
Regional Research Institute Technical Documents Regional Research Institute

4-7-2017

Using R and Google-API tools to estimate
geographic features
Juan Tomas Sayago Gomez
West Virginia University, Juan.Sayago@mail.wvu.edu

Follow this and additional works at: https://researchrepository.wvu.edu/rri_tech_docs

Part of the Regional Economics Commons

This Article is brought to you for free and open access by the Regional Research Institute at The Research Repository @ WVU. It has been accepted for
inclusion in Regional Research Institute Technical Documents by an authorized administrator of The Research Repository @ WVU. For more
information, please contact ian.harmon@mail.wvu.edu.

Digital Commons Citation
Sayago Gomez, Juan Tomas, "Using R and Google-API tools to estimate geographic features" (2017). Regional Research Institute
Technical Documents. 13.
https://researchrepository.wvu.edu/rri_tech_docs/13

https://researchrepository.wvu.edu?utm_source=researchrepository.wvu.edu%2Frri_tech_docs%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu?utm_source=researchrepository.wvu.edu%2Frri_tech_docs%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/rri_tech_docs?utm_source=researchrepository.wvu.edu%2Frri_tech_docs%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/rri?utm_source=researchrepository.wvu.edu%2Frri_tech_docs%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/rri_tech_docs?utm_source=researchrepository.wvu.edu%2Frri_tech_docs%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1307?utm_source=researchrepository.wvu.edu%2Frri_tech_docs%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/rri_tech_docs/13?utm_source=researchrepository.wvu.edu%2Frri_tech_docs%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ian.harmon@mail.wvu.edu

Regional Research Institute
West Virginia University

Technical Document Series

Using R and Google-API tools to estimate
geographic features

Juan Tomas Sayago Gomez

RRI TechDoc 2017-01

Date submitted: October 31 of 2016
Date revised: April 7, 2017

Key words/Codes: Geocode, Elevation, Distance Matrix /
Y10, R00

Using R and Google-API tools to estimate
geographic features

Juan Tomas Sayago Gomez

April 7, 2017

Abstract

This technical document is a guide for using Google APIs to find
information for research purposes. First, I apply the code to find the
elevation at a given set of coordinates for specific locations. Second, I
apply the code to find the street distances between two or more sets
of coordinates. All the codes and sample files are available in the zip
file attached to this guide.

1 Introduction

The package ggmap created to use R and Google - APIs to visualize spatial
data and models on static Google Maps includes tools for geocoding (or ge-
olocation) and distance estimations Kahle and Wickham (2013). However,
the function to compute map distance has a shortcoming that is important to
note when using it for developing ; i.e., the function mapdist uses addresses
as arguments, but some of the developing countries have issues with the ad-
dresses1. In this document, I provide a guide to use the Google - API to find
elevation2 and to compute the distance matrix using coordinates. This guide
explains how use Google - APIs to compute elevation and map distances
using coordinates as input. The code creates an interaction between R and
Google Maps.

1The solution was to use coordinatesthat give an accurate, usuable location; however,
mapdist converts the coordinates to addresses using the geocode function and then the
problem recurs.

2To date, I could not find an R function that could provide this information.

2/4

2 Elevation

This section shows how to calculate elevation for locations or points in our
data set. It uses an interaction between Google and R; the estimates come
from an API created in Google and sets and estimate for each location’s el-
evation.

The code must have the coordinates to measure the elevation and then
it creates a command that inputs the coordinates to the API and exports
the result, which consists of elevation and coordinates. The elevation is re-
ceived as meters, which can be converted to Km, miles or feet. The data
uses the coordinates of every point to find the elevation on each location; for
example, the first location point has the following coordinates: “39.6400125,-
80.0332251” and the elevation for such a location is 378.7 meters above sea
level.

R> dest=read.csv("destinations.csv",header=T,sep=",")

R> names(dest)

[1] "Address" "Lat" "Lng"

R> j=1

R> googleelevataddress <- paste(dest$Lat[j],",",dest$Lng[j],collapse=" ", sep="")

R> googleelevataddress

[1] "39.6400125,-80.0332251"

R> dest$elevat <- vector(mode="character", length=length(dest$Lat))

R> for (j in 1:length(dest$Lat)) {

+

+ googleelevataddress <- paste(dest$Lat[j],",",dest$Lng[j],collapse=" ", sep="")

+ googleelevataddress

+ googleurl <- url(paste("http://maps.googleapis.com/maps/api/elevation/json?

+locations=",googleelevataddress,"&sensor=false",sep=""))

+ googlell <- readLines(googleurl, warn=FALSE)

+ googlell

+ ot <- grep("elevation", googlell)

+ if(length(ot)>0) dest$elevat[j] <- googlell[ot] else dest$elevat[i] <-"NA"

+ close(googleurl)

+

+

+ }

R> dest$elevation=gsub("[^.0-9]", "", dest$elevat)

R> dest$elevation

3/4

[1] "378.7772216796875" "259.3993225097656" "388.6174011230469"

3 Distance and Duration

This section demonstrates how to use the distance calculator with the interaction between
Google Maps and R; the estimator has a code that reads origin and destinations and uses
Google to find the distance between two locations. The document shows how to use ad-
dresses and coordinates as inputs for R and exports the results as data for R to use.

The commands in R create a link that connects to Google Maps API to do a request
for the distance or distances and obtain the results in JSON output. The output has
the following organization: the origin and destination places and then the distance(s).
The requests enable you to use multiple destinations and origins, also to define different
transportation methods such as driving, public transportation, walking and bycicling. The
requests also include information about tolls.

The code first reads the origin and destination locations, which can be addresses or co-
ordinates. The data is in the files origins.csv and destinations.csv and includes addresses
and latitude and logitude for each address.

R> orig <- read.csv("origins.csv", header=TRUE, sep=",")

R> names(orig)

[1] "Address" "Lat" "Lng"

R> summary(orig$Lat)

Min. 1st Qu. Median Mean 3rd Qu. Max.

32.87 37.82 39.55 37.90 39.63 39.65

R> summary(orig$Address)

4840 Tanger Outlet Boulevard, Tanger Outlets, North Charleston, SC 29418, USA

1

507 Elm Street, Morgantown, WV 26501, USA

1

6051 University Town Centre Drive, Morgantown, WV 26501, USA

1

800-898 Virginia Avenue, Fairmont, WV 26554, USA

1

R> dest=read.csv("destinations.csv",header=T,sep=",")

R> names(dest)

[1] "Address" "Lat" "Lng"

4/4

Next, the code creates a vector to save the information collected from Google; in this
example we are going to create two vectors, one for duration time and one for distance.
Then the code will run a loop to assign all the different origin points to run against the
first destination (j=1) and save the distances and duration times. The following com-
mands find the information that needs to be stored. The information that is reported
in distances will be in meters and duration will be reported in seconds. The information
can be transformed to miles, kilometers, hours, or minutes and used afterwards for analysis.

R> # create new columns and set the significant digits to 5;

R> j=1

R> orig$distan <- vector(mode="character", length=length(orig$Lat))

R> orig$durat <- vector(mode="character", length=length(orig$Lat))

R> for (i in 1:length(orig$Lat)) {

+ googleorigaddress <- paste(orig$Lat[i],",",orig$Lng[i],collapse=" ", sep="")

+ googledestaddress <- paste(dest$Lat[j],",",dest$Lng[j],collapse=" ", sep="")

+ googleurl <- url(paste("http://maps.googleapis.com/maps/api/distancematrix/json?

+ origins=",googleorigaddress,"&destinations=",googledestaddress,"&mode=driving&

+ sensor=false&",sep=""))

+ googlell <- readLines(googleurl, warn=FALSE)

+ googlell

+ ot <- grep("distance", googlell)

+ if(length(ot)>0) orig$distan[i] <- googlell[ot+2] else orig$distan[i] <-"NA"

+ otdur<- grep("duration", googlell)

+ if(length(otdur)>0) orig$durat[i] <- googlell[otdur+2] else orig$durat[i] <- "NA"

+ close(googleurl)

+ }

R> orig$distance=gsub("[^0-9]", "", orig$distan)

R> orig$duration=gsub("[^0-9]", "", orig$durat)

R> orig$distance

[1] "5848" "11364" "37753" "930199"

R> orig$duration

[1] "553" "1004" "1588" "31136"

The same loop procedure can be applied for longitudes, making the loop calculate all
destinations into distances. For more information check the following link: https://developers.google.com/maps/documentation/distancematrix/.

References

Kahle, D. and Wickham, H. (2013). ggmap: Spatial visualization with ggplot2. The R
Journal, 5(1):144–161.

https://developers.google.com/maps/documentation/distancematrix/

	4-7-2017
	Using R and Google-API tools to estimate geographic features
	Juan Tomas Sayago Gomez
	Digital Commons Citation

	Introduction
	Elevation
	Distance and Duration

