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Tunneling conductance in semiconductor-superconductor hybrid structures

John Stenger1 and Tudor D. Stanescu1, 2

1Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506
2Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics,

University of Maryland, College Park, Maryland, 20742-4111, USA

We study the differential conductance for charge tunneling into a semiconductor wire–superconductor hybrid
structure, which is actively investigated as a possible scheme for realizing topological superconductivity and
Majorana zero modes. The calculations are done based on a tight-binding model of the heterostructure using
both a Blonder-Tinkham-Klapwijk approach and a Keldysh non-equilibrium Green’s function method. The de-
pendence of various tunneling conductance features on the coupling strength between the semiconductor and the
superconductor, the tunnel barrier height, and temperature is systematically investigated. We find that treating
the parent superconductor as an active component of the system, rather than a passive source of Cooper pairs,
has qualitative consequences regarding the low-energy behavior of the differential conductance. In particular,
the presence of sub-gap states in the parent superconductor, due to disorder and finite magnetic fields, leads to
characteristic particle-hole asymmetric features and to the breakdown of the quantization of the zero-bias peak
associated with the presence of Majorana zero modes localized at the ends of the wire. The implications of
these findings for the effort toward the realization of Majorana bound states with true non-Abelian properties
are discussed.

I. INTRODUCTION

The search for quantum states of matter characterized by
nontrivial topological properties has gained significant mo-
mentum in recent years motivated, in part, by the discovery
of topological insulators1–3 and by the exciting prospect of us-
ing topological objects, such as the Majorana zero modes,4–7

as a platform for fault tolerant quantum computation.8,9 The
proposal for engineering topological superconductors capa-
ble of supporting Majorana zero modes that has generated
the most promising experimental results involves a semicon-
ductor nanowire with strong spin-orbit coupling proximity-
coupled to a standard s-wave superconductor in the presence
of an applied magnetic field.10,11 Upon increasing the mag-
netic field, the system undergoes a topological quantum phase
transition12,13 from a topologically-trivial superconductor to
a topological superconductor with mid-gap Majorana zero
modes localized near the ends of the wire. The presence of
the Majorana bound states can be probed by tunneling charge
into the end of the wire, which is predicted to generate a
zero-bias conductance peak that is quantized (2e2/h) at zero
temperature.14–18 These theoretical proposals and predictions
have led to an impressive experimental effort19–27 for realiz-
ing Majorana zero modes in semiconductor-superconductor
hybrid structures. The results of this effort are promising,
but a conclusive demonstration of the realization of Majorana
bound states in the laboratory remains elusive.

A serious problem is the persistence of significant discrep-
ancies between theory and experiment. While the theoreti-
cal possibility of realizing topological superconductivity and
Majorana zero modes in semiconductor-superconductor struc-
tures that satisfy certain requirements is beyond any reason-
able doubt, understanding how well real devices realized in
the laboratory satisfy these requirements remains a serious
challenge. In addition to careful systematic measurements,
overcoming this challenge calls for theoretical studies that
go beyond idealized conditions and incorporate all relevant
details associated with real devices. Since charge tunnel-

ing is, so far, the preferred method of detecting the pres-
ence of Majorana zero modes, significant theoretical effort
was devoted to numerical and analytical studies of the tun-
neling differential conductance using both normal metal28–36

and superconductor37–40 leads. Most of these studies, how-
ever, do not consider explicitly the parent s-wave super-
conductor; instead, its role is reduced to that of a passive
source of Cooper pairs for the semiconductor nanowire. Re-
cently, it has been emphasized that the parent superconduc-
tor should be treated as an active ingredient in the physics
of the heterostructure.41,42 This treatment of the semicon-
ductor wire and the parent superconductor on equal footing
leads to a renormalization of the low-energy modes in the hy-
brid system42 and the emergence of additional conductance
peaks at energies corresponding to the bulk gap of the parent
superconductor.41

In this work we investigate theoretically the tunneling con-
ductance of a normal-metal – semiconductor-wire – supercon-
ductor hybrid structure and demonstrate that the explicit treat-
ment of the parent superconductor as an active component of
the system has major consequences not only at energies on the
order of the bulk superconducting gap, but all the way down
to zero energy. Our findings are based on a systematic numer-
ical analysis of a tight-binding model of the heterostructure.
The conductance calculations are carried out within both the
Blonder-Tinkham-Klapwijk (BTK) theory43 and the Keldysh
non-equilibrium Green’s function formalism44. To gain a bet-
ter physical understanding of the low-energy features revealed
by the differential conductance, we compare these features
with the local density of states. We establish the qualitative
features that characterize the dependence of tunneling con-
ductance on the coupling strength between the semiconduc-
tor wire and the parent superconductor, the strength of the
tunnel barrier, and temperature. We also consider the pos-
sibility of sub-gap states being present in the parent super-
conductor and identify the consequences of these states hy-
bridizing with low-energy states in the wire. We find that
the presence of sub-gap states leads to characteristic particle-

ar
X

iv
:1

70
3.

02
54

3v
2 

 [
co

nd
-m

at
.m

es
-h

al
l]

  3
 J

an
 2

01
8



2

hole asymmetric features in the low-energy differential con-
ductance and to a breakdown of the zero-bias peak quantiza-
tion at zero temperature. Our findings suggest that a detailed
modeling of the parent superconductor, including the possible
presence of disorder-induced sub-gap states in the presence of
a finite magnetic field, is a strong requirement for any attempt
to quantitatively (and, at this stage, even qualitatively) repro-
duce the experimentally measured differential conductance.

The remainder of this paper is organized as follows. In
Sec. II we introduce a tight-binding model for the normal-
metal – semiconductor-wire – superconductor hybrid struc-
ture (Sec. II A) and briefly describe the BTK-type formalism
(Sec. II B) and the Keldysh approach (Sec. II C) for calculat-
ing the differential conductance. The results of our numeri-
cal analysis are presented in Sec. III. First, we compare the
two approaches for calculating the tunneling conductance and
establish the correspondence between the differential conduc-
tance (in the low tunneling regime) and the local density of
states (Sec. III A). The dependence of the low-energy features
on the transparency of the semiconductor-superconductor in-
terface and the tunnel barrier height is discussed in Sec. III B.
We show that additional features associated with charge trans-
port via quasiparticles in the parent superconductor occur at
energies larger than the bulk superconducting gap. The ef-
fects of disorder-induced sub-gap states in the parent super-
conductor are investigated in Sec.III C and the dependence of
the Majorana-induced zero-bias conductance peak on the rel-
evant parameters (i.e., tunnel barrier height, temperature, and
sub-gap states density) is summarized in Sec. III D. Our con-
clusions are presented in Sec. IV.

II. THEORETICAL MODEL

In this section we introduce the tight-binding model for the
normal-metal – semiconductor-wire – superconductor hybrid
structure and briefly describe the BTK and Keldysh methods
for calculating the differential conductance. Both approaches
explicitly incorporate the parent superconductor.

A. Tight-binding Hamiltonian

We consider charge tunneling from a normal metal lead
into a semiconductor wire - superconductor hybrid structure
through a controllable potential barrier. The Hamiltonian de-
scribing the system has the following generic form:

H = Hm +Hsm +Hsc + Tm + Tsc +Hext, (1)

where Hm, Hsm, and Hsc describe the normal metal, semi-
conductor wire, and superconductor components, respec-
tively, the next two terms describe the coupling between the
semiconductor wire and the metallic lead (Tm) and the cou-
pling between the wire and the parent superconductor (Tsc),
whileHext includes contributions from external fields, such as
magnetic fields and electrostatic potentials. The specific form
of each term in Eq. (1) depends on on the degree of complex-
ity that we want to incorporate into the model. In this study we

consider a simple tight-binding description of the hybrid sys-
tem involving a lattice consisting of coupled parallel chains.
Specifically, we have

Hm =
∑
i,δ

tδma†iai+δ + µm
∑
i

a†iai, (2)

where i = (ix, iy) labels the position, with 1 ≤ iy ≤ Ny
designating the chain and 1 ≤ ix ≤ Nm the position along
the chain, δ = (±1, 0) or (0,±1) is a nearest neighbor vector,
tδm = (txm, t

y
m) is the hopping matrix element, and µm the

chemical potential of the metallic lead. Using spinor notation,
the electron creation operator on site i is a†i = (a†i↑ a†i↓). The
semiconductor wire (including the applied external fields) is
described by the tight-binding Hamiltonian

Hsm +Hext =
∑
i,δ

tδsmc
†
i ci+δ +

∑
i

(µsm + Vi)c
†
i ci

+ i
∑
i

[
αx
2
c†i+δx σ̂yci −

αy
2
c†i+δy σ̂xci + h.c.]

+ Γ
∑
i

c†i σ̂xci, (3)

where c†i = (c†i↑ c
†
i↓) is the electron creation operator on the

site i = (ix, iy) of the semiconductor wire, with 1 ≤ ix ≤
Nsm and 1 ≤ iy ≤ Ny , tδsm = (txsm, t

y
sm) is the nearest-

neighbor hopping, δ = (±1, 0) or (0,±1) is a nearest neigh-
bor vector, while δx = (1, 0) and δy = (0, 1) are (positive)
unit vectors in the x- and y-direction, respectively, µsm is
the chemical potential, and (αx, αy) are the Rashba spin-orbit
coupling coefficients. The position-dependent potential Vi de-
scribes the tunneling barrier and additional back-gate-induced
potentials, while Γ represents the Zeeman splitting. The ma-
trices σ̂µ, with µ = x, y, z, represent Pauli matrices associated
with the spin degree of freedom. The parent superconductor is
described within the Bogoliubov-de Gennes (BdG) formalism
by

Hsc =
∑
i,δ

tδsca
†
iai+δ + µsc

∑
i

a†iai

+ ∆0

∑
i

(a†i↑a
†
i↓ + ai↓ai↑), (4)

where a†i = (a†i↑ a
†
i↓) is the electron creation operator on

the site i = (ix, iy) of the superconducting chains, with
1 ≤ ix ≤ Nsc and 1 ≤ iy ≤ Ny , tδsc = (txsc, t

y
sc) is the

nearest-neighbor hopping matrix element, µsc the chemical
potential of the superconductor, and ∆0 is the superconduct-
ing gap. We assume that the superconductor is equal to or
longer than the semiconductor wire, Nsc ≥ Nsm. The cou-
pling between the semiconductor wire and the metallic lead is
described by the term

Tm = t̃m−sm

Ny∑
iy=1

(
a†(Nm,iy)c(1,iy) + h.c.

)
, (5)

where the nearest-neighbor hopping t̃m−sm quantifies the
coupling strength, while (Nm, iy) and (1, iy) label the sites
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at the right end of the metallic lead and the left end of the
semiconductor wire, respectively. Finally, the coupling be-
tween the semiconductor and the superconductor is described
by the term

Tsc = t̃

Nsm∑
ix=1

Ny∑
iy=1

(
c†iai + a†i ci

)
, (6)

where i = (ix, iy), t̃ is the hopping across the semiconductor-
superconductor (SM-SC) interface, while ci and ai designate
annihilation operators on the SM and SC sides, respectively.

It may be convenient to use a Green’s function formalism
and calculate the effective Green function for the semicon-
ductor wire by integrating out the degrees of freedom of the
parent superconductor.7 The proximity effect induced by the
superconductor is captured by a self-energy term,

Σsc(ω) = t̃2Gsc(ω), (7)

where Gsc(ω) is the Green function of the parent supercon-
ductor at the SM-SC interface. Assuming that the parent su-
perconductor is a truly bulk system (i.e., wide enough and
thick enough), the self-energy becomes local,7 Σsc(ω; i, j) =
δi,jΣsc(ω), with

Σsc(ω) = −|t̃|2νsc

(
ωτ̂0 + ∆0τ̂x√

∆2
0 − ω2

+ ζτ̂z

)
, (8)

where νsc =
√

4tscµsc − µ2
sc/(2t

2
sc) is the surface density

of states of the bulk superconductor at the chemical potential
and ζ = (2tscµsc − 4t2sc)/(µ

2
sc − 4tscµsc) is a proximity-

induced shift of the SM chemical potential. The matrices τ̂µ,
with µ = x, y, z, represent Pauli matrices associated with the
particle-hole degree of freedom. We define the effective SM-
SC coupling as

γ = |t̃|2νsc. (9)

Note that here we do not discuss the physics associated with
the finite wire thickness in the direction perpendicular to the
SM-SC interface (i.e., the z-direction). This is critical when
considering electrostatic effects, such as those generated by
back-gate potentials. In general, the effective SM-SC cou-
pling γ is a band-dependent quantity proportional to the am-
plitude squared of the wave-functions (corresponding to a
given confinement-induced band) at the SM-SC interface and
may involve band off-diagonal contributions.7 In the weak-
coupling limit, γ/∆0 → 0, the self-energy (8) can be approx-
imated at low energy by the anomalous contribution

Σsc = −γτx. (10)

Note that in this approximation the proximity-induced gap
(defined as the minimum quasiparticle gap in the absence of
an applied magnetic field) is ∆ind = γ and the minimum
critical Zeeman field associated with the topological quantum
phase transition is Γc = γ ≡ ∆ind. However, in general the
critical field and the induced gap have different values.42,45

To describe the low-energy spectral properties of the hybrid
structure it is convenient to use the density of states (DOS)
ρ(ω) and the local density of states (LDOS) ρ̄(i, ω) at the end
of the wire. In terms of the effective wire Green’s function
G(ω) = [ω −Hsm − Σsc(ω)]−1 we have

ρ̄(i, ω) = − 1

π
Im[G(i, ω)], (11)

ρ(ω) =
∑
i

ρ̄(i, ω). (12)

B. BTK Formalism

The calculation of the differential conductance using
the Blonder-Tinkham-Klawijk (BTK) formalism43 involves
calculating the reflection and transmission coefficients for
incoming (and outgoing) plane waves by solving the
Bogoliubov-de Gennes (BdG) equation for the total Hamil-
tonian given by Eq. (1) with appropriate boundary conditions.
The Schrödinger equation that determines the reflection and
transmission coefficients is

Ntot+1∑
jx=0

Ny∑
jy=1

∑
σ′

(Hiσ,jσ′ − ωδi,jδσ,σ′)Ψjσ′ = 0 (13)

for ix = 1, . . . , Ntot, iy = 1, . . . , Ny, σ = ±1,

where H is the first quantized BdG Hamiltonian correspond-
ing to Eq. (1) and Ntot = Nm + Nsm + Nsc. For con-
venience, we define the transverse modes φν , with 1 ≤
ν ≤ Ny , characterized by the wave functions φν(iy) =√

2/(Ny + 1) sin[iyνπ/(Ny + 1)]. Each transport channel is
labeled by the pair of quantum numbers (ν σ) corresponding
to a given transverse mode and spin orientation and the re-
flection and transmission coefficients are 2Ny×2Ny matrices
with matrix elements indexed by these channel labels.

Consider now an incoming plane wave in channel (ν, σ).
To ensure that the wave function entering the normal lead is
a (propagating) plane wave, we impose (propagating) bound-
ary conditions involving the first two sites of each chain, i.e.,
jx = 0 and jx = 1. Note that similar propagating bound-
ary conditions involving two sites at the rightmost end of the
superconductor, i.e., jx = Ntot and jx = Ntot + 1, corre-
spond to an outgoing plane wave. Specifically, the (incoming)
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boundary conditions at the left end of the metallic lead are

Ψ
(ν,σ)
(0,jy)

= φν(jy)

 δσ,↑
δσ,↓
0
0

+
∑
ν′

φν′(jy)

 [rN ]νσ,ν′↑
[rN ]νσ,ν′↓
[rA]νσ,ν′↑
[rA]νσ,ν′↓

 ,

Ψ
(ν,σ)
(1,jy)

= φν(jy)

 δσ,↑
δσ,↓
0
0

 eik
ν
ea (14)

+
∑
ν′

φν′(jy)


[rN ]νσ,ν′↑ e

−ikν
′
e a

[rN ]νσ,ν′↓ e
−ikν

′
e a

[rA]νσ,ν′↑ e
ikν

′
h a

[rA]νσ,ν′↓ e
ikν

′
h a

 ,

where rN and rA are the normal and anomalous reflection
coefficients, respectively, a is the lattice constant, while kνe
and kνh are wave vectors in the normal lead at energies ω and
−ω, respectively,

kνe(h)(ω) = cos−1
(
−µm + εν ± ω

2tm

)
, (15)

with εν = 2tm cos[νπ/(Ny + 1)]. Similarly, the outgoing
plane wave dictates the boundary conditions at the rightmost
end of the bulk superconductor chains,

Ψ
(ν,σ)
(Ntot+1,jy)

=
∑
ν′

φν′(jy)

 [tN ]νσ,ν′↑
[tN ]νσ,ν′↓
[tA]νσ,ν′↑
[tA]νσ,ν′↓

 , (16)

Ψ
(ν,σ)
(Ntot,jy)

=
∑
ν′

φν′(jy)


[tN ]νσ,ν′↑ e

−iqν
′
e a

[tN ]νσ,ν′↓ e
−iqν

′
e a

[tA]νσ,ν′↑ e
iqν

′
h a

[tA]νσ,ν′↓ e
iqν

′
h a

 ,

where tN and tA are the normal and anomalous transmission
coefficients, respectively, while qνe and qνh are wave vectors in
the bulk superconductor

qνe(h) = cos−1

(
−µsc + εν ±

√
ω2 −∆2

0

2tsc

)
, (17)

with εν = 2tsc cos[νπ/(Ny + 1)] and |ω| > ∆0. To solve
the BdG equation (13) with the boundary conditions (14) and
(16) it is convenient to express the 16Ny wave function com-
ponents Ψ

(ν,σ)
(jx,jy)

corresponding to jx = 0, 1, Ntot, Ntot + 1

in terms of the 4Ny reflection and 4Ny transmission coeffi-
cients corresponding to the incoming channel (ν, σ). Thus,
Eq. (13) reduces to a system of 4NtotNy linear equations with
4NtotNy unknown coefficients that include the 4(Ntot−2)Ny

wave function components Ψ
(ν,σ)
(jx,jy)

, with 2 ≤ jx ≤ Ntot − 1,
and the 8Ny reflection and transmission coefficients. Writ-
ing theses unknown coefficients as a vector Ψ̃ with 4NtotNy
components, we have

Ψ̃(νσ) = (H+Q(ω)− ω)−1J (νσ)(ω), (18)

Explicitly, we define the components of the new vector
Ψ̃(ν,σ) to be the same as the wave function components,
Ψ̃

(ν,σ)
(jx,jy)

≡ Ψ
(ν,σ)
(jx,jy)

, for 2 ≤ jx ≤ Ntot − 1, while

Ψ̃
(ν,σ)
1,jy
≡
∑
ν′

φν′(jy)


[rN ]νσ,ν′↑e

−ikν
′
e a

[rN ]νσ,ν′↓e
−ikν

′
e a

[rA]νσ,ν′↑e
ikν

′
h a

[rA]νσ,ν′↓e
ikν

′
h a

 , (19)

Ψ̃
(ν,σ)
Ntot,jy

≡
∑
ν′

φν′(jy)

×


u[tN ]νσ,ν′↑e

−iqν
′
e a + v[tA]νσ,ν′↓e

iqν
′
h a

u[tN ]νσ,ν′↓e
−iqν

′
e a − v[tA]νσ,ν′↑e

iqν
′
h a

u[tA]νσ,ν′↑e
iqν

′
h a − v[tN ]νσ,ν′↓e

−iqν
′
e a

u[tA]νσ,ν′↓e
iqν

′
h a + v[tN ]νσ,ν′↑e

−iqν
′
e a

 ,

where u and v are BCS coherence factors:

u2(ω) = 1− v2(ω) =
1

2

(
1 +

√
ω2 −∆2

ω

)
. (20)

The matrix Q introduces frequency-dependent correction at
the boundaries,

Q
(ν,ν′)
(1,jy ; 1,j′y)

(ω) = tmδν,ν′δjy,j′y

×


eik

ν
ea 0 0 0

0 eik
ν
ea 0 0

0 0 −e−ikνha 0
0 0 0 0 −e−ikνha

 , (21)

Q
(ν,ν′)
(Ntot; jy,Ntot,j′y)

(ω) =

(
Q

(ν,ν′)
ee (ω) Q

(ν,ν′)
eh (ω)

−Q(ν,ν′)
eh (ω) Q

(ν,ν′)
hh (ω)

)
,

with

Q(ν,ν′)
ee (ω) =

tsc
u2 − v2

δν,ν′δjy,j′y

×
(
u2eiq

ν
ea − v2e−iqνha 0

0 u2eiq
ν
ea − v2e−iqνha

)
,

Q
(ν,ν′)
hh (ω) =

tsc
u2 − v2

δν,ν′δjy,j′y

×
(
u2e−iq

ν
ha − v2eiqνea 0

0 u2e−iq
ν
ha − v2eiqνea

)
, (22)

Q
(ν,ν′)
eh (ω) =

tsc
u2 − v2

δν,ν′δjy,j′y

×
(

0 uv(e−iq
ν
ha − eiqνea)

uv(e−iq
ν
ha − eiqνea) 0

)
.

All other elements of Q are zero, Q(ν,ν′)
(jx,jy ; j′x,j

′
y)

(ω) = 0 if
jx 6= j′x or jx = j′x 6= 1, Ntot. Finally, the vector J contains
the “free terms” from the boundary conditions (i.e., those that
do not depend on the reflection and transmission coefficients),
which are associated with the incoming plane wave. Explic-
itly, we have

J
(νσ)
(1,jy)

(ω) =−tm + (ω − µm)eik
ν
ea,

J
(νσ)
(2,jy)

(ω) =−tmeik
ν
ea, (23)
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and J (νσ)
(jx,jy)

(ω) = 0 for jx ≥ 3. Note that all the information
about the boundary conditions is contained in the matrixQ(ω)
and the vector J (νσ)(ω). The coefficients [rN(A)]νσ,ν′σ′ and
[tN(A)]νσ,ν′σ′ are obtained by solving Eq. (18) 2Ny times,
once for each incoming channel.

An interesting observation is that the matrix in Eq. (18) has
the structure of a Green’s function, GQ(ω) = (H + Q(ω) −
ω)−1. Generalizing the approach used in Sec. II A to calcu-
late the effective Green’s function for the semiconductor wire,
we integrate out the degrees of freedom of the bulk supercon-
ductor and write an equation for the reflection coefficients in-
volving only states in the semiconductor and the metallic lead:

Ψ̃′(νσ) = (Hm +Hsm + Tm + ΣQ +Qm − ω)−1J ′(νσ)(ω),
(24)

where Hm, Hsm, and Tm are the matrices corresponding
to the first quantized Hamiltonians for the metallic lead, the
semiconductor wire, and the lead-wire coupling, respectively,
Qm is the matrix corresponding to the boundary condition at
the left end of the normal lead and ΣQ is a “self-energy” con-
tribution that incorporates the effect of the parent supercon-
ductor, including the the outgoing boundary conditions. Note
that below the bulk gap there is no normal current (i.e., cur-
rent carried by quasiparticles) in the superconductor; hence
the outgoing boundary conditions become trivial and we have
ΣQ(ω) = Σsc(ω). In general, since the boundary condi-
tions are diagonal in real space while Hsc is diagonal in mode
space, the self energy ΣQ has to be calculated numerically.
Nonetheless, using Eq. (24) instead of Eq. (18) provides sig-
nificant advantages, as one can calculate the self-energy ΣQ
once, then solve the reduced equation repeatedly for different
values of relevant parameters, such as potential barrier height
and Zeeman field, instead of solving the full equation (18) for
each set of parameters.

The differential conductance for tunneling into the hybrid
structure can be written in terms of reflection coefficients as43

dI

dV
=
e2

h

∑
ν,ν′

∑
σ,σ′

(
1−|[rN (V )]νσ,ν′σ′ |2+|[rA(V )]νσ,ν′σ′ |2

)
,

(25)
where V is the bias voltage. To include the effect of finite
temperature, the conductance is broadened by convolving it
with the Fermi function. Explicitly, we have

G(V, T ) =

∫
dε

G0(ε)

4T cosh2
(
V−ε
2kBT

) (26)

where G0(ε) = dI/dV is the zero temperature conductance
given by Eq. (25) at voltage bias ε.

C. Keldysh Formalism

Consider a normal metal-semiconductor junction. The cur-
rent through the junction can be expressed in terms of the

number operator for the component to the right of the junc-
tion as

I = e 〈Ψ0| ṄR |Ψ0〉 =
−ie
h̄

[NR, H], (27)

where |Ψ0〉 is the equilibrium quantum state of the composite
system, H is the total Hamiltonian, and NR =

∑
r c
†(r)c(r)

is the number operator for the right component. The label r
indicates both position (on the right side of the junction) and
spin. The number operator NR can only change if some elec-
trons cross the junction. Hence, one can rewrite the current
as46

I =
−2e

h̄

∑
l,r

[Tm]lrIm[〈Ψ0| a†(l)c(r) |Ψ0〉] (28)

where Tm is the coupling between the metal and the semicon-
ductor given by Eq. (6). The differential conductance can be
extracted by taking the derivative of the current with respect
to the bias voltage in the lead, dI

dV . Notice that the propaga-
tor iG<(l, r; 0+) = 〈Ψ0| a†(l)c(r) |Ψ0〉 is the so-called lesser
Green’s function at time t = 0+.44 Using the relation between
G<(l, r; t) and the Keldysh Green’s function, Eq. (28) be-
comes

I = −2e

h̄

∑
l,r

[Tm]lrRe[G<(l, r; 0+)]

=
e

h̄

∫
dωReTr

[
TmG

K(ω)
]
,

(29)

where we have used the property
∫
dωGK(ω) =

GK(l, r; 0+). Expanding GK in terms of Green’s func-
tions for the left and right sub-systems, we have

G ≡
(
G+ GK

0 G−

)
= GRTmGL +GRTmGLTmGRTmGL + . . . (30)

The Keldysh Green’s function becomes

GK = [1−G+
RTmG

+
LTm]−1 (31)

× (G+
RTmG

K
L +GKRTmG

−
L )[1−G−RTmG

−
LTm]−1,

where G+ and G− are the retarded and advanced Green’s
functions, respectively. Next, we take the derivative with re-
spect to the bias voltage. We assume the voltage drops at
the junction, so we only take the derivative in the Green’s
function of the lead, GL (i.e., we assume that GR is in-
dependent of V ). The main contribution comes from the
derivative of the Fermi function with respect to the voltage,
hence from GKL (ω) = [1− 2fL(ω)][G+

L(ω)−G−L (ω)], where
fL(ω) = f(ω − eV ). Explicitly, the differential conductance
is given by

dI

dV
= −2e2

h̄

∫
dω
df(ω − eV )

d(eV )

× Re
{

Tr
[
Tm
(
1−G+

RTmG
+
LTm

)−1
G+
RTm (32)

×
(
G−L −G

+
L

) (
1−G−RTmG

−
LTm

)−1]}
Finite temperature can be included in the same way as in the
BTK method.
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III. RESULTS

In this section we discuss the results of our numerical anal-
ysis focusing on features in the calculated differential con-
ductance that are only present if the parent superconductor is
explicitly treated as an active component of the system and on
the dependence of the Majorana zero bias conductance peak
on the relevant system parameters.

The numerical results described below are obtained by set-
ting the chemical potentials for the metal and the supercon-
ductor (µm and µsc, respectively) to the middle of their re-
spective bands. The other model parameters are chosen as
follows: The lattice constant is 10 nm along the wire (i.e.,
in the x direction) and 33 nm across the wire (i.e., in the y
direction); if the wire is 1 µm long, there are 100 sites in
each SM chain. The hopping parameters are txsm = 9.5 meV,
tysm = 0.95 meV, txm == 3.8 meV, tym = 0.38 meV,
txsc = 1.5 meV, tysc = 0.15 meV, and t̃m−sm = 3.0 meV.
The spin orbit coupling parameters are αx = 2 meV and
αy = 0.6 meV. The bias potential is applied to the metallic
lead, which is 40 sites long (the shortest length that is consis-
tent with plane wave boundary conditions), while the super-
conductor is grounded.

We model the parent superconductor as a long, thick slab
having 1000 sites in the x direction (i.e., 10 µm) and 300 sites
in the z direction. To handle the problem concerning the large
number of degrees of freedom associated with the parent su-
perconductor, we calculate the (surface) Green’s function of
a large slab once and store the information. Subsequently,
we “attach” this large superconductor to semiconductor wires
(of various lengths) and calculate the corresponding interface
self-energy, which completely contains the effect of the super-
conductor. More specifically, we first calculate numerically
the superconductor Green’s function, which determines both
the self energy Σsc given by (7) and the boundary-condition-
dependent “self-energy” ΣQ from Eq. (24), in the transverse
mode space, where the problem is diagonal and can be solved
separately for each of the modes. Then, we calculate the sur-
face Green’s function for frequencies up to 3 meV taking 100
equally spaced values in the range 2 to 3 meV. If necessary,
we extrapolate for frequencies in-between these these discrete
values. Note that below the bulk gap (i.e., below 2 meV), we
can use the analytical solution given by Eq. (8). These cal-
culated values of the surface Green’s function are stored for
later use in the calculation of the self-energies corresponding
to wires of different lengths.

A. Method comparison and differential conductance vs. LDOS

The BTK43 and Keldysh44 formalisms are two possible
methods for calculating the differential conductance. Since
the two approaches are formally rather different, the first ques-
tion that we want to address is whether or not the predictions
based on these methods are the same. In addition, when in-
terpreting charge transport measurements on semiconductor
-superconductor (SM-SC) Majorana hybrid structures it is es-
sential to understand the connection between the measured

FIG. 1. (Color online) Differential conductance (dI/dV ), density
of states (DOS), and local density of states (LDOS) at the end of
the proximitized wire adjacent to the tunnel barrier as functions of
the chemical potential and bias voltage/energy. The differential con-
ductance is calculated using both the BTK [panel (c)] and Keldysh
[panel (d)] methods. Note that dI/dV reflects (qualitatively) the
local density of states near the barrier [panel (b)], rather than the
total DOS [panel (a)]. The length of the wire is L = 1 µm, the
parent superconductor gap is ∆0 = 2 meV, and the induced gap is
∆ind = 0.25 meV. The Zeeman field is turned off.

differential conductance and the low-energy spectral proper-
ties of the hybrid system. To address these questions, we
calculate the density of states (DOS) and the local density of
states (LDOS) at the end of the wire for a nanowire of length
L = 1 µm proximity-coupled to a ∆0 = 2 meV superconduc-
tor so that the induced gap is ∆ind = 0.25 meV. We compare
these quantities with the differential conductance for tunnel-
ing into the end of the same wire, which is calculated using
both methods described in the previous section. The results
are shown in Fig. 1.

Panels (a) and (b) show the DOS and LDOS, respectively,
as functions of the chemical potential and energy. The bottom
panels in Fig. 1, i.e., (c) and (d), show the differential conduc-
tance calculated using the BTK and Keldysh methods. The
“stripy” features are due to the quantization of states in a finite
wire and reflect the variation of the eigenvalues of the BdG
Hamiltonian with the chemical potential. In our model the en-
ergy difference between successive states becomes larger as
the chemical potential increases. Note that µsm = 0 corre-
sponds to the bottom of the band, which is clearly revealed
by the large DOS in panel (a). By contrast, there is no clear
signature associated with the bottom of the band in the LDOS
[panel (b)] or in the differential conductance [panels (c) and
(d)]. This is due to the fact that the LDOS is calculated at the
end of the proximitized wire adjacent to the potential barrier,
where states from the bottom of the band have very low ampli-
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tude. These states are weakly coupled to the lead and, conse-
quently, do not contribute significantly to the differential con-
ductance, as shown in panels (c) and (d). Another way of un-
derstanding this behavior is in terms of velocity. Penetration
of the barrier is determined by the group velocity. An electron
occupying a state with higher velocity has a greater chance to
get through the barrier and couple to the lead. Since the ve-
locity vanishes at the bottom of the band, the corresponding
states will have a small contribution to the conductance. As
the chemical potential increases, the wavelength of the states
is shortened and their velocity becomes larger, which results
in higher values of the conductance.

Based on this analysis we conclude that (i) the BTK and
Keldysh formalisms predict similar values for the differential
conductance and (ii) the dependence of the differential con-
ductance on the chemical potential and bias voltage is qual-
itatively similar to that of the LDOS at the end of the wire
adjacent to the tunnel barrier. Of course, the second prop-
erty holds in the weak tunneling regime,46 but breaks down
when the transparency of the barrier is large. In Fig. 1 the
only notable difference between the differential conductance
and the LDOS is the decrease of dI/dV with increasing bias
voltage |VBias|, which is not reflected in the dependence of
the LDOS on energy. To understand this behavior, we note
that for voltage values below the gap of the parent supercon-
ductor charge can only travel through the superconductor as
a supercurrent. Tunneling electrons into the wire involves
anomalous (Andreev) reflection processes43,47 (an incoming
electron returns as a hole) and the probability for such a pro-
cess depends on the properties of the quasiparticle states of
the wire-superconductor hybrid system. Near the induced gap
(∆ind ≈ 0.25 meV in Fig. 1), where every state is an almost
equal blend of particles and holes, the probability of anoma-
lous reflection is large, but it decreases at higher (in absolute
value) energies, where the quasiparticles have a dominant par-
ticle or hole character.

We have verified our conclusions for a broad range of pa-
rameters, including bias voltage values larger than the parent
superconductor gap, and we found them to be rather generic
properties. Below we calculate the conductance using the
most convenient method for a specific setup or physical aspect
that we want to investigate. Since we are mostly interested in
the weak tunneling regime, we will interpret the results as (ap-
proximately) representing the local density of states near the
end of the wire-superconductor system adjacent to the tunnel
barrier.

B. Dependence on the semiconductor-superconductor
coupling strength and tunnel barrier height

Proximity coupling a semiconductor wire to a conventional
superconductor results in the opening of an induced gap in
the quasiparticle spectrum at the chemical potential. At zero
momentum, k = 0, and in the absence of a magnetic field
the induced gap ∆ind is determined by the gap ∆0 of the
parent superconductor and by the effective semiconductor-
superconductor (SM-SC) coupling constant γ. The simplest

way to account for the emergence of an induced gap is to intro-
duce a pairing potential in the effective BdG Hamiltonian for
the wire. However, this approach fails to describe accurately
the low-energy physics of the hybrid structure (i.e., the in-
duced ”bulk” quasiparticle gaps and the in-gap bound states),
with the exception of the weak coupling limit γ/∆0 → 0.
However, experimentally-relevant devices are not in this limit
and the explicit treatment of the parent superconductor, e.g.,
using Eq. (8), is necessary.42 What features of the differential
conductance are directly related to the parent superconductor
being an active component of the hybrid structure?

First, we consider the dependence of the low-energy fea-
tures of a finite wire in the topological regime on the effec-
tive SM-SC coupling strength. The differential conductance
as function the bias voltage for three different ratios γ/∆0 is
shown in Fig. 2. The calculations are done for a wire of length
L = 1 µm in the presence of a Zeeman field Γ = 0.5 meV.
Note that the induced gap (i.e., the quasiparticle gap at Γ = 0)
is the same in all three cases, ∆ind = 0.25 meV. However,
the critical Zeeman splitting corresponding to the topological
quantum phase transition (TQPT) is different, as it is deter-
mined by the effective coupling strength γ, rather than the
induced gap.42,45 For the Zeeman field value used in the cal-
culations, Γ = 0.5 meV, all three systems are in the topo-
logical regime, as signaled by the presence of a Majorana-
induced zero-bias conductance peak. The differential con-
ductance in Fig. 2(a), which corresponds to γ � ∆0, is the
same as that predicted by the effective pairing approximation
defined by Eq. 10. However, increasing the effective cou-
pling [panels (b) and (c)] results in several effects that cannot
be captured by this approximation. First, the weight of the
Majorana-induced zero-bias peak (ZBP) decreases with in-
creasing coupling. The main reason for this behavior is the
fact that the spectral weight of the Majorana mode within the
wire decreases with increasing coupling. In other words, as γ
increases, the amplitude of the Majorana wave function within
the wire (i.e., in the vicinity of the tunnel barrier) is reduced,
while its amplitude within the parent superconductor (i.e., far-
ther away from the tunnel barrier) is enhanced.42 This results
in a lower “visibility” of the Majorana mode, as revealed by
the ZBP. The second effect is the renormalization of the quasi-
particle energies and the reduction of the topological gap.42 In
essence, these effects are due to the fact that all low-energy
states reside both in the wire and in the parent superconduc-
tor, with more and more spectral weight being transfered to
the superconductor as the coupling strength increases.

The bias voltage range shown in Fig. 2 corresponds to en-
ergies below the gap of the parent superconductor. In this
regime there is no normal current flowing through the super-
conductor. In the BTK approach, this means that it is suffi-
cient to impose boundary conditions at the end of the normal
lead. However, if we want to explore an energy window larger
than the bulk gap, we have to supplement this with bound-
ary conditions at the end of the parent superconductor. These
boundary conditions account for the normal current carried
by the quasiparticles in the parent superconductor. Note that
these boundary conditions are diagonal in real space, while the
superconductor Hamiltonian is diagonal in the mode space.
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FIG. 2. (Color online) Differential conductance as a function of bias
potential for a wire of length L = 1 µm in the presence of a fi-
nite magnetic field Γ = 0.5 meV for different ratios γ/∆0 that
correspond to a constant induced gap ∆ind ≈ 0.25 meV. (a) Weak
coupling regime with γ = 0.25 meV and ∆0 = 10 meV. The con-
ductance curve is nearly identical with that calculated based on the
effective pairing approximation, Eq. 10. (b) System with ∆0 = 1
meV and γ = 0.32 meV. (c) ∆0 = 0.5 meV and γ = 0.44 meV. In
the lower panels the location of the peaks is shifted and the weight of
each peak is reduced, revealing the effects of the proximity-induced
low-energy renormalization.

Consequently, finding an analytical expression is rather diffi-
cult; instead, we calculate the self-energy Σsc(ω) (which in-
corporates the boundary conditions) numerically.

Including the normal transmission is required at bias volt-
ages above the bulk gap, as demonstrated by the data shown
in Fig. 3. Here we calculate the differential conductance for
a short nanowire of length L = 0.3 µm coupled to a super-
conductor with ∆0 = 2 meV. The effective semiconductor-
superconductor coupling is γ = 1.5 meV. In the top panel, the

FIG. 3. (Color online) (a) Differential conductance calculated us-
ing the BTK formalism and including only anomalous reflection pro-
cesses. (b) Differential conductance that includes both Andreev re-
flection processes and contributions from the normal transmission
through the parent superconductor. Blue (darker gray) represents
features below the bulk superconductor gap, while orange (light
gray) marks contributions above the gap. The model parameters
are: L = 0.3 µm, Γ = 0, ∆0 = 2 meV, γ = 1.5 meV, and
kBT = 0.002 meV.

differential conductance is calculated without including the
contribution from the normal transmission through the parent
SC. All the features in this panel represent anomalous current
contributions, which become rather small at energies larger
than the bulk gap. Note that there is no feature associated
with the bulk gap edge. By contrast, in the bottom panel,
which shows the full calculation that includes the normal cur-
rent contribution, one can clearly observe an additional feature
associated with the parent superconductor gap (orange/light
gray area). The emergence of an additional conductance peak
at the energy corresponding to the gap ∆0 of the parent super-
conductor, which was recently discussed in Ref. 41, confirms
the the predictions of Ref. 48, which are based on a local
density of states analysis. The presence of features associated
with the parent superconductor may generate certain difficul-
ties when interpreting dI/dV measurements for hybrid sys-
tems in the intermediate and strong coupling regimes. In these
cases, the induced gap ∆ind and the bulk gap of the parent su-
perconductor ∆0 have comparable values and, therefore, it is
important to be able to distinguish the corresponding features.
To this end, we analyze their dependence on the effective SM-
SC coupling strength and on the tunnel barrier height.

As discussed in the relation to Fig. 2, increasing the cou-
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FIG. 4. (Color online) Differential conductance in the weak tunnel-
ing limit as a function of the bias voltage for different values of the
effective SM-SC coupling γ. The model parameters are L = 1 µm,
∆0 = 2 meV, Γ = 0, and kBT = 0.005 meV. The induced
gap increases with γ, approaching ∆0 in the strong coupling limit
γ/∆0 → ∞, while the spacing between energy eigenstates de-
creases. The conductance peak associated with the bulk gap edge
(orange/light gray) becomes more pronounced in the strong coupling
regime.

pling between the semiconductor wire and the superconductor
results in a renormalization of the low-energy spectrum and a
reduction of the spectral weight within the wire. In addition,
varying γ has a strong impact on the induced gap ∆ind. In a
multi-band system the specific dependence of the induced gap
on the SM-SC coupling strength is rather complicated (except
in the weak coupling regime) and involves additional parame-
ters, such as the inter-band spacing and chemical potential.42

On the other hand, the feature in the differential conductance
associated with the bulk superconductor has a relatively weak
dependence on the SM-SC coupling, as shown in Fig. 4. In

FIG. 5. (Color online) Differential conductance as a function of the
bias voltage for different values of the potential barrier and wire
length. Increasing the length of the semiconductor wire increases
the number of sub-gap states (blue/darker gray), but does not affect
the feature associated with the parent superconductor (orange/light
gray). Increasing the potential barrier suppresses the differential con-
ductance, but the sub-gap features are significantly more affected
than the bulk contribution. The model parameters are: Γ = 0,
∆0 = 2 meV, γ = 1.5 meV, and kBT = 0.002 meV.

this figure, we calculate again at the differential conductance
for a nanowire coupled to a superconductor with ∆0 = 2 meV,
but the length of the nanowire is now L = 1 µm; the effective
SM-SC coupling takes three different values, γ = 0.5, 2.0,
and 4.0 meV. Note, that the peak associated with the bulk gap
edge becomes stronger with increasing γ. The features cor-
responding to low-energy semiconductor states (blue/darker
gray) reveal the dependence of the induced gap on the SM-SC
coupling and the proximity-induced energy renormalization
discussed above. In particular, the energy spacing between
successive low-energy states decreases with γ, so that a finite
system characterized by discrete spectral features in the low-
coupling regime [panel (a)] appears as having a continuous
spectrum for a high-enough coupling strength [panel (c)].

The dependence of the differential conductance on the tun-
nel barrier height is illustrated by the data shown in Fig. 5. We
calculate dI/dV as a function of the bias voltage for different
barrier heights and two different wire lengths L = 0.3 µm and
L = 0.6 µm. As before, the parent SC gap is ∆0 = 2 meV,
while the SM-SC coupling is γ = 1.5 meV. First, we note that
the sub-gap features associated with the presence of the prox-
imitized semiconductor wire (blue/darker gray) are strongly
dependent on the length of the structure. By contrast, the par-
ent superconductor contribution (orange/light gray) is practi-
cally independent on L. In very short wires [panels (a), (c),
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FIG. 6. (Color online) Differential conductance as function of the
bias voltage for a nanowire with L = 0.6 µm (also see Fig. 5, right
panels) and a barrier potential that penetrates deeper under the su-
perconductor. Note the substantial difference between the conduc-
tance above the (bulk SC) gap and the sub-gap conductance. The
model parameters are: Γ = 0, ∆0 = 2 meV, γ = 1.5 meV, and
kBT = 0.004 meV.

and (e)] finite size quantization results in a discrete spectrum
that generates a set of well-separated peaks in the differential
conductance. Increasing the length of the wire [panels (b), (d),
and (f)] reduces the intervals between successive peaks and,
eventually, the spectrum becomes continuous [see, for exam-
ple, Fig. 4 (c) and Fig. 6]. Note that the energy separation
required for resolving discrete peaks depends on temperature,
barrier transparency, and strength of the disorder present in
the system. Above the bulk gap of the parent superconductor
the semiconductor states hybridize with the superconductor
states, which are overwhelmingly more numerous and, prac-
tically, determine the conductance response. Consequently,
above ∆0 the conductance is nearly independent of the wire
length. Note, however, that the semiconductor plays an im-
portant role here. One can view all the hybrid states above
the gap as superconductor states that have acquired a small
“tail” that extends into the wire, including the region adjacent
to the tunnel barrier. While the spectral weight carried by the
tails is negligible, they are essential for ensuring the coupling
between the normal lead and the “superconductor states.” In
other words, the orange/light gray component of the differen-
tial conductance corresponds to hybrid states that have most
of their spectral weight inside the parent superconductor, but
have small tails extending into the barrier region.

Varying the strength of the barrier potential affects the dif-
ferential conductance both below and above the bulk gap (see
Fig. 5). However, the differential conductance below the bulk
gap (blue/darker gray) decreases faster than the conductance
above the gap (orange/light gray) with increasing barrier po-
tential. In fact, it is possible that for a large enough barrier
potential the sub-gap conductance is “completely” suppressed
(for a certain finite resolution), while the parent supercon-
ductor contribution is still measurable. A rigorous proof of

this statement would imply performing a (self-consistent) cal-
culation of the barrier potential profile, i.e., finding a (self-
consistent) solution of the Schrödinger-Poisson equation. In-
tuitively, one can understand the effect of the barrier potential
as resulting from the huge difference between the carrier den-
sities in the semiconductor and the superconductor. Increasing
the potential of the tunneling gate results in the potential bar-
rier penetrating into the proximitized segment of the nanowire
(i.e., under the superconductor) and “pushing away” the low-
energy states that reside inside this component of the hybrid
structure. On the other hand, the effect on the superconductor
is negligible due to the screening provided by the large carrier
density. To illustrate this effect, we calculate the differential
conductance for a nanowire with L = 0.6 µm, similar to that
corresponding to the right panels in Fig. 5, and a barrier po-
tential profile that penetrates more into the wire. The results
are shown in Fig. 6. Note the large difference between the
conductance above the (bulk SC) gap and the sub-gap conduc-
tance, which appears as a small tail of the coherence peak. Re-
markably, this shape looks quite similar to recent experimental
results on epitaxial Al-InAs superconductor-semiconductor
nanowires23 (more specifically, Fig. 5(c) for the half-shell
device). To experimentally disentangle the induced and bulk
contributions in the strong SM-SC coupling limit (where they
have similar energy scales) we propose an analysis of the de-
pendence of various features on the barrier potential. Start-
ing, for example, with an extremely high barrier will only
reveal bulk-type contributions.The induced features will pro-
gressively emerge as the potential barrier is lowered.

C. Parent superconductor with sub-gap states

So far we have assumed an “ideal” parent superconduc-
tor characterized by a perfectly clean gap, even in the pres-
ence of finite magnetic fields. However, real superconductors
may have sub-gap states induced by disorder and finite ex-
ternal fields. Nonetheless, if a “dirty” superconductor has a
few localized sub-gap states, we expect the system to behave
qualitatively similar to a clean system. Indeed, the additional
sub-gap states may hybridize with low-energy states from the
semiconductor wire, which will result in the hybrid structure
having additional low-energy modes and smaller quasiparti-
cle gaps. However, the structure of the low-energy spectrum
will be qualitatively similar to that of a clean system. More-
over, if the sub-gap states are localized far from the ends of
the wire the Majorana modes will not be affected. The situa-
tion is completely different if the parent superconductor has a
small but finite density of sub-gap states. In this situation, the
entire gap is populated with hybrid states having most of their
spectral weight inside the parent superconductor and some of
it inside the semiconductor nanowire.42 The question that we
want to address is the following: what are the characteristic
signature in the tunneling conductance of a hybrid structure
with a parent superconductor having a finite density of sub-
gap states?

To address this question, we use a simple description of the
sub-gap states in terms of an imaginary contribution to the par-
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FIG. 7. (Color online) Differential conductance as function of chem-
ical potential and bias voltage for a hybrid system containing (a) a
“clean” superconductor and (b) a parent superconductor with sub-
gap states. The finite density of sub-gap states is modeled as a fi-
nite imaginary part in the retarded Green’s function of the parent
superconductor corresponding to δ = 20 µeV. The model parame-
ters are: L = 0.4 µm, ∆0 = 2 meV, γ = 0.3 meV, Γ = 0, and
kBT = 2 µeV.

ent superconductor Green’s function that is obtained through
the substitution ω −→ ω+iδ inGsc(ω), where δ is a magnetic
field-dependent phenomenological parameter that describes
the finite density of sub-gap states. We note that develop-
ing models for the parent superconductor based on a detailed
understanding of the low-energy physics at the microscopic
level represents an outstanding problem in this field.49,50 We
also note that a finite density of sub-gap states is equivalent
to having an additional (i.e., non-superconducting) equilib-
rium bath,51 which generates dissipation. In turn, the pres-
ence of dissipation introduces particle-hole asymmetry into
the finite energy conductance spectrum.51–53 The importance
of this mechanism in understanding certain features of the
measured conductance data in semiconductor-superconductor
hybrid structures was emphasized recently.36,54

Consider now the dependence of the differential conduc-
tance of a short wire L = 0.4 µm on the chemical poten-
tial and bias voltage as in Fig. 7. Here, ∆0 = 2 meV and
γ = 0.3 meV As shown in Fig. 7 (a), in the case of a “clean”
parent superconductor the features are particle-hole symmet-
ric and strongly suppressed at large bias voltages, as discussed
in the context of Fig. 1. By contrast, a finite density of sub-
gap states in the parent superconductor introduces particle-
hole asymmetry, as shown in panel (b) of Fig. 7. Also note
that the particle-hole asymmetric “stripy” features have sim-
ilar slopes at positive and negative values of VBias and are
not suppressed at large bias voltages. These types of features
are present in the experimentally measured differential con-
ductance of SM-SC hybrid structures27, suggesting that par-
ent superconductors such as NbTiN may have a non-vanishing
density of sub-gap states.

We note that these results are consistent with the existence
of some generic dissipation36. Here, we propose the presence
of a small but finite density of sub-gap states in the parent
superconductor as the natural mechanism responsible for dis-
sipation effects. Thus, dissipation is just one among several
important low-energy effects that are directly linked to the

FIG. 8. (Color online) Differential conductance for three different
values of the ratio between the SM-SC coupling and the parent SC
gap. The induced gap (at zero field), ∆ind = 0.25 meV, is the same
in all three panels. The Zeeman field Γ = 0.5 meV is above the
critical field for each plot. The calculation is for a two-band model
with a density of subgap states corresponding to δ = 10 µeV, zero
temperature, and a wire length L = 2 µm.

parent superconductor, which can be captured theoretically by
explicitly incorporating the bulk SC into the modeling. Two
relevant examples – the dependence of the quasiparticle spec-
tral weight within the SM wire on the SM-SC coupling and the
renormalization of the low-energy spectrum – are discussed
below. Explicitly incorporating the parent SC into the the-
ory provides a unified framework for describing these effects,
which otherwise require different ad hoc ingredients. This
suggests that a thorough investigation of the parent supercon-
ductor (in the presence of disorder and finite magnetic fields)
is absolutely necessary for understanding in detail the low-
energy physics of the hybrid structure.

Figure 8 shows differential conductance curves in the topo-
logical regime for three different values of the ratio between
the SM-SC coupling and the parent SC gap. The induced gap
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FIG. 9. (Color online) Density of states within the SM wire as func-
tion of the Zeeman field for a wire with effective pairing potential
(model I, top panel) and a 1D system that explicitly includes the
parent SC (model II, bottom). The model parameters are given in
the main text. Note that all the states in the upper panel have spec-
tral weight equal to 1, while in the lower panel some of the spectral
weight is transfered to the parent SC. Also note the strong low-energy
renormalization induced by the coupling to the SC, in particular the
suppression of the Majorana energy splitting oscillations.

is kept constant. Notice that the height of the ZBP decreases
with increasing γ/∆0. This dependence is the result of the
dissipation effect generated by the non-vanishing density of
subgap states in combination with the reduction of the spec-
tral weight within the SM wire associated with the Majorana
mode. More specifically, as the (relative) coupling strength
γ/∆0 increases, the spectral weight of the low-energy states
(including the Majorana mode) is transfered from the SM wire
to the parent SC.42 Consequently, for a given value of the tun-
nel barrier transparency, the weight of the corresponding dif-
ferential conductance peak decreases as the coupling strength
increases, as illustrated in Fig. 8. The shape of the ZBP will
be studied in more detail in the next section.

The dependence of the ZBP height on the coupling strength
cannot be captured using an effective pairing potential model
with an ad hoc dissipation term. To emphasize the impor-
tance of explicitly including the parent SC, we compare the
dependence of the low-energy spectrum on the applied Zee-
man field for i) a 1D wire with an effective pairing potential
(model I) and ii) a 1D system that explicitly includes the par-
ent SC (model II). The length of the SM wire is L = 1.5 µm
and the SM-SC coupling strength is γ = 0.447 meV. To
better simulate the experimental conditions, we assume that
the bulk SC gap ∆0 is suppressed by the applied magnetic
field. Explicitly, we have ∆0(Γ) = ∆̃0

√
1− Γ/Γ∗, with

∆̃0 = 0.3 meV and Γ∗ = 1.35 meV. The corresponding in-
duced gap (defined as the minimum quasiparticle gap at zero
field) is42 ∆ind = 0.2 meV. Since the induced gap is one
of the most robust and experimentally accessible features, we
consider an effective pairing model characterized by the same

FIG. 10. (Color online) Low-energy differential conductance as
function of energy (i.e. bias) and Zeeman field for the effective pair-
ing model (top) and the 1D model that incorporates the parent SC
(bottom). The corresponding densities of states are shown in Fig. 9.

value of the induced gap and a field-dependent pairing of the
form ∆(Γ) = ∆ind

√
1− Γ/Γ∗. Finally, we assume that the

parent SC has sub-gap states corresponding to δ = 12 µeV.
A corresponding dissipation term is included in the effective
pairing potential model. We expect δ to be strongly dependent
on the applied magnetic field, but we do not incorporate this
effect.

The dependence of the density of states within the wire on
the Zeeman field is shown in Fig. 9, while the signature of the
Majorana mode in the differential conductance is illustrated
in Fig. 10. Several observations are warranted. First, the two
models predict different values of the critical field correspond-
ing to the emergence of the Majorana mode, despite the fact
that they are characterized by the same value of the induced
gap at Γ = 0. Indeed, assuming that the chemical potential is
µ = 0, the effective pairing approximation (model I) predicts
a critical field given by the induced gap, Γc = ∆ind, while
incorporating the parent SC (model II) gives a critical field
controlled by the SM-SC coupling strength,42 Γc = γ. Of
course, one can construct effective pairing models that give
the same value of the critical field as model II, but the cor-
responding quasiparticle gaps will be significantly overesti-
mated in the intermediate and strong coupling regimes, i.e. for
γ > ∆0. Second, we note the strong energy renormalization
that leads to the suppression of the Majorana splitting oscil-
lations in model II. One can still have Majorana splitting in
the intermediate/strong coupling regime, but it requires very
short wires. Note that in model I the collapse of the SC gap at
Γ∗ has no visible impact on the amplitude of the oscillations,
which is increasing with the Zeeman field (see top panels in
Figs. 9 and 10). On the other hand, in model II the collapse
of the SC gap results in a reduction of the ZBP height. This
is another manifestation of the dependence of the quasiparti-
cle spectral weight on γ/∆0. Since ∆0 is field-dependent, the
relative SM-SC coupling strength increases with Γ, which re-
sults in a decrease of the spectral weight of the Majorana mode
reflected in the conductance. We emphasize that in these cal-
culations the chemical potential is constant, hence the Fermi
k-vector and the corresponding Fermi velocity of the Majo-
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rana band increase with the applied field. Consequently, the
transparency of the barrier increases with Γ. In model I, this
results in a ZBP that becomes stronger with Γ; i.e., its weight
increases with the field and so does its height (if it is below
the quantized value at finite δ and/or T ) whenever the wire is
long-enough (to avoid energy splitting). In model II, on the
other hand, the effect of a higher barrier transparency is offset
by the loss of spectral weight, the net result being the eventual
decrease of the ZBP strength upon approaching Γ∗. Finally,
we note that the dissipation-induced particle-hole asymmetry
responsible for the “stripy” features in Fig. 7 is present even
at very low energies, as illustrated in the top panel of Fig. 10.
This effect could explain recent experimental observations27

showing similar low-energy features.

D. The shape of the zero bias conductance peak

We conclude our analysis with a summary of the depen-
dence of the Majorana-induced zero-bias conductance peak
on the relevant system parameters. In this section we will
study the ZBP of a hybrid system consisting of a very short
nanowire of length L = 0.2 µm coupled to a superconduc-
tor with ∆0 = 2 meV, the effective coupling strength being
γ = 0.25 meV. The Zeeman field is set to Γ = 0.3 meV.
We note that having a short wire ensures that the Majorana
mode is separated by a large gap from finite energy excita-
tions, so that the area associated with the zero-bias conduc-
tion peak can be accurately estimated. Figure 11 shows the
Majorana-induced zero-bias peak (ZBP) at T = 0 for two dif-
ferent values of the potential barrier in a system with either a
clean parent superconductor (solid lines) or a superconductor
with a finite density of sub-gap states (dashed lines). First, we
note that in the clean system the ZBPs are quantized at 2e2/h
and that their widths (and, implicitly, the areas under the cor-
responding dI/dV curves) are reduced by increasing the bar-
rier potential (i.e., reducing the transparency of the barrier).
Second, in the structure with a “dirty” parent superconductor
(dashed lines in Fig. 11) the height of the ZBP is significantly
lower than the quantized value. In fact, the effect of sub-gap
states being present in the superconductor is to introduce a
broadening of the Majorana mode. The area under the dI/dV
curve is the same as in the clean system (for a given poten-
tial barrier), but the width of the peak is intrinsically finite.
In other words, increasing the barrier height generates a thin
quantized peak in the clean system, but results in a small wide
peak in the presence of sub-gap states (see solid and dashed
orange/light gray lines in Fig. 11). Intuitively, we can un-
derstand the broadening of the ZBP as a result of the Majo-
rana mode hybridizing with the sub-gap states from the parent
superconductor. The resulting hybrid states will have ener-
gies distributed within a certain δ-dependent energy window
about zero. As a result, the LDOS at the end of the wire will
be characterized by a finite width peak centered at E = 0.42

By contrast, in a clean system the corresponding signature of
the Majorana mode is a delta function-type contribution to the
LDOS. Note that the broadening effect of the sub-gap states is
qualitatively similar to the effect of finite temperature.

FIG. 11. (Color online) Majorana-induced zero-bias conductance
peaks for two different values of the potential barrier. The solid lines
correspond to a clean system, while the dashed lines are for a parent
superconductor with a finite density of sub-gap states correspond-
ing to δ = 20 µeV. Note that the quantization of the zero-bias peak
is broken in the presence of a finite density of sub-gap states in the
parent superconductor. The calculation was done for a nanowire of
length L = 0.2 µm, SM-SC coupling γ = 0.25 meV, and parent SC
gap ∆0 = 2 meV. The Zeeman field is Γ = 0.3 meV.

The dependence of the zero-bias conduction peak on the
transparency of the barrier, temperature, and density of sub-
gap states is shown in Fig. 12. First, we note that the trans-
parency of the barrier depends on both the height and width
of the barrier potential. For simplicity, we model the poten-
tial barrier as a Gaussian, Vb(x) = V0 exp[−(x− x0)2/2σ2].
Hence, the height of the barrier is parametrized by V0 and its
width by the standard deviation σ. Increasing V0 or σ reduces
the transparency of the barrier, which results in a smaller area
under the dI/dV curve [see panel (a)]. Note that in a clean
system at T = 0 the height of the ZBP is quantized for all
values of V0 and σ. For a given tunnel barrier potential, in-
troducing finite temperature or finite density of sub-gap states
(in the parent SC) does not modify the area of the ZBP, but
broadens the peak. Consequently, its height gets reduced. The
dependence of the ZBP height on T and δ for different poten-
tial barriers is shown in panels (b) and (c), respectively. Note
the similarities between the dependence of the ZBP height on
temperature31,36 (panel b) and on the density of subgap states
(panel c).

In the high temperature limit, which is barrier-dependent,
see Fig. 12 (b), the dependence of the height of the ZBP
on temperature is given by the analytical expression A/(8T ),
where A is the area of the ZBP. Similarly, in the limit of high
density of sub-gap states, the dependence of the height of the
ZBP on δ is given by Aπ/(2δ). As the zero-bias peak ap-
proaches its quantized value with lowering T (or δ), the de-
pendence of its height on temperature (or on the density of
sub-gap states) becomes more complicated. We note that all
the curves in panel (b) can be collapsed into a single curve
corresponding to a ZBP of area A0 through the scaling trans-
formation T → A0

A T , where A is the area under the ZBP cor-
responding to an arbitrary curve. Similarly, any two curves
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FIG. 12. (Color online) Dependence of the zero-bias conduction
peak on relevant parameters. (a) The area of the ZBP as a function
of the potential barrier height for two different barrier widths. The
barrier potential is modeled as a Gaussian with a standard deviation
σ. Note that for T = 0, δ = 0 the peaks are quantized (at 2e2/h).
(b) The height of the ZBP as a function of temperature for δ = 0 and
various widths and heights of the tunnel barrier potential. Note that
the area of the ZBP is independent of T . (c) The height of the ZBP
as a function of δ for T = 0 and various widths and heights of the
barrier potential. The ZBP area is δ-independent. The calculation
was done for a nanowire of length L = 0.2 µm, SM-SC coupling
γ = 0.25 meV, and parent SC gap ∆0 = 2 meV. The Zeeman field
is Γ = 0.3 meV.

in panel (c) are related to one another by the transformation
(δ → A2

A1
δ) and can be collapsed into a single curve. How-

ever, the transformation (T → 4πδ) mapping a curve with
area A in panel (b) to a curve in panel (c) with the same area
under the ZBP only works in the high-temperature/high den-
sity of sub-gap states regimes.

We note that all transport experiments on semiconductor-

superconductor hybrid structures reported so far have ob-
served zero-bias peaks having heights significantly smaller
than the (theoretically predicted) quantized value, 2e2/h.
These small values are inconsistent with expectations based
on the nominal temperature of the system. Of course, the ef-
fective temperature could be much higher. However, the pres-
ence of sub-gap states is a natural alternative explanation for
the low values of the observed zero-bias conduction peaks.

IV. CONCLUSIONS

We have calculated the tunneling conductance of a normal
metal - semiconductor wire - superconductor structure within
the Blonder-Tinkham-Klapwijk and Keldysh formalisms by
treating the parent superconductor as an active component
of the hybrid system. This treatment ensures that several
key effects that control the low-energy physics of the hy-
brid structure are accurately captured by the theory. These
effects include the proximity-induced renormalization of the
low-energy states, including the renormalization of the topo-
logical gap that protects the Majorana zero modes,42 the emer-
gence of additional conductance peaks at energies correspond-
ing to the gap edge of the parent superconductor41,42,48, and
the broadening of the low-energy features due to hybridiza-
tion of the states within the semiconductor wire with sub-gap
states in the parent superconductor42.

We find that the differential conductance is a good indi-
cator for the local density of states at the end on the hybrid
structure adjacent to the tunnel barrier. This includes both the
semiconductor wire and the nearby parent superconductor. A
clearly defined feature associated with the parent supercon-
ductor emerges at energies corresponding to the bulk gap. In
the intermediate/strong coupling regime the features associ-
ated with sub-gap states (e.g., the induced gap) and those cor-
responding to contributions from the parent superconductor
have similar characteristic energies. We predict that one can
disentangle them by varying the strength of the potential bar-
rier, which has a stronger effect on the sub-gap features. For
example, in the high barrier limit one can almost completely
suppress the sub-gap features while having a measurable par-
ent superconductor contribution. In the topological regime,
varying the transparency of the tunnel barrier changes the area
of the zero-bias conductance peak, while its height is quan-
tized (2e2/h) at zero temperature. Finite temperature reduces
the height of the ZBP but preserves its area.

The most dramatic implication of treating the parent super-
conductor as an active component of the system occurs if we
assume that the superconductor itself has sub-gap states in-
duced by disorder and finite magnetic fields. These states
hybridize with the low-energy states in the semiconductor
wire significantly altering their properties. We find that in
the presence of sub-gap states in the parent superconductor
the differential conductance develops characteristic “stripy”
features (as function of the chemical potential and bias volt-
age) that break particle-hole symmetry. In addition, the pres-
ence of sub-gap states has an effect similar to finite temper-
ature and destroys the quantization of the Majorana-induced
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zero-bias conductance peak. More generally, the presence of
these states results in a broadening of the low-energy features
that characterize the hybrid structure. From the perspective of
quantum computation, this is a deadly effect, as it destroys the
topological gap that protects the low-energy Majorana sub-
space. All the signatures identified here as being associated
with the presence of sub-gap states in the parent supercon-
ductor can be recognized in the transport measurements on
semiconductor-superconductor hybrid structures reported so
far. Therefore, we find it imperative to understand in detail
the low-energy properties of currently-used parent supercon-
ductors, such as Al and NbTiN, and to consider a systematic
effort to optimize their properties or to engineer better suited
parent superconductors.

In summary, we have shown that explicitly treating
the parent superconductor as an active component of the
semiconductor-superconductor structure generates a number
of features in the calculated differential tunneling conductance
that would otherwise be absent. Some of these features have
not been previously discussed in any detail. One of the new
features is the reduction in weight of the differential conduc-
tance peaks as the coupling to the parent superconductor in-
creases, as shown in Fig. 2. Since the reduction (and even-
tual collapse) of the parent SC gap at high magnetic fields im-

plies an increase of the effective coupling (relative to the SC
gap), a consequence of this feature is the decrease of the ZBP
strength at high Zeeman fields, as illustrated in Fig. 10. An-
other feature is the presence of a superconducting resonance
at the energy scale corresponding to the bulk gap (see Fig. 3)
with an amplitude that has a dependence on the tunnel bar-
rier height different from that of sub-gap (induced) peaks, as
shown in Fig. 5. In addition, the possible presence of sub-
gap states in the parent superconductor results in particle-hole
asymmetric “stripy” features in the differential conductance,
like those illustrated in Fig. 7, that persist even at very low
energy, as shown in Fig. 10. Finally, explicitly considering
the parent superconductor can strongly suppress the Majorana
energy splitting oscillations and generate a finite density of
states inside the topological gap, as shown in Fig. 10. Con-
sidering that all these features, some of them new, which were
calculated within a unitary framework that explicitly incorpo-
rates the superconductor, have been observed experimentally
in tunneling measurements on semiconductor-superconductor
structures, we conclude that our work provides strong evi-
dence regarding the critical role of the parent superconductor
in Majorana devices.

This work is supported by NSF DMR-1414683.
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