but these initial results were met with consider-

able criticism (Elliot and Loftis 1993, Johnson et al.

1993). Duffy and Meier (1992) compared old-growth

forests with second-growth forests and found old-

growth forests to be more diverse than second-growth

forests. Additionally, they found that the oldest second-

FIG. 8. The relationship between initial (i.e., 1-year) colonizing and extirpated species richness, and resistance or resilience
based on Sørensen dissimilarity at the subplot scale. Correlation statistics are shown in Table 3.

TABLE 4. P values for effects of disturbance treatment and
time, and their interaction, on richness of native and
nonnative species at three spatial scales.

Spatial scale and factor Native Nonnative

Experimental unit

Treatment ,0.01 0.05
Time 0.56 ,0.01
Treatment 3 time 0.38 0.29

Plot

Treatment ,0.01 ,0.01
Time 0.01 0.13
Treatment 3 time ,0.01 0.28

Subplot

Treatment ,0.01 0.08
Time ,0.01 ,0.01
Treatment 3 time 0.16 0.78

Note: Means and standard errors are shown in Fig. 9.
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growth forests had as few species as the younger second-
growth forests, suggesting lasting suppression of species

diversity after timber harvesting. Our sites differed in

composition of dominant tree species compared with
those studied by Duffy and Meier (1992), but our

results, in conjunction with other studies conducted in

the central Appalachians (Gilliam 2002), suggest that

timber harvesting may not have the suppressive effect on

plant species diversity reported by Duffy and Meier

(1992). However, at the time of our 10-year post-

disturbance sample, our uncut control sites were only

slightly older (60–100 years old) than the second-growth

forests Duffy and Meier (1992) sampled (45–87 years

old). Therefore, it is possible that species may have been

lost during the historic timber harvests that occurred

across our sites during the early to mid-1900s. In other

words, the pre-disturbance richness of our undisturbed

forests may have been influenced by historic timber

harvests (cf. Wyatt and Silman 2010), although we have

no way of testing this hypothesis.

Many understory species in Appalachian oak forests

are perennial and maintain belowground roots and

stems that contribute to their individual resilience to

disturbance (i.e., the ability to persist following intense

harvesting disturbance). Appalachian oak forests have

historically experienced various disturbances or pertur-

bations other than timber harvesting, including wind-

throw (Everham and Brokaw 1996), fire (Delcourt and

Delcourt 1997, Reilly et al. 2006), and ice damage

(Hooper et al. 2001), among others (Roberts and

Gilliam 1995). While many species can persist following

disturbance events (cf. Dietze and Clark 2008), more

research is needed to understand species-specific and

site-specific responses to timber harvesting (Gilliam and

Roberts 2003).

Native diversity was maintained at the largest spatial

scales even during the stem exclusion stage of forest

succession, which was likely the result of spatial

heterogeneity, wherein native shade-intolerant forbs

persisted or new species colonized patches where canopy

closure did not occur due to skid trail networks. Skid

trails that were established during timber harvesting

were in some cases maintained after 10 years. Grass

species were sown into trails immediately after timber

harvesting to prevent soil erosion, which may compet-

itively exclude tree seedling establishment. Alternatively,

increased soil compaction of the trails may have

prevented tree regeneration. Soil compaction may have

been maintained even after the initial establishment via

deer and researchers who frequently used the trails.

These hypotheses were not tested in the current study,

but other studies suggest that soil compaction (Zenner et

al. 2007) or other complex interactions (Rudgers et al.

2007) can limit tree establishment in grass-dominated

sites and contribute to differences in species composition

(Zenner and Berger 2008). Whatever the mechanisms,

skid trail patches remained sites for shade-intolerant

forbs and graminoids to persist. Other recent studies

have documented dramatic shifts in species composition

in skid trails (Zenner and Berger 2008), which may

provide refugia for ruderal species including nonnative

species to persist during canopy closure. These refugia

for nonnative ruderal species (mostly graminoids and

forbs, but also tree Ailanthus altissima (Mill.) Swingle)

likely explain why the nonnative proportion of the

species composition was much higher at large scales

FIG. 9. Changes in richness (mean 6 SE) of all native and
nonnative species through time within five disturbance treat-
ments and at three spatial scales. Data for pre-treatment, one
year post-treatment, and 10 years post-treatment are shown.
Statistics for treatment and time effects are in Table 4. The
nonnative proportion of total richness by plant functional
groups is in Appendix F.
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where sampling included these patches. Additional

research is needed to understand how skid trails

contribute to larger-scale diversity following timber

harvesting (Belote et al. 2009), and serve as potential

sources of soil erosion (Hood et al. 2002) and nonnative

species seed pools, even as forests recover from

disturbance (Call and Nilsen 2003, Zenner and Berger

2008).

Variability in site responses to disturbance limits our

ability to predict how timber harvesting affects species

diversity and compositional responses (Roberts and

Gilliam 1995). While all sites in this study were

dominated by oak species (Atwood et al. 2009), there

are considerable site and regional compositional differ-

ences of species, which made investigating individual

species responses to treatments difficult. There were

several generalist forb species that colonized disturbed

treatments at multiple sites including Erechtites hier-

aciifolia (L.) Raf. ex DC., Potentilla spp., Hieracium

spp., Lobelia inflata L., Conyza canadensis L. Cronquist,

Solidago spp., Pseudognaphalium obtusifolium (L.) Hil-

liard and B. L. Burtt, Symphyotrichum spp. Nees, and

Phytolacca americana L. Graminoids that colonized

multiple sites after disturbance included Agrostis spp.,

Dactylis glomerata L., Danthonia spp., Andropogon

virginicus L., and Dichanthelium spp. (Hitchc. and

Chase) Gould. Woody species that colonized multiple

sites included the tree Robinia pseudoacacia L. and

species of shrubs from the genus Rubus.

Compositional dynamics in uncut controls

Compositional shifts within the uncut control treat-

ments were significant, which may be an indication of

several factors. First, observer bias in species identifica-

tion could explain some colonization and extirpation

events. Dubious shifts in composition might be detected

if a species was identified differently or missed between

years. This explanation appears unlikely in our study.

PLATE 1. Examples of the time series included in this study of compositional stability of vascular plant communities in
Appalachian forests. (Upper left) Mature Appalachian oak forest before timber harvest disturbance (southwestern Virginia, USA).
(Upper right) An example of the most intense timber harvesting disturbance, clearcut, approximately one year following treatment.
(Lower left) Timber harvesting that leaves some mature trees representative of the leave-tree or shelterwood treatments (photo was
taken approximately one year following treatment application). (Lower right) An example of forest development and recovery
about 10 years after disturbance where high densities of small-diameter trees reduce light availability to the understory community.
Photo credits: B. T. Belote.
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We examined compositional and diversity patterns at

the generic level, where misidentification would be less

likely, and found very similar patterns in all analyses of

stability and diversity. Second, disturbance associated

with edges of experimental units and skid trail roads

may have impacted the uncut control treatments.

Control treatments were typically located next to

treatments receiving significant canopy disturbance,

and in some cases skid trails used by logging machinery

bisected small portions of the control experimental

units. This undoubtedly led to increases in diversity at

the experimental unit scale and may have led to changes

in composition and diversity at the nested scales.

However, within the nested plots and subplots, no

direct disturbance was observed in control treatment

units. The third explanation for changes in composition

and diversity of control plots is natural variation caused

by various biotic and abiotic mechanisms such as

precipitation, herbivory, competition, seed production,

and gap formation. Control treatments, while not

experiencing timber harvesting, did occasionally experi-

ence natural disturbances throughout the duration of

the study, including windthrow and ice damage. Lastly,

all sites were harvested within the past 60 to 100 years

prior to experiment initiation. Bunn et al. (2010) recently

found that diversity of understory plant communities

decreased between 1978 and 2007 in plots that were

logged in the 1920s, whereas plant diversity did not

change in historically unlogged plots. While different

from patterns observed in our system over 10 years,

dynamics in our control plots may be the result of long-

term changes during forest aggradation (Bormann and

Likens 1979). Clearly, compositional shifts occur in

forest understories through time, which complicates our

ability to quantify compositional resilience as a return to

some ‘‘stable’’ pre-disturbance condition.

Conclusions

Results from our study suggest that stability of plant

communities following logging depends on complex

factors including disturbance intensity, initial diversity

of habitats, and spatial scale. In general, compositional

stability decreased with disturbance intensity (i.e.,

species composition shifted more dramatically in the

most disturbed areas, and tended to be dissimilar even

after 10 years of forest aggradation) and was strongly

driven by colonizing species. The relationship between

diversity and stability was more complex following

disturbance. Intermediate levels of diversity were more

stable in some instances, whereas areas with fewer

species were more stable in other instances. While

compositional shifts were significant, our initial results

suggest that few species are lost due to disturbance. The

most intense forest management disturbance alternatives

tested in this experiment may actually represent an

intermediate level of possible human disturbances to

these systems, where species diversity is predicted to be

highest based on intermediate disturbance hypotheses

(Huston 1994). Future monitoring of these sites will help

determine the long-term persistent changes in species

composition in response to disturbance, and whether

long-term directional shifts occur because of climate

change and nonnative species.
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SUPPLEMENTAL MATERIAL

Appendix A

P values for ANCOVA terms investigating measures of resistance and resilience of vascular plant community composition to five
disturbance treatments and pre-disturbance richness based on abundance data (Ecological Archives A022-032-A1).

Appendix B

P values for ANCOVA terms investigating measures of resistance and resilience of vascular plant community composition to five
disturbance treatments and pre-disturbance richness based on presence–absence data (Ecological Archives A022-032-A2).

Appendix C

Plot-scale relationships between pre-disturbance richness and measures of resistance and resilience based on species frequency
(Ecological Archives A022-032-A3).

Appendix D

Subplot-scale relationships between pre-disturbance richness and measures of resistance and resilience based on species
importance values (Ecological Archives A022-032-A4).

Appendix E

Relationship between change in evenness of subplots following disturbance treatment application and Sørensen dissimilarity
index (Ecological Archives A022-032-A5).

Appendix F

Mean percentage of nonnative species at three scales, at three times, and among five disturbance treatments (Ecological Archives
A022-032-A6).
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