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Recently, a family of exact force-free electrodynamic (FFE) solutions was given by Brennan, Gralla
and Jacobson, which generalizes earlier solutions by Michel, Menon and Dermer, and other authors.
These solutions have been proposed as useful models for describing the outer magnetosphere of
conducting stars. As with any exact analytical solution that aspires to describe actual physical
systems, it is vitally important that the solution possess the necessary stability. In this paper,
we show via fully nonlinear numerical simulations that the aforementioned FFE solutions, despite
being highly special in their properties, are nonetheless stable under small perturbations. Through
this study, we also introduce a three dimensional pseudospectral relativistic FFE code that achieves
exponential convergence for smooth test cases, as well as two additional well posed FFE evolution
systems in the appendix that have desirable mathematical properties. Furthermore, we provide an
explicit analysis that demonstrates how propagation along degenerate principal null directions of
the spacetime curvature tensor simplifies scattering, thereby providing an intuitive understanding of
why these exact solutions are tractable; i.e. why they are not backscattered by spacetime curvature.

I. INTRODUCTION

Force-free electrodynamics [1–3] (FFE) is a simplifica-
tion to the joint electromagnetic and plasma dynamics
that is applicable in the limit of magnetic domination.
Within FFE, the inertia of the plasma is neglected, so
that the equation of motion for the plasma is not required
to close the set of evolution equations. This leads to a sig-
nificant reduction in computational complexity, with the
presence of the plasma becoming a nonlinear modifica-
tion to the vacuum Maxwell equations. Astrophysically,
FFE is recognized as the appropriate limit for describing
the magnetospheres of black holes [1] and particularly
neutron stars [2], where one can find intense magnetic
fields of 108 – 1015 gauss accompanied by charged parti-
cles supplied by electron-positron pair-production [1, 4].
FFE is an integral part of most proposed mechanisms
for extracting rotational energy from neutron stars [2] or
black holes [1, 5], and electromagnetic dominance (over
gas dynamics) is argued to be valid in all ultra-relativistic
outflows [6]. For instance, the jets in quasars and active
galactic nuclei [7] or gamma-ray bursts [8] are generally
simulated using the FFE approximation. To understand
these astrophysical phenomena, it is therefore important
to analytically (e.g. [7, 9–12]) and numerically (e.g. [13–
28]) study the solutions to the FFE equations.

One step in this direction was achieved recently with
the presentation of a family of analytical solutions in
Kerr spacetime by Brennan, Gralla and Jacobson [12],
which combines and generalizes some earlier solutions
by Michel [10, 29], Menon and Dermer [9], and puts
them in a language more accessible to relativists. It has
been suggested that these solutions (containing nonlin-
ear ingoing or outgoing waves) can describe astronomi-
cal systems such as the outer magnetosphere of a pulsar

[12, 30, 31], describing the mechanism for transporting
energy extracted from the interior regions towards infin-
ity. Because the FFE equations are highly nonlinear, an-
alytical solutions are relatively rare (see [32–35] for some
additional solutions in extremal Kerr spacetime), so it is
worthwhile to examine these solutions in greater details,
especially those aspects related to their applicability to
real astronomical problems. For the benefit of finding
further exact solutions, it is also interesting to study the
properties that make these known solutions tractable.

A remarkable feature of these solutions is that their
wave contents are not backscattered1 by the spacetime
curvature, a fact that significantly simplifies the analysis,
and in no small part contributes to the possibility of ex-
pressing these solutions in closed form. Such scattering-
avoidance behaviour is not typical among waves trav-
elling in a curved spacetime; generically the waves will
scatter against the spacetime curvature and travel inside
(as well as on) the null cones. In addition to not being
scattered by spacetime curvature, these solutions are also
not backscattered by nonlinear electromagnetic interac-
tions, which makes them particularly efficient channels of
energy transfer. A question then naturally arises: does
the physical specialness and mathematical simplicity of
these solutions equate to fragility? In other words, are
these solutions stable under initial perturbations? The
answer to this question is critical, as a negative answer
would mean that these solutions do not describe realis-

1 In this paper, we will refer to “backscattering” as the scatter-
ing capable of altering the propagation direction of the waves,
or introducing a Coulomb component where initially there was
none.
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tic astronomical systems that are always subject to per-
turbing influences from their surrounding environments If
these solutions represent “repellers” in the FFE solution
space, then one would expect that a small perturbation
in the initial data will quickly drive the physical system
away from them and perhaps establish alternative, phys-
ically less special and less efficient energy transportation
channels. Even worse, if uncontrolled growth in the mag-
nitude of the perturbations appears due to the presence
of unstable modes, it would be a sign that the mathemat-
ical model may be intrinsically inadequate for describing
real physics.

On the topic of stability of force-free and magneto-
hydrodynamical configurations, there is a rich and im-
pressive list of literature on the structure (see e.g. [36–
41]) and stability of jets. Researchers have examined in
detail the various instability types that could alter the
jet structure or even disrupt it. For example, Refs. [42–
56] examined various types of current driven instabilities,
providing important observations such as that instabili-
ties can change the current density in the jets [50, 52],
forming structures that can heat and accelerate particles,
and that increased magnetization tends to have a stabi-
lizing effect [57]. Other instability types in jets such as
Kelvin-Helmholtz and pressure driven modes have also
been the subject of intense studies (see for example [58–
67]). Currently, a consensus on the reason behind the
remarkable stability of observed and numerically simu-
lated (see e.g. [15, 68–70]) jets is still lacking [71], and
will continue to be a fascinating area of research.

In this paper, we tackle a rather different problem.
(1) We do not examine collimated jets, but rather more
isotropic radiation which appears to contribute to a sig-
nificant [26] or even dominant [27] portion of the energy
budget in the radiation emitted by e.g. a binary black
hole system inside a common magnetosphere. This type
of radiation has received less attention previously, but the
particular scatter-avoiding solutions we examine, if sta-
ble (their stability has not been examined before), may
prove to be a preferred (as it is the most efficient, with-
out backscattering of energy flux) channel through which
isotropic energy flux escapes through the magnetosphere,
thus providing us with a perfect entry point for further
research. Because a large pulse of isotropic radiation is
emitted during the merger phase of a black hole binary
[26], which can potentially be picked up by observers on
Earth, such research should have relevance for multimes-
senger (gravitational and electromagnetic waves) astron-
omy. (2) Because these solutions are envisaged to be the
couriers that carry energy across magnetospheres of black
holes or neutron stars, relativistic effects would become
important, so our analysis will necessarily have to take
spacetime curvature into account. In contrast, most of
the previous studies on jet stability assume flat space-
time, as jet disruption does not occur until very far from
the central compact object. (3) We are examining global
(while jet stability studies concentrate on the vicinity of
the jets) solutions, and so there are subtle new instability

types that may emerge. For example, there is no globally
regular vacuum counterpart to the solutions we examine
[12, 72], so does that mean singularities similar to those
seen in the vacuum case would generically develop even
in the force-free case when we introduce perturbations?
This subtle potential instability, whose underlying source
is global in nature, would not have been included in the
consideration of typical severe plasma instabilities. On
the other hand, the solutions we examine do not have ex-
treme features such as a jet boundary, so they are likely
less prone to many instabilities that a jet would suffer.
In fact, a cursory glance gave us no reason to strongly
expect these typical plasma instabilities to severely im-
pact these solutions (we caution however, due to different
assumptions regarding the structure of the solution and
the nature of the plasma, jet stability results may not be
directly applicable to the present study). (4) Whereas
previous studies mostly concentrate on the stability of
a physical feature (i.e. jets), we examine the more re-
strictive case of the stability of a particular family of
exact analytical solutions. Therefore, even though phys-
ical processes that slightly alter the exact structure of
the jets – but do not disrupt it – may not be regarded
as serious instabilities, they would in our case be neces-
sarily recognized as a problem, as they would nudge the
actual physical configurations away from being precisely
the same as the exact solutions.

A consideration of all possible instabilities to an ana-
lytical solution is exemplified by the study of Kerr metric
stability (see e.g. Ref. [73] for a summary). The prob-
lem can be attacked by first studying the mode stability
(see e.g. [50] for an example in the context of jet stabil-
ity studies) through solving linearized perturbation equa-
tions assuming separable solutions. For example, a recent
paper [74] studying perturbations of magnetic monopole
and Blandford-Znajek solutions showed no unstable indi-
vidual FFE modes2. It is then an arduous task to further
prove linear stability, as it is not guaranteed that all lin-
ear perturbations can be decomposed into such modes, or
that the sum of infinitely many stable individual modes
remains stable [73]. A proof for full nonlinear stability
is more difficult still. On the other hand, while a rigor-
ous proof is currently out of reach, important evidence of
nonlinear stability can often be found using fully nonlin-
ear numerical simulations. For example, several studies
of the numerical robustness of the Blandford-Znajek pro-
cess can be found in Refs. [15, 68–70]. Indeed, the ability
to examine stability is cited as one of the principal mo-
tivations for developing fully time-dependent numerical

2 A similar analysis for perturbations over the FFE solutions we
are interested in would be much more difficult. These solutions
have a null current that couples to the perturbing fields just like
the Blandford-Znajek case. However, unlike the current for the
Blandford-Znajek solution, this null current is not proportional
to a small parameter like the black hole spin, and cannot be
treated using the perturbative techniques of Ref. [74].
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FFE codes [17, 75]. In this paper, we adopt this more
accessible numerical approach to studying nonlinear sta-
bility.

This paper is organized as follows: We begin by intro-
ducing the force-free equations in curved spacetimes, as
well as the details of the exact analytical solutions that
we examine in Sec. II. We then introduce in Sec. III a
new pseudospectral numerical code, used for our stabil-
ity study. We also present several nontrivial tests demon-
strating that the code achieves exponential convergence.
Then in Sec. IV, we evolve a constraint-free perturbed
initial data set, and show that the exact analytical solu-
tions are in fact stable, despite their physical specialness.
In Sec. V, we provide some derivations and arguments
that provide an intuitive explanation as to why the ana-
lytical solutions are not backscattered by spacetime cur-
vature (this section is not necessary for understanding
the numerics described in the earlier sections, and uti-
lizes spinors extensively; therefore, readers who are only
interested in the numerical aspects of this paper do not
need to review Sec. V). Finally, although not used in the
numerical studies in this work, we also provide in Ap-
pendix B a couple of force-free evolution systems that
have improved well posedness properties.

In this paper, we adopt geometrized units with G =
c = 1, and use (− + ++) for the metric signature. The
beginning of the lowercase latin alphabet will be used
to denote spacetime indices, and the middle of the al-
phabet denotes spatial indices. Capital latin letters will
denote spinor indices, while greek letters will index dif-
ferent quantities in different sections, whose meaning will
be clear from their context. Bold-faced letters will denote
vectors and tensors. The numerical work in this paper is
carried out within the pseudospectral code infrastructure
of the Spectral Einstein Code (SpEC) [76].

II. THE FORCE-FREE EQUATIONS AND
THEIR EXACT SOLUTIONS

A. Some useful definitions

In this paper, we will use the 3+1 form of the metric

ds2 = −N2dt2 + gij(dx
i + βidt)(dxj + βjdt) , (1)

where N is the lapse, β is the shift, and g is the (spatial)
metric for the spatial hypersurfaces of constant t. The
extrinsic curvature K of these spatial hypersurfaces is
given by

(∂t − Lβ)g = −2NK , (2)

which is a spatial tensor depending on both the geom-
etry (metric) of the overall four-dimensional spacetime
and the way we slice it. For example, the extrinsic cur-
vature of a Minkowski spacetime can be nonvanishing if
one picks unusual slicings. The operator on the left-hand

side of Eq. (2) is the derivative along the normal vector
ta to the spatial hypersurfaces.

When there is an electromagnetic field represented by
the Faraday tensor F, we can also break it down into
a 3+1 form, which will then allow us to write the force-
free evolution and constraint equations in terms of spatial
tensors in the next section. These equations will then re-
semble those used in the numerical study of the Einstein
equation, and can be handled with the same code infras-
tructure. We define the electric and magnetic vectors
as

Ea = F abtb , Bd =
1

2
εabcdFabtc . (3)

Note that although we have written them as four-vectors
in the definitions, they are really only spatial vectors with
E0 and B0 vanishing. We will denote them as 3-vectors
E and B below, with the understanding that a projec-
tion into the spatial slices has been taken. Within the
spatial slices, we will also use traditional vector calculus
notations to simplify expressions, with, for example

E ·B ≡ EiBjgij , (E×B)i ≡ gilEjBkεljk . (4)

B. The evolution equations

In this section, we write down a set of FFE equations
with constraint damping capabilities that are numerically
robust, although they possess some mathematically un-
desirable properties that do not appear to hinder their
performance in practice. The numerical studies carried
out in the main body of this paper use this evolution sys-
tem. Aside from this system of equations, we also provide
in Appendix B two additional sets of equations with de-
sirable mathematical properties, but which are numeri-
cally less forgiving. We go through the derivation of these
equations in some details for pedagogical reasons, as ex-
isting literature tends to be brief and sometimes leaves
out terms that should be included for curved spacetimes.

We begin by writing down the Maxwell equations in
curved spacetime, which are

(∂t − Lβ)E = NKE +∇× (NB)− 4πNJ , (5)

(∂t − Lβ)B = NKB−∇× (NB) , (6)

∇ ·E = 4πρ , (7)

∇ ·B = 0 . (8)

To derive the current J, which is the spatial part of a
four-current J(4), we begin with the force-free condition

F abJ
(4)
b = 0, which states that the four-force density de-

scribing the transfer of energy and momentum between
the electromagnetic fields and the charged plasma parti-
cles vanishes. This ensures that the stress-energy T abEM of
the electromagnetic field remains dominant over that of
the plasma. Indeed, we can derive the force-free condi-
tion starting from the differential conservation of energy
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and momentum ∇aT ab = 0. Then when T abEM is the dom-
inant contribution to T ab, we have [15, 17]

∇aT ab ≈ ∇aT abEM = −F abJ (4)
b = 0 . (9)

In a 3 + 1 decomposition, this translates into

E · J = 0 , ρE + J×B = 0 , (10)

where the second equation is the vanishing of the Lorentz
force. To derive the force-free current J, we take the cross
product between Eq. (10) and B which gives us

4πNJ = 4πN(B · J)
B

B2
+ 4πNρ

E×B

B2
, (11)

where the second term above can be seen as the charge
density moving at the plasma drift velocity, and we can
replace ρ with ∇ · E/4π using one of the Maxwell con-
straint equations. To further work out the current B · J
along the B field, we note that

(Ba/
√
BbBb)F

abJ
(4)
b = 0 ⇒ E ·B = 0 or ρ = 0 ,(12)

and for nonvacuum solutions (vacuum here refers to
J(4) = 0, with these solutions satisfying the force-free
condition trivially) we would like to enforce the E ·B = 0
condition, which should be preserved along the timelike
normal to the spatial hypersurfaces, and so

(∂t − Lβ)E ·B = 0 . (13)

Using the definition of the extrinsic curvature tensor
Eq. (2), and substituting in the Maxwell equations, we
obtain an equation for B · J that reads

4πNB · J = −E · ∇ × (NE) + B · ∇ × (NB)

−2NKijE
iBj + 2NKE ·B , (14)

(note that the extrinsic curvature terms on the second
line appear to be missing in some of the existing liter-
ature). Substituting Eq. (14) into Eq. (11) yields J in
terms of E and B. Substituting this expression back into
the Maxwell-equations yields the desired minimalist FFE
evolution system.

There is also a set of constraints that needs to be satis-
fied, which comes from both the Maxwell equations and
the force-free condition. When deriving the current J,
we have explicitly used q = ∇ ·E/4π as the definition of
charge density, so there is no need to enforce this con-
straint. The nontrivial constraints are ∇ ·B = 0 and the
force-free constraint E · B = 0. These two constraints
are preserved automatically by the evolution equations
[31]. Specifically, the ∇ · B = 0 constraint is preserved
by the original Maxwell equations and inherited by the
force-free specialization. The E · B = 0 condition is
also preserved, as we have explicitly used the condition
(∂t−Lβ)E ·B = 0 to derive the current. Physically, this
condition fixes the magnitude of the conduction current
along the B direction [17], which would short out the E

field along B by redistributing charge to eliminate the
potential difference associated with that E component,
thus enforcing E ·B = 0.

Although the ∇ · B = 0 and E · B = 0 constraints
are preserved by the evolution equations when they were
satisfied initially, numerical noise inevitably creates some
seed constraint violation that may grow further under
the minimal evolution system. It is therefore beneficial
to modify the evolution equations so as to be able to
clean up the constraint violations as they emerge. For
the E ·B = 0 constraint, we adopt a strategy similar in
form to Ref. [27]. Specifically, we add a damping term
−Nδ(E ·B)B/B2 to ∂tE, so that the full set of evolution
equations becomes

(∂t − Lβ)E = NKE +∇× (NB)− E×B

B2
N∇ ·E

−N B

B2
(B · ∇ ×B−E · ∇ ×E

−2KijE
iBj + 2KE ·B + δE ·B

)
,(15)

(∂t − Lβ)B = NKB−∇× (NE) . (16)

The damping term is proportional to the constraint, and
will not affect the physical constraint-satisfying solutions.
However, it modifies the constraint evolution equation to
a damped form

(∂t − Lβ)E ·B = −δNE ·B . (17)

We note that our damping strategy differs from that of
Ref. [27], in that we have kept the original current terms
from Eq. (14) and treated the new damping term as an
addition instead of a replacement. In contrast, Ref. [27]
removed all of the original current terms from the evo-
lution equations, replacing them with only the damping
term. With their strategy, the evolution equations be-
come simpler, but those current terms forcibly removed
from the evolution equations will resurface in the con-
straint evolution equation, specifically on the right-hand
side of Eq. (17). Therefore Eq. (17) won’t reduce to
(∂t − Lβ)E ·B = 0 when E ·B = 0, so that constraint-
satisfying FFE solutions at some instance of time can not
stay constraint-satisfying as the simulation progresses.
However, this does not invalidate the results of Ref. [27],
as the size of the constraint violation would be negatively
correlated with δ (and positively correlated with the mag-
nitudes of the derivatives of B and E), as the damping
will be activated when E · B grows too large. Indeed,
Ref. [27] adopted a δ greater than the inverse of the time
step size and observed a well controlled E · B. Such a
strategy however leads to a stiff term in the evolution
equations that has to be treated with an implicit-explicit
(IMEX) evolution scheme [27]. As the analytical solu-
tions we examine are exactly constraint-satisfying at all
times, and since we do not use an IMEX scheme, we will
use the damping term as an addition with a moderate
coefficient δ = 100, allowing us to enjoy its constraint
cleaning benefits but avoid the aforementioned compli-
cations. Finally, note that this damping term does not
introduce magnetic monopoles, see Eq. (B51).
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We note that the introduction of the additional damp-
ing term replaces another alternative constraint cleaning
strategy of removing the component of E along B after
taking each time step, which has been widely utilized
(e.g. Refs. [13, 15, 17, 77]). Such an alteration of
the evolving fields at a discrete set of times (which de-
pend on resolution) will result in a failure of the system
to achieve the usual convergence behaviour that would
be expected if the scheme were just applied to a set of
differential equations without this alteration [78]. In con-
trast, a damping term is less intrusive and its properties
are more easily understood. We will show that our set
of evolution equations displays the expected convergence
behaviour in Sec. III C 2. In addition, because this damp-
ing term does not contain derivatives, it will not affect
the characteristic structure of the evolution equations,
which is particularly helpful for our pseudospectral im-
plementation.

Lastly, we note that aside from the aforementioned
E·B = 0 and∇·B = 0 constraints, we have an additional
constraint of E2 ≤ B2. When a E2 > B2 region devel-
ops, the plasma particles have to move faster than the
speed of light in order to experience a vanishing Lorentz
force. One can see this from the second term in Eq. (11),
which can be written as qvd, where vd is the drift veloc-
ity for the advection of the charge density [13, 17]. The
inequality E2 > B2 then implies a superluminal vd. For
an even simpler demonstration, if we consider the special-
relativistic point particle case, then the requirement for
the vanishing of the Lorentz force q(E+v×B) would im-
ply |v| > 1 when E2 > B2. Such superluminal motion is
unrealistic, but FFE evolution equations cannot prevent
it because the current (Eq. 11) is derived without invok-
ing plasma physics. Consequently, the FFE equations
have no internal checks that enforce the B2 − E2 ≥ 0
constraint. In other words, the B2 − E2 ≥ 0 constraint
is not strictly a constraint in the mathematical sense like
∇ · B = 0 and E · B = 0, and solutions satisfying the
force-free condition (9) are not automatically magneti-
cally dominated. One symptom of the breakdown of this
physical constraint is that, when strong waves interact
[13], the Alfvén mode characteristic speeds become com-
plex, breaking the hyperbolicity of the FFE evolution
equations (because these are physical modes, augmenta-
tions to the evolution equations like those in Appendix B
will not be able to change their characteristic speeds and
will thus not cure this hyperbolicity breakdown). An-
other example is the formation of current sheets, in which
the magnetic fields can vanish and then reverse direction
[13]. Physically, the force-free assumption is invalid when
B2 − E2 < 0. The actual plasma particles, which have
inertia, will experience a nonvanishing Lorentz force and
be accelerated. In other words, the system becomes dis-
sipative [17], averting divergences and possibly restoring
magnetic dominance [13]. A proper treatment of such
regions would require special codes for the plasma [15]
that do not assume the force-free condition being met.
For the numerical studies carried out in the later parts

of this paper, we do not need such a sophisticated treat-
ment as we are guaranteed magnetic dominance by the
presence of a magnetic monopole in the solutions we ex-
amine. We will discuss this in more details in the next
section. In particular, we do not need to adopt the com-
mon procedure of scaling down the E field after each time
step to avoid electric dominance [13, 15, 17, 77].

We have now a basic set of evolution equations and
the associated constraints. However, this does not auto-
matically mean that we can simply plug them into the
computer and run simulations, because we need to en-
sure that the evolution equations are well posed. This
is a rather technical discussion, which we have relegated
to the appendixes. It turns out that the simple evo-
lution systems given by Eqs. (15) and (16) (which we
adopt for our numerical code) is not strictly strongly hy-
perbolic (see Appendix A), but the violation is insignifi-
cant enough that it does not create problems in practice
for the simulations carried out in this work. Neverthe-
less, we have formulated two additional evolution systems
that are not only strongly hyperbolic, but also have ad-
ditional desirable properties in terms of well-posedness.
One of them is strongly hyperbolic even when E ·B 6= 0,
while the other has a particularly simple constraint evo-
lution behaviour. These systems are given in Appendix
B. Unfortunately, they (also including a similar evolution
system from Ref. [79]) introduce a term containing the
second derivative of B (see Eq. B51) into the evolution
equation for ∇ ·B, making it sensitive to high-frequency
noises (see Sec. B 4). In other words, these mathemati-
cally more satisfying systems are numerically less forgiv-
ing. Therefore, we take a pragmatic approach, and use
the simple system as given by Eqs. (15)-(16) for the nu-
merical studies presented in the main text. However, the
mathematically improved systems may yet prove useful
for application in finite-difference and finite-volume FFE
codes, which tend to be more forgiving in the presence of
high-frequency noise than pseudospectral schemes.

C. The exact analytical solutions

In this section, we introduce the analytical solutions
whose stability properties we seek to examine. The solu-
tions are introduced in Ref. [12], and readers interested
in their derivation should consult that reference.

We begin by emphasizing that the spacetime back-
ground used in this paper is the Schwarzschild spacetime,
and the situation in a spinning black hole case is beyond
the scope of our current study. This restriction stems
from the need to enforce the magnetic dominance condi-
tion that we discussed in Sec. II B. The scatter-avoiding
wave-only analytical solutions given in Ref. [12] are the
so-called null solutions, which can be seen as generaliza-
tions to plane waves (see later in the section), and as
such have E2 = B2 just like the plane waves. When we
add a small perturbation to it, we can easily end up with
E2 > B2 regions which can not be properly accounted
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FIG. 1: The ratio |Bnull|/|Bmono| for the null+ solution stud-
ied, where Bnull and Bmono are the null and monopole con-
tributions in Eq. (33), while the norm is defined as |Bnull| =√

Bnull ·Bnull. Shown is a cross-section in the xz-plane, which
extends radially from R− = 1.95M to R+ = 195M.

for under the force-free approximation. However, this is
not a problem because instead of these null solutions, we
in fact study the stability of what we call null+ solutions,
where a magnetic monopole is superimposed onto the null
solutions (this prescription is also provided by Ref. [12],
and [31]), so all the scatter-avoiding properties of the null
solutions are simply inherited by the wave components of
the null+ solution, yet magnetic dominance is maintained
even with the presence of perturbations (Figs. 1 and 2 de-
pict the basic structure of field quantities for the null+

solutions, and we will discuss them in more details later).
Subsequently, we restrict ourselves to the Schwarzschild
spacetimes because only when the black hole is not spin-
ning would such a monopole addition not interfere with
the null wave component, and the total solution (as a
simple superposition of the wave and monopole compo-
nents) still satisfy the force-free conditions. On the other
hand, these two components would couple in a nontrivial
way in a spinning black hole spacetime, and we do not
have a simple null+ solution in that situation to study
(the null+ solution in that case has not been worked out
yet).

We note that because in astrophysical applications, we
would have a split monopole background present in addi-
tion to the energy-carrying waves, we are more interested
in the stability of null+ solutions instead of the null ones
on physical grounds. So it is the stability of the null+

solutions and not that of the null solutions that is the
intended target of study in this paper. The study of the
stability of null+ solutions is not a surrogate for that of
the null solutions. In fact, our stability results would
unlikely translate from the null+ to the null solutions,
as we will discuss later in the Conclusion section. Fur-
thermore, for our numerical study, we will pick the null+

FIG. 2: Top left figure shows the electric field lines, and the
top right figure shows the magnetic field lines for the same
null+ solution as shown in Fig. 1, the lines are coloured by
E2 and B2 respectively. The bottom figures plot the time
variation of the Ex component, showing the wave propagating
inwards.

solutions with an ingoing (instead of outgoing 3) wave
component, as these are regular on the future horizon
of the Schwarzschild black hole. The outgoing solutions
face the same possible “fragility due to specialness” issue,
but need to be glued onto an astronomically realistic in-
terior solution (not currently available); otherwise, they
will represent energy flux emerging from the past horizon
[31].

Before we dive into the details of the null+ solutions,
we first introduce some formalism that will be needed.
The structure of the solutions is most explicit in the
Newman-Penrose (NP) formalism, wherein we express
tensors under the NP null tetrad {l,n,m, m̄} that con-
sists of two real null vectors l and n usually chosen to be
in the outgoing and incoming directions, and two com-
plex null vectors m and m̄. This tetrad can be seen as
the null version of an orthonormal tetrad [80], relating to
it via a rigid transformation. Under the null tetrad, the
metric is a constant matrix 0 −1 0 0

−1 0 0 0
0 0 0 1
0 0 1 0

 , (18)

3 The outgoing waves are obtainable through the transformations
in Sec. 5 of Ref. [12].
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just as the metric is a constant matrix diag{−1, 1, 1, 1}
under an orthonormal tetrad. The freedom for choosing
the null tetrad is then given by the transformations that
preserve the metric, namely the Lorentz transformations.
Such a tetrad is just a basis to express components of a
tensor in. In particular, the components of the Faraday
tensor F under the Newman-Penrose null tetrad are the
Newman-Penrose scalars φ0, φ1 and φ2, defined by

φ0 = Fabl
amb , (19)

φ1 =
1

2
Fab(l

anb + m̄amb) , (20)

φ2 = Fabm̄
anb . (21)

These three complex numbers are simply the 6 real com-
ponents of Fab (three from E and three from B, and these
vectors are of course just F’s components written in the
coordinate basis) recombined.

One reason why the NP tetrad is nicer than a coor-
dinate basis is that we can pick the l and n in it to be
pointing along special directions such as the outgoing and
ingoing null directions of a Schwarzschild spacetime (we
will be using the so-called Kinnersley tetrad [81], which
has this property. See Appendix D for their detailed
expressions). This specialness in the basis orientation
translates into special meanings for the components of
Fab associated with these bases, and subsequently φ0, φ1

and φ2 can be interpreted as the incoming wave, Coulomb
background and outgoing wave pieces of F, respectively.
In particular, this identification is physical and gauge (co-
ordinate choice) invariant, as the outgoing and ingoing
directions as identified by l and n in a Kinnersley tetrad
are those determined by the spacetime geometry and are
unambiguous [80], and not based on the radial direction
of arbitrary coordinate systems, which can be subject to
random coordinate transformations that change the ra-
dial direction.

As E and B and the three NP scalars are simply F com-
ponents written in different basis, it is not surprising that
we can translate the force-free equations (15) and (16)
into equations for φ0, φ1 and φ2, and that the equations’
structure clarifies tremendously because all the quanti-
ties in it now have clear physical meaning. This is the
approach taken in [12].

For the ingoing null+ solutions that we are interested
in for this work, we need outgoing φ2 = 0, while the
ingoing wave φ0 and background φ1 are nonvanishing. It
turns out however that in a Schwarzschild background,
the equations for φ0 and φ1 decouple, so we can solve for
φ0 first, assuming φ1 = 0, and then add a monopolar φ1

back later. The ansatz Ref. [12] uses when solving for φ0

is then φ1 = 0 = φ2, as well as an additional condition
(guess) that the current flows in the ingoing null direction
n. Under these assumptions, we get an equation for φ0

we can actually solve.

After obtaining an expression for φ0 (like the one we
will write down later in the section), we can reconstruct

the Faraday tensor as

Fab = 4<
(
φ0m̄[anb]

)
. (22)

which can be shown to satisfy

1

2
F abFab = −1

2
∗F ab∗Fab = B2 − E2 = 0 , (23)

1

4
Fab
∗F ab = E ·B = 0 . (24)

These conditions form the definition for a null wave. We
have the following observations for our ingoing null wave
solutions (which are also inherited by the wave compo-
nent of the null+ solutions)

1. Locally, the two null wave conditions imply that the
E and B fields are orthogonal to each other, and
share the same amplitude just like a plane wave.
These solutions are of course not really plane waves,
see the E field lines in Fig. 2 (also note the B field
lines in that figure are for null+ and not null solu-
tions, and are not applicable for our present discus-
sion).

2. The amplitude of E and B, and thus the wave, is
given by φ0.

3. This “local plane wave” travels along the ingoing
n direction (radially inwards), which is also the di-
rection of the current.

4. The presence of the current is an extra freedom not
available to vacuum Maxwell equations, so while
FFE null solutions can be globally regular, singu-
larities would develop in a vacuum null solution
[12].

5. φ1 and φ2 vanish everywhere in this solution, mean-
ing that the null wave is not backscattered (in
which case an outgoing component would be gen-
erated) by either the current or the spacetime cur-
vature. And this property is shared by outgoing
solutions, which makes them highly efficient chan-
nels for transferring energy.

6. The magnitude of φ0 (and thus the amplitudes of E
and B) is not limited. The solution represents fully
nonlinear waves satisfying the nonlinear FFE equa-
tions. This allows the outgoing variant of these so-
lutions to carry an arbitrarily large energy flux from
the interior region through the magnetosphere. If
energy flux travels via scattered solution on the
other hand, we would likely see much of the en-
ergy turn back and be swallowed by the black hole.
This is not what simulation of binary merger in
magnetospheres appears to show.

7. When we add a monopole background, and take
the small amplitude/linearized limit, these waves
reduce to the travelling waves discussed in Ref. [82].



8

And if we further take the eikonal limit such that
the wavelength is much smaller than the radius of
curvature, these waves become Alfvén waves trav-
elling along the background magnetic field [83].

Now that we have a broad picture of what these so-
lutions look like, we turn to the details of a particular
representative example that we will study in this work.
There are infinitely many solutions to the φ0 equation,
and we cannot numerically examine the stability of each
and every one of them. So instead, we pick an arbi-
trary representative solution which does not have any
special properties (it shares the same basic current/field
structure and other physical properties listed above with
all of its siblings, and possesses no special symmetries)
that would make it more stable than any other solution.
Therefore its stability should be seen as strong evidence
that most, if not all, of the other solutions obtained in
the same manner should also be stable.

One such representative solution is give in Sec 4.2.4 of
Ref. [12], whose φ0 is given by

φ0 =
fR + if I

∆ρ
, (25)

where

∆ = r2 − 2Mr and ρ = −1

r
(26)

in the ingoing Kerr (Eddington-Finklestein) coordinates
(ν, r, θ, ψ), with M being the mass of the background
Schwarzschild black hole. The quantity fR is a real func-
tion of the form

fR = 15F (ν) sin2 θ cos θ cosψ , (27)

where F (ν) is an arbitrary function specifying essentially
the time dependence of the solution (ν is the null coordi-
nate in ingoing Kerr). The quantity fR also determines
a companion function

f I =
1

sin θ

∫
(∂ψf

R)dθ.

= −5F (ν) sinψ sin2 θ . (28)

Given these expression we have now

φ0 =
sin2 θ

∆ρ
[5F (ν)(3 cos θ cosψ − i sinψ)] , (29)

while the current is

J =
1

2π
√

2∆

[
20F (ν) cosψ sin θ(2 cos2 θ − sin2 θ)

]
,(30)

flowing along the ingoing congruence tangential to the
ingoing null base n.

When we numerically implement this solution, we will
use the Kerr-Schild coordinate system (t̃, x, y, z), in-
stead of the ingoing-Kerr coordinates originally utilized

in Ref. [12]. In Kerr-Schild, we have

φ0 =
3(x2 + y2)F (r + t)

r3

[
3z sin

(
tan−1

(y
x

)
− 1

2
πsgn(x)

)
+ir cos

(
tan−1

(y
x

)
− 1

2
πsgn(x)

)]
(31)

where r =
√
x2 + y2 + z2. We can also now add a mag-

netic monopole piece

φ1 = − i
2

q

r2
, (32)

(it has the same expression in ingoing Kerr and Kerr-
Schild coordinates) to obtain our final magnetically dom-
inated null+ solution. We can do this (despite the equa-
tions being nonlinear) because the null and monopole
solutions decouple in a Schwarzschild spacetime in the
sense that the monopole has no currents, and its field
tensor F does not exert a force on the current of the null
solution [31]. Therefore, the superposition of the null and
monopole solutions still satisfy the force-free condition,
and yield another FFE solution. (We note that although
a magnetic monopole is not physically realistic, a more
realistic split-monopole solution can be constructed by
gluing two copies of the null+ solutions together, with a
current sheet on the interface [30, 31].) The monopole
only contributes to the Coulomb part, and the field ten-
sor is now given by

Fab = 4<
(
φ0m̄[anb] + φ1m[am̄b]

)
. (33)

When combined with the expressions for the tetrad basis
summarized in Appendix D, one can generate the Fara-
day tensor and subsequently the E and B fields via

Ea = F abTb , Ba = (1/2)εabcdFcdTd (34)

where T is the timelike normal to the Kerr-Schild spatial
slices. We do not reproduce the full expressions for E
and B in Kerr-Schild coordinates, as they are long and
tedious. We can however, plot figures that further illus-
trate the properties of the null+ solutions.

For concreteness, we first need to pick the parameters
in our φ0 and φ1. Because φ1 drops off as ∼ 1/r2 (see
Eq. 32) while φ0 drops at a slower rate of ∼ 1/r (see
Eq. 29), we pick q = 1000 and some arbitrary values (so
the solution has no special stability properties as com-
pared to the rest in the family) F (ν) = A cos(Ων) with
A = 1 and Ω = 0.1 (i.e. the solution is time-dependent),
so that the monopole is large enough to ensure mag-
netic dominance at the outer edge of our computational
domain (see the next section). The ratio between the
null and monopole contributions to B is shown in Fig. 1,
where we see that the two contributions are comparable
in magnitude in the outer regions of the computational
domain.

In Fig. 2, we plot the field lines for E and B for the
null+ solution with the parameters set in the last para-
graph. The top left panel of the figure shows the E field
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lines, which clearly demonstrate that the solution is fully
three dimensional, without any axisymmetry. The top
right figure shows the magnetic field lines, which is clearly
affected by the background monopolar contribution. The
bottom panels show the time variation of the Ex com-
ponent of the electric field, demonstrating the time de-
pendence of our solution and the fact that the wave is
propagating inwards. Looking back at Fig. 1, one also
sees that the wave component of this particular null+ so-
lution is rather isotropic and not concentrated near the
poles so there are no jet-like features.

III. A PSEUDOSPECTRAL NUMERICAL CODE

In this section, we briefly introduce the pseudospec-
tral code used for evolving the force-free equations. As
is noted in Refs. [17], a pseudospectral code is espe-
cially suited to the task of examining stabilities, as it
avoids erroneous instabilities that may be triggered by
the larger numerical noise present in finite-difference or
finite-volume schemes. An example is pointed out by
Ref. [17], that during a study of the Sweet-Parker recon-
nection in Ref. [84], a spectral code was observed to not
suffer from secondary island formations resulting from a
tearing-mode instability, in contrast to results obtained
using finite-difference and finite-volume schemes.

In addition to our main evolution code, we also imple-
ment an initial data solver to ensure that the constraints
are properly satisfied. We note that this is an additional
improvement relative to existing codes, as many previous
studies using finite-difference or finite-volume codes have
evolved initial data that violated the constraints (they
however employ constraint cleaning schemes to remove
the violation later during evolution).

A. The code infrastructure

In the interest of completeness, we briefly introduce the
basic infrastructure employed in this work. Our force-free
code is a module of the SpEC code, which was developed
primarily to study binary black holes in full general rel-
ativity. Readers interested in the details are encouraged
to consult [76] and the list of articles shown there.

The basic setup of the computational domain used in
this work is a spherical shell (see Fig. 3), whose inner
edge is at R− = 1.95M, and whose outer edge extends to
R+ = 195M, where M is the mass of the Schwarzschild
black hole, which sets the length and time scales for the
simulations, and will be used as a unit in the plots. The
inner edge terminates just inside the event horizon at
2M (the semitransparent surface in Fig. 3), effectively
excising the singularity from the computational domain,
so we won’t run into related numerical issues. The inner
edge being inside the event horizon means there will be
no information coming through that boundary into the

FIG. 3: Half of the computational domain and the spectral
grid (spectral collocation points are at the intersection of the
black lines), the semitransparent sphere represents the event
horizon of the Schwarzschild black hole.

computational domain, and so we do not need to impose
boundary conditions there.

For the outer boundary, the evolution variables E and
B are first translated into the characteristic modes (see
Appendix A for their detailed expressions), which can
be seen as waves propagating normal to the boundary,
carrying information into and out of the computational
domain. To ensure there are no additional incoming per-
turbations during the simulation, which would create the
false impression of instabilities, we use the analytical ex-
pressions for E and B from the exact null+ solutions
to compute the clean incoming characteristic modes and
impose them as boundary conditions (so there is no ad-
ditional perturbation being carried by these waves into
the computational domain). On the other hand, there
are no conditions imposed on the outgoing characteristic
modes. This way, there is no new perturbations coming
into the computational domain, but the perturbations
already inside are allowed to exit.

In order to carry out parallel computation, we break
the entire computational domain into eight concentric
spheres, whose boundaries are seen as dense concentra-
tions of black circles in Fig. 3. Each subdomain is handed
to a separate processor for computations. The commu-
nication between subdomains is also done via character-
istic modes, where the outgoing characteristic modes of
one subdomain are matched onto the ingoing character-
istic modes of its neighbouring subdomains via a penalty
method [85–88] so that any discontinuity across the sub-
domain boundaries is forced to vanish over time. Within
each subdomain, the data is represented pseudospectrally
through an expansion into Chebyshev polynomials in the
radial direction and spherical harmonics in the angular
directions. When we take spatial derivatives, we simply
use the analytical expressions for the derivatives of the
individual basis functions and sum the results up using
the expansion coefficients. The code is pseudospectral
and not fully spectral in that we do not evolve the series
expansion coefficients, but instead keep the values of E
and B on a set of collocation points (at the intersections
of the black lines in Fig. 3) optimized for translating back
and forth into expansion coefficients (so that we can go
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quickly into the series expansion representation and take
spatial derivatives there, before jumping back). This way,
we can implement the evolution equations in their natu-
ral spacetime form, yet still take advantage of the high
accuracy of spectral derivatives. The number of colloca-
tion points represents the resolution of the simulation and
corresponds to the highest order of the basis functions
used (e.g. the largest l in Y lm). We label the different
levels of resolution using an integer k which changes lin-
early with the total number of collocation points in each
spatial dimension. In the radial direction, the number
of collocation points is given by k + 6. In the spherical
directions, the highest l in the harmonics used is 2k + 7,
which translates into 2k + 8 collocation points in the θ
direction, and 4k + 16 collocation points in the φ direc-
tion. To give readers an intuitive feel of the density of
collocation points, Fig. 3 plots the grid for k = 6.

B. Initial data solver

It is frequently the case with FFE evolutions that the
initial B field is not divergence free, and subsequently
∇ · B is cleaned using some additional cleaning field
(see Appendix C) during evolution. We do not imple-
ment such a cleaning field, and instead properly solve
the constraints for our initial data. This is only neces-
sary for the evolution of the perturbed solutions carried
out in Sec. IV, and is not used for the numerical tests of
Sec. III C, where we simply use exact constrain-satisfying
analytical solutions as initial data.

The divergence ∇ · B can be removed by solving the
Poisson equation

∇2Φ = −∇ ·B (35)

on the initial spatial hypersurface, and then B+∇Φ will
be a divergence-free field. We solve Eq. (35) with the
multidomain spectral method described in Ref. [89], and
set the Dirichlet boundary condition Φ = 0, so as to
preserve the original B as much as possible by avoiding
any unnecessary ∇Φ pointing between different segments
of the boundaries.

We also tune the E field so that the FFE constraint
E · B = 0 is also satisfied by the initial data. This is
achieved easily through an algebraic operation

E→ E− E ·B
B2

B . (36)

As this only modifies the E field, it will not interfere
with the earlier divergence cleaning step. We emphasize
that this is the same operation as is given by Eq. (15) of
Ref. [15], except we are strictly applying the operation on
the initial data, whereas in [15] this operation is applied
at every time step of the evolution.
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FIG. 4: Top: The L2 norm of the error measure ∆B2 for
the constant B field simulation. Bottom: The L2 norm of
the error measure ∆E2. The simulation time is shown in
units of the light-crossing time R+ from the origin to the
outer boundary R+. There is only one curve being plotted in
each panel, which oscillates quickly giving the appearance of
a band.

C. Numerical tests

1. Constant B field in flat spacetime

A particularly simple solution to the FFE equations is
a constant B field with vanishing E field in a Minkowski
background spacetime. We choose the spatial slicings
such that K = 0, and adopt a Cartesian coordinate
system in which N = 1, β = 0, and g is the unit
matrix. This is a physically trivial yet numerically in-
teresting solution. Here and for the rest of the paper,
the computational domain is a spherical shell, which is
broken down into “subdomains” of concentric spherical
shells (four shells extending from a radius of R− = 1.9
to R+ = 15 code units for this test; the speed of light
is unity in the code units). Therefore, the constant B
field subtends all possible angles with the normal n̂ of
the subdomain boundaries, including the special case of
(n̂ · B)2 = (n̂ × E)2 = 0, when the evolution system
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prescribed by Eqs. (15) and (16) becomes ill posed.
For initial conditions, we use an analytical constant B

field of unit strength without any added noise or per-
turbation, which is also imposed as a Dirichlet bound-
ary condition on the incoming (into the computational
domain) characteristic modes during the evolution, on
the external boundaries of the computational domain (at
R− = 1.9 and at R+ = 15). The interior of the com-
putational domain is evolved with Eqs. (15) and (16),
and the differences between the numerical and analytical
values of B and E provide a precise measurement of the
simulation error. Letting ∆B and ∆E be the differences
between the numerical and analytical values of B and E,
we compute the L2 norms of ∆B ·∆B and ∆E ·∆E:

L2(s) =

√∫
Σ
|s|2dV∫
Σ
dV

, dV =
√
|det(h)|dx3 , (37)

where h is the spatial metric and Σ is the computational
domain. The values of L2(∆B2) and L2(∆E2) over the
entire computational domain are plotted in Fig. 4. From
this figure, we see that despite not being strictly strongly
hyperbolic, the evolution system can be evolved stably
for a long period of time.

The constant B field test is, however, not suitable for
examining the convergence behavior of our pseudospec-
tral code with increasing resolution, because the spatial
derivatives of the evolution variables vanish identically
in approximations to the spatial derivatives at any or-
der. For this task, we turn to the nontrivial analytical
solutions given in Ref. [12]. Once again, we utilize ana-
lytical solutions because they provide precise references
for comparison, allowing for more rigorous convergence
tests.

2. Analytical null+ solutions

For a nontrivial analytical solution that’s more suitable
for testing convergence, we turn to the time-dependent
fully three-dimensional wave given at the end of Sec. II C,
whose structure is plotted in Fig. 2. This null+ wave
solution has a large amplitude and is fully nonlinear.

In Fig. 5, we plot the L2 norms of the errors in B
and E for our simulations of the null+ solution. Due
to constraints on computational resources, we evolve the
simulations to 1000M, which is around 16 cycles for the
time-dependent F (ν). We carry out evolutions at ten
different resolutions where the number of radial colloca-
tion points is given by k + 6, k ∈ {0, · · · , 9}. Note our
maximum lmax for the higher resolutions becomes exces-
sive and the improvements in accuracy come mainly from
the increase in radial resolution, but we keep the same
lmax vs. k relationship to ensure consistency across all
resolutions. Recall from Sec. III A, the number of col-
location points in each spatial dimension scales linearly
with k. On the other hand, Fig. 5 shows that the errors
decline approximately exponentially with k, so our FFE
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FIG. 5: Top: The L2 norm of the error measure ∆B2 for
the null+ simulations. Bottom: The L2 norm of the error
measure ∆E2. There are ten resolutions being plotted, with
the number of radial collocation points given by k + 6, and
the maximum l for the angular Y lm decomposition given by
2k + 7. In both panels, the error decays with increasing k,
so that k = 0 corresponds to the topmost (black) line, and
the lower lines are, in turn, k = 1, 2, 3, · · · . The errors decline
approximately linearly in log scale, indicating that our pseu-
dospectral code achieves exponential convergence as expected
over a wide range of resolutions, with the highest resolution
being limited in accuracy by machine precision.

implementation achieves exponential convergence for this
time-dependent, nontrivial, but smooth (without current
sheets) test case, as expected from its pseudospectral na-
ture.

3. Quasinormal modes of the black hole magnetosphere

Next, we present a test case with richer dynamics.
The test is designed to demonstrate the code’s ability
to correctly treat various types of waves allowed by the
force-free equations, and in particular account for their
interactions with the spacetime curvature to a high ac-
curacy. As mentioned in the Introduction section, the
null+ solutions we examine are envisaged to play the role
of carrying energy across magnetospheres of black holes
or neutron stars, therefore a more direct demonstration
of the relativistic effects is beneficial.
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Specifically, we launch a train of ingoing FFE waves
towards the black hole, and examine the magnetosphere
quasinormal modes (QNMs) being excited. Similar
modes are intensely studied for gravitational waves, and
constitute the main postmerger signal after a coales-
cence of two black holes. More recently, they have been
shown to also be present in a black hole magnetosphere,
where the so-called trapped FFE modes (in the short-
wavelength/eikonal limit, they become the fast magne-
tosonic waves, so they will be referred to as generalized
magnetosonic waves below) can be excited and trapped
by the gravitational potential well of the black hole, and
leak out over time with an exponentially decaying ampli-
tude. The frequency and decay rates of these modes are
completely determined by the spacetime geometry and
the nature of the wave, and is independent of how they
are excited. In particular, this means whatever the fre-
quency of the wave train we send in, we should observe
the same frequency and decay rate for the QNM it ex-
cites.

When we launch a wave train consisting of in general
the long wavelength generalizations of both Alfvén and
magnetosonic waves towards the black hole, part of the
wave is swallowed by the black hole, while the rest scat-
ters around it and travels back out. During the pro-
cess, some generalized magnetosonic waves are excited
as QNMs, which do not have a counterpart consisting of
generalized Alfvén waves. Our code needs to be able to
correctly distinguish the propagation behaviour of both
types of waves, especially their different interactions with
spacetime curvature, in order to reproduce the frequency
and decay rates predicted by analytical calculations.

The wave train is constructed by first building a φ0

(the NP scalar representing ingoing waves) that has a Y 22

spherical harmonic angular profile and a sinusoidal radial
profile A sin(Ω(r−r0)) with r0 = 200M, enclosed in a top-
hat-like radial envelope extending from 100M to 300M.
We also add a q = 1000 magnetic monopole which enters
through the Coulomb background φ1 as in Eq. (32). To-
gether, these scalars allow us the build the Faraday tensor
via Eq. (33) and then E and B via Eq. (34) (Fig. 6 pro-
vides a visual depiction of the wave train and its time evo-
lution). In order to accommodate the wave train, we use
a slightly different domain structure from that of Sec. II C
and the rest of the paper (including the stability studies
later). Namely we have 16 concentric spherical shells ex-
tending from 1.05M to 495M, with the number of radial
collocation points given by 5 + 2K and those for the θ
and φ directions by 7 + K and 14 + 2K (we have used
capital K to distinguish it from our usual resolution label
of k used in Sec. III C 2 and later stability test sections).

The bottom panel in Fig. 6 shows both the power and
the limitation of the spectral methods. The gray surface
in that figure is constructed by linearly interpolating be-
tween the collocation points (done by the visualization
software, and is not the actual spectral representation
of <φ0), which is not smooth at all because there are
very few collocation points inside each radial oscillation

FIG. 6: Top row: Contours of <φ0 that show the structure of
the wave train. It has a Y 2,2 angular profile, and consists of
fast radial oscillations with frequency Ω. It is confined into
a radial top-hat-style envelope of width 200M. The shape of
the wave train shows that our test is fully three dimensional,
without any axisymmetry. The figures on the left and right
depict the wave train at earlier and later times, showing that
it is initially moving inwards toward the black hole. The green
semitransparent surface is the equatorial slice of the computa-
tional domain, included to indicate its extent. The grid struc-
ture on this slice is also plotted to provide a visual description
of the density of collocation points at K = 7. Bottom figure:
The <φ0 is depicted by warping half of the equatorial slice
with a vertical displacement proportional to the <φ0 values
at collocation points, and then connecting them via “straight
lines” into the gray surface (i.e. the gray surface is a trivial
interpolation between the collocation points and is not the
actual <φ0 as represented by the spectral functions). The
green surface is the tophat-like radial envelope function. This
figure also corresponds to K = 7.

period. The actual spectral “interpolation” using our
Chebyshev polynomials on the other hand, gives very
smooth functions (see Figs. 7, 8 and 9 below). This shows
that the spectral methods are capable of providing accu-
rate representations of functions with very few colloca-
tion grid points, in other word their effective resolution,
given a fixed number of grid points, is very high. On the
other hand, the black square in that figure highlights the
region close to the rather sharp corner of the top-hat-like
envelope of the form

1(
1 + e

−100
r−r−

r+−r−

)(
1 + e

−100
r+−r

r+−r−

) , (38)

with r+ and r− being the outer and inner boundaries of
the envelope respectively. The spectral methods behave
rather differently from finite difference methods, where
the sharp kinks are simply under-resolved and rounded
due to numerical dissipation. With the present low radial
resolution, the steep envelope cannot be resolved, and
leads to Gibbs oscillations bleeding into the surrounding
region. While the shape of the waveform is thus not per-
fectly represented, we note that nevertheless the shape
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FIG. 7: The log of φ
(2,2)
2 plotted as a time series. The curves

corresponding to different wave train frequencies Ω are shifted
slightly relative to each other vertically, so that the curves
won’t lie right on top of each other, and we can see more
clearly. The flat region for the curves correspond to the
wave train itself, moving back outwards after having scat-
tered around the black hole. The sloped region corresponds
to the exponentially decaying QNM. We can see that the wave
train has very different frequencies, but the QNMs excited in
all cases share the same frequency and decay rate.

Analytical Ref. Ω = 0.2 Ω = 0.3 Ω = 0.4 Ω = 0.5

ω 0.457596 0.444071 0.453783 0.453742 0.44466

γ 0.0950044 0.0922016 0.0885479 0.0893736 0.0901566

TABLE I: The fitted values of the frequency ω and decay rate
γ of the QNMs excited by wave trains of different Ω, as well
as the reference analytically computed values.

is propagated without diffusive broadening [90] (also see
this reference for an additional suite of tests on the nu-
merical behaviour of the pseudospectral infrastructure
underlying our force-free code), as typically caused by
numerical viscosity of finite-difference codes.

To examine the QNMs, we need to extract the out-
going wave component φ2 of the Faraday tensor (QNMs
escaping from the trapping gravitational potential will
show up as an exponential tail to the wave train in φ2).
We do so by extracting the φ2 values via Eq. (21) on a
sphere located at 100M from the coordinate origin, and
integrate this φ2(θ, φ) distribution against the Y 22 spher-
ical harmonic to get a single scalar value representing the
(2, 2) harmonic component of φ2. We do so at each time
step and obtain a time series for this harmonic coefficient

of the outgoing wave, which we denote φ
(2,2)
2 (t). We note

that in order to make comparison with perturbation the-
ory that predicts the QNM frequencies, we use a small
wave amplitude of A = 0.0001. There is however still
nonlinear interactions between the wave and the back-
ground magnetic monopole.

We first test whether the correct QNM wave is pro-
duced in our code, specifically, whether it has the correct
frequency and decay rate as predicted by analytical mod-
els. To this end, recall that these values are independent
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FIG. 8: The dashed black lines indicate the fitting results
(they extend only over the fitting interval) corresponding to
the fitted parameters in Table I, while the curves being fitted
are the negatively sloped segments of the curves in Fig. 7.

of the specifics of the initial wave train, so a stringent
test consists of launching initial wave trains with differ-
ent frequencies Ω, and see if we get the same set of QNM
parameters despite this major difference. If we do obtain
the same parameters as expected, we can then be confi-
dent that the code has managed to cleanly excite and ex-
tract the QNMs, and the decaying tail is not some other
leftover feature from the wave train (such as the oscilla-
tions seen in the black square of Fig. 6, which is in reality
much smaller in amplitude and drops off faster than the
QNMs). We simulate four cases with Ω = 0.2 , 0.3 , 0.4,

and 0.5 at K = 7, and plot their φ
(2,2)
2 in a log plot

(so exponential decay shows up as a straight line with
a negative slope equaling the decay rate) in Fig. 7. By
visual inspection, we can already see that despite the
rather different frequencies of the wave train, the fre-
quencies ω and decay rates γ of the exponential tails in
the four cases are indeed the same. We can also carry
out a more quantitative fitting of these quantities using
Mathematica’s FindFit function. The results and the an-
alytical reference values are shown in Table. I. (We also
plot in Fig. 8 the fitting results (dashed black lines) inside
the fitting interval to provide a visual depiction of the fit-
ting quality. ) We indeed find a good match between the
measured and predicted values. Aside from truncation
error, the excitation of QNMs of other overtone numbers
n > 1 (we have only considered the fundamental overtone
n = 1 that decays the slowest) is likely a main source of
any residual errors.

The second test we carry out is a convergence test,
to verify that our code still achieves exponential conver-
gence with this dynamically richer setup. To this end,
we fix Ω = 0.4 and perform four simulations at K = 5,

K = 7, K = 9 and K = 11. The log plots of φ
(2,2)
2 for

these runs and their differences are shown in Fig. 9, which
shows that exponential convergence is indeed achieved.
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FIG. 9: The top figure shows the wave train and the QNM tail
for the four resolutions of the Ω = 0.4 simulation. The bottom
figure shows the differences between resolutions. Because the
differences are approximately equally displaced in the vertical
direction, which is plotted in log scale, the simulation indeed
achieves exponential convergence.

IV. STABILITY OF THE NULL+ SOLUTIONS

In this section, we utilize our new FFE code and carry
out numerical simulations in order to determine whether
the null+ solutions are stable, in the sense of whether a
perturbed solution will asymptote to an exact null+ so-
lution over time, or diverge from it. As an underlying
unperturbed null+ solution, we use the same configura-
tion shown in Sec. II C and studied in Sec. III C 2, with
q = 1000, F (ν) = A cos(Ων) and A = 1. However, here,
we will vary Ω. Note that we have chosen a large absolute
magnitude for the Faraday tensor in order to carry out
a more stringent test, as small magnitudes will dimin-
ish the significance of the nonlinear terms. We also use
the same domain structure as in Secs. II C and III C 2,
namely eight spherical shells extending from 1.95M to
195M.

We denote the Faraday tensor for the unperturbed so-
lution as F and impose it as a Dirichlet boundary condi-
tions on the incoming characteristic modes as discussed
in Sec. III A. In other words, we enforce the condition
that there are no incoming perturbative modes. On the
other hand, there is no restriction on the outgoing char-

acteristic modes, so overall, we have a purely outgoing
boundary condition for the perturbations, just as when
one studies the mode stability of the Kerr metric by cal-
culating its QNMs, for example.

A. Perturbation in φ0

The simplest perturbation to the null+ solution is a
variation in the initial φ0 profile, so that it no longer sat-
isfies Eq. (29). Specifically, we generate a Faraday field
FA from an altered φA0 (in addition to an unperturbed
monopole component) that is perturbed away from the
exact solution (Eq. 29) by

δφ0 = 0.25
sin2 θ

∆ρ
F (ν)i sinψ , (39)

where we choose the same F (ν) function as the unper-
turbed solution. For simplicity, we also choose Ω = 0 so
that the unperturbed background solution is time inde-
pendent. Such a solution does not have the usual char-
acter that one would associate with a travelling wave,
although it is still technically a wave in the same sense
that a constant would satisfy a simple 1-D wave equa-
tion. Nonetheless, this solution is still physically inter-
esting, as the energy flux does not vanish, so that the
solution describes an “electromagnetic wind” or “Poynt-
ing wind” [31]. We will examine a time-dependent case
later in Sec. IV C.

Given the altered field φA0 , we now define our perturbed
initial data. Because we employ boundary conditions
based on the unperturbed background solution, we re-
quire the perturbed initial data FP to approach the un-
perturbed solution at the boundaries (strictly speaking
we don’t need a boundary condition at the inner bound-
ary as it is inside the event horizon, but we use the Dirich-
let condition there for simplicity). We achieve this by

FIG. 10: Left: The right-hand side of Eq. (35), or explicitly,
the initial −∇·B value on a vertical slice of the computational
domain before we apply our initial data solver (the z-axis
corresponds to θ = 0 and θ = π). Right: The left-hand side
of Eq. (35), which is the value of ∇2Φ that emerges after
solving for the initial data.
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FIG. 11: Top: The L2 norm of the difference measure ∆B2

for the null+ simulations initially perturbed in the φ0 values.
Bottom: The L2 norm of the difference measure ∆E2. The
arrangement of the collocation points is the same as for Fig. 5.

blending between FA and F via

FP = f FA + (1− f) F , (40)

where the weighting function is

f = P 8(2− P )8Q8(2−Q)8 , (41)

with

P = 2
r −R−
R+ −R−

and Q = 2
θ

π
. (42)

Equation (41) ensures 0 ≤ f ≤ 1 such that the unper-
turbed solution dominates on the domain boundaries,
ensuring a smooth transition to the Dirichlet boundary
conditions imposed there. The angular dependence in A
ensures that the unperturbed solution also dominates on
the vertical axis (θ = 0 and θ = π). This feature is not
constructed to satisfy any requirements of the present
form of perturbation, but instead is included for later
convenience in Sec. IV B.

The perturbed solution does not automatically satisfy
the constraints; since the monopole resides inside the
event horizon and outside of our computational domain,
the magnetic field should be divergence-free within the
computational domain. We are therefore free to solve

the Poisson equation in Sec. III B to remove any diver-
gence. In Fig. 10, we plot the right and left-hand sides of
Eq. (35) and show that the initial data solver performs
as designed by removing ∇ ·B. Note that there is some
high-frequency noise in the output of this elliptic solver
(see the center of Fig. 10 (b)), which we partially remove
by passing the initial data through a spectral filter that
reduces the high-frequency spectral coefficients in the ra-
dial direction. The removal is only partial as the filtering
strength is chosen to be conservative so it does not intro-
duce new divergence into the magnetic field. As a second
step, we also use Eq. (36) to impose the FFE constraint
E ·B = 0.

In Fig. 11, we plot the evolution of L2(∆B2) and
L2(∆E2), where ∆B = BP−B is the difference between
the evolved BP and its unperturbed counterpart B (com-
puted analytically). ∆E is defined similarly. We observe
that the differences drop by several orders of magnitudes

FIG. 12: Top four panels: The relative difference |∆B|/|B| on
a vertical slice of the computational domain. The magnitude
of the relative difference is indicated by the height of the sur-
face as well as the colouring. Different panels correspond to
different times. The initial perturbation seen at t = 0 prop-
agates inwards creating the pattern shown at t = 60. After
scattering around the black hole, the perturbations propagate
outwards, forming the pattern seen at t = 150, and eventually
begin to exit the computational domain as seen at t = 270.
The bottom two panels show the initial and later perturba-
tions on the horizontal equatorial slice of the computational
domain, they show that the perturbations are three dimen-
sional in nature, without axisymmetry.
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FIG. 13: The numerical error in BP (as seen in |∆B|/|B|)
being generated at subdomain boundaries (signified by dense
concentrations of black lines). The gray frames highlight the
locations of the error on such boundaries. Note that the warp-
ing scale and the colour map are different from Fig. 12, but
the plane shown is the same as those appearing in Fig. 12.

as time progresses. A more detailed distribution of ∆B
is shown in Fig. 12, which plots the relative difference
|∆B|/|B| on a vertical slice of the computational domain.
The magnitude of the relative difference is indicated by
the height of the surface as well as the colouring. The
panels correspond to different times and suggest that the
perturbation does not diverge, but instead propagates in-
wards to begin with, and then outwards after scattering
around the black hole, before exiting through the outer
boundary.

Consequently, our observation indicates that there are
no diverging modes excited by our initial perturbation
at the fully nonlinear level, and so the null+ solution is
stable against our perturbation. Furthermore, the even-
tual exit of the perturbation is consistent with the null+

solution being asymptotically stable (attracting). We
note however that we cannot rigorously prove the lat-
ter stronger stability, as L2(∆B2) and L2(∆E2) values
at late times do not reach their small sizes in the un-
perturbed convergence test case shown in Fig. 5. The
main culprit appears to be the high-frequency noise in
the initial data we see in Fig. 10 (b), which is absent from
the analytical initial data used for the convergence tests.
The fact that the convergence behaviour improves after
we apply spectral filtering to the initial data before start-
ing the evolutions provides evidence for this conclusion.
In particular, the SpEC code utilizes a penalty method
[85–88] to enforce consistency across internal boundaries,
which allows for discontinuities to exist temporarily. It
has been noted in several previous studies [80, 91] that
high-frequency noise tends to induce large discontinuities
at the internal boundaries, thereby creating errors in B.
The situation is the same for our FFE evolution system,
as can be seen in Fig. 13. The high-frequency noise also
destroys the convergence at the highest resolutions (see
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FIG. 14: Example congruence of geodesics in the equatorial
plane of the Schwarzschild black hole, with a nonvanishing
impact parameter b translating into P = 2/27M2 (not the
value we use for the simulations, but instead chosen to ac-
centuate the perturbation). The red circle is the location of
the event horizon. Angle Y is the angle at which the dashed
geodesic strikes the origin.

Fig. 11), because lower resolution (smaller k) acts as an
effective spectral filter, shielding the lower resolution sim-
ulations from high-frequency noise. We expect this com-
plication to disappear as we ascertain the source of the
high-frequency noise (one possibility is the boundary con-
dition of Φ = 0 being too simplistic) and further improve
our procedure of solving Eq. (35).

B. Perturbation in the propagation direction

With numerical experiments, we can only state that
there are no diverging modes being excited by the par-
ticular perturbations that we introduce into the initial
data. Therefore, in order to provide as strong evidence
as possible for stability (meaning the nonexistence of di-
verging modes in general), it is important that we con-
sider a set of initial perturbations that is as general as
possible. In the last section, although we started with
specific modifications to φ0, our initial data construction
procedure nevertheless has to go through the blending
and constraint solving stages, which means the resulting
perturbation is in fact rather general (containing many
modes).

However, the wave component (the φ0 piece of the
Faraday tensor) of the simple perturbation studied in
Sec. IV A still follows the GPNDs initially as we have
retained the use of the Kinnersley tetrad when construct-
ing the perturbed Faraday tensor (φ0 is by definition the
wave propagating along the tetrad’s ingoing null direc-
tion, which for the Kinnersley tetrad is in a doubly degen-
erate GPND direction) and is therefore (at least initially)
not necessarily backscattered by the spacetime curvature
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(see Sec. V). In other words, the perturbation may be
restricted to a rather specific submanifold in the solu-
tion space. In principle, it is possible that even though
null+ solutions are stable on this submanifold, they may
still be unstable under perturbations off of it. Although
we would expect numerical truncation errors to induce
perturbations away from this submanifold regardless of
whether the initial perturbation places us on it or not, the
time scale for this occurring may simply be too large so
we fail to observe the possible instabilities in the previous
test, and a more appropriate off-the-submanifold initial
perturbation is desirable. In this subsection, we con-
struct perturbations that are nontrivial in the sense that
the wave component of the initial data does not follow de-
generate GPNDs everywhere and is therefore generically
backscattered by spacetime curvature. In other words,
the initial data do not possess one of the core features of
the null+ solutions, and the perturbation is not restricted
to some specific submanifold in the solution space.

For the initial wave propagation direction, we use
a congruence of null geodesics (that is generally not
tangential to degenerate GPNDs) in the Schwarzschild
spacetime, which admits analytical descriptions. We
will begin by introducing the procedure for generat-
ing a single geodesic within the congruence, building
an adapted Newman-Penrose null tetrad along it whose
ingoing null basis vector is tangential to the geodesic,
and constructing the FP field whose wave component
φ0 (as defined with respect to that newly built tetrad)
follows the geodesic direction. Later, we will describe
how to obtain the entire congruence, thus filling in the
FP field everywhere. We begin by choosing Boyer-
Lindquist/Schwarzschild coordinates (r, θ, φ) so that the
geodesic lies on the equatorial plane. The null geodesic
then satisfies the equation [92–94](

dy

dφ

)2

= 4y3 − g2y − g3 , (43)

where

y =
M

2r
− 1

12
, g2 =

1

12
, g3 =

1

216
−
(
M

2

)2

P , (44)

FIG. 15: Similar to Fig. 10, but for initial data with a per-
turbed propagation direction. Left: The right-hand side of
Eq. (35). Right: The left-hand side of Eq. (35).
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FIG. 16: Top: The L2 norm of the difference measure ∆B2 for
the null+ simulations initially perturbed in the propagation
direction. Bottom: The L2 norm of the difference measure
∆E2.

with P = 1/b2 for impact parameter b. With small im-
pact parameter (P > 1/27M2), the null geodesic will be
absorbed by the black hole, and the shear-free principal
congruence tangential to the degenerate pair of incoming
GPNDs corresponds to b = 0. The solution to Eq. (43)
is then given by y(φ) = ℘(φ + Y |g2, g3), where ℘ is the
Weierstrass elliptic function and (g2, g3) are its invari-
ants. The angle Y is the angle at which the geodesic
strikes the origin r = 0.

Armed with the geodesic, we can now build a Newman-
Penrose null tetrad adapted to it. First, we calculate the
spatial tangent to the geodesic, and then we convert it
into a null 4-vector and apply the Jacobian from Boyer-
Lindquist to Kerr-Schild coordinates (see Appendix D for
details). We will let the n basis vector be in the direction
of this four-dimensional null tangent, while keeping l the
same as that of the Kinnersley tetrad. The scaling of n
is then fixed by lana = −1. The remaining m and m̄
bases can be fixed using a Gram-Schmidt procedure [80].
We first define two spatial vectors C and D, so that m =
1/
√

2(C + iD). Let G and H be the Kinnersley tetrad
versions of C and D, respectively. We can then achieve
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proper orthonormality for the new tetrad by setting

Ĝa = Ga +Gblbn
a +Gbnbl

a, Ca =
Ĝa√
ĜbĜb

, (45)

and then

Ĥa = Ha +Hblbn
a +Hbnbl

a −HbCbC
a , (46)

Da =
Ĥa√
ĤbĤb

. (47)

Under this tetrad, we choose a preliminary Faraday field
FA according to Eq. (22), with the φ0 distribution pre-
scribed by Eq. (29), which now describes an incoming
wave (there is no φ2) travelling in the new n direction
that is different from the GPNDs provided b 6= 0.

We now turn to filling the entire computational do-
main with geodesics and the Faraday field tensor. To
this end, we begin by specifying an impact parameter b
and populate the equatorial plane with null geodesics by
varying Y (see Fig. 14). We then take the x ≥ 0 portion
of Fig. 14 and rotate it around the z-axis, thus filling the
entire 3D space. However, when the impact parameter
does not vanish (for our perturbative study, we choose

b = M/
√

10), the resulting congruence will be singular
on the vertical axis. We eliminate this problem by con-
structing an unperturbed null solution with the same φ0

(but with b = 0), and blend its Faraday tensor F with
the FA associated with the b 6= 0 congruence, so that
only the unperturbed null solution F that is regular on
the vertical axis is present there. Explicitly, we set

FP = f FA + (1− f) F , (48)

FIG. 17: The relative difference |∆B|/|B| on a vertical slice of
the computational domain. The initial perturbation seen at
t = 0 propagates mostly outwards, creating the patterns seen
at t = 60 and t = 100, and exits the computational domain
as seen at t = 200.

FIG. 18: Similar to Fig. 15, but for initial data with a per-
turbed propagation direction based on a time-dependent un-
perturbed solution. Left: The right-hand side of Eq. (35).
Right: The left-hand side of Eq. (35).

with the weighting function f given by Eqs. (41) and
(42) (the choice of Q in those equations was made
in anticipation of this regularization procedure on the
poles). Furthermore, we will add an unperturbed mag-
netic monopole with q = 1000 to obtain a perturbed
null+ solution just as in Sec. IV A. We also carry out the
same constraint enforcement procedure as in Sec. IV A.
For this section we will keep the background solution time
independent with Ω = 0, and leave the time-dependent
case to the next section.

We note that just as before, the blending and con-
straint solving stages ensure that the perturbation we
start the simulation with is in fact rather general, with
many radial and spherical modes excited. Our procedure
differs from an explicit sum of modes with random co-
efficients in that the specific modifications to the wave
propagation directions essentially introduce correlations
into the mode coefficients, so that the modes don’t acci-
dentally cancel out, leaving us with a perturbation with-
out propagation direction change. It also helps to avoid
the initial data solver simply removing the uncorrelated
constraint-violating modes and bringing us back to the
unperturbed exact solution.

The output of the initial data solver is displayed in
Fig. 15, while the evolution of ∆B and ∆E is shown
in Figs. 16 and 17. Despite having a different type of
initial perturbation, we observe a similar behaviour as
seen in Sec. IV A, with no diverging modes occurring,
and with the perturbation eventually exiting through the
outer boundary.

C. time-dependent background solution

For our final numerical setup, we introduce a time de-
pendence with Ω = 0.1, so that the background solution
has the familiar character of a travelling wave. The pro-
cedure for introducing perturbations is otherwise identi-
cal to Sec. IV B, so that the waves are initially travelling
in directions different from the degenerate GPNDs.

The output of the initial data solver and the evolu-
tion codes are displayed in Figs. 18, 19 and 20. Despite
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the change of energy flux character from electromagnetic
winds to waves, our simulation suggests that the now
time-dependent null+ solutions are also stable. The most
noticeable difference with the two earlier cases is that the
perturbation propagates almost entirely inwards initially,
and is absorbed by the black hole almost completely after
one light-crossing time.

V. SCATTERING BY SPACETIME
CURVATURE AND THE ROLE OF GPNDS

In this section, we seek to shed some light on the ques-
tion of what feature of the analytical solutions examined
in this work allows them to avoid being backscattered
by spacetime curvature. Because we will only carry out
analytical studies on the unperturbed exact solutions in
this section, the null and null+ solutions are exactly the
same in terms of their wave propagation properties. So
we will consider pure null solutions for brevity, with the
understanding that the conclusions translate to the wave
component of the null+ solutions trivially.

The answer to the scatter-avoidance question is inter-
esting in that it provides guidance to the search for sim-
ilar FFE solutions in other spacetime backgrounds, or
solutions to non-FFE equations. For example, when sev-
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FIG. 19: Top: The L2 norm of the difference measure ∆B2

for the initially perturbed time-dependent null+ simulation.
Bottom: The L2 norm of the difference measure ∆E2.

FIG. 20: The absolute difference |∆B| on a vertical slice of
the computational domain. The initial perturbation seen at
t = 0 propagates inwards creating the patterns seen at t =
70 and t = 120. By t = 200, the perturbation has been
almost entirely absorbed by the black hole. We have shown
the absolute, rather than the relative difference, because |B|
increases quickly when we approach the black hole, so it is
more difficult to see what is going on in the inner regions
with a relative difference plot.

eral analytical solutions [9, 10] to the FFE equations were
first found, it was not immediately clear why such simple
solutions exist [10, 12], given that the FFE equations are
nonlinear. Furthermore, such scatterless null solutions
are closely related to important advances in mathemati-
cal physics, such as the discovery of new solutions to the
Einstein equations [95, 96], and the definition of twistors
[97]. Therefore it is informative to try to understand the
core features of these solutions at an intuitive level.

A hint on the answer to this question is provided by the
Goldberg-Sachs theorem [98], which states that scatter-
avoiding waves must propagate along a repeated princi-
pal null direction (GPND4) of the Weyl curvature tensor.
However, as far as the authors are aware, there is no ex-
plicit analysis in the literature of the reverse question,
i.e. whether all waves propagating along GPNDs are to
some extent scatter avoiding. Aside from shedding some
light on the scatter avoidance puzzle, this analysis also
fills a gap in the literature by providing a simple physical
intuition on the concept of GPNDs, which underlies such
important constructs and results as the Petrov classifica-
tion of spacetimes and the peeling theorem [97, 99–102].

Before diving into the technical details, we first sum-

4 We denote these principal null directions as GPNDs, rather than
PNDs, to emphasize that they are gravitational PNDs, and dis-
tinguish them from the electromagnetic PNDs that we will en-
counter later.
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marize the results of this section, and provide some intu-
itions as to why one should expect these results. Readers
only interested in the conclusions and their uses can skip
the derivations presented later in this section. The con-
clusions are

1. Null solutions that propagate along repeated GP-
NDs of multiplicity 3 or above will not experience
scattering by spacetime curvature at all. This re-
quires the background spacetime to be of Petrov
type III or type N [103, 104] (and of course type O
which is flat) 5, and for the null waves to be prop-
agating along the special direction in those space-
times identified by the repeated GPNDs.

Such a situation arises when analysing the coinci-
dent gravitational and electromagnetic wave signals
from distant sources in the context of multimessen-
ger astronomy. The two types of waves travel in
the same direction for the majority of their jour-
ney, and the gravitational wave gives a metric per-
turbation of type N with the four-fold degenerate
GPND pointing in the propagation direction. This
means one does not need to worry about the grav-
itational wave changing the electromagnetic wave
during their long journey to Earth.

2. When the spacetime is less special in the sense
that the repeated GPNDs have less multiplicity, the
null electromagnetic solutions travelling along the
repeated GPNDs will in general experience some
scattering by the spacetime curvature. However,
the more severe backscattering (where a wave prop-
agating in the opposite direction and/or a Coulomb
background piece is created by the scattering) can
be avoided, and the scattering only manifests itself
as an influence on the wavefront profile.

As Schwarzschild and Kerr spacetimes are of Petrov
type D (the multiplicity of the degenerate GPNDs
is two), this is the situation relevant for the exact
analytical solutions (more precisely the null part of
the null+ solutions) presently under examination.
The avoidance of backscattering allows for, e.g.,
setting φ2 (the outgoing wave component of the
Faraday tensor) and φ1 (the Coulomb background
piece) to zero, and only solving for φ0 (the ingo-
ing wave piece) in the force-free equations, which
significantly reduces the complexity of the solution
finding process. We expect similar features to also
be available when solving the equations of other
field theories in these important spacetimes.

5 Petrov type I: four different GPNDs; type II: two degenerate
GPNDs and two nondegenerate GPNDs; type D: two sets of
doubly degenerate GPNDs; type III: a triply degenerate set of
GPNDs and a nondegenerate one; type N: four-fold degeneracy
in GPNDs; type O: Weyl curvature tensor vanishes.
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FIG. 21: The principal directions (black lines) and the asymp-
totes (red lines) on curved surfaces. Figure on the left depicts
the situation with a more generic surface, while the figure
on the right depicts a more degenerate surface where two
asymptotes become coincident and the principal direction in
between them becomes flat.

These conclusions create the obvious impression that
the GPNDs are somehow particularly flat directions of
spacetime, such that waves propagating along them see
less of the spacetime curvature. This intuition can be
made more visual by invoking an analogy with a curved
surface embedded in a three dimensional (flat) ambient
space. In fact, the name “principal null directions” al-
ready invoke this analogy, but we will argue that instead
of the principal directions, it is really the asymptotes on
the curved surface that these GPNDs are more akin to.
Given our quick scan of the literature, our discussion ap-
pears to be the first to state this way of intuiting the
GPNDs, and we hope it would be helpful to researchers
newly acquainted with these important quantities.

The curving shape of a surface embedded in the ambi-
ent (see Fig. 21) is given by the extrinsic curvature tensor
K, which is a rank two tensor. The twice contraction of
a vector tangential to the surface at a point (the cen-
ter/origin in Fig. 21) with K gives the curvature of a
geodesic on the surface developed along that vector di-
rection. The principal directions are defined to be those
directions whose associated geodesics have the maximum
or minimum (most negative/bending the other way) cur-
vature among the different direction choices, and are in
fact the eigenvectors of K. Their associated geodesics are
the thick black lines on the surfaces in Fig. 21, which are
clearly the most curved (either in the up or down direc-
tion) directions on the surface. The asymptotes on the
other hand are defined to be those directions whose twice
contraction with K vanishes. These are the red curves in
Fig. 21, and are clearly locally flat/straight. Later in the
section, we will show that the contraction of quantities
representing GPNDs with those representing the space-
time curvature tensor gives us zeros instead of maxima
and minima, so the GPNDs are really more akin to the
asymptotes.

The principal directions are always half way in between
the asymptotes, so these two sets of quantities are triv-
ially related. When two asymptotes coincide, the princi-
pal direction in between them is then forced to become
coincident with both asymptotes and thus take up van-
ishing curvature (the right panel of Fig. 21 shows this
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situation, where there is also a thick black line aligned
with the coinciding red lines at the bottom of the “val-
ley”), so the spacetime becomes flatter in a sense as one
of its extremally curved directions become flat (in the
case of the curved surface, the surface on the right of
Fig. 21 that has coinciding asymptotes becomes devel-
opable – its intrinsic curvature vanishes and the surface
can be unfolded into a simple flat plane). The analog
with this on the spacetime side is that more coinciding
GPNDs signal that the spacetime is “flatter”, especially
along the direction of those coinciding GPNDs (this is
essentially the intuitive meaning of the Petrov classifica-
tion). It is then not entirely surprising that FFE waves
travelling along the “extra flat” degenerate GPNDs will
experience less curvature-induced scattering.

This analogy can be developed much further 6 , but
a detailed discussion will lead us too far on a digression
away from the main content of this paper, so we stop
here and turn to some derivations directly relevant for
curvature-related scattering that back up the conclusions
listed above, which also provide some more concrete ex-
amples of the type of vanishing contractions underlying
our analogy-based intuitive picture.

The discussion below will rely heavily on the spinor for-
malism, which reveals the characteristic structure of the
Weyl curvature tensor in a significantly more transpar-
ent manner than the tensor formalism. We include a brief
summary of spinors in Appendix E. The most important
feature for us is that the spinors can roughly be seen
as “square-roots” of null vectors with the tensor prod-
uct øAø̄A

′
of a pair of complex conjugate spinors øA and

ø̄A
′

corresponding to a null vector. In addition, the self-
contractions of the spinors vanish (øAøA = 0 = ø̄A′ ø̄

A′)
just as they do with null vectors.

The null solutions of Ref. [12] are the FFE counterparts
to the vacuum null electromagnetic solutions described in
Ref. [107]. A null solution is defined by the property that
the two principal null directions (EPNDs7) of the Fara-

6 We brief mention why the name “principal null direction” is his-
torically given to the GPNDs, even though they are more like
asymptotes, and not the principal directions on a surface. That
name assignment comes from their being related to some eigen-
value problem of the spacetime curvature tensor when written
in the tensor language. However, when we migrate to the spinor
language, the eigenvalue problem switches into one over some
other directions that sit in between the GPNDs (they are the
null basis vectors of the so-called canonical transverse tetrads
[97], and they are really the things that are akin to the princi-
pal directions on a surface), just like the principal directions on
a surface sit in between the asymptotes. So in the spinor lan-
guage, the “true” nature of the GPNDs become more apparent,
and using something called sectional curvatures [105, 106], we
can show that it is in the spinor and not the tensor language,
that the eigenvalue problem is more closely related to the curva-
tures of geodetic submanifolds of the spacetime (analogs to the
curves on a surface), and so the spinor language is the one that’s
more appropriate for building analogies.

7 We will use EPND to refer to principal null directions of electro-

day tensor are coincident, just like simple plane waves in
flat spacetime. These solutions can thus be seen locally
as generalized plane waves (see the discussion following
Eq. (22) of Ref. [12] for more explicit local similarities
with plane waves), whose propagation directions follow
ingoing or outgoing shear-free null congruences [107]. In
a curved spacetime, this implies that they must evade
being backscattered by the spacetime curvature, or else
they cannot remain purely ingoing or outgoing. As a con-
crete example, the solution given by Eqs. (22)-(28) has
only the ingoing wave component φ0, while the outgo-
ing wave component φ2 and the Coulomb background φ1

vanish identically throughout space and time. To under-
stand how backscattering is avoided, we recall that the
ingoing solution as specified by φ0 follows the Kinnersley
tetrad n basis direction, which is tangential to a geodetic
shear-free null congruence [108]. By the Goldberg-Sachs
theorem [98]:
A strictly nonflat vacuum metric has a multiple principal
null direction `a iff `a is geodetic and shear free,
this n direction must also be the direction of two or more
degenerate GPNDs. We now show explicitly that follow-
ing degenerate GPNDs is responsible for the simplifica-
tions to scattering by spacetime curvature.

We begin by recalling how electromagnetic waves (with
allowance for current and charge, so FFE waves are in-
cluded as a special case) scatter off of spacetime curva-
ture. The wave equation satisfied by the Faraday tensor
is given by [109]

∇c∇cFab = −2RacbdF
cd +Ra

cFcb + Fa
cRcb

+∇bJa −∇aJb , (49)

where ∇c∇c is the generalized covariant Laplacian oper-
ator. The scattering by spacetime curvature is described
by the first three terms on the right-hand side of Eq. (49),
and is a consequence of the tensorial nature of F that al-
lows it to couple to the spacetime curvature through the
Ricci identities, which when applied to our case gives

2∇[a∇b]Fcd = RabceF
e
d +RabdeFc

e , (50)

and subsequently yields the aforementioned terms. These
scattering terms imply that, generically, the electromag-
netic waves can propagate inside as well as on the future
null cone of a light source, as secondary ingoing waves
can be created by scattering, and so they do not sat-
isfy Huygens’s principle [109–112]. The remaining terms
on the right-hand side of Eq. (49) describe scattering by
charge and current, and are not the scattering we are in-
terested in here. In other words, our consideration in this
section concentrates on the scattering shared by vacuum
(without current), FFE (with current), as well as other
electromagnetic solutions with more generic currents, so
that our conclusions are not confined to the FFE case.

magnetic solutions.
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Since we do not include the stress-energy tensor of the
electromagnetic field or the plasma in the gravitational
sector, as per the simplifying convention in FFE compu-
tations [12], we have Rab = 0, and Rabcd reduces to the
Weyl tensor Cabcd. Both Cabcd and Fab can be written in
the spinor formalism as [113]

Fab = φABεA′B′ + εABφ̄A′B′ , (51)

Cabcd = ΨABCDεA′B′εC′D′ + Ψ̄A′B′C′D′εABεCD .(52)

Note that as per convention, we have left out the solder-
ing forms like σAA

′

a for brevity, with the understanding
that spinor index pairs like AA′ correspond to tensor in-
dex a (same letter but lowercase). The multi-indexed
spinors can be further factorized into products of their
respective principal spinors (relating to the principal null
directions of the original tensors via Eq. E5):

φAB = ø(AιB) , (53)

ΨABCD = α
(1)
(Aα

(2)
B α

(3)
C α

(4)
D) , (54)

where more specialized Petrov classes of spacetimes have
more of the α(·)s (corresponding to the GPNDs) being
coincident.

Now a simple calculation shows that the scattering
term translates into the spinor language as

CacbdF
cd =

(
ΨABCDφ

CD
)
εA′B′ + c.c. , (55)

where c.c. stands for complex conjugation. Substituting
in Eqs. (53) and (54), we find that the spinor counterpart
to the scattering term is

ΨABCDφ
CD =

1

12

∑
i,j

(
α

(i)
C øC

)(
α

(j)
D ιD

)
α

(k)
(A α

(l)
B) (56)

where (i, j) are an unordered and unequal pair of num-
bers from {1, 2, 3, 4}, while (k, l) are an ordered pair con-
sisting of the remaining two numbers, with k > l. From
Eq. (56), and recalling that the contraction of coincident
spinors vanish, it is clear that the more pairs of EPNDs
and GPNDs that are coincident, the more terms in the
sum will vanish, leaving us with a scattering term that
is simpler in its composition, meaning it has fewer inde-
pendent components.

Such an effect is particularly strong with null electro-
magnetic waves, defined by the property that the two
EPNDs are coincident or ø ∝ ι (Sec. 5.1 of [113]). This
implies that φABφ

AB = 0 due to Eq. (E2). Through
Eq. (51), this further implies that the two real invariants
of the Faraday tensor must vanish [97], i.e. Eqs. (23) and
(24) must be satisfied. In particular, these conditions are
consistent with the force-free constraints, so there can be
FFE null solutions. More specifically, using Eqs. (51),
(53), (E11) and (E14), it is easy to verify that for a purely
ingoing null solution, we can write

Fab = φ0øAøBεA′B′ + c.c. , (57)

where φ0 is extracted under any dyad (corresponding to
a Newman-Penrose null tetrad via Eq. E11) that has ø
as a member of its basis. We will denote such a dyad as
(øA, ζA).

We now consider a null electromagnetic wave travelling
in a purely radiative (Petrov type N) [103, 104] space-
times8 with all four GPNDs coinciding. If furthermore,
the electromagnetic wave travels in the same direction
as the gravitational wave, so that the doubly degenerate
EPNDs coincide with the four-fold degenerate GPNDs,
then all of the contractions in Eq. (56) will vanish, and
there will not be any curvature scattering term left. Such
a complete disappearance of scattering can also happen
when the spacetime is of type III.

For the Petrov type D Kerr spacetime, the scattering
term in Eq. (56) does not vanish completely, so there is
still some residual scattering, but of a simplified structure

CacbdF
cd = φ0Ψ2øAøBεA′B′ + c.c. , (58)

that does not necessarily lead to backscattering. In par-
ticular, the scattering term only contains øA and no ζA
in its spinor form, which helps prevent a contamination
of Fab by φ1 and φ2, as the spinor counterpart of Fab is
given by

φAB = φ0øAøB − 2φ1ø(AζB) + φ2ζAζB , (59)

so that φ1 and φ2 need to multiply with ζA in order to
pick up spinor and subsequently tensor indices. A rigor-
ous proof for the existence of backscatterless solutions in
type-D spacetimes is provided by the the general theorem
(see Refs. [107, 114] and (7.3.14) of Ref. [97]):
If `a is a geodetic and shear-free null congruence and
analytic, then there is a nonzero solution of the vacuum
Maxwell equations which is null along `a.
This result applies in the vacuum case and, to a more
limited extent (restricted to Kerr spacetimes [12]), in the
force-free case. The proof of the theorem above and the
discovery of the FFE solutions are rather technical in na-
ture, but we hope that our discussion regarding the con-
traction/annihilation between EPNDs and GPNDs and
the subsequent simplification/elimination of the scatter-
ing term will serve to help build intuition for these im-
portant results.

VI. CONCLUSION

In this paper, we have introduced a new pseudospec-
tral fully 3D curved spacetime FFE code, with an initial

8 Petrov type I: four different GPNDs; type II: two degenerate
GPNDs and two nondegenerate GPNDs; type D: two sets of
doubly degenerate GPNDs; type III: a triply degenerate set of
GPNDs and a nondegenerate one; type N: fourfold degeneracy
in GPNDs; type O: Weyl curvature tensor vanishes.
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data solver and an improved constraint damping mecha-
nism. Using this code, we have shown through numerical
experiments that the backscatterless analytical FFE so-
lutions found by Ref. [12] are stable against a variety of
perturbing scenarios, which we selected to avoid restrict-
ing ourselves to special subspaces of the FFE solution
space. However, with any simulation, one can only con-
strain the growth rate of unstable modes, as the simu-
lations can not be performed for an infinite amount of
time. We have carried out our simulations for around
ten light crossing times, and observed the perturbations
to exit the computational domain after two or three. If
there exist unstable modes, and they are excited to an
appreciable initial amplitude, we would expect them to
remain in the computational domain and then gradually
grow. This does not appear to be the case. Nevertheless,
we should be cautious and only place an upper bound
on the growth rate of any unstable modes assuming the
worst scenario. Assuming that the unstable modes ex-
ist but are not excited by our initial perturbation at all,
and instead started at the floor level of numerical noise
with ∆E2 and ∆B2 ∼ 10−20 (see Fig. 5), our final values
for these quantities are around 10−11 (see Figs. 11, 16
and 19) after 2000M of simulation, which gives an up-

per bound on the growth rate for
√

∆E2 and
√

∆B2 at
around 0.005. For comparison, the fundamental l = 1
quasinormal mode decay rate for the magnetosphere in
our study is 0.09.

In order to carry out concrete numerical studies, we
had to select particular solutions from the family of in-
finitely many null+ solutions that can be obtained. We
have chosen arbitrary representative solutions that share
all the important physical features listed in Sec. II C with
the rest of their siblings that are not explicitly simulated,
and these solutions do not have any special features or
symmetries that would make them more (or less) sta-
ble than the rest. We have also examined both classes
– the time-dependent “waves” and the time-independent
“winds” – of the solution family. Therefore, we expect
the stability conclusion to be generalizable to the ma-
jority, if not all, of the solutions in the parent family.
In addition, we have chosen the magnitudes of the un-
perturbed solution in such a manner as to ensure the
tests are carried out within the nonlinear regime of the
FFE equations, so our results suggest full nonlinear sta-
bility. Furthermore, even though we cannot make math-
ematically rigorous statements as to the asymptotic sta-
bility of the null+ solutions due to the presence of nu-
merical noise, we note that with all three different types
of perturbations that we have examined, the perturba-
tions are seen to exit the computational domain after
two light-crossing times, and the final ∆B2 and ∆E2 are
small. From a practical point of view, even if the fi-
nal “steady-state” solutions are not exactly the same as
the null+ solutions, they would be well approximated by
them, so that the null+ solutions can be considered ef-
fectively asymptotically stable. Therefore, despite their
physical specialness, these solutions are not fragile, and

can in fact describe physically realistic scenarios like the
outer magnetospheres of pulsars. We note that one fea-
ture of the FFE null+ solutions that made our numerical
study possible is the fact that they are globally regular,
and are therefore amenable to numerical simulations. In
contrast, the vacuum null solutions in curved spacetimes
would contain singularities if extended globally [12, 72].

Unlike the jet stability (despite many plasma instabil-
ities that can be present in that case, the observed jets
from active galactic nuclei can extend to several hundred
kpc), the stability of the null+ solutions is perhaps less
surprising. The null+ solutions are more or less isotropic,
so there is no need to maintain a narrow collimated en-
ergy flux by e.g. ambient gas pressure, and no sharp
boundaries in the form of a jet surface exist. Therefore,
we do not have problems like dangerous surface Kelvin-
Helmholtz modes associated with the vortex sheet on the
jet surface [50, 52]. Nevertheless, there are many interest-
ing physical properties of the null+ solutions, such as hav-
ing a null current and being scatter avoiding, which we
did not know would be stablizing or destablizing. Given
the stability result from our numerical experiment, one
can now ask interesting questions such as whether the
current being null will actually help prevent the onset of
current-driven instabilities? Would an electromagnetic
wave propagating close to a degenerate GPND direction
in fact tend to end up moving exactly along it during
its journey (in which case the null+ solutions will really
have a preferential status)? These will become interest-
ing topics for future studies.

We caution however, that the stability of the null+

solutions does not necessarily translate into that of the
null solutions. This is because first of all, the null ex-
act solutions will only satisfy the magnetic dominance
condition marginally, so any perturbation would likely
introduce non-FFE influences such as current sheets. In
the study of jet stability, the presence of current sheets
at the jet surfaces is long known to encourage instabil-
ities [57], and in a more recent study, it has been seen
that dynamical current sheets have the tendency to dras-
tically rearrange the underlying force-free solutions even
when the initial data provided are already a solution to
the FFE equations [115]. Such current-sheet-induced in-
stabilities may well also beset the null solution stability.
Secondly, taking the limit where the null waves become
Alfvén waves, the background monopole B field in a null+

solution provides a preferred direction for the waves to
travel in. It is not clear whether the null solutions would
be more susceptible to changing propagation directions
when this guidance is taken away. Lastly, it has been ob-
served in the study of jet stabilities that increased mag-
netization has a stabling effect [57], which can also be
gone in the null case. As in astrophysical situations, we
expect a split monopole/dipole-like background field to
be present, the stability of the null+ solutions observed
in this work would hopefully mean that they can serve
as efficient channels for carrying energy across magneto-
spheres unhindered. However, because the background
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field drops off faster than the null wave component in a
null+ solution, eventually, this stability may be lost (if
the edge of the magnetosphere is not reached first), and
the ensuing instability may play a role in how the trans-
ported energy finally turns into observational signals.

Finally, on the analytical front, we have carried out an
explicit analysis of the scattering of an electromagnetic
wave by the spacetime curvature, with emphasis on the
role played by the GPNDs of the Weyl curvature tensor.
We showed that waves propagating along the degenerate
GPNDs experience simpler forms of curvature scattering,
thereby providing some intuition into the perplexing ex-
istence of backscatterless null solutions (although general
theorems on this subject already exist, their proofs are
highly technical). One interesting new conclusion is that
the scattering can vanish completely in a Petrov type
III or type N spacetime. This would remove a potential
complication (though may or may not be significant in
the first place) associated with analysing the coinciding
electromagnetic counterpart to a gravitational wave, as
the gravitational wave would not in fact try to scatter its
electromagnetic companion. The understanding of curva-
ture scattering gained here should also prove useful when
constructing new analytical solutions to the FFE equa-
tions and other field theories where a lack of scattering is
desirable, perhaps for the sake of reducing computational
complexity.
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Appendix A: Hyperbolicity of the evolution system

The study of the characteristic structure of a set of
evolution equations arises from the need for the initial
value problem to be well posed. For our pseudospec-
tral implementation, there is an added urgency because
the boundary conditions for the overall computational
domain [116–118] as well as between the adjacent subdo-
mains [85–88] are imposed on the characteristic modes.
Recall that the evolution system can be written as a col-

lection of coupled first order differential equations in the
form of

∂tUα +Aiβα∂iUβ = Rα , (A1)

where i is the spatial index, and α is the internal vari-
able index. In our case, we can see Uα as an abstract
six-dimensional state vector that is an alternative formu-
lation of Fab. For convenience, we will frequently express
such vectors as a pair of three dimensional vectors. The
Eq. (A1) is strongly hyperbolic iff for all unit-vectors n̂,
the matrix n̂ ·A = n̂iA

i has only real eigenvalues and a
complete set of eigenvectors. It is furthermore symmet-
ric hyperbolic, if there exists a definite positive symmet-
ric matrix S (a symmetrizer), such that the product of
S and A is symmetric. Symmetric hyperbolicity implies
strong hyperbolicity, and a strongly hyperbolic system is
well posed [119]. We note that as the spacetime metric
is treated as a background quantity, its derivatives do
not contribute to the principal part of the FFE evolution
equations. Comparing the curved spacetime evolution
equations with their flat spacetime limit, we see that(

n̂jÃ
j
)α

β = N
(
n̂jA

j
)α

β −
(
βj n̂j

)
δαβ , (A2)

where tilde denotes curved spacetime expressions and A
the flat spacetime counterpart. Therefore the eigenvalues
(characteristic speeds) in curved spacetime are simply
given by

ν̃α̂ = Nνα̂ − β · n̂ , (A3)

while the eigenvector (characteristic mode) expressions
are unchanged from their flat spacetime counterparts.
The analysis of the characteristic structure is then es-
sentially independent of the spacetime curvature.

For the minimal evolution system, the right eigenvalues
satisfying the equation

(n̂iÃ
i)αβe

β
α̂ = ν̃α̂e

α
α̂ (A4)

are [79]

ν̃1̂ = −N − β · n̂ , (A5)

ν̃2̂ = N − β · n̂ , (A6)

ν̃3̂ = N(ν − ω)− β · n̂ , (A7)

ν̃4̂ = N(ν + ω)− β · n̂ , (A8)

ν̃5̂ = −β · n̂ , (A9)

ν̃6̂ = −β · n̂ , (A10)

where

ν =
n̂ · (E×B)

B2
, (A11)

ω =
1

B2

√
(n̂ ·B)2(B2 − E2) . (A12)
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The right eigenvectors are

eα
1̂

=
(
−PE + n̂×B, PB + n̂×E

)
, (A13)

eα
2̂

=
(
−PE− n̂×B, PB− n̂×E

)
, (A14)

eα
3̂,4̂

=
(
−PB + ν3̂,4̂n̂×E + (1− ν2

3̂,4̂
)B,

−PE− ν3̂,4̂n̂×B
)
, (A15)

eα
5̂

=
(

0, n̂
)
, (A16)

eα
6̂

=
(

(n̂ ·B)n̂, PE
)
, (A17)

where ν3̂,4̂ = ν ± ω, and for a vector A, (PA) is defined

as A− (n̂ ·A)n̂. The eα
1̂

and eα
2̂

are fast modes travelling
at the speed of light. The terms eα

3̂
and eα

4̂
are the Alfvén

modes, while eα
5̂

and eα
6̂

are the unphysical modes (there
can only be four physical modes as constraints ∇·B = 0
and E ·B = 0 reduce the number of independent degrees
of freedom to four).

Note that the characteristic speeds become complex
when E2 > B2, and the evolution system will not be
strongly hyperbolic. This is one issue that stems from the
physical constraint of subluminal motion for the plasma
particles. There is however another hyperbolicity related
problem with the FFE evolution equations. Namely, even
when all the constraints are satisfied, we do not have a
complete set of eigenvectors when (n̂ · B)2 = (n̂ × E)2

[79]. For example, when n̂ ·B = 0 and E = En̂, we can
choose coordinates such that n̂ = x̂ and B = Bŷ; then
for the minimal system, we have

n̂ ·A =



0 0 0 0 0 0

0 0 0 0 0 0
E
B 0 0 0 −1 0

0 0 0 0 0 0

0 0 −1 0 0 0

0 1 0 0 0 0


, (A18)

whose characteristic equation is

det(n̂ ·A− λ1) = λ4(λ2 − 1) = 0, (A19)

so that we have four zero eigenvalues. In order to allow
for four eigenvectors corresponding to these zero eigenval-
ues, matrix n̂ ·A must have rank 6− 4 = 2. However, its
actual rank is 3, so we don’t have a complete set of eigen-
vectors. As an aside, we mention that in some numerical
implementations, a divergence cleaning scalar field is in-
troduced into the evolution system [27, 120, 121], which
enlarges the space of evolved variables, and changes the
characteristic structure of the evolution system. How-
ever, doing so does not cure this particular hyperbolicity
problem (details are provided in Appendix C). Neverthe-
less, the directions for which we do not have a complete
set of eigenvectors is a set of measure zero among all
possible n̂ directions, and there are enough eigenvectors

to represent the constraint-satisfying solutions even for
these directions [79]. However, for constraint violating
solutions, the constraints may grow on arbitrarily short
time scales (beyond the ability of our constraint damp-
ing additions to control) when the evolution system is
not well posed. Thankfully, for the numerical studies in
this paper, we do not encounter such a situation.

We note, nevertheless, that it is possible to obtain
strictly strongly-hyperbolic evolution equations by aug-
menting them with terms that vanish for constraint-
satisfying solutions, so that only unphysical modes are
altered. Ref. [79] provides one such system, and we fur-
ther improve upon it by bringing in more augmentation
terms and proposing two systems with additional desir-
able properties. In particular, one system remains sym-
metric hyperbolic even when the constraint E · B = 0
is violated. The other system, although no longer sym-
metric hyperbolic when the constraints are violated, has
a strongly hyperbolic set of constraint evolution equa-
tions. The details of these augmented systems are given
in Appendix B.

Appendix B: Well-posed FFE evolution systems

It is desirable for an evolution system to be strongly
hyperbolic, as then it will be well posed. It has been
shown in a recent paper [79] that it is possible to aug-
ment the FFE evolution equations with terms containing
the derivatives of the constraints, such that the result-
ing system is symmetric hyperbolic when the constraints
are satisfied. We show in this appendix section that by
considering additional augmentation terms, it is possi-
ble to make the evolution system retain its symmetric
hyperbolicity even when the FFE constaint E · B = 0
is violated. As constraints are never exactly satisfied
in numerical simulations, such nice off shell (off of the
constraint surface) properties are obviously desirable. In
addition, we also provide an alternative augmented evo-
lution system, whose evolution equations do not remain
symmetric hyperbolic off shell, but whose associated con-
straint evolution equations are strongly hyperbolic and
particularly simple, so that the constraints evolve in a
well-understood and controlled manner.

1. The main evolution equations

The unaugmented evolution equations are not strictly
hyperbolic even when the constraints are satisfied.
Namely when (n̂ ·B)2 = (n̂×E)2, the matrix n̂iA

iβ
α does

not possess a complete set of eigenvectors [79]. This prob-
lem can be cured by adding constraints to the evolution
equations. Such additions will not change the physical,
constraint-satisfying solutions, but will modify the char-
acteristic structure of Eq. (A1) if the new terms contain
derivatives. For our case, we consider seven possible ad-
ditional terms that look similar to already existing ones.
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With them, the evolution equations become

(∂t − Lβ)E = NKE +∇× (NB)−N B

B2

(
B · ∇ ×B−E · ∇ ×E− 2KijE

iBj + 2KE ·B + δE ·B
)

−E×B

B2
N∇ ·E− α1N

E

B2
×∇(E ·B)− α2N

E ·B
B2
∇×E− α3N(E ·B)E×∇ 1

B2
(B1)

(∂t − Lβ)B = NKB−∇× (NE)− α4N
E×B

B2
∇ ·B− α5N

B

B2
×∇(E ·B)− α6

E ·B
B2
∇× (NB)

−α7N(E ·B)B×∇ 1

B2
(B2)

where we have included the constraint damping term as
well (it does nothing to the characteristic structure of the
equations as it does not contain any derivatives). Note
that in order to acquire additional desirable properties,
we have considered a larger collection of possible augmen-
tation terms than Ref. [79], which included those terms
whose coefficients are α1, α4 and α5, and with these coef-
ficients fixed to 0, 1 and 1, respectively. In other words,
the minimally augmented system (abbreviated to AU)
introduced in [79] corresponds to

AU : α = (0, 0, 0, 1, 1, 0, 0). (B3)

in our notation.
We will propose two additional augmented systems

AU2 and AU3 given by

AU2 : α = (−1, 0,−1/2, 1, 1, 0, 1/2) (B4)

and

AU3 : α = (0, 1, 0, 1, 1,−1, 1) (B5)

respectively. Both of these systems are symmetric hy-
perbolic (see Sec. B 2 of this appendix) just like the AU
system, but possess additional desirable properties. The
AU2 system retains its symmetric hyperbolicity when
E ·B 6= 0 (see Sec. B 3) and the AU3 system has a partic-
ularly simple constraint evolution system (see Sec. B 4).

2. Hyperbolicity of the main evolution equations
when constraints are satisfied

The requirement of hyperbolicity of Eqs. B1 and B2
will imply restrictions on the coefficients α. To inves-
tigate these restrictions, we first consider the case of
n̂ · B = 0 and E = En̂, which is a special case of the
(n̂ · B)2 = (n̂ × E)2 configurations. Because the curva-
ture of the spacetime impacts the characteristic structure
of the FFE equations trivially, we will use only flat space-
time expressions for the rest of this section, with the un-
derstanding that curved spacetime counterparts can be

recovered using Eq. (A3). For the augmented systems,
we have that

n̂ ·A =



0 0 0 0 0 0

0 0 0 0 0 0

E/B 0 0 0 −1 0

0 0 0 0 0 0

0 0 −1 0 0 0

0 1− α5 0 (α4 − α5)E/B 0 0


,(B6)

whose characteristic equation is

det(n̂ ·A− λ1) = λ4(λ2 − 1) = 0 , (B7)

so we have four zero eigenvalues. In order to allow for
four eigenvectors corresponding to this zero eigenvalue,
matrix n̂·A must have rank two, which implies 1−α5 = 0
and α4 −α5 = 0, or α4 = 1 = α5. We note that all three
augmented systems given by Eqs. (B3), (B4) and (B5)
satisfy this requirement.

We now turn to prove symmetric hyperbolicity of AU2
and AU3 for generic cases by explicitly calculating the
symmetrizer S for them. We do so by writing down the
most general symmetrizer when the constraint E ·B = 0
is satisfied, with each term multiplied by a yet-to-be-
determined coefficient. We then solve for these coeffi-
cients by ensuring Sβα(n̂ ·A)γβ is symmetric for all n̂.
This is a tedious but straightforward process. The condi-
tion of α4 = 1 = α5 turns out to be necessary to ensure
the positive definiteness of Sβα. The symmetrizer for
AU2 is simply

S =

(
B2gij + (ζ − 1)BiBj −EiBj + ζBiEj
−BiEj + ζEiBj B2gij + (ζ − 1)EiEj

)
,(B8)

where ζ is a free constant, and we require ζ > 0 for the
positive definiteness of S. The symmetrizer for AU3 is

S =

(
∆gij + (ξ∆− 2∆)

BiBj

B2 −∆
EiBj

B2 + ξ∆
BiEj

B2

−∆
BiEj

B2 + ξ∆
EiBj

B2 ∆gij + ξ∆
EiEj

B2

)
,(B9)

where ∆ = 1−E2/B2, and we should pick a ξ > 1/∆ to
ensure positive definiteness of S.
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3. Hyperbolicity of the main evolution equations
when E ·B 6= 0

The α vector for AU2 in Eq. (B4) is chosen to en-
sure that the symmetrizer remains valid when E ·B 6= 0
(this property is not shared by the AU3 or AU evolution
systems). Indeed, by picking ζ = 1/2, it is straightfor-
ward to verify explicitly that Sβα(n̂ ·A)γβ is symmetric.
Namely, if we break the greek indices into a pair of spatial
indices and write Sβα(n̂ ·A)γβ in a block form(

(SAEE)jk (SAEB)jk
(SABE)jk (SABB)jk

)
, (B10)

we then have

(SAEE)ikε
jik = 0 = (SABB)ikε

jik ,

(SAEB)ik − (SABE)ki = 0 , (B11)

regardless of the value of E ·B.
In greater detail, the block form of n̂ ·A is(

(AEE)jk (AEB)jk
(ABE)jk (ABB)jk

)
, (B12)

where for generic α choices

(AEE)jk = −B
j

B2
(E× n̂)k +

(E×B)j

B2
n̂k + α1

(E× n̂)j

B2
Bk + α2

E ·B
B2

εjikn̂i , (B13)

(AEB)jk = −εjikn̂i +
Bj

B2
(B× n̂)k + α1

(E× n̂)j

B2
Ek − 2α3

E ·B
B4

(E× n̂)jBk , (B14)

(ABE)jk = εjikn̂i + α5
(B× n̂)j

B2
Bk , (B15)

(ABB)jk = α4
(E×B)j

B2
n̂k + α5

(B× n̂)j

B2
Ek + α6

E ·B
B2

εjikn̂i − 2α7
E ·B
B4

(B× n̂)jBk . (B16)

Multiplying with symmetrizer S as given by Eq. (B8) with ζ = 1/2 and an extra overall factor of 2 for convenience,
we obtain the components in Eq. (B10):

(SAEE)ik = −Bi(E× n̂)k + 2(E×B)in̂k − 2(E× n̂)iBk + B · (E× n̂)BiBk +Bi(E× n̂)k

−2Ei(B× n̂)k +
E · (B× n̂)

B2
BiBk , (B17)

(SABB)ik = −Ei(B× n̂)k + 2Bi(E× n̂)k + Ej(B× n̂)k − 2
E ·B
B2

Bi(B× n̂)k −
B · (E× n̂)

B2
EiEk

+
E ·B
B4

B · (E× n̂)EiBk + 2(E×B)ink + 2(B× n̂)iEk −
E · (B× n̂)

B2
EiEk

−2
E ·B
B2

(B× n̂)iBk +
E ·B
B2

E · (B× n̂)

B2
EiBk , (B18)

(SAEB)ik = 2B2εikln̂
l − 2(E× n̂)iEk + 2

E ·B
B2

(E× n̂)iBk + 2Bi(B× n̂)k , (B19)

(SABE)ik = −2B2εikln̂
l − 2(E× n̂)kEi + 2

E ·B
B2

(E× n̂)kBi + 2Bk(B× n̂)i , (B20)

(B21)

where we have specialized to the AU2 system of Eq. (B4). We then have (SAEB)ik − (SABE)ki = 0, and it is
straightforward to show that the antisymmetric part of the diagonal blocks are

(SAEE)ikε
jik = (SABB)ikε

jik = 2(B× (E× n̂) + n̂× (B×E) + E× (n̂×B))j = 0 (B22)

For completeness, we explicitly write out the charac-
teristic modes and speeds for the AU2 system. The right
eigenvalues satisfying the equation

(niA
i)αβe

β
α̂ = να̂e

α
α̂ (B23)

are

ν1̂ = −1 , (B24)

ν2̂ = 1 , (B25)

ν3̂ = ν − ω , (B26)

ν4̂ = ν + ω , (B27)

ν5̂ = ν , (B28)

ν6̂ = 2ν , (B29)
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where ν and ω are given in Eqs. (A11) and (A12). The
right eigenvectors are

eα
1̂

= (−PE + n̂×B, PB + n̂×E) , (B30)

eα
2̂

= (−PE− n̂×B, PB− n̂×E) , (B31)

eα
3̂,4̂

=
(
−PB + ν3̂,4̂n̂×E + (1− ν2

3̂,4̂
)B,

−PE− ν3̂,4̂n̂×B
)
, (B32)

eα
5̂

=
(
E(B · n̂)−B(E · n̂), B2n̂−E×Bν

)
,(B33)

eα
6̂

= (B, 0) . (B34)

We note that the unphysical modes for the AU2 system as
given by Eqs. (B33) and (B34) are much less complicated
than for the AU system as given in Ref. [79]. This is ben-
eficial for inverting the characteristic modes in order to
obtain the fundamental variables E and B, which is nec-
essary for some pseudospectral implementations such as
ours, where both the internal (between the adjacent sub-
domains) [85–88] and the external boundary conditions
[116–118] are imposed on the characteristic modes, and
so need to be translated into the fundamental evolution
variables before they become useful.

The left eigenvalues satisfying

eα̂α(niA
i)αβ = να̂eα̂β (B35)

are identical to the right eigenvalues in Eq. (B24)-(B29),
while the left eigenvectors are

e1̂
α = (E− n̂×B,

−B− n̂×E +
(B2 − E2)

1 + ν

n̂ ·B
B2

n̂

)
, (B36)

e2̂
α = (E + n̂×B,

−B + n̂×E +
(B2 − E2)

1− ν
n̂ ·B
B2

n̂

)
, (B37)

e3̂
α =

(
n̂ ·B
B2

E×B +
ω

n̂ ·B
B2

(
n̂− n̂ ·B

B2
B

)
,

−E(ω − ν) + n̂×B) , (B38)

e4̂
α =

(
− n̂ ·B

B2
E×B +

ω

n̂ ·B
B2

(
n̂− n̂ ·B

B2
B

)
,

−E(ω − ν)− n̂×B) , (B39)

e5̂
α = (0, n̂) , (B40)

e6̂
α = (B,E) . (B41)

These eigenvectors are degenerate when E = ±n̂×B,
in which case we can find alternative complete sets of
eigenvectors. When E = n̂ ×B, we have ν1̂ = ν3̂ = −1,
and we can pick q̂⊥n̂ to construct

eα
1̂

= (q̂, −n̂× q̂) , (B42)

eα
3̂

= (n̂× q̂, q̂) , (B43)

e1̂
α = (B× (n̂× q̂), B× q̂) , (B44)

e3̂
α = (−B× q̂, B× (n̂× q̂)) , (B45)

while the remaining eigenvectors are still valid. When
E = −n̂×B, we have ν2̂ = ν4̂ = 1, and can use the new
vectors

eα
2̂

= (q̂, n̂× q̂) , (B46)

eα
4̂

= (n̂× q̂, −q̂) , (B47)

e2̂
α = (−B× (n̂× q̂), B× q̂) , (B48)

e4̂
α = (B× q̂, B× (n̂× q̂)) , (B49)

together with the remaining eigenvectors that are still
valid.

Lastly, as an aside, we note that for the AU2 system,
we can further use the identity

− B

B
×∇E ·B

B
= − B

B2
×∇(E ·B)

−1

2
(E ·B)B×∇ 1

B2
(B50)

to combine terms in the evolution Eqs. (B1) and (B2).

4. The constraint evolution equations

We can derive the evolution equations of the con-
straints ∇·B and E ·B from the main evolution Eqs. B1
and B2. The result is

∂t∇ ·B = −α4∇(v∇ ·B)− a · ∇(E ·B)

+ΨE ·B , (B51)

∂t(E ·B) = −α5∇ · (v(E ·B)) + α1v · ∇(E ·B)

+Ψ′(E ·B) , (B52)

where

v =
E×B

B2
, (B53)

a = (α5 − α7)∇× B

B2
+ (α6 + α7)

1

B2
∇×B ,(B54)

Ψ = −(α6 + α7)

(
∇ 1

B2

)
· (∇×B) , (B55)

Ψ′ = (α5 − α7 + α3)(E×B) · ∇ 1

B2

+(α5 − α2)
B · ∇ ×E

B2

−(α6 + α5)
E · ∇ ×B

B2
. (B56)

It is desirable for the constraint evolution equations to
be strongly hyperbolic, so that the constraints evolve in
a predictable and controlled manner. Such a property
is especially useful when the main evolution equations
are not symmetric hyperbolic off shell, as a well posed
constraint evolution system would signal that at least
some good behaviors are retained off shell. The n̂ · A
matrix for the constraint evolution system is simply(

α4v · n̂ a · n̂
0 (α5 − α1)v · n̂

)
, (B57)
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which does not have a complete set of eigenvectors when
v · n̂ = 0 unless a · n̂ = 0, which can be achieved by
setting α5 = −α6 = α7 as in the AU3 system. Note that
the AU and AU2 systems do not satisfy this condition,
so their constraint evolution equations are not strongly
hyperbolic.

The ∂t(E ·B) equation simplifies further when α1 = 0
and Ψ′ = 0. So under the coefficient choice α5 = −α6 =
α7, α2 = α5, and α1 = 0 = α3, the evolution equations
reduce to a pair of decoupled advection equations

∂t(∇ ·B) = −∇(α4v∇ ·B) , (B58)

∂t(E ·B) = −∇(α5vE ·B) . (B59)

When combined with the α4 = α5 = 1 condition for
the hyperbolicity of the main evolution equations, we
obtain the α coefficients for the AU3 system as given
by Eq. (B5).

We note that Eq. (B51) contains a second derivative of
B whenever α4 6= 0. Since hyperbolicity requires α4 = 1,
this is always the case (shared by all of the AU, AU2
and AU3 systems ), with both positive and negative im-
plications: A disadvantage of this term is that the sec-
ond derivative increases the sensitivity to high-frequency
noise in B. However, the α4-term in Eq. (B51) will cause
any constraint violations ∇ · B 6= 0 to propagate along
v, thus allowing it to propagate away.

Appendix C: Hyperbolicity of an evolution system
with a divergence cleaning scheme

In our FFE code implementation, it turns out that
just as observed in Ref. [17], the intrinsic accuracy of the
pseudospectral code is sufficient to keep the ∇ · B = 0
constraint under control (provided we remove it from the
initial data of course), and there is no need for any addi-
tional constraint cleaning procedures. We note, however,
that Refs. [120, 121] used a dynamical divergence clean-
ing scheme. Namely, one adds a −N∇φ term to ∂tB,
where φ is a scalar field satisfying the evolution equation

(∂t − Lβ)φ = −N∇ ·B−Nσ2φ . (C1)

The φ field then damps the ∇ ·B constraint with a time
scale of σ−1

2 [121].
The introduction of a new field like φ enlarges the

space of evolution variables, and would generally alter
the characteristic structure of the evolution system. Un-
fortunately this does not remove the hyperbolicity prob-
lem when (n̂ ·B)2 = (n̂×E)2. The characteristic matrix
for the now enlarged system is

n̂ ·A =

(AEE)jk (AEB)jk 0

(ABE)jk (ABB)jk n̂j

0 n̂k 0

 , (C2)

where the four sub-blocks in the top left are the same
as the minimal system. Under the same assumptions

that lead to Eq. (A18), we have a 7 × 7 matrix whose
characteristic equation is λ3(λ2 − 1)2 = 0, so there are
three vanishing characteristic speeds. The matrix needs
to have a rank of 4 for there to be three independent
characteristic modes of vanishing speed, but the matrix
actually has a rank of 5. Therefore, the enlarged evolu-
tion system is still not strictly strongly hyperbolic.

Appendix D: The null solutions in Kerr-Schild
coordinates

In our simulations, we specify the metric using the
Kerr-Schild slicing and coordinates, and the transforma-
tions between the Kerr-Schild coordinates (t̃, x, y, z) and
the ingoing Kerr coordinates (ν, r, θ, ψ) are simply (we
have kept a in case readers need it elsewhere, for this
paper, one should set a = 0 in all these expressions)

t̃ = ν − r, x+ iy = (r + ia)eiψ sin θ, z = r cos θ,(D1)

with the inverse transformations being

r =

√
1

2

(
b+

√
b2 + 4a2z2

)
, (D2)

b ≡ x2 + y2 + z2 − a2 , (D3)

θ = arccos
(z
r

)
, ν = t̃+ r , (D4)

ψ = arctan
(y
x

)
+
π

2

(
1− x

|x|

)
− arctan

(a
r

)
.(D5)

Aside from the null solution, we will also add in a
monopole contribution according to Eq. (32) to ensure
magnetic dominance, whereby the Faraday tensor be-
comes

Fab = 4<
(
φ0m̄[anb] + φ1(m[am̄b] + n[alb])

)
. (D6)

Note that the second term for φ1 in the expression
above vanishes when φ1 is given by Eq. (32), which is
purely imaginary, and so the above expression reduces to
Eq. (33).

We also note that the Kinnersley tetrad in the Carte-
sian (vector components are in the Cartesian basis) Kerr-
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Schild coordinates is given by

l0 = 2
r2 + a2

∆
− 1 , (D7)

l1 + il2 = eiψ sin θ

(
2ai

∆
(r + ia) + 1

)
, (D8)

l3 = cos θ , (D9)

n0 =
∆

2Σ
, (D10)

n1 + in2 = − ∆

2Σ
eiψ sin θ , (D11)

n3 = − ∆

2Σ
cos θ , (D12)

m0 = − ρ̄√
2
ia sin θ , (D13)

m1 = − ρ̄√
2

(<A cos θ − i=A) , (D14)

m2 = − ρ̄√
2

(=A cos θ + i<A) , (D15)

m3 =
ρ̄√
2
r sin θ , (D16)

where A = (r + ia) exp(iψ).
For use in Sec. IV B, we also summarize the relation-

ship between the Boyer-Lindquist (t, r, θ, φ) and Kerr-
Schild (t̃, x, y, z) spatial coordinates. The transforma-
tions between them are

t̃ = t+ 2M ln
∣∣∣ r
2M
− 1
∣∣∣ , (D17)

x+ iy = (r + ia)exp(iφ̃) sin θ (D18)

z = r cos θ (D19)

where

φ̃ = φ+
a

r+ − r−
ln

∣∣∣∣r − r+

r − r−

∣∣∣∣ (D20)

which in the a = 0 limit gives the Jacobian

∂xKS

∂xBL
=


1 2M

r−2M 0 0

0 cosφ sin θ r cosφ cos θ −r sinφ sin θ

0 sinφ sin θ r sinφ cos θ r cosφ sin θ

0 cos θ −r sin θ 0

 .

Appendix E: The spinor formalism

For a comprehensive introduction to spinors, please
consult, for example, Refs. [97, 113, 122]. Here for the
sake of completeness we give a brief summary.

When spinor bundles can be defined on a spacetime
(see Ref. [122]), we have a two-dimensional complex vec-
tor space W , as well as its complex conjugation W ′, over
each spacetime location. The elements of W ′ are written
with an overhead bar (signifying complex conjugation)

and primed indices (e.g. ξ̄A
′ ∈W ′), while elements of W

have unprimed indices and no special overhead symbols
(e.g. ξA ∈ W ). We then map between W (W ′) and its
dual space W ∗ (W ′∗) using an antisymmetric spinor εAB
(and εA′B′ , where it is customary to leave out the over-
head bar on εA′B′). In other words, we raise and lower
spinor indices with an antisymmetric second rank spinor
as

ξBεBA = ξA ∈W ∗ , εABξB = ξA ∈W , (E1)

rather than with a symmetric one. The result is that
spinor self-contractions vanish, i.e.

ξAξA = ε[BA]ξ
(AξB) = 0. (E2)

In fact, we have the stronger result (Proposition (2.5.56)
in Ref. [113]) that:
αAβ

A = 0 iff αA and βA are (complex) scalar multiples
of each other.
When this happens, we will call αA and βA coincident.

We also have a map between the tangent space of the
spacetime and the tensor product space W ⊗W ′ given
by

vAA
′

= vaσAA
′

a va = vAA
′
σaAA′ (E3)

where σ are the soldering forms satisfying

σAA
′

a σbAA′ = −δab , σaAA′σ
BB′

a = −εABεA′B
′
, (E4)

where the minus signs are due to our metric signature
choice of (−+++) instead of the customary (+−−−) for
spinor calculations. The consequence is that whenever we
translate a contraction between a pair of spacetime in-
dices into the contraction between the corresponding pair
of double (one primed and the other unprimed) spinor in-
dices, and vice versa, we should add an extra minus sign.
This step would not be necessary had we adopted the
(+−−−) signature as Refs. [97, 113, 122] did. We note
that the spacetime null vectors map to particularly nice
factorized spinor forms

la = σaAA′ξ
Aξ̄A

′
. (E5)

With the relationship (E5) and after applying Eq. (E4),
we see that Eq. (E2) is equivalent to null vectors having
zero norms under the Lorentzian metric.

Using the soldering forms, we can also transfer higher
rank spacetime tensors into their corresponding multi-
spinors. For example the metric maps to

gab = σaAA′σ
b
BB′g

AA′BB′ , (E6)

where

gAA
′BB′ = −εABεA

′B′ . (E7)

More importantly for us, the Weyl tensor also has a
spinor counterpart ΨABCD defined by

Cabcd = ΨABCDεA′B′εC′D′σ
AA′

a σBB
′

b σCC
′

c σDD
′

d

+Ψ̄A′B′C′D′εABεCDσ
AA′

a σBB
′

b σCC
′

c σDD
′

d ,(E8)
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where ΨABCD has a much more straight-forward rela-
tionship with its principal spinors than the original tensor
version Cabcd had with its principal null vectors. Specif-
ically, the algebraic closedness of the complex numbers
field underlying spinors ensures that we always have the
factorization

ΨABCD = α
(1)
(Aα

(2)
B α

(3)
C α

(4)
D) , (E9)

where the α(·)s are the principal spinors, and then the
GPNDs of Cabcd are simply given by

σAA
′

a α
(a)
A ᾱ

(a)
A′ , (a) ∈ {(1), (2), (3), (4)}. (E10)

Many other quantities take on more transparent forms
under the spinor formalism. For example, let a spinor
dyad (ø, ι) be defined such that it relates to a Newman-
Penrose null tetrad by

la = σaAA′ø
Aø̄A

′
, na = σaAA′ι

AῑA
′
,

ma = σaAA′ø
AῑA

′
, m̄a = σaAA′ι

Aø̄A
′
.

(E11)

Then the definitions for the Newman-Penrose scalars un-
der that tetrad

Ψ0 = Cabcdl
amblcmd , (E12a)

Ψ1 = Cabcdl
anblcmd , (E12b)

Ψ2 = Cabcdl
ambm̄cnd , (E12c)

Ψ3 = Cabcdl
anbm̄cnd , (E12d)

Ψ4 = Cabcdn
am̄bncm̄d , (E12e)

can be rewritten as

Ψ0 = ΨABCDøAøBøCøD , (E13a)

Ψ1 = ΨABCDøAøBøCιD , (E13b)

Ψ2 = ΨABCDøAøBιCιD , (E13c)

Ψ3 = ΨABCDøAιBιCιD , (E13d)

Ψ4 = ΨABCDι
AιBιCιD , (E13e)

whereby the decreasing number of times that øA ap-
pears in the definitions establishes the hierarchy of decay
rates of these scalars under the peeling theorem [80, 97],
a feature not as visible in the tensorial expressions in
Eq. (E12). Lastly, to carry out some calculations in the
main text, we note the fact that under the dyad basis,
εAB can be written as

εAB = øAιB − ιAøB . (E14)
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