Composite Input-Output Production Functions

Randall Jackson
West Virginia University, randall.jackson@mail.wvu.edu

Follow this and additional works at: https://researchrepository.wvu.edu/rri_tech_docs
Part of the Regional Economics Commons

Digital Commons Citation

Jackson, Randall, "Composite Input-Output Production Functions" (2013). Regional Research Institute Technical Documents. 2.
https://researchrepository.wvu.edu/rri_tech_docs/2

Regional Research Institute West Virginia University

Technical Document Series

Composite Input-Output Production Functions

An algorithm to linear combination of subsector cost shares

Randall Jackson

RRI TechDoc 2013-02r1
Date submitted:
Date revised: 8/9/2013
Key words/Codes: Input-Output

Composite Input-Output Production Functions*

Abstract

Abstract. This document describes the algorithm used for creating an aggregated linear production function for an industry by weighting subsector production functions. The result can be used as a column in an interindustry $(I \times I)$ coefficients table or in a standard Use table $(C \times I)$ depending on the units (C or I) of the input data.

Introduction

Each power generating technology $k \in K$ has a corresponding production function. When the production function is assumed to be linear, each technology's production function corresponds to a set of cost shares whose sum over all inputs is 1 . Define

$$
A_{j}^{k}=\left[\begin{array}{c}
a_{1 j}^{k} \tag{1}\\
a_{2 j}^{k} \\
\vdots \\
a_{n-1 j}^{k} \\
a_{n j}^{k}
\end{array}\right]
$$

be the cost shares for technology subsector k in power generation industry j. Then let Z_{j}^{k} be the contribution of subsector k to industry j output. Z

[^0]can be expressed in dollar terms or in proportionate weights. The industry j composite cost shares can be computed as
\[

$$
\begin{equation*}
A_{j}=\frac{\sum_{k=1}^{K} A_{j}^{k} Z_{j}^{k}}{\sum_{k=1}^{K} Z_{j}^{k}} \tag{2}
\end{equation*}
$$

\]

In matrix notation, A is a normalized cost or cost share matrix with N industries and K technologies, z is a K dimensional vector of the weights of the respective sectors in the composite sector, x is the sum of the weights, and i is an appropriately dimensioned summing vector. Then the compositing function is

$$
\begin{equation*}
\frac{1}{x_{i}} A \hat{z}_{i} \tag{3}
\end{equation*}
$$

Supporting Algorithm(s)/Code

techagg.m

```
function [t] = techagg(A,z)
% PURPOSE: create an aggregated input-output column from subsectors,
% given subsector coefficient matrix and weights vector
%
% USAGE: t = techagg(A,z)
% where A is an nxk matrix of coefficient cost shares
% and z is a k dimensional vector of weights, either shares or
% levels
INPUT:
-> A is an nxk matrix of coefficient cost shares
-> z is a k dimensional vector of weights, either shares or levels
OUTPUT:
-> t is an n dimensional vector of aggregate cost shares
REFERENCES: None
Written by: Randy Jackson, 08/07/2013
% Current e-mail: info@econalyze.com
wtsum=sum(sum(z)');
t=(A*diag(z)/wtsum)*ones(length(z),1);
%
```


[^0]: *Acknowledgements: This material is based upon work supported by the National Science Foundation under Grant No. 1235684.

