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Summary
Apoptosis occurs concurrently with differentiation of muscle progenitor cells (MPCs) before they fuse to form myotubes. Dysregulated
apoptosis in MPCs contributes to the low regeneration capability in aged muscle and decreases the survival rate of donor cells in stem cell-
based therapies for muscular dystrophies. This study investigated the role of the M-cadherin/PI3K/Akt/GSK-3b signaling pathway in

regulating apoptosis during differentiation of MPCs. Disruption of M-cadherin-dependent cell–cell adhesion by M-cadherin RNA
interference in confluent C2C12 myoblasts sensitized the cells to mitochondria-associated intrinsic apoptosis induced by cell confluence or
serum starvation. Further investigation of this pathway revealed that M-cadherin-mediated signaling suppressed GSK-3b activation by

enhancing the PI3K/AKT-dependent inhibitory phosphorylation of Ser9 in GSK-3b. Overexpression of wild-type GSK-3b in confluent
C2C12 myoblasts exacerbated the apoptosis, whereas chemical inhibition of GSK-3b using TDZD-8, or forced expression of constitutively
active Akt (myrAkt), or a kinase-deficient GSK-3b mutant [GSK-3b(K85R)], attenuated apoptosis and rescued the impaired myogenic

differentiation that is caused by M-cadherin RNA interference. These data suggest that M-cadherin-mediated signaling prevents
acceleration of mitochondria-associated intrinsic apoptosis in MPCs by suppressing GSK-3b activation during myogenic differentiation.
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Introduction
Muscle progenitor cells (MPCs) or satellite cells remain quiescent

both metabolically and mitotically in adult muscles under normal

basal physiological conditions. Once activated by stimuli such as

muscle injury or exercise, they enter the cell cycle, proliferate,

differentiate and fuse into myotubes for muscle regeneration (Seale

and Rudnicki, 2000; Zammit et al., 2006). The differentiation of

MPCs is critical for myotube formation, but it also occurs

concurrently with apoptosis (Dee et al., 2002; Walsh, 1997).

Apoptosis is a systematic process of programmed cell death that is

important for normal tissue morphogenesis and development by

maintaining the tissue homeostasis. The dysregulation of apoptosis

contributes to a variety of pathologies, including cancer,

autoimmune diseases, cardiovascular disease and degenerative

neurological diseases (Baehrecke, 2002; Quadrilatero and

Bloemberg, 2010; Quadrilatero and Rush, 2008). In skeletal

muscle, apoptosis has been linked to conditions of muscle

wasting caused by disuse, denervation and aging (Alway and Siu,

2008; Siu et al., 2005a; Siu et al., 2005c). In addition, inappropriate

apoptosis of muscle progenitor cells might contribute to the low

regeneration capability of dystrophic muscles and the poor

outcomes of stem-cell-based therapeutic strategies (Gussoni et al.,

1997; Partridge et al., 1998; Tews and Goebel, 1997; Tidball et al.,

1995). Decreased muscle progenitor cell number (Day et al., 2010),

function (Corbu et al., 2010; Leiter and Anderson, 2010) and

altered responses to their niche (Brack and Rando, 2007; Conboy

et al., 2005) contribute to the impaired regenerative capability in

aging skeletal muscle. In addition, muscle progenitor cells that are

isolated from aged muscle are susceptible to apoptosis, and their

number declines because more of them are depleted by apoptosis in

aged muscle (Collins et al., 2007; Jejurikar et al., 2006; Jejurikar

and Kuzon, 2003).

M-cadherin is a member of the classical cadherin family of

transmembrane glycoproteins mediating calcium-dependent

homophilic cell–cell adhesion. M-cadherin is specifically

expressed in skeletal muscle and certain neural tissues. In

mature skeletal muscle, M-cadherin is only detectable on satellite

cells and the underlying sarcolemma of myofibers (Irintchev

et al., 1994; Kaupmann et al., 1992). The number of M-cadherin-

positive satellite cells decreases in aged muscle (Sajko et al.,

2004). Although a mouse knockout model indicated that M-

cadherin might play a dispensable role in myogenesis and muscle

regeneration in vivo (Hollnagel et al., 2002), data from in vitro

studies showed that by interacting with Rac1 and other members

of Rho subfamily, M-cadherin is critical in mediating myoblast

alignment and fusion into myotubes (Charrasse et al., 2006;

Charrasse et al., 2007; Wrobel et al., 2007). However, its role in

regulating the survival and death of muscle progenitor cells or

myoblasts has never been addressed.

In the present study, we investigated the role of M-cadherin-

dependent cell–cell adhesion on the survival of mouse C2C12

myoblasts as well as primary muscle progenitor cells during
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myogenic differentiation. We were particularly interested in the

potential for M-cadherin to protect against the mitochondria-

associated intrinsic apoptosis that is induced by cell confluence

or serum starvation. By disrupting M-cadherin-dependent

cell–cell adhesion by knocking down M-cadherin expression

using RNA interference, we demonstrated that M-cadherin-

mediated signaling is important for maintaining mitochondrial

integrity. This occurred by suppressing GSK-3b activation in a

Fig. 1. See next page for legend.
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PI3K/Akt-dependent manner, and reducing apoptotic signaling

through the mitochondrial pathway, thus promoting the survival

of myoblasts during myogenic differentiation. Moreover,

apoptosis and impaired myogenic differentiation that is caused

by reducing M-cadherin protein abundance could be rescued

by the inhibition of GSK-3b activation. Together, these results

suggest an indispensable role of M-cadherin-mediated signaling

in maintaining the balance between apoptosis and differentiation

of muscle progenitor cells during myogenesis and potentially

during activation of muscle stem cells such as that occurring

during muscle regeneration.

Results
M-cadherin RNA interference exacerbates mitochondria-

associated apoptosis in confluent C2C12 myoblasts

To evaluate the apoptotic propensity to high and low cell

densities, C2C12 myoblasts were seeded in six-well plates

at either 2.06103/cm2 to obtain a low density (,20–30%

confluent) or 2.16104/cm2 to reach a high cell density (,100%

confluent) within 48 hours. The phase-contrast images in the top

panel of Fig. 1A show typical morphology of C2C12 myoblasts

at low or high cell densities. The protein abundance of cleaved

caspase-3 and Poly (ADP-ribose) polymerase (PARP) was

markedly increased in fully confluent cells when compared

with cells that were plated at a low density (Fig. 1, middle panel).

The cleavage of PARP by caspases leads to nuclear DNA

fragmentation. Furthermore, a cell-death ELISA assay showed an

elevation of cytosolic nucleosomes at full cell confluence

(Fig. 1A, bottom panel). This provided additional evidence for

an increase in apoptotic DNA fragmentation in confluent cells

compared with non-confluent cells. We next explored the

expression pattern and level of M-cadherin at different cell

densities. M-cadherin was located diffusely throughout the cells

that were plated at a low density (Fig. 1B, top left panel). By

contrast, M-cadherin relocated to cell–cell contacts at the

periphery of the cells when they were confluent (Fig. 1B, top

right panel). The protein abundance of M-cadherin increased in

confluent C2C12 myoblasts compared with the non-confluent

cells (Fig. 1B, bottom panel). To investigate the role of M-

cadherin in regulating myoblast survival and apoptosis, we

inhibited M-cadherin expression in confluent C2C12 myoblasts

by transient transfection with M-cadherin-targeted small

interfering RNA. Knockdown of M-cadherin expression in

confluent C2C12 myoblasts caused a disruption in the cell–cell

contacts and this increased the separation between the cells

(Fig. 1C). Cells in the control group adhered tightly to each other

as the cells became confluent (Fig. 1C). The knockdown of M-

cadherin was verified by immunoblotting (Fig. 1D). The protein

abundance of N-cadherin in C2C12 cells was not affected by M-

cadherin RNAi treatment (Fig. 1D). However, M-cadherin RNAi

exacerbated cell-confluence-induced apoptosis in C2C12 cells

as determined by the increased protein abundance of cleaved

caspase-3 and cleaved PARP (Fig. 1D). An increase in DNA

fragmentation as measured by a cell death ELISA assay (Fig. 1E)

confirmed that M-cadherin RNAi increased the level of cell-

confluence-induced apoptosis.

Apoptosis is initiated in muscle by three pathways. These

include the extrinsic death-receptor-mediated pathway, the

intrinsic mitochondrial-dysfunction-associated pathway and the

intrinsic ER-dysfunction-associated pathway (Adams, 2003;

Alway et al., 2011; Alway and Siu, 2008). To determine which

apoptotic pathway is involved in cell death caused by M-cadherin

RNAi, we examined the activation status of caspase-9 and

caspase-8, which are representative initiation caspases for the

intrinsic or the extrinsic apoptotic pathway, respectively. The

protein abundance of cleaved caspase-9, but not caspase-8, was

markedly increased in response to M-cadherin RNAi (Fig. 1F). In

addition, the protein abundance of cytosolic cytochrome c and

nuclear apoptosis inducing factor (AIF) were also increased upon

M-cadherin RNAi. This suggests that the apoptosis induced by

M-cadherin RNAi is mediated by the intrinsic mitochondria-

associated pathway. To further investigate the impact of M-

cadherin RNAi on mitochondria as a mediator of apoptosis, we

examined the cardiolipin content of the inner mitochondrial

membrane of live cells using Nonyl Acridine Orange (NAO)

staining. NAO is a metachromatic dye that binds specifically to

the mitochondrial cardiolipin and its fluorescence intensity is an

indicator of mitochondrial integrity (Jahnke et al., 2009; Ott et al.,

2007). The median fluorescence intensity of NAO staining in

cells treated with siRNA to knock down M-cadherin was

significantly lower than that in control cells (Fig. 1G). This

indicates that the integrity of mitochondria in C2C12 cells was

disrupted after M-cadherin RNAi. Furthermore, the mitochondria

membrane potential (Dymt) was also disrupted by reducing M-

cadherin in confluent cells, as shown by a decrease in the orange

and the increase in the green signals from treated mitochondria

compared with control mitochondria after incubation with the

fluorescent probe JC-1 (Fig. 1H). JC-1 is a mitochondria-

permeable lipophilic cation that changes its color from orange

to green as the Dymt decreases. A reduced Dymt results in shifts

Fig. 1. Effect of M-cadherin RNAi on apoptosis in confluent C2C12

myoblasts. (A) Representative phase-contrast images of C2C12 myoblasts

obtained 48 hours after seeding at low density (2.06103/cm2) or high density

(2.16104/cm2) (top). Scale bar: 200 mm. Immunoblots of cleaved caspase-3

and PARP obtained 48 hours after plating (middle). Cytosolic nucleosomes of

low- or high-density cells were measured as an indication of apoptotic DNA

fragmentation (bottom). Each data point represents the mean ¡ s.e.m. of

three independent experiments. *P,0.05 vs the low-density group.

(B) Expression pattern and protein abundance of M-cadherin at low and high

cell densities. Representative confocal images of M-cadherin (red) and DAPI

(blue) staining in C2C12 myoblasts at low or high cell density as described in

A (top). Scale bar: 10 mm. Immunoblotting analysis of protein abundance of

M-cadherin. b-tubulin was probed as a loading control (bottom). (C–H) 80%

confluent C2C12 myoblasts were transfected with M-cadherin-targeted

siRNA (M-) or non-targeted scramble siRNA (SiCON) as a control. Non-

transfected cells with identical culture conditions were used as a normal

control (NC) cells. The cells were harvested 48 hours after transfection. Each

data point is the mean ¡ s.e.m. of three independent experiments. *P,0.05

vs the control groups. (C) Phase-contrast images of transfected cells. Scale

bar: 100 mm. (D) Immunoblot analysis of transfected cells. (E) The apoptotic

DNA fragmentation of transfected cells is shown as mean ¡ s.e.m. of three

independent experiments. *P,0.05 vs both NC and SiCON control groups.

(F) Proteins associated with apoptotic signaling (and the relevant control

proteins) measured in transfected and control cells (left). The integrity and

purity of protein subcellular fractions was verified by immunoblotting with

appropriate control antibodies (right). (G) Digital images from control or

transfected C2C12 cells stained with NAO (top). Scale bar: 20 mm. The

median fluorescence intensity of NAO per cell was determined (bottom). The

data are mean ¡ s.e.m. of three experiments. (H) Mitochondria were isolated

from control and transfected cells and stained with JC-1. The data represent

FACS analyses of the ratio of orange (intact mitochondria) to green

(compromised Dym) mitochondria.
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of the emitted light from 590 nm (orange) to 530 nm (green)

(Williamson et al., 2010).

M-cadherin RNAi sensitizes C2C12 myoblasts to
serum-starvation-induced apoptosis

To further explore the role of M-cadherin in regulating
mitochondrial integrity and cell survival or apoptosis during
myogenic differentiation, M-cadherin RNAi or control C2C12

myoblasts were cultured in serum-free medium. Mitochondria
were isolated and Dymt was assessed by JC-1 staining after 0, 6,
12, 24 or 48 hours of serum starvation. There was a transient
decrease in the ratio of JC-1 orange to green staining of isolated

mitochondria from all groups of cells in response to serum
starvation, but the M-cadherin RNAi group had the lowest Dymt

at all time points compared with the control cells (Fig. 2A).

These results show that knocking down M-cadherin by RNAi
reduced Dymt during serum starvation. The level of apoptotic
DNA fragmentation was significantly increased in M-cadherin

RNAi-treated cells that were still attached to the plates at all time
points of serum starvation compared with the control groups
(Fig. 2B). Furthermore, quantification of apoptotic cells from
both attached and floating cell populations by TUNEL staining,

demonstrated that there was a significant increase in the number
of cells undergoing apoptosis during serum starvation in
M-cadherin RNAi cells compared with the control groups

(Fig. 2C). In addition, there were fewer cells that remained
attached to the plates in the M-cadherin RNAi group compared
with control groups when serum starvation progressed to longer

time periods (supplementary material Fig. S1). Serum starvation
caused an acute activation of caspase-9 in C2C12 myoblasts,
which is indicative of activation of the mitochondrial-associated

apoptotic pathway. The protein abundance of cleaved caspase-9
was significantly higher in M-cadherin RNAi cells at all time
points of serum starvation compared with control untreated cells
(supplementary material Fig. S2). This suggests that knockdown

of M-cadherin expression sensitizes C2C12 myoblasts to serum-
starvation-induced apoptosis.

M-cadherin-mediated signaling enhances PI3K/Akt-
dependent inhibitory phosphorylation of Ser9 of GSK-3b

Akt is a key mediator of survival signaling pathways, and it is
associated with cadherin signaling in various cells (De et al., 2009;

Koutsouki et al., 2005). Because GSK-3b, another key regulator of
cell fate and a phosphorylation target of Akt, is associated with
muscle wasting, we also examined the change in GSK-3b
phosphorylation in response to M-cadherin RNAi treatment in
confluent cells. As a functional read-out for GSK-3b activation,
the protein abundance of two targets for GSK-3b, cyclin D1 (Diehl
et al., 1998) and survivin (Kaga et al., 2006) were measured. M-

cadherin RNAi significantly reduced the activation of Akt in
confluent C2C12 cells as determined by the expression of
phosphorylated Akt Ser473 (Fig. 3A). Consequently, the

inhibitory phosphorylation of GSK-3b Ser9 was decreased in
M-cadherin RNAi cells. Quantification of the immunoblot
signals from four independent experiments showed a statistically

significant and a reproducible (bottom panel of Fig. 3A;
supplementary material Fig. S4A,B) reduction in phosphorylated
Akt Ser473, GSK-3b phosphorylation, survivin and cyclin D1 in

C2C12 cells after M-cadherin RNAi. Conversely, the activation of
M-cadherin-mediated signaling using a recombinant M-cadherin–
Fc chimera induced a significant increase in phosphorylation of

Akt and GSK-3b at the corresponding residues (Fig. 3B;

supplementary material Fig. S5A,B). The protein abundance of

survivin and cyclin D1 decreased in response to suppression of M-

cadherin by RNAi (Fig. 3A; supplementary material Fig. S4C,D).

In addition, the protein abundance of survivin and cyclin D1

increased in response to rMFc treatment (Fig. 3B; supplementary

material Fig. S5C,D). Immunoprecipitation data show that the

binding between the p85a subunit of PI3K and M-cadherin was

increased in response to treatment with recombinant M-cadherin–

Fc chimera (Fig. 3C). The abundance of PI3K-p85a protein in the

membrane fraction was markedly increased in M-cadherin–Fc-

Fig. 2. Effect of M-cadherin RNAi on serum-starvation-induced

apoptosis. M-cadherin RNAi (M-), non-targeted scrambled siRNA-

transfected (SiCON) or normal control (NC) C2C12 myoblasts were serum

starved from zero to 48 hours before being harvested. *P,0.05 vs both

SiCON and NC control groups. The data are shown as the mean ¡ s.e.m. of

three independent experiments. (A) Mitochondria were isolated from attached

cells after serum starvation for 0 hours (SS-0h), 6 hours (SS-6h), 12 hours

(SS-12h), 24 hours (SS-24h) or 48 hours (SS-48h). The mitochondria Dym

(orange to green ratio) was evaluated by FACS analysis of JC-1 staining.

(B) DNA fragmentation in attached cells was measured by a cell death ELISA

at the same time points as described in A. (C) The percentage of cells

undergoing apoptosis in both attached and floating cells was defined as: (total

TUNEL-positive attached cells + total TUNEL-positive floating cells)/(total

attached cells + total floating cells).
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Fig. 3. M-cadherin-mediated signaling effect on the PI3K/Akt/GSK-3b pathway. (A) Representative immunoblots of M-cadherin-RNAi (M-) treated, non-

targeted scrambled siRNA-transfected (SiCON) treated or normal control (NC) C2C12 cells (top). Survivin and cyclin D1 were measured as a functional read-out

for GSK-3b activation. GAPDH was used as a loading control. Densitometric analyses of Akt, GSK-3b, survivin and cyclin D1 normalized to their loading

controls (bottom). (B) C2C12 myoblasts were grown in normal control (NC), vehicle control (Vehicle) or recombinant M-cadherin–Fc-coated (M-cad–Fc) dishes

for 48 hours (top). The cells were lysed and subjected to immunoblotting analysis of the same proteins as measured in Fig. 3A. Densitometric analyses of

immunoblot band intensities of phosphorylated and total Akt and GSK-3b, as well as survivin and cyclin D1 in response to recombinant M-cadherin–Fc treatment

(bottom). The band intensities of the above proteins were normalized by corresponding control proteins. (C) Immunoprecipitation assays of untreated C2C12

myoblasts (NC) or myoblasts treated with either the vehicle (Veh) or with recombinant M-cadherin–Fc (rMFc) were conducted 48 hours after incubation with

either mouse anti-PI3K-p85a or rabbit anti-M-cadherin antibodies, respectively. Western blots of the protein abundance of M-cadherin or PI3K-p85a were

conducted in the precipitated proteins. (D) Cell membrane fractions were prepared from cells that had been treated as described in C and blotted to detect the

protein abundance of PI3K-p85a. (E) C2C12 myoblasts were treated as described in C. The cells were then treated for a subsequent 12 hours with no vehicle

added (-), wortmannin (WM, 200nM), PD98059 (PD, 50 mM), wormannin plus PD98059 (WM+PD) or DMSO. Untreated normal control cells (NC) did not

receive either the recombinant M-cadherin–Fc or the vehicle treatments. The cells were harvested for immunoblotting analysis. The data are shown as the mean ¡

s.e.m. of three independent experiments. *P,0.05 vs the control groups.
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treated cells compared with the control cells (Fig. 3D). Treatment

with the PI3K inhibitor, wortmannin, but not the MEK-1 inhibitor,

PD9805, during the last 6 hours of M-cadherin–Fc treatment,

completely prevented the increase in phosphorylated Akt Ser473

and phosphorylated GSK-3b Ser9. This shows that the increased

inhibitory phosphorylation of GSK-3b that is induced by M-

cadherin-mediated signaling, is PI3K dependent (Fig. 3E).

GSK-3b overexpression exacerbates, whereas

M-cadherin–Fc treatment attenuates apoptosis induced by

cell confluence or serum starvation

To further characterize the role of GSK-3b in regulating apoptosis,

C2C12 myoblasts that were 80% confluent were transiently

transfected with a wild-type GSK-3b plasmid and allowed to grow

for 48 hours until they reached overconfluence. The transfection

efficiency of the GSK-3b plasmid by FuGENE 6 in C2C12 cells

was estimated to be ,20–30% (supplementary material Fig. S3A).

Immunoblot analysis confirmed that transfection with GSK-3b
increased the protein abundance of GSK-3b and also decreased

the protein level of cyclin D1 (Fig. 4A), a target of GSK-3b
phosphorylation that induces its degradation. Overexpression of

wild-type GSK-3b in confluent C2C12 myoblasts increased the

protein abundance of cleaved caspase-9, caspase-3 and PARP.

This effect was reversed by co-treating the cells with recombinant

M-cadherin–Fc (Fig. 4B,C). In addition, Dymt was decreased in

mitochondria from C2C12 cells upon overexpression of wild-type

GSK-3b, which was rescued by co-treatment with recombinant

M-cadherin–Fc (Fig. 4D). Together, these data indicate that

overexpression of wild-type GSK-3b alone is sufficient to

exacerbate the mitochondria-associated apoptosis induced by cell

confluence, and this effect can be reversed by enhancement of M-

cadherin-mediated signaling by treatment with M-cadherin–Fc.

Furthermore, in response to serum starvation, cells transfected with

wild-type GSK-3b plasmid had significantly higher cell death than

Fig. 4. Effect of wild-type GSK-3b overexpression and

recombinant M-cadherin–Fc treatment on apoptosis induced by

cell confluence or serum starvation. (A) A wild-type GSK-3b

plasmid (GSK-3bWT) or an empty vector (EV) were transiently

transfected into C2C12 myoblasts that were 80% confluent.

48 hours after transfection, cells were harvested in RIPA buffer and

processed for immunoblotting for GSK-3b and cyclin D1 protein

abundance. The experiment was repeated three times under each

experimental condition. (B) Wild-type GSK-3b plasmids (GSK-

3bWT) or empty vectors (EV) were transiently transfected into

C2C12 myoblasts growing in recombinant M-cadherin–Fc-coated

(M-cad-Fc) or vehicle-coated (Vehicle) dishes. 48 hours later, the

cells were harvested in RIPA buffer and immunoblotted against pro-

apoptotic proteins. GAPDH was probed as a loading control.

(C) Densitometric analyses of immunoblot bands described in B.

The data were normalized to GAPDH and expressed as the mean ¡

s.e.m. of three independent experiments. *P,0.05 vs EV/Vehicle or

EV/M-cad-Fc. {P,0.05 vs GSK-3bWT/Vehicle. (D) Mitochondria

were isolated from C2C12 myoblasts that had undergone the same

treatments as described in B. The mitochondria were stained with

JC-1. A FACSCalibur system was used to measure the change in

mitochondrial membrane potential (Dym). The data are expressed as

the ratio of orange to green JC-1 staining. The data are reported as

the mean ¡ s.e.m. of three independent experiments. *P,0.05 vs

EV/Vehicle or EV/M-cad-Fc. {P,0.05 vs GSK-3bWT/Vehicle.

(E) C2C12 myoblasts transfected with the wild-type-GSK-3b

plasmid (GSK3bWT) or the empty vector (EV) and the non-

transfected normal control (NC) cells were serum-starved for

0 hours (SS-0h), 6 hours (SS-6h), 12 hours (SS-12h), 24 hours (SS-

24h) or 48 hours (SS-48h). At the end of each time point, the

attached cells were harvested and DNA fragmentation was measured

by a cell death ELISA assay. The data represent the mean ¡ s.e.m.

from three independent experiments. *P,0.05, vs NC or EV.

(F) The wild-type GSK-3b plasmid (GSK3bWT) or the empty

vector (EV) was transiently transfected into C2C12 myoblasts

growing in recombinant M-cadherin–Fc-coated (M-cad-Fc) or

vehicle-coated (Vehicle) dishes. 48 hours later, the cells were

treated with serum starvation for another 48 hours before being

harvested. A cell death ELISA assay was used to measure the DNA

fragmentation in the harvested cells. The data represent the mean ¡

s.e.m. from three independent experiments. *P,0.05 vs EV/Vehicle

or EV/M-cad-Fc. {P,0.05 vs GSK-3bWT/Vehicle.
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the control cells at all time points, suggesting that overexpression

of wild-type GSK-3b sensitized the cells to serum-starvation-

induced apoptosis (Fig. 4E). By contrast, co-treatment of C2C12

cells with M-cadherin–Fc and GSK-3b overexpression after

48 hours of serum starvation significantly attenuated cell death,

compared with GSK-3b overexpression alone (Fig. 4F).

GSK-3b inhibition attenuates apoptosis exacerbated by

M-cadherin RNAi

The effect of GSK-3b inhibition on regulating apoptosis was

examined using a myristoylated Akt mutant (myrAkt), which

functions as a constitutively active form of Akt (Ahmed et al.,

1997), to inhibit GSK-3b activity and a V5-tagged kinase-

deficient mutant GSK-3b(K85R), which functions as a dominant-

negative GSK-3b (Ma et al., 2008). The transfection efficiency of

these plasmids using DharmaFECT Duo in C2C12 myoblasts was

estimated to be 25-35% as determined from transfection studies

using the pEGFP-C3 vector and DharmaFECT DUO as the

transfection agent (supplementary material Fig. S3B).

To evaluate the effects of GSK-3b inhibition on apoptotic

signaling, C2C12 cells that were 80% confluent were transfected

with M-cadherin-targeted siRNA, plus either the myrAkt or the

GSK-3b(K85R) plasmid, or an empty vector. The cells were

allowed to grow for 48 hours at which time they had reached

overconfluency. As expected, there was a significant increase in

both phosphorylated Akt and total Akt abundance in the cells

transfected with the myrAkt plasmid (Fig. 5A, right panel). In

addition, there was an increase in total GSK-3b and cyclin D1

protein abundance in the cells that were transfected with GSK-

3b(K85R) plasmids (Fig. 5A, left panel). Forced expression of

myrAkt or GSK-3b(K85R) plasmids significantly attenuated

apoptosis as seen by lower levels of cleaved caspase-9, cleaved

caspase-3 and cleaved PARP (Fig. 5B,C) after M-cadherin RNAi

or overconfluency. Furthermore, the DNA fragmentation that

resulted from 48 hours of serum starvation or M-cadherin-

targeted siRNA, was significantly reduced when the C2C12 cells

were co-transfected with either myrAkt or GSK-3b(K85R)

plasmids (Fig. 6A). To further confirm the impact of GSK-3b
inhibition on the regulatory effect of M-cadherin on apoptosis,

we transfected the cells with M-cadherin siRNA for 36 hours

followed by treatment with a specific GSK-3 inhibitor TDZD-8

(20 mM) for 12 hours. TDZD-8 treatment abrogated apoptosis

and reversed the loss of Dymt that was caused by M-cadherin

RNAi following a period of 48 hours of serum starvation

(Fig. 6B,C).

GSK-3b inhibition partially restores the myogenic

differentiation impaired by M-cadherin RNAi

Finally, we sought to investigate the impact of M-cadherin

RNAi and GSK-3b inhibition on the outcome of myogenic

differentiation. M-cadherin RNAi C2C12 myoblasts treated with

Fig. 5. Effect of GSK-3b inhibition on cell-confluence-induced apoptosis.

(A) C2C12 myoblasts were grown to 80% confluency then transfected with an

empty vector (EV) or GSK-3bK85R, which contained a V5 tag (left panel), or

constitutively active Akt (myrAkt) (right panel) for 48 hours. Non-transfected

cells normal control cells (NC) were cultured under identical conditions. The

protein abundances of V5 tag, GSK-3b, and cyclin D1 were examined in cells

transfected with GSK-3bK85R plasmid (left panel) and those of Ser437-

phosphorylated and total Akt were examined in myrAkt plasmid-transfected

cells (right panel) by immunoblotting. (B) C2C12 myoblasts were grown to

80% confluency then co-transfected with the M-cadherin-targeted siRNA

(M-) plus myrAkt (M-/myrAkt) or the GSK-3bK85R plasmid (M-/GSK-

3bK85R) or an empty vector (M-/EV). Similar co-transfections were

completed with the non-targeted scramble siRNA (SiCON) with myrAkt

(SiCON/myrAkt), GSK-3bK85R (SiCON/GSK-3bK85R) or the empty vector

(SiCON/EV). 48 hours after transfection, the cells were harvested and

processed for immunoblotting of cleaved caspase-9, cleaved caspase-3 and

cleaved PARP. GAPDH was used as a loading control. Each experiment was

repeated three times. (C) Densitometric analyses of immunoblots were

obtained from C2C12 cells with identical treatments as described in Fig. 5B.

The data represent the mean ¡ s.e.m. of three independent experiments.

*P,0.05 vs SiCON/EV. {P,0.05 vs M-/EV.
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or without TDZD-8 were cultured in differentiation medium for

48 hours to induce myogenic differentiation. Immunofluorescent

staining of myosin heavy chain (MyHC) was used as a terminal

myogenic marker. A TUNEL assay was performed to determine

the level of in situ apoptotic DNA fragmentation. Knockdown

of M-cadherin by RNAi significantly impaired myogenic

differentiation, because many cells died and detached from the

plates. By contrast, TDZD-8 treatment partially restored the

myogenic differentiation that was blocked by M-cadherin RNAi.

This was determined by the myoblast fusion index, which
represented the percentage of myoblasts that matured into

myotubes (Fig. 7A,B). Calculation of the apoptotic index from
TUNEL labeling showed that TDZD-8 treatment significantly
attenuated the number of apoptotic nuclei that was caused by

M-cadherin RNAi over 48 hours of myogenic differentiation
(Fig. 7A,C).

These findings were further verified in mouse primary

myoblasts. Syndecan-4-positive primary myoblasts were
isolated by fluorescence-activated cell sorting (FACS) as
representative muscle progenitor cells (Brack and Rando, 2007;

Cornelison et al., 2001). About 20% of the adult muscle stem
cells were syndecan-4 positive. Knockdown of M-cadherin by
RNAi significantly impaired myotube formation from syndecan-
4-positive primary myoblasts, which was partially rescued

by TDZD-8 treatment as shown by MyHC staining and a
greater fusion index (Fig. 8B,C) in the TDZD-8-treated cells.
Furthermore, M-cadherin RNAi exacerbated apoptosis in

syndecan-4-positive primary myoblasts after 48 hours of
myogenic differentiation. Apoptosis could be abrogated by
TDZD-8 treatment, as shown by reduced TUNEL staining

(Fig. 8B) and a lower apoptotic index (Fig. 8D) after TDZD-8
treatment.

Discussion
This is the first report to show that M-cadherin-mediated
signaling protects myoblasts against apoptosis during myogenic

differentiation. In vitro culture of myoblasts at high cell
density has been shown to yield not only a better myogenic
differentiation outcome, but also an increased incidence of

apoptosis, compared with culturing the cells at a low density (Dee
et al., 2002). This observation is consistent with the suggestion
that apoptosis and differentiation are tightly regulated in a

coordinated pattern in myoblasts (Walsh, 1997). In the current
study, we show that M-cadherin protein abundance is increased
and M-cadherin engagement at cell–cell contacts is induced
when myoblasts become confluent. Although confluence triggers

apoptosis during differentiation, other cells survive, differentiate
and fuse into myotubes (Allombert-Blaise et al., 2003; Dee et al.,
2002; Fernando and Megeney, 2007; Lippens et al., 2005; Walsh,

1997).

In this study, we showed that the disruption of M-cadherin
signaling by M-cadherin RNAi, sensitized C2C12 myoblasts to

apoptosis that was induced by either cell confluence or serum
starvation. Apoptosis in C2C12 cells is accompanied by decreased
Dymt, increased mitochondrial release of cytochrome c and AIF,

and consequently, increased cleavage of caspase-9 but not caspase-
8. Together, these data indicate that apoptosis induced by M-
cadherin RNAi is mediated by the intrinsic mitochondria-

associated pathway, and that M-cadherin-mediated signaling
plays an important role in maintaining the mitochondrial
integrity of differentiating myoblasts and suppressing apoptosis

during myogenic differentiation. Our findings are consistent with
data showing that Dymt is compromised in myoblasts undergoing
apoptosis, but not those that successfully differentiate (van den
Eijnde et al., 2001). Furthermore, proper mitochondria function is

crucial for successful myogenic differentiation (Jahnke et al.,
2009; Rochard et al., 1996; Rochard et al., 2000).

Previous findings have shown that in aged muscle, the number
of M-cadherin-positive satellite cells is decreased (Sajko et al.,
2004), but the apoptotic propensity of satellite cells is increased

Fig. 6. Effect of GSK-3b inhibition on serum-starvation-induced

apoptosis. (A) C2C12 cells were co-transfected with M-cadherin-targeted

siRNA and one of the plasmids (myrAkt, GSK-3bK85R or empty vector) for

48 hours, then serum-starved for 48 hours. DNA fragmentation was measured

by ELISA. {P,0.05 vs M-/EV. (B) C2C12 cells were transiently transfected

with M-cadherin RNAi (M-), or a non-targeted scrambled siRNA (SiCON).

These were compared with normal non-transfected C2C12 cells (NC). The cells

were treated with 20 mM TDZD-8 or DMSO for the last 12 hours of siRNA

transfection. 48 hours after transfection, the treated and control cells were

serum starved for 48 hours. The cells were harvested and DNA fragmentation

was assessed by cell death ELISA. Each experiment was repeated three times.
{P,0.05 vs SiCON/TDZD8 and M-/DMSO. (C) Mitochondria were isolated

from each experimental group and stained with JC-1. The ratio of JC-1 orange

to green staining was analyzed using a FACSCalibur system to measure the

mitochondrial membrane potential. {P,0.05 vs M-/DMSO. All experiments

were repeated three times. *P,0.05 vs NC or SiCON.
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compared with those in young animals (Jejurikar et al., 2006;

Jejurikar and Kuzon, Jr, 2003). This suggests that there is a

negative relationship between the expression levels of M-

cadherin and the apoptosis susceptibility of muscle progenitor

cells. In the current study, we showed that M-cadherin has a

protective role against apoptosis during myogenic differentiation

because inhibition of M-cadherin expression by RNAi, sensitized

both C2C12 and syndecan-4-positive primary myoblasts to

apoptosis, which resulted in an increase in pro-apoptotic

markers and in impaired myotube formation compared with

levels in control cells. We speculate that reduced M-cadherin

might be a contributing mechanism that would explain, at least in

part, a increased susceptibility of muscle progenitor cells to

increased apoptotic signaling and elimination of nuclei in aged

muscles (Alway et al., 2011; Alway and Siu, 2008; Jejurikar

et al., 2006; Jejurikar and Kuzon, Jr, 2003).

GSK-3b is a serine-threonine kinase that is constitutively

active in resting cells and plays a key role in regulating glucose

homeostasis (Frame and Cohen, 2001). GSK-3b is also important

in regulating apoptosis. However, it has a paradoxical effect on

apoptosis from different pathways by promoting mitochondrial-

dysfunction-associated apoptosis signaling, but also inhibiting

death-receptor-mediated apoptosis signaling (Beurel and Jope,

2006). Dysregulation of GSK-3b has been reported to be

involved in several pathologies, including neurodegenerative

diseases, mood disorders, cancer and diabetes (Beurel and Jope,

2006). Studies in skeletal muscles have linked GSK-3b to

muscle-wasting conditions. GSK-3b activity has been shown to

increase in aged (Kinnard et al., 2005) and burn-injured skeletal

muscles (Fang et al., 2007). Inhibition of GSK-3b is required for

IGF-1-induced myogenic differentiation (Vyas et al., 2002).

Furthermore, GSK-3b inhibition reduces protein degradation in

conditions of muscle wasting and might also promote re-growth

of atrophic muscle (Evenson et al., 2005; van der Velden et al.,

2006; van der Velden et al., 2007). Although a conditional

skeletal muscle knockout of GSK-3b has been reported to

manifest a phenotype with an improved insulin tolerance and

glucose metabolism in muscle tissues (Patel et al., 2008),

currently, there are no data that evaluate a direct role of GSK-

3b in regulating the muscle progenitor cell survival and apoptosis

during myogenic differentiation. In this study, we show for the

first time that overexpression of wild-type GSK-3b is sufficient

to induce apoptosis in confluent C2C12 myoblasts and to

sensitize the cells to serum-starvation-induced apoptosis. This

effect can be attenuated by increasing M-cadherin-mediated

signaling by recombinant M-cadherin–Fc treatment. We also

Fig. 7. Effect of M-cadherin RNAi and GSK-3b inhibition on myogenic differentiation of C2C12 myoblasts. C2C12 cells were grown on coverslips,

transfected with M-cadherin-targeted (M-) or non-targeted scrambled siRNA (SiCON) for 36 hours then incubated with or without TDZD-8 for 12 hours. The

cells were then cultured in differentiation medium for 48 hours. (A) Representative confocal images of C2C12 myoblasts after treatment with a combination of M-

cadherin RNAi (M-) or non-targeted scrambled siRNA transfection (SiCON) and TDZD-8 or DMSO as a vehicle control. The cells were cultured in differentiation

medium for 48 hours after the co-treatments. MyHC, red; DAPI, blue; TUNEL, green. Scale bar: 100 mm. (B,C) Data from three independent experiments as

mean ¡ s.e.m. *P,0.05 vs SiCON/DMSO; {P,0.05 vs M-/DMSO. The myoblast fusion index was calculated for cells after each treatment described in Fig. 7A,

as the ratio of the number of DAPI-positive nuclei located in the MyHC-positive myotubes (i.e., fused myoblasts) divided by the total number of nuclei in the same

field (B). The apoptotic index was calculated as the percentage of total nuclei that were TUNEL positive (C).
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show that the activation of M-cadherin-mediated signaling

recruits PI3K and activates Akt, which in turn phosphorylates

GSK-3b at the Ser9 residue, resulting in its suppression.

Conversely, inhibition of GSK-3b activation attenuates

apoptosis that is induced by knockdown of M-cadherin

expression. This suggests that GSK-3b plays a crucial role in

mediating the protective effect of M-cadherin against apoptosis

during myogenic differentiation. Our findings are consistent with

data from Robakis and colleagues (Baki et al., 2004) who showed

that the expression of presenilin-1 in fibroblasts promotes the

association of PI3K with E- and N-cadherins and activates Akt,

leading to the inhibition of GSK-3b activity. Skeletal muscle is

the largest consumer of glucose, and GSK-3b plays an important

role in regulating glucose metabolism and insulin sensitivity in

muscle (Patel et al., 2008; Pearce et al., 2004). Thus we speculate

that manipulation of M-cadherin-mediated cell–cell adhesion

might have a profound impact on glucose metabolism and insulin

tolerance of muscle tissue through regulating the activation status

of GSK-3b. Interestingly, a type 2 diabetic phenotypic KK/Ta

mouse, has been shown to have an ectopic expression of M-

cadherin with three missense mutations in liver (Shiina et al.,

2007). Further statistical analysis revealed a correlation between

M-cadherin expression and the hypertriglyceridemia, glucose

intolerance and hyperinsulinemia in the KK/Ta mouse. This

suggests that disrupted M-cadherin signaling might have a role in

the pathology of type 2 diabetes (Shiina et al., 2007).

GSK-3b might regulate mitochondrial outer membrane

permeabilization by targeting multiple substrates. The Bcl-2

family of proteins represents one target of GSK-3b. GSK-3b
directly phosphorylates the pro-apoptotic Bax protein at Ser163,

leading to its activation (Linseman et al., 2004). GSK-3b
activation also induces the expression of the pro-apoptotic Bim

Fig. 8. Effect of M-cadherin RNAi and GSK-3b inhibition on apoptosis and myogenic differentiation of primary syndecan-4-positive myoblasts. Primary

myoblasts were isolated from hindlimb muscles of 1-week-old C57BL/6 mice and syndecan-4-positive myoblasts were purified from isolated cells by

fluorescence activated cell sorting (FACS). (A) Approximately 20.2% cells of adult stem cells that were isolated from hindlimb skeletal muscles were syndecan-4

positive (left). The post-sort verification of FACS sorted cells indicated that the purity of syndecan-4-positive cells was 97% (right). (B) Syndecan-4-positive

myoblasts were grown on coverslips and treated as described in Fig. 7. The imaging of the cells was the same as in Fig. 7A. (C,D) Data from three independent

experiments were given as mean ¡ s.e.m. *P,0.05 vs SiCON/DMSO. {P,0.05 vs M-/DMSO. (C) The myoblast fusion index was calculated as described in

Fig. 7B. (D) The apoptotic index was calculated as described in Fig. 7C.
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protein (Hongisto et al., 2003). However, GSK-3b phosphorylation
of MCL-1, an anti-apoptotic member of Bcl-2 family protein,

facilitates its degradation (Maurer et al., 2006). Another class
of GSK-3b substrates in regulating apoptosis is a group of
transcription factors that include p53, b-catenin and Myc. p53

plays a crucial role in regulating cell cycle arrest, senescence and
apoptosis. GSK-3b can form a complex with nuclear p53 and this
promotes p53-induced apoptosis (Watcharasit et al., 2003). b-

catenin is a key mediator for the canonical Wnt signaling pathway,
which has an important role in promoting cell growth and survival.
b-catenin also connects cadherins to the actin cytoskeleton.
Together with adenomatous polyposis coli (APC) and axin,

GSK-3b forms the ‘destruction complex’ that phosphorylates b-
catenin and promotes its ubiquitylation and degradation (Ewan
et al., 2010). Cadherins control both the turnover rate and the

subcellular distribution of b-catenin. As a result, b-catenin could
be the nexus for the convergence of cadherin and GSK-3b-
mediated signaling in skeletal muscle. Additional studies are

required to identify the important upstream mediators and
downstream targets for M-cadherin–Akt–GSK-3b signaling that
are responsible for maintaining mitochondrial integrity and

suppressing apoptosis in myoblasts; however, this is beyond the
scope of the current investigation.

In conclusion, the data in the current study show that M-
cadherin plays a critical role in regulating survival versus death
by apoptosis of myoblasts during myogenic differentiation in
vitro. M-cadherin-mediated signaling maintains the inhibitory

tone from PI3K–Akt upon GSK-3b by activating PI3K–Akt. M-
cadherin signaling appears to help maintain a balance between
apoptosis and differentiation and prevents the acceleration of

mitochondrial-associated apoptotic signaling in muscle cells.

Materials and Methods
Cell culture
C2C12 myoblasts were purchased from American Type Culture Collection
(Manassas, VA) and maintained in Dulbecco modified Eagle’s medium (DMEM)
(Invitrogen Life Technologies, Bethesda, MD) supplemented with 10% fetal
bovine serum (FBS) and 1% antibiotic and antimycotic mixture solution
(Invitrogen).

Primary myoblasts were isolated from hindlimb muscles of one-week old
C57BL/6 mice (Goodell et al., 2001) and purified by Percoll (Sigma, St Louis,
MO) gradient centrifugation. The syndecan-4-positive myoblasts were identified
by fluorescence-activated cell sorting (FACS) using an antibody against syndecan-
4 (BD). The Syndecan-4-positive myoblasts were cultured in Ham’s F10
supplemented with 20% FBS at 37 C̊.

Serum starvation was induced by incubating the cells in serum-free DMEM
supplemented with 1% antibiotic and antimycotics. Myogenic differentiation was
induced by culturing the confluent cells in differentiation medium (DMEM, 2%
horse serum, 1% antibiotic and antimycotic).

Chemical inhibitors
The cells were treated with the PI3K inhibitor wortmannin (200 nM, Alexis
Biochemicals, Plymouth Meeting, PA), the GSK-3 inhibitor TDZD-8 (25 mM,
Sigma) or the MEK1 inhibitor PD98059 (50 mM, Cell Signaling, Danvers, MA).

Inhibition of M-cadherin expression by RNA interference
The myoblasts were seeded at a density of 1.76105 per well in a six-well plate,
24 hours before transfection with SMARTpool small interfering RNA (siRNA)
targeted to M-cadherin mRNA (Life Thermo). The transfection medium included
either DharmaFECT-3 reagent (Life Thermo) (for C2C12 myoblasts) or
Lipofectamine 2000 (Invitrogen) (for primary myoblasts) at a final siRNA
duplex concentration of 100 nM. The efficacy of M-cadherin protein knockdown
by RNAi was confirmed by immunoblotting (supplementary material Fig. S2).

Plasmids and transfection
The full-length mouse wild-type GSK-3b cDNA was generated by RT-PCR.
mRNA was derived from wild C2C12 myoblasts using Trizol reagent (Life
Technologies) and reverse-transcribed into cDNA using Superscript II (Life

Technologies). The PCR product was cloned into the expression vector pcDNA3.1/
myc-His(-) (Invitrogen). The constitutively active mutant of Akt (myrAkt) and the
V5-tagged kinase-deficient GSK-3b mutant (K85R) carried by vector pcDNA3
were generous gifts from Jia Luo, University of Kentucky, Lexington, KY. The
cells were transfected with the wild-type GSK-3b plasmids using FuGENE 6
(Roche Diagnostics, Indianapolis, IN). The co-transfection of siRNA against M-
cadherin with myrAkt or GSK-3b (K85R) plasmids was carried out using
DharmaFECT Duo transfection reagent (Dharmacon, Thermo-Fisher Scientific,
Lafayette CO).

Recombinant M-cadherin–Fc treatment

The recombinant M-cadherin–Fc chimera was purchased from R&D Systems
(Minneapolis, MN). Six-well plates were pre-coated with goat anti-Fc antibody
(0.5 mg/cm2 in PBS with Ca2+; Jackson ImmunoResearch, West Grove, PA)
overnight at 4 C̊ followed by coating with recombinant M-cadherin–Fc chimera at
a final concentration of 2 mg/cm2 in 0.1% BSA in PBS with Ca2+ for 2 hours at
room temperature. The dishes were blocked with 1% BSA in HBSS with Ca2.
Plates coated with only the anti-Fc antibody were used as vehicle controls. The
cells were seeded at 0.56105 cells per well and grown for 48 hours before being
harvested for further assays.

Subcellular fractionation

The membrane fraction of C2C12 myoblasts was prepared using a commercial
reagent (Thermo Fisher). The nuclear protein fraction was prepared according to
methods that have been previously described (Siu and Alway, 2005). The
mitochondrial, mitochondria-free and nuclei-free cytosolic fractions were prepared
using mitochondria and cytosol reagents (BioVision, Mountain View, CA). The
concentration of the protein extracts was quantified in duplicate by Bio-Rad DC
Protein Assay (BioRad, Hercules, CA). The whole-cell lysate was obtained by
disrupting the cells with RIPA buffer supplemented with protease and phosphatase
inhibitor cocktails (Sigma, 1:100 dilution) followed by centrifugation. The
supernatant was collected as the whole-cell lysate.

Immunoblotting

Antibodies specific to phosphorylated Ser473 Akt, total Akt, phosphorylated Ser9
GSK3b, total GSK3b, cytochrome c, cleaved caspase-9 and cleaved caspase-3,
AIF, survivin (1:1000) and cyclin D1 (1:2000 dilution) were purchased from Cell
Signaling Technology (Danvers, MA). The anti-M-cadherin antibody (1:200) was
obtained from Calbiochem (La Jolla, CA). The anti-caspase-8 antibody (1:250)
was purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Anti-histone
H2B (1:5000), -b-tubulin (1:500) and anti-GAPDH (1:5000) were obtained from
Abcam (Cambridge, MA). The antibodies against manganese superoxide
dismutase (MnSOD) and copper-zinc superoxide dismutase (Cu-ZnSOD)
(1:1000) were purchased from Millipore (Billerica, MA). The secondary
antibodies for immunoblotting including goat anti-rabbit or goat anti-mouse IgG
conjugated with horseradish peroxidase (HRP) were obtained from Jackson
ImmunoResearch Laboratories (West Grove, PA). The proteins were separated on
a 4–12% gradient polyacrylamide gel (Invitrogen), and transferred to a
nitrocellulose membrane (Bio-Rad). The membranes were probed with primary
antibodies overnight at 4 C̊, followed by incubation of the appropriate secondary
antibody for 1 hour at room temperature. The resulting signals were developed
using an enhanced chemiluminescence lighting (ECL) western blotting detection
reagent kit (GE Health Care, Piscataway, NJ). Digital records were obtained from
each blot and the protein bands of interest were quantified using 1D analysis
software (Eastman Kodak). The membranes were stripped and reprobed for b-
tubulin, GAPDH or histone H2B as loading controls.

Immunoprecipitation

The cells were washed in ice-cold PBS and lysed in ice-cold buffer (150 mM
NaCl, 50 mM Tris-HCl, pH 7.5, 0.25% SDS, 0.1% Nonidet P-40). Non-soluble
materials were removed by centrifugation at 12,000 g. The lysate was incubated
with anti-PI3K-p85a (Abcam), anti-M-cadherin (Santa Cruz) or IgG (Millipore)
overnight at 4 C̊. The sample was then incubated with Protein A/G PLUS-agarose
beads (Santa Cruz) and the beads were then collected by centrifugation. The bound
proteins were eluted from the agarose beads in 56 Laemmli sample buffer at 95–
100 C̊. The samples were clarified by centrifugation and the supernatants were
separated by SDS-PAGE and immunoblotted against M-cadherin or PI3K-p85a.

Cell imaging

Phase-contrast images of live C2C12 and primary myoblast cells were obtained by
a Nikon Eclipse TS100 phase-contrast microscope equipped with 106 0.25 NA
and 206 0.40 NA phase-contrast objectives. The digital images were obtained
with a SPOT RT camera and analyzed with SPOT RT software (Diagnostic
Instruments, Sterling Heights, MI). Immunocytochemical assays were conducted
on fixed cells after they had been grown on coverslips. After fixation in 4%
paraformaldehyde, the cells were incubated at 4 C̊ with antibodies against anti-M-
cadherin (1:20, Calbiochem) or anti-myosin heavy chain (MyHC) (1:500,
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Developmental Studies Hybridoma Bank, Iowa City, IA). The cells were incubated
with the Alexa Fluor 546 IgG (H+L) (Invitrogen) and counterstained with 4,6-
diamidino-2-phenylindole (DAPI). The cells were imaged with a Zeiss
LSM510 confocal laser-scanning microscope using AIM software (Carl Zeiss
MicroImaging).

Myoblast fusion index

The myoblast fusion index was calculated as the ratio of the number of DAPI-
positive nuclei located in the MyHC-positive myotubes (i.e. fused myoblasts)
divided by the total number of nuclei in the same field. This fusion index was used
as a read-out of myogenic differentiation. The fusion index was obtained from 10
non-overlapping areas of each coverslip.

Apoptosis assays

DNA fragmentation
DNA fragmentation was used to assess the level of apoptosis in muscle cells using
an ELISA (Roche) with measurements for DNA fragmentation that were made at
an absorbance of 405 nm (Siu et al., 2009; Siu and Alway, 2005). The data were
normalized to the protein concentration of the sample.

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)
A TUNEL assay (Roche) was used to identify the extent of apoptotic nuclei in
adherent myoblasts as reported previously (Siu et al., 2005b). The nuclei of all
cells were counter-stained with DAPI. The number of TUNEL- and DAPI-positive
nuclei was counted in ten images from non-overlapping areas of each group of
cells. The data were presented as the apoptosis index, which was determined by the
ratio of TUNEL-positive nuclei to the total number of DAPI-positive nuclei.

Because treatment with serum starvation and M-cadherin-siRNA resulted in
apoptosis and cell death, some cells detached from the plates. To identify the full
extent of apoptosis, and determine whether M-cadherin RNAi increased
the sensitivity of C2C12 myoblasts to serum-starvation-induced apoptosis, we
assessed apoptosis by a TUNEL assay in both adherent and floating cells in each
well using published methods (Dee et al., 2002). The total percentage of apoptotic
cells for each well was calculated as: (total number of TUNEL-positive attached
cells + the total number of TUNEL-positive floating cells) /(total attached cells +
total floating cells).

Cardiolipin content and mitochondrial membrane potential measurement

Nonyl acridine orange (NAO, Invitrogen) was used to determine the cardiolipin
content in the inner mitochondrial membrane as an indicator of mitochondrial
integrity. C2C12 myoblasts were transfected with M-cadherin-targeted (M-) or
scrambled siRNA (siCON) with NAO (250nM) at 37 C̊. Fluorescence was
visualized with a Nikon eclipse E800 fluorescence microscope and digital images
were captured using a SPOT RT camera (Diagnostic Instruments). The fluorescence
intensity was analyzed and quantified using the ImageJ software (NIH).

To measure changes in the mitochondrial membrane potential, mitochondria were
isolated from M-cadherin RNAi or control cells and incubated with MitoTracker
Deep Red 633 (Molecular Probes, Carlsbad, CA), a mitochondria-specific marker
and analyzed by flow cytometry. This fluorescent dye diffuses passively into intact
and respiring mitochondria. The mitochondrial membrane potential (Dymt) was
estimated by staining the mitochondria with 5,59,6,69-tetrachloro-1,19,3,
39-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) (Molecular Probes). The
staining results of JC-1 orange/green were analyzed using a FACSCalibur system
(BD Bioscience) using Cell Quest Pro. 4.0 Software. 100,000 gated events were
collected for each sample.

Statistical analyses

The results are presented as mean ¡ s.e.m. Statistical analyses were performed
using the SPSS 13.0 software package. A one-way analysis of variance (ANOVA)
was used to compare differences in all measured variables. P,0.05 was considered
statistical significant.
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