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Non-locality of zero-bias anomalies in the topologically-trivial phase of Majorana wires

Tudor D. Stanescu
Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506, USA

Sumanta Tewari
Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA

We show that the topologically trivial zero bias peak (ZBP) emerging in semiconductor Majorana wires due
to soft confinement exhibits correlated splitting oscillations as a function of the applied Zeeman field, similar to
the correlated splitting of the Majorana ZBP. Also, we find that the presence of a strong impurity can effectively
cut the wire in two and destroy the correlated splitting in both the trivial and the Majorana regimes. We identify a
strong nonlocal effect that operates only in the topologically trivial regime and demonstrate that the dependence
of the ZBP on the confining gate potential at the opposite end in Majorana wires with two normal metal end-
contacts represents a powerful tool for discriminating between topologically trivial and nontrivial ZBPs.

First predicted in the context of high energy physics, Ma-
jorana fermions (MF) [1] have come under renewed focus
in low-temperature condensed matter physics [1–3] as zero-
energy bound states endowed with non-Abelian statistics [4],
hence, potential suitable candidates for fault-tolerant quan-
tum computation [5, 6]. Proposals for realizing MFs in low-
temperature systems are based on fractional quantum Hall
systems [4, 7], chiral p-wave superconductors/superfluids
[7, 8], heterostructures of topological insulators and supercon-
ductors [9], and cold fermion systems [10, 11]. The recently
proposed scheme based on spin-orbit coupled semiconduc-
tor thin films [12–15] and nanowires [15–17] with Zeeman
splitting and proximity induced s-wave superconductivity in-
volves only conventional ingredients. The semiconductor Ma-
jorana wire – the 1D version [15–17] of the semiconductor-
superconductor (SM-SC) heterostructure – represents a direct
physical realization of the one-dimensional Kitaev model [5].
The observation of a sharp zero bias conductance peak (ZBP)
in charge tunneling measurement has been proposed [15, 18–
22] as a possible detection scheme for MFs localized near the
ends of Majorana nanowires. The 1D SM-SC heterostructure
and the associated ZBP measurements have recently attracted
considerable experimental effort [23–30].

Despite significant progress, the actual observation of MFs
in SM nanowires is still under debate, as signatures similar to
the Majorana-induced ZBPs are predicted to occur even in the
topologically trivial phase in the presence of smooth confin-
ing potentials [31], or strong disorder [32]. On the other hand,
due to the overlap of the wave functions localized near the
opposite ends, the Majorana ZBP is characterized by splitting
oscillations as a function of the Zeeman field or the chemi-
cal potential. The ZBPs measured at the opposite ends of a
clean wire should be characterized by the same splitting oscil-
lations (correlated splitting), since they involve the same wave
function overlap. The direct observation of correlated split-
ting has been recently proposed [33] as a tool for identifying
Majorana-induced ZBPs.

In this Rapid Communication we show that topologically
trivial ZBPs emerging in SM Majorana wires due to soft con-
finement can also exhibit splitting oscillations similar to those

expected for the Majorana ZBP [33, 34]. The trivial ZBPs
are generated by low-energy Bogoliubov de Gennes (BdG)
subgap states associated with the top occupied band and hav-
ing spatial profiles characterized by maxima localized near
the wire ends, similar to the Majorana wave functions. Con-
sequently, the overlap of the wave functions localized near
the opposite ends gives rise to correlated splitting oscillations.
Furthermore, analogous to the behavior of the ZBPs in the
Majorana regime, the presence of a strong impurity inside the
superconducting segment of the wire can destroy the corre-
lated splitting (i.e., the splitting oscillations measured at the
two ends are different). Therefore, these results show that
correlated splitting oscillations, although a nontrivial quan-
tum mechanical nonlocal effect, cannot by themselves estab-
lish the distinction between the Majorana ZBP and mundane
ZBPs arising from soft confinement. Nonetheless, we demon-
strate that the Majorana and the topologically trivial ZBPs de-
pend qualitatively differently on the gate potential at the oppo-
site end of the wire, both in the clean case and in the presence
of disorder, as long as the disorder potential does not local-
ize the trivial low-energy states. Consequently, establishing
the independence of the ZBP on the confining gate potential
at the opposite end strongly indicates the Majorana nature of
the ZBP in the absence of correlated splitting and completes
the demonstration of Majorana modes in clean wires charac-
terized by correlated splitting.

Although independent splitting oscillations of the ZBPs at
the two ends of a Majorana wire have been observed in recent
experiments [23, 27], correlated splitting oscillations have not
yet been reported. This indicates that the superconducting
segment of the wire must have strong impurity centers cutting
the wire into separate pieces and destroying the correlation be-
tween the two ends. To capture this effect in both the topolog-
ically trivial and nontrivial regimes (with the ZBPs due to soft
confinement and MFs, respectively) we model the most gen-
eral experimental situation by considering two finite soft bar-
rier potentials separating a central superconducting segment
from the normal end segments and a strong impurity site in-
side the superconducting region. The normal end segments
of the semiconductor wire are coupled to metallic contacts.
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In this geometry, in addition to the correlated splitting (for
weak or no impurity), we discover a second nonlocal effect
– a nonlocal dependence of the ZBP at one end on the bar-
rier height at the other end – that occurs only in the topologi-
cally trivial regime. We show that in the topologically trivial
regime the ZBP can weaken and disappear if the height of
the barrier potential at the opposite end is lowered below a
certain value. This effect occurs only in the topologically triv-
ial regime because the subgap BdG states responsible for the
ZBP are significantly more extended than the Majorana modes
and can leak out of the SC region into the metallic contacts,
if the height of the confining barrier potential is decreased.
By contrast, such a nonlocal effect is absent in the Majorana
regime, since the Majorana wave function is tightly bound to
the SC-normal metal interface and remains unaffected by the
confining potential at the opposite end. Our theory predicts
that, although the correlated splitting oscillations as a func-
tion of the Zeeman field and/or the chemical potential can-
not by themselves distinguish between the Majorana ZBP and
trivial ZBPs due to soft confinement, this second nonlocal ef-
fect – the dependence of the ZBP on the gate potential at the
opposite end – provides the tool required for discriminating
between these possible sources of zero bias anomalies.

The model used in the calculations consists of a rectangular
semiconductor (SM) nanowire with dimensions Lx � Ly �
Lz described in the limit Lx → ∞ by the effective tight-
binding BdG Hamiltonian

Hnm(k) = [εnm(k)− µδnm]τz + Γδnmσxτz

+ αkδnmσyτz − iαyqnmσx + ∆nmσyτy, (1)

where k is the wave number, while σi and τi are Pauli
matrices in the spin and particle-hole (p–h) spaces, re-
spectively. In Eq. (1) n = (ny, nz) and m =
(my,mz) are quantum numbers for the confinement-
induced bands described by the transverse wave functions
φn(y, z) ∝ sin(nyπy/Ly) sin(nzπz/Lz), εnm are the
proximity-renormalized energies of the SM wire without
spin–orbit coupling, α = aαy = 0.2 eVÅ (with a ≈
6.5Å being the lattice constant) is the Rashba coupling,
Γ = g∗µBB/2 (with µB the Bohr magneton and g∗ = 50) is
the Zeeman field applied along the x direction, µ is the chem-
ical potential, qnm = −qmn are interband spin-orbit coupling
matrix elements, and ∆nm is the proximity-induced pair po-
tential. The parameters εnm, qnm, ∆nm are determined nu-
merically following Ref. [22]. Note that below we use the
term “band” for a pair of spin subbands that are degenerate for
Γ = 0 and α = 0. Also, we use the notation ∆µ for the chem-
ical potential measured relative to the energy of the top occu-
pied band at k = 0 and Γ = 0. The condition Ly � Lz was
imposed to avoid additional complications arising from the
dependence of the SC proximity effect on the wire thickness
[35]. In this limit, the relevant confinement-induced bands are
characterized by nz = 1 and the induced pair potential be-
comes ∆nm = γ∆0/(γ + ∆0)δnm, where ∆0 is the bulk SC
gap and γ is the effective semiconductor-superconductor cou-
pling [35]. In the calculations we consider finite wires with a
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FIG. 1. (Color online) Splitting oscillations of the zero-bias anoma-
lies in the Majorana-supporting phase (top panel) and the topolog-
ically trivial phase (bottom). The local density of states integrated
over the left barrier region is shown as a function of the Zeeman field
for a 3.6µm nanowire proximity coupled to a SC and two normal
metal end contacts. The superconducting central region (1.8µm) is
separated from the normal regions by two potential barriers (see Fig.
2). Identical splitting patterns characterize the right-end LDOS. Note
the absence of a gap-closing signature in the Majorana regime (top).
By contrast, the topologically trivial regime (bottom) is characterized
by strong low-field features associated with the states responsible for
the zero bias anomaly.

position-dependent coupling γ(x) that is nonzero along a cen-
tral section separated from the normal end sections by a local
gate potential V (x), which also includes the impurity contri-
bution [see Fig. 2(a)].

Increasing the Zeeman splitting drives the system through
a topological quantum phase transition (TQPT) at Γ = Γc(µ)
into a topological phase characterized by zero-energy Majo-
rana bound states localized near the wire ends. The bulk
quasiparticle gap necessarily vanishes at the TQPT [7, 15, 22],
but this closing of the gap, while visible in the total density
of states, may have no signature in the local density of states
(LDOS) at the end of the wire [36]. In the topologically-trivial
phase characterized by Γ < Γc(µ) the system has no Majo-
rana bound states, but low-energy states with significant spec-
tral weight at the wire ends are still possible in the presence
of a soft confinement potential [31, 37, 38]. To compare the
low-energy physics in the topologically-trivial and Majorana
regimes, we consider a quasi-1D nanowire with four occupied
bands and two values of the chemical potential, one near the
minimum of the top band (∆µ small) and another that cuts
both subbands of the top-most band (∆µ large).

In Fig. 1 we show the splitting oscillations of the zero bias
peak at the left end of the SC segment of a clean wire as a
function of the Zeeman field in both the Majorana-supporting
phase (Γ > Γc, ∆µ small) and the topologically trivial phase
(Γ < Γc, ∆µ large). We find that identical oscillation pat-
terns are present at the right end of the wire, a clear signa-
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FIG. 2. (Color online) (a) Position-dependent effective SM-SC cou-
pling, γ(x), and local potential V (x). The left and right barrier
heights are VL and VR, respectively, and Vimp is the amplitude of
a strong impurity potential. (b) Typical low-energy states in the Ma-
jorana regime characterized by a chemical potential near the bottom
of the fourth band, ∆µ = 0, and a Zeeman field Γ = 0.45mev.
(c) Low-energy states in the topologically-trivial regime with ∆µ =
3meV and Γ = 0.8meV. States A and B correspond to the top
(fourth) occupied band and are responsible for the ZBPs, states C
are top band states localized inside the normal regions, while D are
states associated with the lower energy bands and extend through-
out the entire wire. The purple (dark gray) line in panel (b) shows
a finite-energy bulk-type state from the Majorana band. Note that,
because of its low amplitude inside the barrier region, this type of
state is not “visible” in local measurements near the ends of the SC
region. States that penetrate into the normal regions (C and D) hy-
bridize strongly with the normal metal continuum and generate very
broad spectral features. Parameters: VL = 6meV, VR = 5meV,
Vimp = 2meV, γbulk = 0.3meV, and ∆0 = 1.5meV (bulk SC pair
potential).

ture of correlated splitting. In both cases the states responsi-
ble for the ZBP (the Majorana state in the topological regime
and two low-energy in-gap states in the topologically trivial
regime) are BdG states associated with the top occupied band
and characterized by maxima near the wire ends and by de-
cay lengths that depend strongly on ∆µ and (weakly) on Γ.
The overlap of the wave functions localized near the wire ends
generates the splitting of the ZBP. In a clean system, since the
same wave function overlap determines the zero energy split-
ting at both ends, the splitting oscillations are correlated.

Next, since correlated splitting of the ZBPs has not yet been
observed in the experiments, we consider the more general sit-
uation that includes soft barrier potentials near the ends of the
SC wire segment and a strong impurity potential asymmet-
rically placed inside the SC segment (Fig. 2). If the impu-
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FIG. 3. (Color online) Uncorrelated splitting in a wire with a strong
impurity (Vimp = 2meV) in the Majorana (∆µ = 0) and the topo-
logically trivial (∆µ = 3meV) regimes. The parameters of the sys-
tem are the same as in Fig. [2]. The Majorana splitting oscillations
measured at the left and right end of the SC wire segment are gen-
erated by the B and A modes, respectively (see Fig. [2]) and have
different amplitudes because the impurity separates the wire into
two segments of different length. In the trivial regime, the ZBP at
Γ < 1meV is produced by the A mode, which, for Γ < 0.75meV,
has a very small amplitude at the right end and does not generate a
visible signature (while mode B remains gapped).

rity potential is strong enough, the splitting oscillations as a
function of the Zeeman field become uncorrelated in both the
Majorana and the topologically trivial regimes, as shown in
Fig. 3. This absence of correlation between the ZBPs mea-
sured at the two ends is caused by the strong impurity poten-
tial, which effectively cuts the SC wire into two segments of
unequal spatial extent if Vimp � ∆µ, i.e., in the Majorana
regime. The low-energy states responsible for the ZBPs visi-
ble at the two ends of the SC wire are shown in Fig. 2 (states
A and B). Note that, in the Majorana regime, the states A
and B are confined insides the two SC segments separated by
the impurity, while in the topologically trivial regime the two
states penetrate through the impurity potential and can still
create correlated features in the LDOS measured at the oppo-
site ends, although, as evident from the lower panels of Fig.
3, these features may be difficult to identify. Another striking
difference between the Majorana and the topologically-trivial
regimes is represented by the so-called “gap-closing” signa-
ture [36, 37]. Note that in the Majorana regime the emergence
of a ZPB is not accompanied by any visible signature asso-
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ciated with the closing of the quasiparticle gap at the TQPT,
as shown in both Figs. 1 and 3. This is due to the low am-
plitude near the wire ends of the relevant bulk-type states [see
Fig. 2(b)]. The Majorana (i.e. lowest energy) mode itself is
characterized by a similar profile at low values of the Zeeman
field, and it becomes “invisible” to local end-of-wire probes
for Γ < Γc. By contrast, the states responsible for the ZBP
in the topologically-trivial phase have a profile that does not
change qualitatively with Γ and, consequently, can be traced
as a function of the Zeeman field starting at Γ = 0 (see Figs.
1 and 3). Note, however, the possibility that two low-energy
states characterized by different splitting patterns [e.g., A and
B shown in Fig. 2(c)] contribute to the low-energy end-of-
wire LDOS. As shown in Fig. 3 (bottom panel), a ZBP is
visible at the right end of the nanowire for Γ < 1 meV that ap-
pears to have been generated without a complete closing of the
gap. This peak is produced by the A mode [Fig. 2(c)], which,
for Γ < 0.75 meV, has a very small amplitude at the right end
and does not generate a visible signature in the LDOS. Such a
ZBP in the topologically trivial regime, which does not appear
to be accompanied by a full “gap-closing” signature [36, 37],
has striking similarities with the Majorana ZBP. However, un-
like the absence of a gap-closing signature in the Majorana
regime, this feature is not robust against variations of the con-
fining potential amplitude. Below, we discuss in more detail
the nonlocal effect due to barrier potentials and demonstrate
that it can help discriminate between the two types of ZBPs in
semiconductor Majorana wires.

The dependence of the LDOS at the right end of the SC wire
on the barrier height VL at the left end is shown in Fig. 4. In
the Majorana regime (top panel), the LDOS is characterized
by a ZBP that is not affected by the confining potential at the
opposite end. This behavior is due to the localized nature of
the Majorana bound state and does not depend on the presence
of impurities. In essence, the Majorana bound state responsi-
ble for the ZBP will maintain its spatial profile regardless of
the fate of its counterpart, which could remain localized neat
the impurity or leak into the normal region for low values of
VL in clean enough wires. By contrast, in the topologically
trivial regime the ZBP at the right end disappears if the height
of the barrier potential on the other end is lowered below a cer-
tain value. This effect occurs because the subgap BdG states
responsible for the ZBP in the topologically-trivial regime
are characterized by Fermi momenta significantly larger than
those of the Majorana mode. As a result, these states can pen-
etrate the finite potential barriers and leak into the metallic
contacts. As we discussed before [37], such leaking into the
contacts and the corresponding hybridization with the metal-
lic states result in broad subgap features responsible for the
soft gap seen experimentally [23]. Only states confined within
the SC segment can generate sharp features in the LDOS. For
state A in Fig. 2(c) lowering the barrier potential at the left end
generates deconfinement and hybridization with the metallic
states and, consequently, the disappearance of the ZBP at the
right end. State B, on the other hand, has finite energy in the
relevant field range, 0.75 meV< Γ < 1 meV. Note that the
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FIG. 4. (Color online) Nonlocal effect in the topologically trivial
phase. The dependence of the right end ZBP on the barrier hight
at the left end is shown for the Majorana (top) and the topologically-
trivial (bottom) regimes. The other parameters are the same as in Fig.
2. Note that the Majorana peak is weakly affected by the potential
barrier at the opposite end, while the trivial ZBP disappears when
the barrier at the opposite end is lower that a certain value as mode
A (see Fig. 2) leaks into the normal region.

nonlocal effect described here is distinct from the nonlocal
current correlations discussed recently [39]. Also, the strong
dependence of the ZBP on the pinch-off gate at the other end
described here is a characteristic of the topologically-trivial
phase with ∆µ � ∆nn in the presence of weak disorder and
soft confinement, rather than a signature of a disorder-driven
TQPT [40] in systems with ∆µ ≈ 0.

In conclusion, we have identified a nonlocal effect – the
dependence of the ZPB at one end of the wire on the con-
fining potential at the opposite end – that emerges only in the
topologically-trivial phase of a Majorana wire and can be used
as a powerful tool for discriminating between topologically-
trivial and Majorana-induced ZBPs. To practically demon-
strate zero-energy MFs, we propose the following three-step
protocol: 1) Establish the emergence of a ZBP at a finite Zee-
man field. If the ZBP is preceded by a gap-closing signature,
stop. 2) Establish the presence of correlated ZBP splitting os-
cillations by performing a two-end tunneling experiment on a
relatively short wire (Lx ∼ 1µm). This ensures that the wire
is clean enough, so that only two spatially-overlapping low-
energy states are responsible for the ZBPs. 3) Determine the
dependence of the ZBP measured at one end of the wire on
the confining potential at the other end. If the ZBP is robust,
it is generated by a zero-energy Majorana bound state.

Acknowledgment: This work was supported by WV
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(FA9550-13-1-0045)
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