
University of Southern Maine University of Southern Maine

USM Digital Commons USM Digital Commons

All Theses & Dissertations Student Scholarship

1-26-2016

Software Interoperability and the Pods OpenHDS System Software Interoperability and the Pods OpenHDS System

Benjamin S. Heasly MS
University of Southern Maine

Follow this and additional works at: https://digitalcommons.usm.maine.edu/etd

 Part of the Databases and Information Systems Commons

Recommended Citation Recommended Citation
Heasly, Benjamin S. MS, "Software Interoperability and the Pods OpenHDS System" (2016). All Theses &
Dissertations. 312.
https://digitalcommons.usm.maine.edu/etd/312

This Open Access Thesis is brought to you for free and open access by the Student Scholarship at USM Digital
Commons. It has been accepted for inclusion in All Theses & Dissertations by an authorized administrator of USM
Digital Commons. For more information, please contact jessica.c.hovey@maine.edu.

https://digitalcommons.usm.maine.edu/
https://digitalcommons.usm.maine.edu/etd
https://digitalcommons.usm.maine.edu/students
https://digitalcommons.usm.maine.edu/etd?utm_source=digitalcommons.usm.maine.edu%2Fetd%2F312&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.usm.maine.edu%2Fetd%2F312&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usm.maine.edu/etd/312?utm_source=digitalcommons.usm.maine.edu%2Fetd%2F312&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ian.fowler@maine.edu

SOFTWARE INTEROPERABILITY

AND THE PODS OPENHDS SYSTEM

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

 FOR THE DEGREE OF MASTER OF SCIENCE

UNIVERSITY OF SOUTHERN MAINE

DEPARTMENT OF COMPUTER SCIENCE

 BY

Benjamin S. Heasly

2017

Acknowledgements

Thanks to Bruce MacLeod, my thesis advisor, for providing the workspace where I

learned a great deal about software, development, and collaboration.

Thanks to the Grameen Foundation and Maine Economic Improvement Fund for

supporting my graduate assistantship and coursework.

Thanks to the members of the USM Computer Science faculty with whom I worked, for

their excellent and enjoyable instruction in computer science theory and practice: Suad

Alagic, David Bantz, Clare Bates Congdon, Bob Boothe, David Briggs, Bruce MacLeod,

and Stephen Houser.

Thanks to my fellow students who made learning and working a lot of fun. Thanks in

particular to my friends with whom I worked on the OpenHDS project: Andrew Dorman

Taylor and Nathan Wolfe Lienhardt.

ii

Abstract

This work addressed challenges of software system interoperability faced by the Open

Health and Demographics Surveillance System (OpenHDS). OpenHDS is a distributed

application for demographic data collection which was used during a public health

intervention in Equatorial Guinea. Specific challenges faced during this intervention

included offline data collection and synchronization, changing data collection and

software requirements, data size and system performance, and correction of software

and data collection errors. This work produced in a new system, the PODS OpenHDS

System, which applied four design themes in order to address these challenges:

Polymorphism, developer Operations, Declarative style, and Self-description.

The OpenHDS system is described, including its demographic data model and

applicability to the public health intervention in Equatorial Guinea. Key technologies

employed by the PODS OpenHDS System are summarized. The architecture of the

PODS OpenHDS System is described, including a central server and multiple tablet

computer clients. The four PODS design themes are described, including their realized

and anticipated benefits for OpenHDS. Future work for the PODS OpenHDS System is

discussed, including applicability to existing systems, known shortcomings, and natural

extensions.

iii

Table of Contents

Introduction 1

OpenHDS 1

Interoperability Challenges 2

Design Themes 3

The PODS OpenHDS System 3

Use in Equatorial Guinea 5

CIMS 5

CIMS Challenges Addressed by the PODS OpenHDS system 6

OpenHDS Data Model 8

Census 9

Update 12

Application Logic and Field Operations 13

Households 14

Changes Made for PODS OpenHDS 15

Key Technologies 16

Spring Framework 16

HATEOAS and HAL 17

Android 18

Client-Server Interaction 19

System Architecture and Operation 21

Architectural Overview 21

OpenHDS-Rest Server 23

Server Overview 23

Layered Implementation of the OpenHDS Data Model 24

Input Registrations 27

Sample Registrations 29

Processing Side Effects 30

Unknown or Missing Attribute Values 34

Placeholder Records 35

Input Validation 36

Output Shallow Copies and Stubs 37

Output HATEOAS and HAL 39

Output Bulk 46

Sample Data Generation 47

iv

Instructive Inheritance 52

Cross-Cutting Exception Handling 56

OpenHDS-Tablet Client 57

Tablet Client Overview 57

Navigation Overview 59

Form Pre-Filling and Data Entry 64

Link Relation Interpretations 66

Downloading Records 69

Form Definition and Instance Gateways 72

Form Data Mapping 76

Declarative Form Behaviors 83

Form Review and Submission 86

Web Clients 90

Design Themes 92

Polymorphism 92

Developer Operations 94

Declarative Style 96

Self-Description 99

Future Work 102

Application of PODS to Existing Systems 102

Web Clients and Security 104

Queries and Optimizations 104

Declarative Link Relation Interpretations 106

Conclusion 108

References 110

v

List of Tables

Table 1 Layered Application Architecture and Representative Classes 25

Table 2 Instructive Inheritance 55

List of Listings

Listing 1 Sample Household Registration 29

Listing 2 A Shallow Copy 39

Listing 3 Root Resource 41

Listing 4 FieldWorker Resource 43

Listing 5 User Resource 46

Listing 6 XForm Form Behavior Metadata 84

vi

List of Figures

Figure 1 Data Model Used in the PODS OpenHDS System 11

Figure 2 Distributed Application Architecture 22

Figure 3 Sequence Diagram of Registration Processing 32

Figure 4 Sample Geographic Data 49

Figure 5 Sample Household Data 51

Figure 6 OpenHDS-Tablet Navigation and Location Selection 61

Figure 7 OpenHDS-Tablet Navigation and Individual Selection 63

Figure 8 Class Diagram for Link Relation Interpretation 68

Figure 9 Sequence Diagram for Download Page Parsing 71

Figure 10 Class Diagram for Form Definition and Instance Gateways 73

Figure 11 Sequence Diagram for Form Definition Query 75

Figure 12 Class Diagram for FormContent Class 78

Figure 13 Data Mapping by FormContent Aliases 79

Figure 14 Form Review and Submission User Interface 88

vii

Introduction

OpenHDS

The Open Health and Demographics Surveillance System (OpenHDS) is a software

project aimed at collecting and maintaining population demographic data for use in

community health studies and interventions. Demographic records are critical for many

studies and interventions in order to provide denominators for reporting and analysis.

For example, clinics in a study area may be able to report the number of patients seen

over time. But how does this number compare to the whole population -- what is the rate

of visits?

Collecting and maintaining demographic records in developing countries, like Equatorial

Guinea, has traditionally been done using paper forms and manual data aggregation

(Thriemer et al., 2012). This method is labor-intensive and error-prone. The OpenHDS

software offers an alternative method based on electronic forms and web-based data

aggregation. The software offers significant advantages over paper-based systems

including automated validations at collection time and aggregation time, and faster data

entry and search.

In addition, the OpenHDS provides a data model for representing locations and

individuals within a study area, and demographic events that occur over the duration of a

study along with their effects on the individuals in the population.

1

https://paperpile.com/c/WhztOS/ubdLa

A distinguishing feature of the OpenHDS is the use of Android tablet computers to

facilitate data entry by surveyors (Google, n.d.-a). The application represents

geographic and individual data visually, allowing surveyors to select relevant records of

interest by touch. In turn, the application is able to automatically enter relevant data into

electronic form documents.

Interoperability Challenges

The OpenHDS system is a distributed application, with a central server to collect data

and various clients including Android tablets and web browsers. The system is

complicated by the fact that surveyors operating in the field may have limited or no

internet connectivity. This presents interoperability challenges: how to how to support

concurrent data collection by multiple offline clients, how to maintain consistency and

avoid conflicts among records distributed across clients, and when and how to transfer

data between server and clients. Much of the work described here was focused on

these interoperability challenges.

Additionally, this work has explored how client and server interoperation can be

maintained over time, as software is revised and and project requirements change:

● What design choices and types of metadata can allow the system to respond

gracefully to changes, instead of breaking?

● How to minimize the effort of development and redistribution required when

implementing system changes?

● How to facilitate correction of inevitable data entry and programming errors?

2

https://paperpile.com/c/WhztOS/Cmdm7

Design Themes

This work followed four design themes which proved valuable in addressing the

challenges of interoperability and adaptability to change. These themes were also

useful in general during the software development process. The themes are:

1. Applications should take advantage of polymorphic design.

2. Developer operations should be prioritized so that tasks like deployment,

updates, and maintenance do not overwhelm an otherwise functional system.

3. Applications should be written and configured favoring a declarative style.

4. Applications should be self-descriptive.

For mnemonic purposes, these themes may summarized as, "Polymorphic, Operations,

Declarative, and Self-Descriptive", or simply PODS. Several appearances of the PODS

themes in this work will be discussed, as well as their realized and anticipated

advantages. The PODS acronym itself will be used to refer to the specific version of the

OpenHDS system developed for this work.

The PODS OpenHDS System

The OpenHDS project was originated by Bruce MacLeod and students in the Computer

Science Department at the University of Southern Maine (USM). The software system

includes a server application which provides a REST interface to a database, and an

Android tablet application which supports offline data collection.

3

The work discussed here is a continuation of previous OpenHDS development which

applies the PODS themes to the OpenHDS system. The new PODS OpenHDS System

includes three areas of work:

1. A complete reimplementation of the server application, now called OpenHDS-

Rest (Heasly, Lienhardt, & Others, n.d.).

2. Extensive revisions to the existing OpenHDS-Tablet application (Heasly,

Lienhardt, Taylor, & Others, n.d.).

3. A revised architecture through which server and clients communicate.

The PODS OpenHDS system is intended to support the future development of browser-

based web clients, although these clients were not included in this work.

The data model, architecture, and operation of the PODS OpenHDS system will be

described in detail, with particular focus on interoperability challenges that were faced

and how they were addressed in this work. Some of these challenges were encountered

during the software development process. Others were encountered by real-world users

during a public health intervention in Equatorial Guinea.

4

https://paperpile.com/c/WhztOS/0vsHV
https://paperpile.com/c/WhztOS/0vsHV
https://paperpile.com/c/WhztOS/BMNjm

Use in Equatorial Guinea

CIMS

The OpenHDS system was used for the Campaign Information Management System

(CIMS) deployed in Bioko Island, Equatorial Guinea by Medical Care Development

International and USM. The CIMS supported the Equatorial Guinea Malaria Vaccine

Initiative which aimed to combat endemic Malaria using a newly developed vaccine, as

well as conventional interventions like spraying of insecticide and distribution of bed

nets. The CIMS project began in 2014 and continued through 2016, at least.

CIMS used OpenHDS to conduct an initial census of Bioko island, and may continue to

use OpenHDS throughout the project duration to record demographic updates. In

addition to the demographics, CIMS has extended OpenHDS to track rounds of

insecticide spraying and bed net distribution. Eventually, the project aims to use

OpenHDS to track a series of malaria vaccine doses as they are administered to every

individual on the island.

The OpenHDS deployment for CIMS may be typical of future OpenHDS deployments.

The project used a central server to host the project database, carry out data processing

and validation, and make data available to various clients. For this purpose, a remote

virtual server was deployed using Amazon Web Services (Amazon.com, n.d.). An

alternative would have been to deploy a physical server located at the study site.

However, the use of a remote server had advantages: the server itself was not

5

https://paperpile.com/c/WhztOS/oESCv

susceptible to power failures or other logistical concerns at the study site, and the server

was easily administered by the development team using the internet connection at USM,

which was likely faster and more reliable than the connection available at the study site.

Multiple Android tablet computers were deployed with the OpenHDS-Tablet software.

Before each round of data collection, each tablet downloaded a large subset

demographic data from the central server. These tablets were taken into the field for

offline data collection. Following data collection, each tablet uploaded filled-out forms to

the server for processing and aggregation. Ideally, each client would have completed a

download-upload cycle for each day of data collection. In practice, this cycle was often

hindered by intermittent or slow internet connectivity at the study site, large volumes of

data being transferred, data collection errors, and updates to the server and tablet

software.

CIMS Challenges Addressed by the PODS OpenHDS system

The CIMS project highlights several interoperability and robustness challenges faced by

systems like OpenHDS:

● Most of Bioko island is rural, requiring concurrent data collection using many

offline devices.

● The island has a large population -- about 265,000 in 2001 -- requiring large data

transfers between server and clients (Beziz & Directorate General of Statistics

and National Accounts, 2005).

● The project has unique data tracking requirements, like bed net tracking, which

required extensions to the OpenHDS system.

6

https://paperpile.com/c/WhztOS/CEDhY
https://paperpile.com/c/WhztOS/CEDhY

● The project has long duration, requiring OpenHDS to continue functioning as

changes are introduced over time.

The PODS OpenHDS system began as part of the CIMS project and has since diverged

and evolved independently in order to explore significant architectural and

implementation alternatives motivated by the PODS themes. The PODS OpenHDS

system is designed to address challenges faced by CIMS.

7

OpenHDS Data Model

The PODS OpenHDS system defines a data model suitable for demographic

surveillance in a well-defined geographical area. The model may be informally divided

into three parts: Census, Update, and Operations. Census entities and relationships

model an initial baseline data collection including individuals, places of interest, and a

geographic partitioning of the study area itself. Update entities and relationships model

longitudinal data collection -- changes over time to the individuals in the study area.

Finally, Operations entities and relationships support field operations, application logic,

and auditing by modeling the system users and surveyors.

In addition to specific entities and relationships, the data model prescribes processing

side effects that must accompany new records in order to maintain semantic

consistency. For example, a person's moving out of the study area would be recorded

as an OutMigration event. The prescribed side effect of recording this event would

be to modify the moving person's Residency record with a status of terminated.

That way, the person would no longer be listed among those living in the study area.

Prescribed side effects also allow the data model to express complex patterns which are

built up from multiple entities and relationships. For example, this work introduces the

Household pattern, which combines Individual, SocialGroup, and other records to

represent a family.

8

Census

Eight Census entities represent people and places in the study area. These would be

collected during initial baseline data collection and would be updated and supplemented

during subsequent data collection. These entities appear in green in Figure 1, below.

They are:

● Individual. These are people who live in the study area, including those

participating in a study and those who are not participating.

● Relationship. Each Relationship forms a one-way connection from one

Individual to another, with a particular type. For example, an Individual

might be the "niece of" another Individual.

● SocialGroup. These are families and other groups of people.

● Membership. Each Membership indicates the belonging of an Individual to

a particular SocialGroup during a time period.

● Location. These are dwellings where Individuals may reside, and other

places of interest in the study area.

● Residency. Each Residency indicates the dwelling of an Individual at a

particular Location during a time period.

● LocationHierarchy. These form a tree structure which partitions the study

area geographically at several levels of detail, in order to facilitate the search for

Location records and related records.

9

● LocationHierarchyLevel. These describe the levels of detail used for the

geographic partitioning of the study area. They also indicate the tree depth of

each LocationHierarchy record. Typical LocationHierarchyLevel

records might have names like "continent", "country", "province", "district", etc.

10

Figure 1. Data Model Used in the PODS OpenHDS System. Black boxes and arrows

represent entities used for application logic and field Operations. Green boxes and

arrows represent entities that make up the Census or baseline part of the OpenHDS

data model. Red boxes and arrows represent entities that make up the Update or

longitudinal part of the OpenHDS data model. Most entities have a collectedBy

attribute which refers to the FieldWorker entity. For clarity, this standard relationship

is indicated with stars (*) instead of with arrows. All entities have attributes insertBy

and lastModifiedBy which refer to the User entity. For clarity, these standard

attributes are depicted once, for FieldWorker, and omitted elsewhere.

11

Update

Seven Update entities model demographic change events that may occur over time.

These support longitudinal data collection following the initial Census. These entities

appear in red in Figure 1. Many longitudinal records are associated with side effects,

including modifications to existing Census entities or creation of new Census entities.

Briefly, these entities and their expected side effects are:

● Visit. Each Visit represents the act of a surveyor visiting a Location in the

study area, on a particular date. A Visit should be recorded whenever a

surveyor visits a Location during data collection, even if no other demographic

events are recorded.

● Death. Each Death record indicates that an Individual has died, and when.

The side effects of recording a Death must be to modify the status of the

Individual who died, and to mark the Individual's current Relationship,

Membership, and Residency records as "terminated".

● OutMigration. Each OutMigration records the fact that an Individual

who resided within the study area had moved. The side effect of recording an

OutMigration must be to terminate the Individual's current Residency.

● InMigration. Each InMigration records the fact that an Individual has

moved to a new Location within the study area. If the Individual already

resides in the study area, the InMigration must be recorded as internal,

with the side effect of terminating the Individual's previous Residency and

creating a new Residency for the Individual at the new Location.

12

Otherwise, the InMigration must be recorded as external, with the side

effect of creating a new Residency for the Individual at the new Location.

● PregnancyObservation. Each PregnancyObservation records the fact

that an Individual is pregnant, and the expected date of delivery.

● PregnancyOutcome. Each PregnancyOutcome records the end of a

pregnancy, and the date and manner of ending, for example live birth or

miscarriage. Each PregnancyOutcome may be associated with zero or more

PregnancyResults.

● PregnancyResult. Each PregnancyResult represents the result of a full-

term pregnancy, including still or live births. For a live birth, the side effect of

processing each PregnancyResult must be to create a new Individual who

was born, to create a Residency for the Individual at the Mother's

Residency, and to create a Membership for the Individual in the Mother's

family SocialGroup (if any).

Application Logic and Field Operations

Two entities assist with application logic, field Operations, and auditing, but are not

themselves subjects of study. These entities appear in black in Figure 1. These are:

● User. Each User represents a person who may access the OpenHDS-Rest

server. Users must authenticate with a username and password, and may have

authorization to perform certain actions like searching for existing records, or

creating new records. All Census and longitudinal records are associated with

13

the Users who created and last modified them.

● FieldWorker. Each FieldWorker record represents a surveyor who goes

into the field to collect Census and Update data. Surveyors also must

authenticate with a "fieldWorkerId" and password. Most Census records and all

Update records are associated with the FieldWorker record of the surveyor

who recorded them.

Households

In addition to the entities of the OpenHDS data model, this work introduces the notion of

a Household. A Household is not an entity, but a pattern for combining Census entities

in order to represent a family or extended family group. This organizing pattern was

introduced as a requirement for CIMS project field operations, and may be useful to

future projects.

Each Household has a single SocialGroup representing the family itself. Each

Household has a distinguished Individual who is the head of Household. This

Individual has Membership in the family SocialGroup. In addition to the head,

each Household may have a number of Individuals who are Household members.

Like the head of Household, each member has a Membership in the family

SocialGroup. Each member also has a Relationship to the head of Household

indicating their family or other relationship. These Relationships have types like

"spouse", "nephew", or "non-family".

14

The PODS OpenHDS system implements this Household pattern. It includes Household

Registrations and resources as part of its REST API, and performs Registration side

effects and data processing consistent to maintain Household entities and relationships.

See Input Registrations and Side Effects below for an example Household Registration.

Changes Made for PODS OpenHDS

The data model used in this work was adapted from a previous version of the OpenHDS,

and in turn from a data model published by Bruce MacLeod and others (Benzler, Herbst,

& MacLeod, 1998). This work introduces several modest changes to the data model

which fall into the following categories:

● Add Attributes. The CIMS project required the addition of many new entity

attributes in order to support field operations and reporting. Many of these

attributes that seem likely to be useful for future projects have been retained, for

example a general "description" attribute for the Location entity.

● Rename. A few entities and attributes were renamed to avoid confusion. For

example, an existing Outcome entity was renamed to PregnancyResult to

avoid confusion with the related but distinct PregnancyOutcome entity.

● Refactor. To facilitate implementation and documentation, related entities were

grouped and implemented by extending common superclasses (see Instructive

Inheritance, below). This resulted in some attribute changes. For example, the

FieldWorker extId attribute was renamed to fieldWorkerId in order to

avoid the misleading suggestion that the FieldWorker entity is similar to other

entities that have an extId attribute.

15

Key Technologies

This work employed many software frameworks, software standards, and architectural

styles. For the convenience of the reader, the main technologies are introduced here.

Spring Framework

The OpenHDS-Rest server application was written using the Spring Framework. Spring

Framework is an open-source application framework which facilitates creation of

Enterprise Java applications through features including an inversion of control container,

dependency injection, and declarative application configuration (Pivotal, n.d.-d).

Use of Spring allowed OpenHDS-Rest to be developed relatively quickly--a few person-

months. This was largely due to robust facilities provided by the framework which could

be included in OpenHDS-Rest, rather than re-implemented:

● Spring Boot allows application configuration via Java annotations, automates

selection and resolution of library dependencies and versions, and allows

application startup as a one-liner (Pivotal, n.d.-e).

● Spring Data and Java Persistence API (JPA) declare, implement, and

encapsulate database interactions and the mappings between Java objects and

database records (Pivotal, n.d.-f)(Oracle, n.d.-a).

● Spring MVC provides HTTP/REST request handling, request mapping to custom

handler methods, and marshalling between Java objects and XML and JSON

request content (Pivotal, n.d.-b).

16

https://paperpile.com/c/WhztOS/Vx7Mp
https://paperpile.com/c/WhztOS/qNdv8
https://paperpile.com/c/WhztOS/g9c3e

● Spring AOP provided Aspect-Oriented Programming, which allowed certain

cross-cutting concerns like exception handling and logging to be implemented in

one place, then applied automatically and dynamically throughout the application

(Pivotal, n.d.-a).

HATEOAS and HAL

Of central importance for the PODS OpenHDS system, Spring HATEOAS supports

Hypermedia As The Engine Of Application State. This architectural style informed the

self-descriptive REST API used by OpenHDS-Rest. In this style, REST responses

include record data as well as hypermedia links that place the data in the context of

related records, collections, etc. Spring HATEOAS automatically renders these links

using the Hypermedia Application Language (HAL) of JSON or XML (Fowler, 2010)

(Pivotal, n.d.-g)(Kelly, 2013).

HAL links have two essential parts: a link relation name (sometimes shortened to "rel")

that indicates the meaning of the link, and the URL where related data may be

requested. Spring HATEOAS supports many of the IANA (Internet Assigned Numbers

Authority) standard relations, such as self to indicate the canonical address of a

record itself, or collection to indicate the canonical collection to which a record

belongs (Nottingham, Reschke, & Algermissen, 19 April, 2016).

In addition to standard relations, OpenHDS-Rest introduces several domain-specific

relations. For example, a record that represents an individual will have the standard

self link, as well as links to to the Individual's mother and residency, which are

specific to the OpenHDS data model. In order to generate these domain-specific

17

https://paperpile.com/c/WhztOS/GTNJR
https://paperpile.com/c/WhztOS/rdmWm

relations, OpenHDS-Rest uses the Java Reflection API to determine the ids of related

records and build links to them (Oracle, n.d.-b).

Link relations provide essential textual clues to the client application about how to

interpret requested data. But relations are only clues -- words or short phrases -- and

the receiving application still must have logic in place to choose and enact an

appropriate behavior to processing of the requested data. The OpenHDS-Tablet Android

application defines a RelInterpretation class and instances that provide a mapping

from link relations to appropriate data transfer classes and data processing gateways.

Android

The OpenHDS-Tablet mobile application was written for the Android platform, using the

Android Java APIs. Key parts of the Android APIs include Activities, which model user

interactions, Tasks which do background I/O and data processing, data Providers, which

implement and encapsulate database interactions, and Intents, which express

commands and loose couplings between applications and application components

(Google, n.d.-b).

The OpenHDS-Tablet application uses Intents and data Providers to collaborate with an

existing Android application called Open Data Kit (ODK) Collect. ODK Collect provides a

user interface for reading and filling out data forms and data Providers for managing

form definitions and filled-out form instances. ODK Collect is also able to send filled-out

form instances to a companion server application called ODK Aggregate, although use

of ODK Aggregate is optional for this version of OpenHDS (Borriello et al., n.d.-b)

(Borriello et al., n.d.-a).

18

https://paperpile.com/c/WhztOS/dHYfl
https://paperpile.com/c/WhztOS/pkYwb

The OpenHDS and ODK Collect use XForm data forms. XForm is an an XML-based

standard for representing data forms and user interactions. The standard provides for

custom data schemas, binding of data elements to user interface elements, and

declarative and device-independent specifications of user interface elements,

computations, and data validations (Pemberton & Klotz, n.d.).

XForms of a given type are represented by an XForm definition XML document, which

specifies all of the form aspects above. During data entry, users edit XForm instance

documents which contain only the data elements specified by the data schema. These

instance documents must be interpreted with respect to their respective definition

documents.

Client-Server Interaction

Both the OpenHDS-Rest server application and the OpenHDS-Tablet mobile application

use Universally Unique IDentifiers (UUIDs) as the primary key to identify database

records. The UUID standard allows any host to independently generate an id which is

almost certain to be unique across all records, and indeed, unique across hosts and time

(Oracle, n.d.-c). This feature of UUIDs is important for correct interoperation of the

OpenHDS-Rest server and clients. Because of off-line data collection, the server and

clients must be able to create new records concurrently, independently, and while offline.

Yet, when all records have been submitted to the server, the ids of newly created records

must not collide. This requirement would be difficult to satisfy with traditional sequential

record ids, which are likely to be duplicated across hosts.

19

https://paperpile.com/c/WhztOS/nctJE
https://paperpile.com/c/WhztOS/yQnSI

In addition to OpenHDS-Tablet clients, the OpenHDS-Rest server is expected to

interoperate with web browser based clients. Spring Boot provides a facility for adding

Cross-Site Resource Sharing (CORS) headers to HTTP responses. These headers will

allow OpenHDS-Rest to interoperate with browser-based clients that are not distributed

with OpenHDS-Rest itself (Van Kesteren & Others, 2010).

20

https://paperpile.com/c/WhztOS/aBq4Z

System Architecture and Operation

Architectural Overview

The PODS OpenHDS system is a distributed application made up of the two

subsystems: the OpenHDS-Rest server and the OpenHDS-Tablet client. A browser-

based web client would be a third subsystem, which has not yet been developed. Each

subsystem has clear boundaries defined by the server's REST API. Each may be

developed independently, so long as it remains consistent with the API. Figure 2

illustrates the arrangement of these subsystems and their communication.

21

Figure 2. Distributed Application Architecture. An instance of the OpenHDS-Rest server

interacts with multiple clients of different types via its REST API. Orange arrows

represent input data flowing towards the server, which may produce side effects and

require validation before being stored in the server database. Blue arrows represent

validated data flowing out of the server. Green arrows represent data flow internal to

tablet clients, including validated data from the server as well as input data collected

offline, which has not yet been sent to the server. Solid arrows represent continuous

connectivity as would be expected for browser-based web clients. Dashed arrows

represent intermittent connectivity as experienced for surveyors who are in the field and

therefore offline.

None of the subsystems would serve as a complete application on its own. The server

lacks any user interface and does not address the problem of offline data collection. The

tablet and web clients do not perform all of the side effects or validation prescribed by

22

the OpenHDS data model, nor do they address the problems of data aggregation and

long-term storage.

The design and implementation of the OpenHDS-Rest server was influential on the

design of the tablet application, and would also dictate much of the design of a browser-

based web client. Thus, the server will be described first, followed by the OpenHDS-

Tablet client and future web clients.

OpenHDS-Rest Server

Server Overview

The OpenHDS-Rest server provides basic functions that are required for the OpenHDS

system. These include processing of data uploaded by clients, aggregating data from

multiple clients, and exposing aggregated data to clients for queries and retrieval.

Uploading data involves three steps:

1. Perform side effects in response to incoming data, such as creating new records

and resolving references to existing records.

2. Validate incoming and newly created records for syntactic and semantic errors.

3. Store validated data in a database.

The server provides additional functionality beyond the basic system requirements, in

order to facilitate client-server interactions and system testing. Additional functionality

includes the generation of stub records which limit the sizes of result sets sent to clients,

inclusion of HATEOAS links along with query responses which allow the server's REST

23

API to be self-describing, and generation of sample data to facilitate testing and

demonstration.

The implementation treats exception handling as a cross-cutting concern. It uses the

Exception Handler mechanism of the Spring MVC to declare a mapping from Java

Exception classes to HTTP response codes and messages (Pivotal, n.d.-c).

Layered Implementation of the OpenHDS Data Model

The OpenHDS-Rest application implements the complicated OpenHDS data model as

well as complicated behaviors related to the REST API, side effects, and validation.

Therefore, the application risks having a code base which is itself complicated and

difficult to understand or modify. The OpenHDS-Rest implementation for this PODS

work employs a layered architecture in order to separate application concerns into

cohesive sections and facilitate understanding of and modifications to the code base

(Fowler, 2002). Table 1 illustrates the four layers of the OpenHDS-Rest implementation:

Domain, Repository, Service, and Resource.

24

https://paperpile.com/c/WhztOS/LqXrU
https://paperpile.com/c/WhztOS/yuq7i

Layer Implementation supertypes
Representative entity
classes

Resource

UuidIdentifiable
 RestController
Auditable
 RestController
AuditableCollected
 RestController
AuditableExtId
 RestController

FieldWorker
 RestController
User
 RestController
Individual
 RestController
InMigration
 RestController

Service

AbstractUuid
 Service
AbstractAuditable
 Service
AbstractAuditableCollected
 Service
AbstractAuditableExtId
 Service

FieldWorker
 Service
User
 Service
Individual
 Service
InMigration
 Service

Repository

UuidIdentifiable
 Repository
Auditable
 Repository
AuditableCollected
 Repository
AuditableExtId
 Repository

FieldWorker
 Repository
User
 Repository
Individual
 Repository
InMigration
 Repository

Domain

UuidIdentifiable
AuditableEntity
AuditableCollectedEntity
AuditableExtIdEntity

FieldWorker
User
Individual
InMigration

Table 1. Layered Application Architecture and Representative Classes. The four layers

of the OpenHDS-Rest implementation are shown as rows. From bottom to top: the

Domain layer is shown in blue, the Repository layer is shown in green, the Service layer

is shown in orange, and the Resource layer is shown in red. The middle column shows

class names of supertypes that define common behaviors for each layer. The right

column shows representative concrete, entity classes that extend the layer supertypes.

25

The Domain layer of the application models each OpenHDS entity as a Java class, with

fields corresponding to entity attributes. Many fields are annotated with standard JPA

and Javax Validation annotations in order to express data constraints and entity

relationships (Bernard & Peterson, 2009).

The annotated classes allow the Spring Data framework to automatically generate new

classes that implement and encapsulate database interactions and the mappings

between database records and entity class instances. These generated classes

represent the Repository layer of the application.

To process side effects required by the data model and to validate new data the

implementation includes a Service layer which includes one Service class for each

entity. These classes use standard Javax Validation utilities to perform syntactic data

validations, like null checks, that were declared as annotations in the Domain layer.

These classes also use hand-written Java code to carry out semantic validations and to

carry out side effects for longitudinal record processing. For example, it is invalid for an

Individual's death date to precede her birth date.

Finally, to expose the implementation to clients, the server includes a Resource layer,

with one Resource class per entity. These classes use Spring MVC annotations to

declare REST resources and resource paths which the Spring Framework should make

available as HTTP request endpoints. These classes associate custom Java code with

each resource path, in order to perform a mapping from HTTP request to appropriate

Service methods, and in turn to HTTP responses.

26

https://paperpile.com/c/WhztOS/lAowE

Input Registrations

The OpenHDS-Rest server accepts input data for any entity in the OpenHDS data

model, leading to a potentially large number of input data representations that the REST

API must support. Furthermore, input representations must be able to specify simple

record attributes as well as relationships between records, potentially complicating the

input data representation. The PODS OpenHDS-Rest server introduces a unit of input

submission called a Registration which is consistent across entities and simplifies the

representation of record attributes and relationships.

Each Resource class in the implementation Resource layer defines a concrete

Registration type with fields that are specific to one entity. Although the specific fields

differ between entities, all Registrations obey the same general form and divide data into

three parts:

● Registration Metadata. Registrations include a set of metadata fields common

for all entities including the name, version number, and version name of the client

system, and a timestamp.

● Simple Attributes. Each Registration must include a single complex field to

represent the record being registered. This field must be named for the record's

entity type, for example, location or individual. Typical attributes include

the uuid and name of the record.

● Related Record Ids. Each Registration may include additional fields whose

names indicate relationships between entities and whose values contain the

UUIDs of specific records. For example, the

IndividualHouseholdRegistration includes the field motherUuid to

27

specify the UUID of the Individual record that should be referenced from the

mother field of the Individual being registered.

Clients submitting data to the OpenHDS-Rest server must make an HTTP POST or PUT

request at the resource path which corresponds to an entity, such as /locations, or

/individuals. The body of each request must contain an XML or JSON

representation of the concrete Registration type defined by in the corresponding

Resource class. Listing 1 shows an IndividualHouseholdRegistration which

might be POSTED to the /individuals/household resource path.

28

POST /individuals/household

{
 registrationSystemName: "systemName",
 registrationVersion: 1,
 registrationVersionName: "versionName",
 registrationDateTime: "2016-03-19T17:33:19.069-04:00[America/New_York]",
 individual: {
 uuid: "my-id",
 firstName: "my-name",
 extId: "my-name",
 gender: "FEMALE"
 },
 collectedByUuid: "f61997d8-...",
 motherUuid: "UNKNOWN",
 fatherUuid: "UNKNOWN",
 headOfHouseholdUuid: "UNKNOWN",
 relationshipUuid: "UNKNOWN",
 locationUuid: "UNKNOWN",
 residencyUuid: "UNKNOWN"
 socialGroupUuid: "f6199a62-...",
 membershipUuid: "UNKNOWN",
}

Listing 1. Sample Household Registration. Clients may obtain an

IndividualHouseholdRegistration template by making a GET requests at

resource path /individuals/household/sampleRegistration. The server will

respond with a well-formed IndividualHouseholdRegistration represented as

JSON (as it is here) or XML. Data fields will initially have placeholder values, for

example, "systemName" for the name of the client system, or "UNKNOWN" for the ids of

related entities (highlighted in cyan), such as the SocialGroup of the Household.

Clients may modify the data fields with real data, such as a FieldWorker's

collectedByUuid and ids of Household records like the Household's

socialGroupUuid. After filling in data, the client may POST the modified Registration

to resource path /individuals/household.

Sample Registrations

Although Registrations provide an input data representation that is consistent across

entities, clients still must discover the entity-specific field names that are required for

29

each concrete Registration type. To assist clients in creating well-formed Registrations,

all entity resources provide a sample Registration which clients may use as a template

for data entry.

Clients may request sample Registrations by making an HTTP GET request at the

resource path which corresponds to an entity, for example

/individuals/sampleRegistration or

/inMigrations/sampleRegistration. Listing 1 shows a sample

IndividualHouseholdRegistration obtained from the

/individuals/household/sampleRegistration resource path.

Sample Registrations may be particularly useful for long or complicated Registrations,

whose valid syntax may not be obvious to the client. The

IndividualHouseholdRegistration is particularly long, because it contains the

UUIDs of many entities related to the Individual's Household.

Processing Side Effects

The OpenHDS data model prescribes processing side effects that must accompany the

recording of certain records. In order to maintain coherency and clarity of the code

base, the OpenHDS-Rest implementation divides this processing into two parts:

1. The Resource layer is responsible for parsing the input Registration, which may

be JSON or XML, and representing the Registration data using standard Java

classes and classes from the OpenHDS-Rest Domain layer.

2. The Service layer is responsible for actually processing Registration data

provided by the Resource layer. This includes looking up related entities by id,

30

and updating and creating new records. Notably, the Service layer is

independent of the Registration classes defined at the Resource layer.

Figure 3 summarizes the sequence of Resource and Service method calls during

processing of an IndividualHouseholdRegistration.

31

Figure 3. Sequence Diagram of Registration Processing. A client POSTS an

IndividualHouseholdRegistration to the OpenHDS-Rest Individual Resource.

The IndividialRestController handles the POST request by unmarshalling the

request body and passing the resulting Individual object and ids of related records to

the recordIndividual() method of the IndividualService. The

IndividualService resolves the the Registration's collectedBy FieldWorker

reference by passing this id to the findOrMakePlaceholder() method of the

FieldWorkerService. The resolved FieldWorker is assigned to the Individual

record. The IndividualService stores the Individual record by calling its own

createOrUpdate() method. By similar method calls to the IndividualService

and RelationshipService, a head of Household Individual is resolved from the

Registration's headId, and a Relationship is created and stored between the new

Individual and this head of Household. For clarity, calls to additional Services are

32

omitted, which are similar to the calls to the RelationshipService. Calls to the the

MembershipService and SocialGroupService create and store a Membership

for the Individual in the Household SocialGroup. Calls to the

ResidencyService and LocationService create and store a Residency for the

Individual at the Location specified in the Registration. Finally, the updated

Individual is returned to the IndividualRestController, which in turn responds

to the client with a representation of the registered Individual.

The IndividualHouseholdRegistration in particular requires numerous side

effects because Household is a complex pattern build up from several entities and

relationships. In order to process a IndividualHouseholdRegistration like the

one in Listing 1, the server must:

● Record the Individual herself.

● Look up related entities by id, including the FieldWorker record for the

surveyor who collected the Registration, the Individuals who are the mother

and father of the new Individual, the Individual who is the head of the

Household to which the new Individual belongs, the SocialGroup that

represents the Household family, and the Location that represents the family

home.

● Update attributes of the new Individual, including the collectedBy

FieldWorker, and the mother and father Individuals.

33

● Create a Relationship record between the new Individual and the head of

the Household.

● Create a Residency record for the Individual at the Location of the family

home.

● Create a Membership record for the Individual in the SocialGroup of the

family.

OpenHDS Update records may be submitted using Registrations similar to the

Household Registration. Processing of these records requires side effects in order to

keep the records in the database consistent. For example, after an Individual

migrates out of the study area, she should no longer be listed as resident within the

study area. Entities that require side effects like this include: Death, InMigration,

OutMigration, and PregnancyResult.

Unknown or Missing Attribute Values

Surveyors may be unable to obtain enough information to submit complete

Registrations. For example, an Individual's mother or father might be in fact not

known to the Individual, or may not yet have been recorded in the study database.

In order to facilitate continued operation despite incomplete data, the PODS OpenHDS-

Rest implementation defines a distinguished Unknown record for each entity type.

Unknown records are real records, stored in the database, with the well-known id

"UNKNOWN" in place of the UUID that would be used for normal records. In cases

where complete information is unavailable, it is preferable to submit the Unknown record

34

as a positive statement of ignorance. Alternatives would have been to submit a null

record or no record at all, but these would be ambiguous and might be confused with

missing or corrupt data.

The IndividualHouseholdRegistration in Listing 1 shows several instances of

the distinguished "UNKNOWN" record id. These ids and the Registration are valid, if not

particularly informative about the Individual being registered.

Placeholder Records

A challenge for offline data collection is how to determine the order of submission for

interdependent records. Consider for example two records: a daughter Individual,

and her mother Individual. The daughter depends on the mother, by way of the

Individual entitie's mother attribute. It would be natural to to submit the mother

first, before daughter, so that the mother record may be resolved during processing of

the daughter. However, clients might not maintain a proper order for collected records.

Moreover, network errors and data validation errors may prevent records that were

submitted in the correct order from being processed and stored in the correct order.

The PODS OpenHDS-Rest Service layer employs a placeholder strategy, in order to

relieve clients from having to sort records by dependency, or from dealing with

cascading failures caused by network or validation errors.

For example, in case a daughter record is submitted before her mother record, the

IndividualService will create and store a placeholder record to represent the

missing mother. This placeholder will use the mother's id provided with the daughter

35

record, but otherwise use default attribute values and Unknown entity relationships. This

placeholder will allow the daughter record to be recorded successfully, instead of failing

because of the missing mother. Later, when the mother record is submitted, the server

will treat the submission as an update to the placeholder, resulting in data consistency.

The OpenHDS-Rest Service layer uses this placeholder strategy throughout, for all entity

relationships, not only for Individuals and mothers.

Input Validation

The OpenHDS-Rest server must validate a wide variety of entities, attributes, and

relationships defined in the OpenHDS data model, and report validation errors to clients

in a way that allows the errors to be corrected. In order to simplify the validation code,

the OpenHDS PODS implementation uses a declarative style where possible. In order

to provide consistent error messages to clients, the implementation relies on cross-

cutting exception handling.

For syntactic validation of single data fields, like "the field must be non-null" or "the string

must have a minimum length", the implementation uses a declarative style based on

standard Javax Validation annotations. These annotations are applied to fields of

OpenHDS-Rest Domain classes and include error messages that are field-specific, such

as "Location cannot have a null name". Following side effect processing, the Service

layer calls standard Javax validation methods to validate records against the declared

annotations, and to throw runtime errors in case of invalid field values.

36

The Service layer also performs semantic validations that span multiple records. For

example, an Individual may not have a birth date in the future. Semantic validations

like this are implemented explicitly with Java code in the Service class for each entity. In

case of a validation error, these Service classes throw runtime errors that include

specific messages like "Individual can not have a birth date in the future."

In any case, validation runtime errors are reported to clients by the Resource layer, using

a consistent mechanism which includes the specific error message and an appropriate

HTTP status code. See Cross-Cutting Exception Handling, below.

Output Shallow Copies and Stubs

All records stored in the OpenHDS-Rest database are exposed to clients via the

Repository, Service, and Resource layers and REST query API. At the Resource layer,

records that should be returned to clients are represented as Java objects which refer to

one another by standard Java field references. This presents a problem when

marshalling results to JSON or XML for transmission to clients. A naive marshaller might

follow memory references indefinitely, producing a very large representation that

includes reachable but unwanted entities nested within. Another naive marshaller might

not follow any references, producing efficient representations of single objects, but

providing no means for clients to discover the relationships between records.

The OpenHDS-Rest implementation makes a compromise by producing shallow copies

of records in response to queries. Each shallow copy contains all of the primitive

attributes of a given object, but in place of related objects, the shallow copy refers to a

37

stub. Each stub is an object of the same type as the original, with the uniquely

identifying uuid value of the original, but all other fields left with blank or default values.

The shallow copying implementation uses Java's Reflection API and depends on the

OpenHDS-Rest UUIDIdentifyable interface. Original objects are copied verbatim

except for fields of type UUIDIdentifyable, which are replaced with stubs that use

only the uuid value declared in the UUIDIdentifyable interface. Use of the

Reflection API allowed shallow copies to be implemented once, in a generic and cross-

cutting way.

The shallow copier is invoked just before objects are sent to the marshaller on the way

to the client. Listing 2 shows the JSON representation of a shallow-copied

Individual.

38

GET http://localhost:8080/individuals/43d59e4f-be6f-4c2e-8454-9eddca557798

{
 uuid: "43d59e4f-be6f-4c2e-8454-9eddca557798",
 insertBy: {
 uuid: "5a2e20b0-..."
 },
 insertDate: 1458421052.792,
 lastModifiedBy: {
 uuid: "5a2e20b0-..."
 },
 lastModifiedDate: 1458421052.792,
 collectedBy: {
 uuid: "5a2e27cc-"
 },
 collectionDateTime: 1458421052.792,
 extId: "location-3-head",
 firstName: "location-3-head",
 lastName: "location-3-head",
 gender: "FEMALE",
 ...
}

Listing 2. A Shallow Copy. To avoid large result sets with many nested records, the

OpenHDS-Rest ShallowCopier generates stub records. These records may be

marshalled automatically to JSON or XML without runaway graph retrieval. Yet, they

retain the uuid fields for related records (highlighted in cyan) allowing reconstruction of

the full object graph by clients, if needed. The JSON representation of an arbitrary, stub

Individual record is shown. This is typical of results obtained by GET request from

the Individual resource.

Output HATEOAS and HAL

Clients that wish to request data from the server must somehow discover the resource

path where appropriate data can be found. One approach would be to hard-code the

necessary paths as part of the client implementation. This approach would be brittle

with respect to application changes because changes to resource paths on the server

side would require rebuilding and redistribution of all clients. This problem would be

compounded by the shallow copies and stubs produced by the server. Clients that wish

39

to resolve a stub and obtain the corresponding complete record would have to construct

the resource path for each stub. This would require a brittle client behavior in addition to

the brittle hard-coded data. The OpenHDS-Rest REST API addresses both problems by

implementing the principle of Hypermedia As The Engine Of Application State

(HATEOAS).

HATEOAS makes the OpenHDS-Rest REST API self-describing and interactive by way

of hyperlinks that are sent to clients along with requested data. These links describe the

data and also allow the client to navigate to related data or other available resources.

Each link is preceded with a relation name that gives a hint to the meaning of the link.

This paring of relation names and links is conforms to the Hypertext Application

Language (HAL), which is a draft standard for rendering HATEOAS links with content.

Listing 3 shows sample GET output from the OpenHDS-Rest root resource. This

resource returns almost no data of its own, only a greeting and a timestamp. But it

includes numerous links to available resources. The first link is for the self relation,

which gives the canonical URL for the root resource itself. The self relation is standard

and defined for any REST resource. It is provided for all resources in the OpenHDS-

Rest API.

40

GET http://localhost:8080/

{
 content: "Welcome. The Current time UTC is 2016-03-19T23:02:28.133Z",
 _links: {
 self: {
 href: "http://localhost:8080/"
 },
 users: {
 href: "http://localhost:8080/users"
 },
 fieldWorkers: {
 href: "http://localhost:8080/fieldWorkers"
 },
 individuals: {
 href: "http://localhost:8080/individuals"
 },
 locations: {
 href: "http://localhost:8080/locations"
 },
 locationHierarchies: {
 href: "http://localhost:8080/locationHierarchies"
 },
 relationships: {
 href: "http://localhost:8080/relationships"
 },
 projectCodes: {
 href: "http://localhost:8080/projectCodes"
 },
 pregnancyObservations: {
 href: "http://localhost:8080/pregnancyObservations"
 },
 ...
 }
}

Listing 3. Root Resource. The GET response for the OpenHDS-Rest root resource is

shown, rendered as HAL and JSON. This resource provides very little data, only a

greeting message and a timestamp. Along with the data it provides numerous links to

other resources for specific entities of the OpenHDS data mode. The link to the

resource for the FieldWorker entity is highlighted in cyan. These links make the

REST API self-describing, and facilitate client navigation, consistent with the principal of

HATEOAS.

Other links from the root resource use non-standard relations that are specific to the

OpenHDS data model. Each of these relations has the plural name of an entity from the

OpenHDS data model and links to the specific resource for that entity.

41

Because the server's root resource provides links to all available resources, clients need

only know the URL for this resource, and may discover the locations of all other

resources by selecting relations and following the associated links. Indeed, these links

are constructed dynamically from a client's point of view: the base URL for each link is

taken from the Host header of the client's request. In Listing 3, this is "localhost". In

other cases this could be the domain name or numerical IP address by which the client

knows the server.

Listing 3 highlights in cyan the link to the REST API's FieldWorker resource. A client

might follow this link to obtain more information about registered surveyors. Listing 4

shows the results of such a GET request.

42

GET http://localhost:8080/fieldWorkers

{
 _links: {
 self: {
 href: "http://localhost:8080/fieldWorkers{?page,size,sort}",
 templated: true
 },
 ...
 },
 _embedded: {
 fieldWorkers: [
 {
 uuid: "5d649d45-4cb6-4f6c-83e7-4dd5a9e4eeb0",
 insertBy: {
 uuid: "5a2e20b0-..."
 },
 insertDate: 1458421049.685,
 lastModifiedBy: {
 uuid: "5a2e20b0-..."
 },
 lastModifiedDate: 1458421049.685,
 fieldWorkerId: "fieldworker",
 firstName: "default fieldworker",
 lastName: "default fieldworker",
 passwordHash: "...",
 _links: {
 insertby: {
 href: "http://localhost:8080/users/5a2e20b0-..."
 },
 lastmodifiedby: {
 href: "http://localhost:8080/users/5a2e20b0-..."
 },
 self: {
 href: "http://localhost:8080/fieldWorkers/5d649d45-..."
 },
 }
 },
 ...
]
 },
 page: {
 size: 20,
 totalElements: 2,
 totalPages: 1,
 number: 0
 }
}

Listing 4. FieldWorker Resource. The GET response for the OpenHDS-Rest

FieldWorker resource is shown, rendered as HAL and JSON. This resource provides

a paged view of the collection of FieldWorker records. The self link is a templated

link, with optional parameters for the collection page number, page size, and sort field.

An embedded array of FieldWorker records follows the links. Only the first record is

43

shown. It is a shallow copy, with a stub indicating the uuid but no other data about the

inserBy User who created the record (highlighted in cyan). Each embedded record is

accompanied by its own set of links, including the standard self link as well as

OpenHDS domain-specific links. The field name insertBy appears again as the

relation name indicating the URL for the full User record (also highlighted in cyan).

The FieldWorker resource and other entity resources present a paged view of the

collection of entity records. Each page provides little information of its own: size in

records of the page, the total number of elements in the collection, the total number of

pages in the collection, and the number of the page itself within the collection. The

page's self link is a templated link, with optional parameters for the page size, page

number, and record sort field.

More information is provided in the page's embedded records. This is an array of

records from the entity collection corresponding to the page size and page number.

Each of these records appears as a shallow copy, accompanied by its own links. These

links include standard relations like the self relation and non-standard relations based

on record field names.

The use of record field names as link relation names allows the OpenHDS-Rest

application to complement the shallow copies and stubs described above. For each field

where the implementation identifies a UUIDIdentifiable object and replaces it with a

stub object, the implementation also generates a link to the resource where the full

representation that corresponds to the stub may be found. Indeed, the

44

ShallowCopier and the code that generates these links share most of their

implementation.

Link relations named like record fields are non-standard. In general, non-standard

relations may be problematic for clients because the semantics of the link may be

undocumented or understandable only to human readers. But for OpenHDS-Rest, the

pairing of non-standard relations with record field names suggests a straightforward

interpretation: when a non-standard relation is encountered, it may be mapped to a stub

field with the same name. Since field names must be unique within the scope of a single

record, this mapping will be unambiguous. The GET results from the non-standard link

may be substituted for the stub record in the containing record. Following this

interpretation, a client could undo the work of the shallow copier and reconstruct any or

all of the object graph stored on the server. It could do this one record at a time, as

needed.

Listing 4 shows an example of the complementary relationship between shallow copies

and links. It highlights in cyan the insertBy field of the FieldWorker record. This

field contains a stub representation of the User who created the FieldWorker record.

The listing also highlights the insertBy relation and link which to the full record of the

same User. A client might follow this link to obtain more information about the User.

Listing 5 shows the results of such a GET request.

45

GET http://localhost:8080/users/5a2e27cc-2b52-11e6-b67b-9e71128cae77

{
 uuid: "5a2e27cc-2b52-11e6-b67b-9e71128cae77",
 firstName: "User",
 username: "User",
 passwordHash: "***",
 _links: {
 self: {
 href: "http://localhost:8080/users/5a2e20b0..."
 },
 collection: {
 href: "http://localhost:8080/users"
 }
 }
}

Listing 5. User Resource. The GET response for the OpenHDS-Rest User resource for

a single User is shown, rendered as HAL and JSON. This resource provides data and

links for a single User record, in this case an arbitrary User with the name "User". The

self link, which gives the canonical location of this record, is the same as the

requested resource. The collection relation indicates the location of the larger entity

collection to which this specific User belongs.

Output Bulk

HATEOAS and HAL provide abundant metadata about the results returned to clients, but

in turn this metadata significantly increases the size of the response and imposes a

parsing burden on clients in order to distinguish link data from record data. Moreover, in

order to obtain the full set of records from an entity collection, a client must perform

multiple paged requests. Complicated parsing, and multiple requests may be

problematic for portable clients operating on battery power, with slow or intermittent

connectivity.

46

For such clients, the OpenHDS-Rest REST API provides an alternative bulk view of each

resource, which may be preferable. Bulk data are presented as a stream which ranges

over the entire result set and omits paging and links. The streaming presentation allows

clients to obtain all results in a single request and to take advantage of the error

correction and flow control mechanisms of the TCP protocol. The simplified

representation allows clients to parse records as a single XML document or JSON array

which contains shallow-copied records

Sample Data Generation

In order to populate the server database with records, for testing or production use, a

user must submit records that are consistent with server's database schema and the

OpenHDS data model. However, in the case of the OpenHDS-Rest implementation

Resource layer, the database schema may be automatically generated and hidden from

the user. In addition, the OpenHDS data model is complex and may be difficult for new

users to understand at first. To address these problems, the OpenHDS-Rest

implementation is able to generate valid sample data.

Sample data represent an additional form of self-documentation provided by the

OpenHDS-Rest implementation. The sample records demonstrate a plausible and valid

set of operational, Census, and Update records which users may explore interactively.

This interactive exploration may be a useful supplement to static analysis of the

database schema or other written documentation.

At startup, the OpenHDS-Rest server application may generate sample records suitable

for testing and demonstration. These sample records are used during automatic unit

47

and integration tests that are part of the code distribution. Sample records may also

support end-to-end tests and demonstrations that incorporate connected clients.

Figure 4 shows selected sample data that partition the geography of an imaginary study

area. The partitioning begins with a top-level LocationHierarchy node and

descendant nodes which fan out to form a complete tree (Figure 4 shows only a

representative portion of the complete tree). Each level of the tree corresponds to a

LocationHierarchyLevel record, which identifies all hierarchy nodes with the same

depth. Each level represents a partitioning of the study area at a particular level of

detail. The tree of LocationHierarchy records is extended to include Location

records at the lowest level.

48

Figure 4. Sample Geographic Data. Each hierarchy node refers to a parent node, thus

forming a tree structure which can be used to partition geography at several levels of

detail. Each hierarchy node also refers to a level which describes the node's tree

depth and may have a mnemonic label. The hierarchy-root is a distinguished node of

the hierarchy with no parent and no level. Each Location refers to a

locationHierarchy node, thus extending the tree structure to include data about

specific Locations. In the real sample data set, the number of tree nodes fans out

exponentially with increasing tree depth, but this is abbreviated here for clarity. Green

boxes and arrows indicate Location drill-down data that a surveyor might traverse

when navigating to a specific Location or Individual. Gray boxes and arrows

indicate other organizing data.

The geographic partitioning represented by LocationHierarchy records facilitates

drill-down navigation by surveyors who may need to identify a single Location record

from among a large total number of Location records. Records involved in in drill-

down navigation are shown in green. See Tablet Navigation below.

49

For the sample data, records have arbitrary names that incorporate numeric suffixes, like

"level-2", "hierarchy-0-1-1", or "location-1". For real-world projects,

LocationHierarchyLevel records might have locally meaningful names, like "state",

"county", or "city". Each LocationHierarchy node would have a name appropriate

for its level, like "Maine", "Cumberland", or "Portland". Finally, each Location name

would correspond to a structure or other place of interest contained within its nearest

LocationHierarchy node, for example, "University of Southern Maine".

In addition to geographic partitioning and location data, OpenHDS-Rest may generate

sample Household data. As described above, Households are a complex pattern built

up from entities in the OpenHDS data model. To facilitate location-based navigation,

each Household is associated with a single Location. Figure 5 depicts Household

data for one Location named "location-1". This may be viewed as a continuation of

Figure 4, which also depicts "location-1".

50

Figure 5. Sample Household Data. A Household is pattern that groups OpenHDS

entities into a typical real-world unit. The same entities could be combined in other ways

to represent other situations. A Household comprises a single Location, a single

SocialGroup, an Individual who is the head of Household, and additional

Individuals who are members of the Household. Each Individual has a

Residency at the Location, a Membership in the SocialGroup, and a

Relationship to the head of Household. Green boxes and arrows indicate

Location drill-down data that a surveyor might traverse when navigating to a specific

Location or Individual. Gray boxes and arrows indicate other organizing data.

Drill-down navigation by a surveyor may continue within a Household. Figure 5 shows in

green that navigation may proceed from a selected Location to the Individuals

who have Residencies at the Location. Each sample Household also includes a

SocialGroup, Memberships, and Relationships. These complete the Household

pattern but are not currently used for navigation.

51

Instructive Inheritance

The OpenHDS data model presents challenges for implementation, testing, and

documentation because it contains many entities, relationships, and expected behaviors.

If each of these were treated separately, the corresponding implementation, test suite, or

documentation might become large and difficult to understand. The OpenHDS-Rest

implementation addresses this challenge by making extensive use of Java's inheritance

mechanism. This approach simplified the system design by factoring out requirements

common to some or all entities. This in turn allowed for significant code reuse across

implementation layers and test code, and simplified the system documentation.

Inheritance is not a good fit for all design challenges (Gamma, Helm, Johnson, &

Vlissides, 1995). For example, Java's single-inheritance mechanism does not allow

cross-cutting behaviors to be shared easily across disjoint inheritance trees. But it is a

good fit for designs in which all classes share some common behavior, and where

variations among classes are strictly specializations of a common superclass.

Such is the case for the OpenHDS-Rest implementation of the OpenHDS data model.

All entity classes have in common a uuid attribute, which is a unique identifier stable

across server and clients. This common attribute is modeled with a

UuidIdentifiable interface which all entity classes implement. Some entity classes,

like User, implement only this interface and no further specializing supertype.

52

https://paperpile.com/c/WhztOS/m57eY
https://paperpile.com/c/WhztOS/m57eY

Records submitted to the OpenHDS-Rest REST API must be submitted by a User in the

form of a Registration (see Input Registration above). To enable auditing of these

records, the UUID of the submitting User is recorded with each new record. This

requirement is modeled with an Auditable superclass, which extends the

UuidIdentifiable interface to include an insertBy User field.

Likewise, records collected by surveyors in the field must include the UUID of the

FieldWorker who did the data collection. This requirement is modeled with an

AuditableCollected superclass, which extends the Auditable superclass to

include a collectedBy FieldWorker field.

Finally, many entities must be identified with an external id which is human-readable and

meaningful to surveyors. This requirement is modeled with an ExtIdIdentifiable

supertype which extends the AuditableCollected to include an extId field.

The superclasses UuidIdentifiable, Auditable, AuditableCollected, and

ExtIdIdentifiable form a chain. At each level, the preceding supertype is

specialized by adding a new field which represents a new requirement. The

superclasses are not otherwise modified, so that each subtype may stand in as a

substitute for its superclass, with no unexpected behavior.

This pattern of chained, strictly specializing inheritance is used in parallel by all layers of

the OpenHDS-Rest implementation. The UuidIdentifiable, Auditable,

AuditableCollected, and ExtIdIdentifiable Repository classes successively

add database columns, queries, and indexes appropriate for the corresponding entity

53

classes. The parallel chain of Service classes successively add appropriate processing

side effects and validations. The parallel chain of Resource classes successively add

appropriate resource paths for querying entities.

In addition to the implementation layers, the OpenHDS-Rest code distribution includes

unit and integration test superclasses that follow the same inheritance chain. Thus, tests

written for ExtIdIdentifiable Services and Resources automatically carry with them

the tests written for for AuditableCollected, Auditable, and UuidIdentifiable

Services. This use of inheritance for tests facilitated the development of thorough test

coverage.

Table 2 summarizes the OpenHDS-Rest entity classes and groups them by supertype.

For each supertype, it shows the REST API resource paths defined by the the

corresponding Resource class.

54

Entity

Supertype UuidIdentifiable
Auditable
Auditable
 Collected

ExtId
Identifiable

REST API
paths

available

/
/{id}
/bulk
/sampleRegistraion

/bydate
/bydate/bulk
/bylocationhierarchy
/bylocationhierarchy
 /bulk
/voided

/external/{id}

Individual
Location
Location
 Hierarchy
SocialGroup
Visit

✔ ✔ ✔

ErrorLog
Event
FieldWorker
Location
 Hierarchy
 Level
Membership
Relationship
Residency
Death
InMigration
OutMigration
Pregnancy
 Observation
Pregnancy
 Outcome
Pregnancy
 Result

✔ ✔

ProjectCode
User ✔

Table 2. Instructive Inheritance. Summary of OpenHDS-Rest REST API Entities,

Resource Paths, and Polymorphism. Black entity names represent entities used for

application logic and field Operations. Green names represent entities that make up the

Census or baseline part of the OpenHDS Domain. Red names represent entities that

make up the Update or longitudinal part of the OpenHDS Domain. Extensive use of

inheritance subtyping simplified the design, implementation, testing, and documentation

of the OpenHDS-Rest REST API, including this table.

55

For the OpenHDS-Rest implementation, inheritance proved to be expedient and

instructive. It allowed for significant code reuse across all implementation layers, and

testing. Moreover, it resulted in a simplification of the project design and documentation.

Indeed, Table 2 itself owes its compact appearance and simple diagonal structure to the

chain-like inheritance used throughout the implementation.

Cross-Cutting Exception Handling

Previous versions of the OpenHDS server application treated Exception handling and

error reporting in an ad-hoc fashion, with separate Exception handling code for each

Resource and each Service. This approach was sometimes problematic. It required

repetitive code to be written for each Resource class and Service class, making this part

of the code base difficult to read. Moreover, there were subtle differences between

repetitions, causing unexplained differences in behavior despite similar inputs. From a

client's point of view, this implementation approach manifested as an inconsistent error

handling and reporting policy.

The PODS OpenHDS-Rest implementation addresses this problem by treating

Exception handling as a cross-cutting concern, implemented in a single class in the

Resource layer. This Exception Advice class uses Spring MVC annotations to declare a

mapping from Java Exception classes to HTTP status codes and methods which

produce detailed error messages. For example, authentication and validation

Exceptions are mapped to HTTP client errors in the 400 range, while other exceptions

are mapped to HTTP server errors in the 500 range.

56

The Spring Framework catches Exceptions from the OpenHDS-Rest Repository,

Service, or Resource layers and passes them to the mapped handler methods and

response codes. This results in a simple and consistent error reporting policy. For

example, DataIntegrityViolationExceptions will always be reported to the client

with HTTP status 409, "Conflict", regardless of which entity Registration or Service class

produced the exception.

OpenHDS-Tablet Client

Tablet Client Overview

The OpenHDS-Tablet application is an Android mobile application which facilitates the

filling out of forms by surveyors during data collection. In general, electronic forms have

advantages over paper forms, including input field validation, cross referencing among

related forms, and dynamic question sequences based on previous inputs. The

OpenHDS-Tablet application supplements these advantages by allowing surveyors to

navigate to and select relevant records by touch and automatically filling in many form

fields based on the selected records. Automatic form filling increases speed of data

entry as well as data integrity, by reducing the amount of typing required of surveyors,

and the potential for input typos.

Because surveyors often must work in the field without internet connectivity, the

OpenHDS-Tablet application must use a database stored locally on the Android tablet to

cache records obtained from the OpenHDS-Rest server. Before data collection, each

OpenHDS-Tablet client must download the latest records stored on the server. These

records are presented to the surveyor for navigation and form filling during data

57

collection. Collected forms may be consumed by the tablet application and new records

added to the tablet database to facilitate subsequent data collection. After data

collection is completed, each tablet client must upload newly collected data for

processing and validation by the OpenHDS-Rest server.

The OpenHDS-Tablet application is responsible for maintaining its local database, and

keeping this database synchronized with the OpenHDS-Rest server when connected to

the internet. It is also responsible for creating new XForm instance documents with

some elements automatically filled in and for consuming XForm document data after the

surveyor has completed data entry. The application delegates to a separate Android

application, ODK Collect, for actual entry of data into XForm instances.

This work on the PODS OpenHDS-Tablet application builds on previous development of

the OpenHDS-Rest tablet application. This work adds new features intended to

enhance the communication among the OpenHDS-Tablet clients, the OpenHDS-Rest

server, and the ODK Collect application:

● The OpenHDS-Tablet application interprets HATEOAS / HAL links provided by

the server in order to select appropriate resources for data download and upload.

● The OpenHDS-Tablet application may request incremental data when

downloading records, instead of requesting entity collections in an all-or-none

fashion.

● The OpenHDS-Tablet application communicates with the ODK Collection

application in order to insert, update, and query form definitions and filled-out

form instances.

58

● Form definitions bundled with the application are designed to resemble

Registrations expected by the OpenHDS-Rest server, allowing direct form

submissions.

● Form definitions bundled with the application declare Form Behavior metadata

which the OpenHDS-Tablet application uses to determine dynamically how to

handle each form.

● Form data are mapped between the form documents themselves and the

application using flexible rules.

These new features of the OpenHDS-Tablet application, and the general usage of the

application, are described in greater detail below.

Navigation Overview

Logged-in surveyors may navigate through records stored in the OpenHDS-Tablet

database. This navigation follows a drill-down path through the LocationHierarchy,

Household Locations, and Household Individuals. Figures 6 and 7 show sample

data for these drill-down entities, highlighted in green.

During navigation, the surveyor may select various records of interest. For example, a

surveyor collecting data at the University of Southern Maine might begin by selecting

LocationHierarchy records of increasing specificity, like "USA", followed by "Maine",

followed by "Portland". These selections represent a single drill-down path through the

LocationHierarchy. Figure 6 shows a screen capture of the OpenHDS-Tablet drill-

down navigation user interface, with a similar drill-down path using arbitrary

59

LocationHierarchy names based on numeric suffixes, instead of meaningful names

like "USA", "Maine", and "Portland".

60

Figure 6. OpenHDS-Tablet Navigation and Location Selection. A screen capture is

show from the OpenHDS-Tablet application's drill-down navigation interface which is

used by surveyors during data collection. This example shows automatically generated

values with numeric suffixes, like "location-3". During real data collection, surveyors

would see meaningful place names like "Portland". The left column displays records

that were previously selected during navigation. In this example, three

LocationHierarchy records have been selected, "hierarchy-0", "hierarchy-0-1", and

61

"hierarchy-0-1-7". These indicate that the surveyor has already drilled down through

three levels of the location hierarchy. Next, the surveyor may select a Household.

Various Household Locations are displayed in the middle column. These are the

Locations associated within the region of hierarchy-0-1-7, at the finest level of

geographic partitioning. The blue star on the "location-3" record is not part of the user

interface, but indicates the surveyor's selecting of "location-3" as a relevant record. See

Figure 9 for the results of this selection. The right column displays the names of

XForms which are available for data entry, given the previously selected records. In this

case, only the form named "location" is available.

Following the drill-down through the LocationHierarchy, the surveyor may proceed

to select a specific Location, like "University of Southern Maine". The Locations

available for selection would be only those Locations that belong to the last-selected

LocationHierarchy record. For example, since the surveyor last selected "Portland",

no Locations in "Gorham" nor "Lewiston" would be displayed. Figure 9 shows the

result of a similar selection for the Location with the arbitrary name "location-3".

62

Figure 7. OpenHDS-Tablet Navigation and Individual Selection. A screen capture is

shown from the OpenHDS-Tablet application's drill-down navigation interface which is

used by surveyors during data collection. The user interface is the same as in Figure 6.

In this case, the surveyor has just selected "location-3", which now appears in the left

column as a previous selection. Next, the surveyor may select an Individual.

Various Individuals who have a Residency at "location-3" are displayed in the

63

middle column. Given the previously selected records, the forms named "location" and

"household-individual" are available for data entry.

The progression from LocationHierarchy records to Location records is natural

because each Location record has a locationHierarchy attribute to associate it

with a one LocationHierarchy record. Indeed, the progression may proceed further,

to include Individuals who live at the selected Location. This last step is the least

direct, because it requires a Location as well as Residency information in order to

determine which Individuals should be available for selection -- in relational

database terms, it requires a join query.

The result of drill-down navigation is a pathway from Hierarchy root through relevant

records, to a Location or Individual. These relevant records provide the data

necessary for pre-filling of XForm instances before presentation to the surveyor for

manual data entry.

Form Pre-Filling and Data Entry

The drill-down user interface presents the surveyor with the option to fill out forms that

are relevant given the previously selected records. As shown in Figures 8 and 9, these

appear as orange buttons in the right column of the interface. When the surveyor

selects one of these buttons, the OpenHDS-Tablet application will create a new XForm

instance document of the chosen type.

As far as possible, data elements of the new document will be automatically filled with

available data. Sources of available data include the current date and time, the

64

fieldWorkerId of the surveyor who logged into the application, and records selected

previously during navigation. See Form Data Mapping below, for details of the

mechanism for mapping selected records to XForm document elements.

Automatic filling of form data elements based on selected records is a key feature of the

OpenHDS-Tablet application and a significant advantage over paper-based data

collection. Data entry for automatically filled elements is practically instantaneous,

speeding the overall data collection process. At the same time, the potential for data

entry errors and omissions is practically reduced to zero. Rather than a speed-accuracy

trade-off, surveyors may enjoy both speed and accuracy.

In addition to the quantitative advantage of speed and accuracy, automatic filling of

elements enables a qualitative change in the kinds data elements and forms available.

Consider for example an IndividualHouseholdRegistration form. Such forms

would have content similar to the IndividualHouseholdRegistration shown in

Listing 1. This form contains numerous id fields for records related to the Individual

being registered. Each of these ids would correspond to a 32-character UUID which is

machine-readable, but decidedly not human readable. It would be unreasonable or

impossible to expect human surveyors to enter multiple such ids manually into a form.

The data entry be process would become too slow and tedious. Worse, the string format

of UUID is dense and intolerant of errors, so that even single-character errors could

result in unrecoverable corruption of data.

65

Automatic filling of elements side-steps these human data entry concerns, enabling the

OpenHDS-Tablet application to support complex ids like UUIDs, and complex forms like

the IndividualHouseholdRegistration.

Once the filled-in document is created, the application will use the XForm Instance

Gateway to register the new document with the ODK Collect application. The

application will use the Android Framework's Intent mechanism to invoke ODK Collect

for data entry into the new document, and to process the form after data entry is

complete. This processing may include launching of subsequent related forms, creation

of new records in the tablet's local database, both of these, or neither. These choice of

processing behaviors would be declared in the XForm definition. See Form Behaviors,

below.

Link Relation Interpretations

The PODS OpenHDS-Tablet application developed in this work makes use of HATEOAS

/ HAL links provided by the PODS OpenHDS-Rest server. These links remove the need

for the tablet application to hard-code or construct server resource paths. In addition,

the link relation name (sometimes shortened to "rel") provided with each link gives a hint

to the tablet about how to interpret the linked resource. However, a relation name is only

a hint, and the tablet application still must define behaviors to associate with each rel.

To this end, the PODS OpenHDS-Tablet application introduces a RelInterpretation

class which declares tablet-side behaviors to associate with each server-side relation

name.

66

Each RelInterpretation is an object whose "rel" field matches the relation name of

a link provided by the server. Each RelInterpretation also declares a parser

suitable for reading streaming bulk data from the linked resource, and a database

gateway suitable for storing the parsed data in the OpenHDS-Tablet application

database. Figure 8 summarizes these classes associated with the

RelInterpretation class.

67

Figure 8. Class Diagram for Link Relation Interpretation. The Resource Link Registry

class acts as a well-known, statically defined holder for RelInterpretations and exposes

the getInterpretation() method which allows calling code to obtain the RelInterpretation

associated with a particular relation name provided by the OpenHDS-Rest server. Each

RelInterpretation is parameterized for an entity type T and holds references to a Parser

and the Gateway that are parameterized for the same entity type. These unmarshall

and store records from the server, respectively.

68

Several tablet RelInterpretations are defined statically, using a declarative style, in

a registry class. This coding style has the advantage of concision and clarity, compared

to ad-hoc parsing code distributed about the application.

At runtime, when a User logs into the tablet application, the static RelInterpretation

declarations are supplemented with actual link URLs read from the server's root

resource. Thus, each client need only know the URL to OpenHDS server root. The

URLs of specific server resources are determined dynamically.

Downloading Records

Before doing data collection, an administrator User must log in to the OpenHDS-Tablet

application and download a set of records from the server for these entities. In previous

versions of the OpenHDS-Tablet application, this step required time-consuming, all-or-

none transfer of all records for each entity type. In addition, the tablet-side parsing of

these records was dependent on the specific XML representation and ordering of record

fields, and brittle with respect to server-side changes. These two problems could

interact: a parsing error for the first record could disrupt the parsing of all subsequent

records, leaving the client with no way to access the subsequent records.

The PODS OpenHDS-Tablet application addresses these download problems in two

ways. First, the application allows incremental downloading of records based on a date

selected by a logged-in User. Only records dated on or after the selected date are send

to to the client for parsing.

69

Second, the PODS application introduces a robust parsing implementation based on a

new Page Parser class.

The Page Parser receives a stream of bulk data from one of the OpenHDS-Rest entity

resources. Based on delimiters for XML elements or JSON array elements, the Page

Parser breaks the stream into separate pages. One page at a time is held in memory

and passed to an Entity Parser which is appropriate for the stream's entity type. The

Entity Parser uses the page to populate a Domain object of the same entity type. In

turn, each Domain objects is sent to the appropriate database gateway to be stored.

Figure 9 summarizes the parsing process for the Location records.

70

Figure 9. Sequence Diagram for Download Page Parsing. The SyncDatabaseHelper

submits a parsing request to an instance of ParseEntity task. The request includes an

inputStream over JSON or XML data, as well as references to a JSON or XML

PageParser, a LocationEntityParser, and the LocationGateway. The PageParser parses

the inputStream into dataPages and passes each page to the handleData() callback

method of the ParseEntityTask. The ParseEntityTask forwards each dataPage to the

LocationEntityParser which does Location-specific parsing and maintains a collection of

parsed Locations. Parsing continues until the PageParser has exhausted the

inputStream. The ParseEntityTask requests the collection of Locations from the

LocationEntityParser and forwards the collection to the LocationGateway to be stored.

Finally, the ParseEntityTask notifies the SyncDatabaseHelper that parsing is complete,

via the onComplete() callback method.

Breaking the bulk data stream into pages before entity parsing has the advantage of

isolating records from one another, and containing errors. The Page Parser minimizes

71

possibility of disrupted stream processing because identifying XML or JSON element

markers is simpler than parsing all of the details from XML elements or JSON objects.

Form Definition and Instance Gateways

The OpenHDS-Tablet application delegates to a separate Android application called

ODK Collect to provide two important features:

1. The user interface for XForm data entry.

2. Databases which keep track of XForm definitions and filled-out XForm instances.

Delegating to ODK Collect presents a challenge to the OpenHDS-Tablet implementation.

Since multiple parts of the application must interact with ODK Collect, where should the

communication logic be implemented? How should communication resources be

managed? In previous versions of the OpenHDS-Tablet application, logic and resources

were distributed across the code base.

The PODS OpenHDS-Tablet application introduces gateway classes which encapsulate

the details of communicating with ODK Collect and present a convenient interface to the

rest of the application (Fowler, 2002). Figure 10 summarizes the classes associated

with these gateways.

72

https://paperpile.com/c/WhztOS/LqXrU

Figure 10. Class Diagram for Form Definition and Instance Gateways. The

OdkInstanceGateway exposes convenient methods for finding, registering, and

updating FormInstance records. Likewise, the OdkFormGateway exposes

convenient methods for finding and registering FormDefinition records. Each

gateway class encapsulates the details of interacting with the corresponding ODK

Collect ContentProvider and database. FormInstance records represent data

entry performed by a surveyor into a specific type of form, at a specific time, and track

metadata, such as the data entry completion status. Each FormInstance is

associated with a FormBehavior record which declares behaviors that the OpenHDS-

Tablet application should carry out for the form, such as when to display the form during

drill-down navigation at which OpenHDS-Rest resource to submit associated form

instances. In turn, each FormBehavior is associated with a FormDefinition record

which identifies the type of form and tracks metadata such as the display name,

description, and version of the XForm definition document.

73

Internally, the gateways use the Android Framework's ContentResolver and

ContentProvider mechanisms in order to insert, update, and query records in the

ODK Collect databases of form definitions and instances. These details are hidden from

the rest of the application, which sees only convenient interfaces for accomplishing

XForm-related tasks.

For XForm definitions these tasks include inserting into the ODK form definition

database XForm definitions that were bundled with OpenHDS-Tablet application, and

detecting any form definitions that were added to ODK Collect by other means. Figure

11 summarizes the process of querying ODK Collect for available form definitions.

74

Figure 11. Sequence Diagram for Form Definition Query. A caller invokes the

findRegisteredForms() method of the OpenHDS-Rest OdkFormGateway. This

gateway collaborates with the OpenHDS-Rest RepositoryUtils class to construct

appropriate query syntax, select a table resource appropriate for the query, and to

initiate the query itself. The Android Framework's ContentResolver forwards the

query to the selected table resource, which resides within the ODK Collect application.

The ODK Collect FormsProvider actually carries out the query on the selected table

resource and returns results in the form of a cursor. The ContentResolver returns

the cursor back to the OpenHDS-Rest RepositoryUtils. The OdkFormGateway

reads through the returned cursor to produce a collection of form definitions, and closes

the cursor. Finally, the OdkFormGateway returns the collection of form definitions to the

original caller.

75

For XForm instances, these tasks include creating new instance documents based on

form definitions, pre-filling elements of new documents with data from selected records,

registering new instances with ODK Collect to allow data entry by surveyors, and

querying and updating the status of each form instances in order to keep track of work in

progress, submissions to the server, and errors.

Form Data Mapping

Two distinguishing features of the OpenHDS-Tablet application are

1. Pre-filling of form data fields based on records that were selected by touch.

2. Consuming of data from filled-out forms, in order to update the local database

and present new records to the user immediately.

In order to carry out pre-filling and consuming, the application must perform a data

mapping between database records and XForm document elements. Previous versions

of the OpenHDS-Tablet application relied on explicit, ad-hoc Java code to perform these

mappings. This approach was brittle because the Java code depended on specific

XForm definitions and database record fields. Changes to form definitions or database

fields would require modifications to the application source code and distribution of new

a new version of the application.

The PODS OpenHDS-Tablet application addresses this mapping problem by introducing

a flexible data mapping implementation based on a new FormContent class. This

implementation should permit dynamic data mapping which is robust to changes in

XForm definitions and database fields.

76

The flexible data mapping relies on a common representation of data modeled by the

new FormContent class. FormContent is a reusable container which holds string

values. Each value is given an identifying field name. Related values may be grouped

into records, with each record identified by a name or alias. This grouping yields a two-

level structure which allows values to be identified by two coordinates: (record alias, field

name). The FormContent class provides utility methods for adding, querying, and

reading values using these coordinates. Figure 12 summarizes the fields and methods

of the FormContent class.

77

Figure 12. Class Diagram for Form Content Class. Each FormContent instance holds

string data, backed internally by a Map which allows grouping strings into records that

are identified by alias, and by instances of the Android Framework's ContentValues

class, which allows each string value to be associated with a string field name. The

FormContent class defines utility methods for working with the two-level container

structure. Callers may view stored aliases and field names, query for the values

associated with given aliases and field names, and set values by alias and field name.

In addition, callers may combine and compare whole FormContent instances.

The two-level FormContent structure is sufficient to accommodate data moving to and

from the various representations used by the application, including records selected

during drill-down navigation, XForm data elements, and the ContentValues used by

the Android Framework during database insertions. Figure 13 illustrates the two-level

structure of FormContent and how this fits other representations used by the

application.

78

Figure 13. Data Mapping by Form Content Aliases. Three drill-down selections that

might be made by a surveyor are shown in the purple area at the top left. The surveyor

might select a County named "Cumberland", a City named "Portland", and a Building

named "USM". Selections are added to a FormContent container shown in the green

area at the top right. Each selection is added using multiple aliases including the literal

string "parent", the class name of the selection, the name of the associated

LocationHierarchyLevel, and the value of the name field of each record. When an

alias is added more than once, as with the string "parent", the last record added takes

the alias, in this case the Location record with the name "USM". Data elements for

two possible XForm instance documents are shown in the gray area at the bottom. A

Building Form names records using uses names of navigation hierarchy levels, such as

"city" and "building". A similar Location Form names records using entity names like

79

"locationHierarchy" and "location". Because of multiple aliasing of selected records,

data mapping would succeed for either form.

The mapping process begins by matching top-level fields of the ContentValues with

any top-level primitive fields of the source or target representation. The matching is

simple case-insensitive string comparison. When a match is found, a string value is

copied from the source or to the target representation. For drill-down navigation, top-

level primitive fields would be the date and time of data collection and the id of the

surveyor who is logged in. For XForm instances, top-level primitive fields would

correspond to elements that are direct children of the root data element. Other

representations may not have top-level primitive fields.

The mapping process continues by matching alias names with top-level complex fields

of the source or target representation. As with primitive fields, alias matching is simple

case-insensitive string comparison. When an alias match is found, primitive matching

process is repeated for each field within the scope of the alias. For drill-down

navigation, complex fields would correspond to records selected by the surveyor at each

level of navigation. For XForm instances, complex fields would correspond to elements

that are contained by the children of the root data element. Each instance of Android

ContentValues would itself correspond to a complex field.

Registrations expected by OpenHDS-Rest resources frequently contain top-level fields

with names that end with the string "uuid" and values that are the ids of related records,

for example locationUuid or motherUuid. In order to facilitate mapping to and from

these fields, the FormContent mapping process includes a special case: top-level field

80

names that end with the string "uuid" are treated as equivalent to nested records that

contain a single uuid field. For example, a top-level field named locationUuid would

be treated as equivalent to a location record which contains a single uuid field.

Figure 13 illustrates two instances of this special case, for the top-level form fields

named locationHierarchyUuid and cityUuid.

Selection of appropriate aliases is a central problem for the data mapping because there

may be multiple appropriate names for a given record. Moreover, various forms and

data representations may disagree on the correct name for a record. For example,

consider a LocationHierarchy record selected by a surveyor during drill-down

navigation. In relation to subsequent LocationHierarchy records, an appropriate

alias for this record would be the literal string "parent", corresponding to the

LocationHierarchy parent attribute which is used to construct the

LocationHierarchy tree. In relation to subsequent Location records, an

appropriate alias for the selected LocationHierarchy record would be

"locationHierarchy", corresponding to the LocationHierarchy class name and the

Location entity's locationHierarchy attribute which is used to extend the hierarchy

tree to include Location records. From a surveyor's point of view, an appropriate alias

might be the name of the associated LocationHierarchyLevel, such as "state" or

"county", to indicate the surveyor's navigation choice at this level. None of these aliases

is obviously correct. Indeed, each alias may be the correct one depending on context.

The application resolves this conflict by including each record multiple times, under

multiple aliases, within the same FormContent instance. A target representation may

81

match any of these aliases for data mapping to succeed, and may be unconcerned with

other aliases.

The following aliases are used for each record selected by a surveyor during drill-down

navigation:

● The literal string "parent", which is appropriate for the tree structure formed by

LocationHierarchy records, and by extension, any records presented for

navigation in drill-down fashion.

● The name of the associated LocationHierarchyLevel, or other level of drill-

down navigation, for example "state", "county", or "household".

● The class name of the record, for example LocationHierarchy, Location,

or Individual.

● The value of the name field for the selected record, if such a field exists, for

example, "Maine", or "Cumberland".

Figure 13 illustrates the mapping flexibility afforded by this approach. One set of drill-

down selections is applied to two different forms, each written with a different style. In

one form, records are named for their entity or class names. In the other form, records

are named for their associated LocationHierarchyLevel. In both cases, data

mapping may proceed automatically.

82

Declarative Form Behaviors

Previous versions of the OpenHDS-Tablet application implemented form-related

behaviors similar to those described above using ad-hoc Java code. This code

depended on specific form definitions and was therefore inflexible -- introducing new

forms to the application would require writing new Java code and redistributing the

application to surveyors. The PODS OpenHDS system introduces declarative form

behaviors as a more flexible alternative. It should be possible to introduce new forms to

the application at run time, and the application should respond dynamically by carrying

out any new behaviors declared in each form.

The OpenHDS-Tablet application can present a variety of forms to surveyors for data

entry. As described above, each form instance would have data elements automatically

pre-filled with available data by way of a flexible data mapping process. In addition to

pre-filling data elements, the application may carry out a variety of other behaviors for

each form instance, for example selecting when to display the form during drill-down

navigation, or deciding which records to insert into the tablet database following data

entry.

These FormBehaviors must be declared in the corresponding XForm definition

document, as part of the meta form element. This meta element is part of the standard

XForm schema and used to describe the form definition itself. Listing 6 shows the meta

child elements introduced in this work which declare the FormBehaviors that the

OpenHDS-Tablet application should carry out.

83

<meta>
 <consumer>individual,residency</consumer>
 <displayLevel>individual,bottom</displayLevel>
 <followUp>
 <formId>pregnancy-observation</formId>
 <filter>
 <isPregnant>YES</isPregnant>
 </filter>
 </followUp>
 <search>
 <IndividualGateway>
 <mother>Individual's Mother</mother>
 <father>Individual's Father</father>
 </IndividualGateway>
 </search>
 <submissionRel>individuals</submissionRel>
 <submissionSubpath>household</submissionSubpath>
</meta>

Listing 6. XForm Form Behavior Metadata. An excerpt from the

IndividualHouseholdRegistration XForm definition is shown. The meta

element contains data to describe the form definition itself, in this case by declaring

behaviors that the OpenHDS-Tablet application should carry out for forms instance of

this type. Six types of behavior are declared, see text.

At the start of drill-down navigation, the application will use the

FormDefinitionGateway to query ODK Collect for known form definition documents.

As described above, such documents may be bundled with the OpenHDS-Tablet

application and registered with ODK using the FormDefinitionGateway, or they may

be added to ODK Collect by other means. The application will parse each form

definition's meta element to determine which FormBehaviors have been declared, if

any. It will cache these behaviors in memory and use them during subsequent

navigation. Six types of FormBehavior may be declared as child elements of the meta

element:

1. consumer -- The consumer element may contain a comma-separated list of

OpenHDS entity names. Following data entry, the application will map form

instance data to a ContentValues instance, using the FormContent

84

mechanism described above. It will submit the ContentValues to the

appropriate database gateway class for insertion into the application's local

database. This allows newly collected records to appear immediately in the

tablet's drill-down interface, and to be available immediately for pre-filling into

subsequent forms.

2. displayLevel -- The displayLevel element may contain a comma-

separated list of LocationHierarchyLevel names, or names of other drill-

down navigation levels at which the form should be presented (as an orange

button) to the surveyor for data entry.

3. followUp -- The followUp element may contain the formId of a form that

should be presented to the surveyor following data entry for the current form. In

addition to the formId, the followUp element may contain filter criteria

which are compared to form instance data following data entry. When these

criteria are present, the follow-up form will be launched only if all of the declared

filter elements match the filled-out data elements. Listing 6 shows an example

where a "pregnancy-observation" form would be launched, but only if the

isPregnant data element is filled out with the value of "YES".

4. search -- The search element may contain the names of database gateway

classes which should be used for text-based searching of records that will

supplement the records selected during drill-down navigation. Each gateway

element must contain one or more elements that specify the name of a data

element that should receive the search result, and a string label to present to the

surveyor during the search. When these elements are present, the application

will display a separate search user interface to the surveyor before invoking ODK

85

Collect for data entry.

5. submissionRel -- The submissionRel element may contain the name of a

HATEOAS / HAL link relation name reported by the OpenHDS-Rest server from

its root resource. When this element is present, the form instance document may

be submitted as a Registration to the corresponding OpenHDS-Rest server

resource. XForms intended for submission to server in this way must be

designed so that their data schema resembles the XML representation of the

Registration expected by the resource. See Input Registrations, above.

6. submissionSubpath -- The submissionSubpath may contain an additional

resource path to append to the URL of the server resource that corresponds to

the submissionRel element. This is usually unnecessary. For the example in

Listing 6, the submissionSubpath is necessary to distinguish the complex

IndividualHouseholdRegistration, which is accepted at the household

sub-path, from the simpler IndividualRegistration which is accepted at

the root of the Individual resource.

All, any, or none of these elements may be declared within the meta element of an

XForm definition document.

Form Review and Submission

Previous versions of the OpenHDS system used an indirect mechanism for submitting

form instances to the server. Rather than direct submissions from the OpenHDS-Tablet

application to the server application, the system used an intermediate application, ODK

86

Aggregate, to transmit instances from the ODK Collect application to the ODK Aggregate

server application.

This work introduces as an alternative, the ability to submit form instances directly from

the OpenHDS-Tablet application to the OpenHDS-Rest server application. This direct

approach has the advantage of immediate feedback from the server and the ability to

review errors and correct them directly on the tablet, using the same ODK Collect

application that was used for initial data entry. This direct mechanism could function as

a replacement for the the indirect ODK Aggregate mechanism. Or, the two mechanisms

could work in parallel, depending on project requirements.

Following data collection, an administrator User may log in to the OpenHDS-Tablet

application to review the collected XForm instance documents and submit them to the

OpenHDS-Rest server. This highlights a separation of roles between surveyors who

perform data collection offline, and administrator Users who are permitted to submit data

to the OpenHDS-Rest server when connected to the internet.

Figure 14 shows a screen capture of the OpenHDS-Rest form review and submission

user interface, as displayed to a logged-in User. A table lists all the form instances

collected by surveyors and shows the type of each form, the date and time of data

collection, and form status as reported by ODK Collect via the application's

FormInstanceGateway. Using checkboxes and utility buttons, the User may select a

subset of form instances and perform operations on them, such as changing their ODK

Collect status or uploading them to the OpenHDS-Rest server.

87

Figure 14. Form Review and Submission User Interface. A screen capture of the

OpenHDS-Tablet form review and submission user interface is shown. A table at the

bottom lists four form instances: two for the form named "location", one for "pregnancy-

observation" and one for "household-individual". Form type labels appear in blue and

act like hyperlinks: pressing the allows the User to view and edit the form using ODK

Collect. The date of data collection is displayed next to the type of each form. The

status of each form as reported by ODK Collect is shown next to the date: one

"Incomplete" and three "Submitted". A check box on the far right of each form listing

allows the User to select and deselect specific form instances. Gray utility buttons at

the top allow the User to select multiple forms at a time including "Select All", "Select

None", "Select Incomplete", "Select Completed", "Select Submitted", and "Select

Failed". A check box at the top allows the User to choose whether or not forms with the

"Submitted" status should be displayed in the table. Colored buttons allow the user to

88

set the ODK Collect status of all selected forms. The yellow button sets for statuses to

"Incomplete". The green button sets form statuses to "Completed". The Orange button

sets form status immediately to "Submitted" but does not perform actual form

submission, effectively skipping submission for selected forms. Finally, the blue button

uploads selected forms to the appropriate resources of the OpenHDS-Rest server. For

each uploaded form, if the upload was successful, the ODK Collect form status is set to

"Submitted"; if the upload was unsuccessful, the ODK Collect form status is set to

"Failed". In either case, after an attempted upload, each form instance's status label

may be pressed to display the success or error message from the server.

In order for upload to the server to succeed, the definition document associated with a

form instance must declare a submissionRel metadata element which indicates which

OpenHDS-Rest server resource should receive the instance document. See Form

Behaviors, above. Following an attempted form submission, the application will capture

the response message from the server and make it available for display to the User

upon pressing the status label for the form instance.

In case of a submission error, the user may be able to read the error message from the

server and learn the cause of the failure. The application provides a simple mechanism

by which Users may be able to correct such errors: upon pressing the form id label for a

particular form instance, the application will use an Android Intent to invoke the ODK

Collect application for editing of the same form instance. The User may be able to

update the instance data, return to the form review and submission interface, and submit

the form instance again.

89

Web Clients

In addition to the OpenHDS-Rest server application and OpenHDS-Tablet application,

this work on the PODS OpenHDS system should support the future development of

browser-based web clients. These clients would operate online with internet connectivity

and could therefore take advantage of the OpenHDS-Rest server's self-descriptive

features in ways that are not possible for the offline tablet client.

The HATEOAS / HAL links supplied by OpenHDS-Rest resources should facilitate the

development of web clients by others. As shown in Listings 2, 3, 4, and 5 clients that

know how to reach the server's root resource may navigate from there to all other

resources, simply by following links. Indeed, libraries like angular-hateoas provide the

ability to automatically follow HATEOAS / HAL links for user clients developed with the

AngularJS framework (Marquis, n.d.)(Google & Others, n.d.).

An advantage for connected, browser-based web clients is the ability to interact with the

User between requests. This affords the User a chance to read and interpret the

HATEOAS / HAL relation names in order to decide which links to follow.

In addition to HATEOAS / HAL links, the server also supplies Cross-Origin Resource

Sharing (CORS) headers with responses from each resource. CORS headers will allow

the development of clients that are developed and hosted separately from the server

itself. Without these headers, standard-compliant web browsers would disallow the

necessary cross-origin requests. That is, requests from a client that originates from one

host, to a resource like OpenHDS-Rest which originates from a different host.

90

Sample Registrations provided by each OpenHDS-Rest resource should also facilitate

development of client applications. These applications may dynamically request sample

Registrations and other sample data and present these as templates for the User to

edit. This approach would be preferable to alternatives like guessing at the input format

expected by the server, or hard-coding static input templates into the client application.

91

Design Themes

The four PODS design themes guided the design and implementation of the PODS

OpenHDS system. The themes are:

1. Applications should take advantage of polymorphic design.

2. Developer operations should be prioritized so that tasks like deployment,

updates, and maintenance do not overwhelm an otherwise functional system.

3. Applications should be written and configured favoring a declarative style.

4. Applications should be self-descriptive.

Each theme warrants some consideration for its own sake. Examples will be

enumerated of how each theme was applied to this work and the expected advantages.

Polymorphism

Polymorphism is a fundamental programming concept, allowing various program

components or data that express a common interface to be treated interchangeably by

the program (Cardelli & Wegner, 1985). In general, polymorphism may yield advantages

like code reuse and shortened development time. In addition to these practical

advantages, embracing polymorphism may prove instructive to program designers,

implementers, and developers.

The OpenHDS-Rest application implemented for this work makes extensive use of

Java's mechanism for polymorphism by class inheritance. Each implementation layer of

92

https://paperpile.com/c/WhztOS/O7tfR

the application uses a similar chain of superclasses for entities that are

UuidIdentifiable, Auditable, AuditableCollected, and

ExtIdIdentifiable. For each layer, this permitted significant code reuse since

common behaviors could be implemented once, at the superclass level, instead of

multiple times, at each concrete subclass. This code reuse likely saved development

time relative to independent implementation without code reuse.

Use of inheritance simplified not only the source code but also the application's REST

API, its testing, and its documentation. Test reuse resulted in broad test coverage of the

API, which should support future application development and robustness.

Simplification of the REST API and its documentation should facilitate client

development and learning of the API by users.

The OpenHDS-Tablet application developed for this work uses an adaptor mechanism to

achieve a form of ad-hoc polymorphism(Cardelli & Wegner, 1985). To simplify mapping

of data between various representations, the application uses a common FormContent

representation. This polymorphism is beyond the reach of Java language inheritance

mechanism because the polymorphic data representations extend beyond the Java

language to XForm definition documents, OpenHDS-Rest Registrations, and database

records. Instead, the common interface exists at the design level, where each

representation has a simple two-level structure with named primitive data fields and

complex records or objects which may be identified by aliases. The polymorphism is

realized by Java code that maps each representation to and from instances of the

FormContent class.

93

https://paperpile.com/c/WhztOS/O7tfR

This polymorphic mapping mechanism eliminated a significant amount of explicit Java

mapping code from the tablet application. This code cleanup should make the

application easier for future developers to understand and modify. More importantly, this

mapping mechanism is flexible and will apply to new XForm definitions added to the

system, without incurring Java development or distribution of a new version of the

application.

Developer Operations

Application development projects should prioritize developer operations in addition to

specific domain or implementation concerns. Operations concerns include things like

software building, testing and debugging, deployment and startup requirements, and the

number and arrangement of applications that must interact. These operational concerns

cut across other domain- or implementation-specific concerns because developers must

address them first, and repeatedly, in order to address other concerns.

This work on the PODS OpenHDS-Rest server application and OpenHDS-Tablet client

application introduces several changes to the OpenHDS system aimed at smoothing

developer operations:

● Build with Spring Boot -- The OpenHDS-Rest application uses the Spring Boot

feature of the Spring Framework to simplify application configuration, selection of

dependency versions, building, and packaging. This eliminates most of project's

build configuration files in favor of conventions selected by the Boot project.

● Simple Startup -- The OpenHDS-Rest application is easy to start up, since initial

configuration and creation of necessary records, like the default User, are

handled by the application itself. Startup does not require database initialization

94

with special scripts, nor user interaction through a graphical interface. This

simplicity allows automated systems to start the application in order to run tests

or deploy to the web. Such systems include Travis CI for automated testing, and

Heroku for automated web deployment.

● Configure by REST -- As with initial startup, configuration of the application,

such as the specification of ProjectCode constant values and creation of Users

and Field Workers, may be done entirely through the OpenHDS-Rest REST API.

Neither special database scripts nor command line server access are required.

● Bundle Basic Forms -- XForm definition documents may be bundled with the

OpenHDS-Tablet application and registered with the ODK Collect application by

a logged in User. The ODK Aggregate server application is not required for

XForm registration, although this is also possible.

● Direct Duplex -- The OpenHDS-Tablet application may communicate directly

with the OpenHDS-Rest REST API. This direct communication allows Users to

see immediate status messages from the server in response to form

submissions, and to attempt to correct errors immediately. This communication

should facilitate application debugging, project configuration, and actual data

collection. No additional, intermediate applications are required to submit data to

the OpenHDS-Rest server, although submission by indirect means is also

possible.

A result of all these changes is that the PODS OpenHDS system is straightforward to

build, deploy, and test on a single development machine without special client or server

95

requirements. In particular, a server with a public domain name or IP address is not

required.

This theme, that developer operations matter, is of high importance for software

development projects because operational concerns may impede or enhance other

concerns. In the worst case, an application that is well-designed and implemented from

a domain point of view may nevertheless be unusable because the application is too

difficult to build, install, or configure. In the best case, an application that is easy to

modify, build, test, and debug may be able to help developers and domain experts to

identify, express, and implement application requirements in an iterative fashion. In

either case, the operational concerns are unavoidable and influential.

Declarative Style

Applications should support a declarative style for control, programming, and

configuration, especially for parts of an application which will be exposed to users or will

make up part of the application's external API. As compared to the imperative style, the

declarative style offers an explicit separation of intention or goal from implementation.

For users who are concerned with what an application will do, and who are unconcerned

with the steps taken internally do it, the declarative style should yield advantages of

readability and understandability (Fahland et al., 2009). Furthermore, this separation

allows the same intention or goal to be declared across components or versions of an

application, and across applications.

Facilitating control and configuration of the OpenHDS system is important for projects

like CIMS, which must extend the system to meet project-specific requirements, and

must make changes to the system over the duration of the project.

96

https://paperpile.com/c/WhztOS/mE8VS

The PODS OpenHDS-Rest and OpenHDS-Tablet applications developed for this work

use this theme of declarative style in three ways:

1. Input Registrations like the IndividualHouseholdRegistration

demonstrate a declarative style of application control.

2. FormBehaviors declared as XForm metadata demonstrate declarative

configuration of the tablet application.

3. The mapping of cross-cutting mapping of Java Exception class to HTTP

response status demonstrates a declarative style of programming.

Input Registrations like the IndividualHouseholdRegistration represent

commands that clients may send to the OpenHDS-Rest server in order to control its

behavior. These commands use a declarative style. They specify data to be recorded,

along with appropriate side effects and validation, but they do not specify the manner in

which these actions should be carried out. Carrying out the intention of the command is

left as an implementation detail of the server. This separation of command from

implementation is not merely academic (Dijkstra, 1982). One practical advantage is that

multiple clients may express the same commands to the server, and allow the server to

respond to each client in a uniform manner.

The use of Unknown and placeholder records by the server represents a further

separation of command from implementation. These special types of record allow

clients to submit related records in any order, with eventual consistency and without

errors from unsatisfied dependencies. Clients have only to express the goal that several

97

https://paperpile.com/c/WhztOS/L0voS

records be recorded, and need not implement the details of dependency sorting and

resolution.

FormBehaviors declared in XForm definition documents represent declarative

configuration of the tablet application. The application itself implements various

behaviors that it may perform with forms in general. It is left to each form definition to

declare whether and how these behaviors should be applied to its form instances.

Again, the separation of behavior implementation from behavior declaration should make

the application easier to configure for new and evolving projects. For new projects,

system administrators must be able to read, understand and write behavior declarations

in XForm definition documents. This task is modest compared to the task of reading,

understanding, and modifying the corresponding implementations in Java code.

Declarative form behaviors extend beyond the quality of the tablet source code to reach

dynamic extensibility of the PODS OpenHDS system. It would be possible for the

OpenHDS-Rest server to be updated with a new resource, and a new XForm definition

added to the tablet which declares this new resource as its destination. The tablet

application should detect both of these changes and send instances of this new form to

the correct server resource. This should require no development or redistribution of the

tablet application.

Cross-cutting Exception handling by the OpenHDS-Rest server's Resource layer

represents a declarative style of programming. Instead of writing ad-hoc Exception

handling code throughout the application, the OpenHDS-Rest server uses Java

annotations to declare a mapping from Java Exception class names to HTTP

98

response codes and handler methods. The mapping occurs in a single class file, which

should make the application's exception handling policy easy to read, understand, and

modify when necessary. In addition, cross-cutting approach should make the

applications Exception handling behavior uniform and easy for clients to understand.

The implementation details of catching Exceptions and invoking declared handler

methods are rote, uninteresting to most users and developers, and implemented

separately by the supporting Spring Framework.

Self-Description

Applications should be self-descriptive for the same reason that applications require

separate written documentation -- to instruct users in their use. Separate documentation

may be problematic because it may be incomplete or incorrect to begin with, and may go

out of date if it is not maintained in parallel with the application during development.

Tools like Doxygen aim to facilitate documentation updates by incorporating

documentation directly in source code (van Heesch, n.d.). But these tools only facilitate

and do not guarantee that documentation will be updated, or that updated

documentation will be distributed to users. Indeed, some users may be required to use

an application without having access to or knowledge of the separate documentation.

The theme of self-description is one way to address these problems by integrating

instructive features into the application itself. At a minimum, this might include bundling

written documentation as part of the application installation process. This theme may be

extended by allowing applications to expose their workings and data to users at runtime.

This may require application features that are separate from the immediate business

requirements of the application. Nevertheless, these features may provide valuable

99

https://paperpile.com/c/WhztOS/Cttbg

support to business features, since they will help users understand how to use the

business features.

The OpenHDS-Rest application provides three such features which are self-descriptive

and instructive but not strictly business requirements. These are the HATEOAS / HAL

links provided to clients along with records from each REST resource, sample

Registrations which clients may request from each resource, and sample geographic

and Household data which the server may generate at startup and expose to REST

clients.

The inclusion of HATEOAS / HAL links with responses to clients should facilitate the

development of browser-based web clients by removing the burden from clients of

recording which resources are available on the server, or what is the path to each

resource. Instead, the server's root resource may report all of this information on

demand. This benefit also applies to the OpenHDS-Tablet client. During this work,

several hard-coded resource paths were deleted from the source code and replaced with

a single class which parses the relations and links reported by the server.

Sample Registrations provided by each OpenHDS-Rest resource should facilitate

development of browser-based web clients by providing templates which users may fill

out in order to add data to the system. Client developers would then be freed from the

burden of finding and understanding documentation about expected Registrations, and

realizing this understanding in client application code. Instead, the task of client

development would be reduced to presenting Registration templates, allowing users to

edit them, and submitting the edited templates to the server. This benefit would extend

to client maintenance as well as initial development. If the OpenHDS-Rest server were

100

updated and changes made to expected Registrations, browser-based web clients could

detect these changes dynamically as changes to the sample Registration templates that

they receive from the server. All such clients would see these changes at the same time.

A given client could continue to interoperate with multiple versions of the OpenHDS-Rest

server without requiring development and redeployment effort, or conditional logic based

on server version.

Finally, sample data generated at startup by the OpenHDS-Rest server should prove

instructive to users unfamiliar with the OpenHDS data model. A server deployed with

sample data represents an interactive instruction tool which users might use to replace

or reinforce instruction based on written documentation about the OpenHDS data model.

For example, it may not be obvious based on the schema how to construct a valid data

set that satisfies all constraints on record attributes and relationships. Since the sample

data provided to the user are the same data used for the application's internal integration

tests, the sample data represent an interactive existence proof of a well-constructed data

set.

Sample data generation may combine with non-standard HATEOAS / HAL relations to

provide an especially instructive interactive tool. The application provides non-standard

link relations which indicate the relationships among records. A user may observe not

only that an Individual has a mother attribute or a residency attribute, but may

also follow the "mother" or "residency" link to explore those related records.

101

Future Work

This work makes significant changes to the OpenHDS system, with a view to improving

the system design, development, and operational characteristics. Development may

continue for the PODS OpenHDS system, and also for other versions of OpenHDS.

Several opportunities for future work have become apparent during this work, and would

be natural continuations of this work.

Application of PODS to Existing Systems

The PODS OpenHDS system represents a self-consistent distributed application, which

may be suitable for future public health projects. Because of the significant architectural

changes, this new system is not suitable as an in-place substitute for existing projects

that use older or site-specific OpenHDS implementations.

Nevertheless, ongoing projects which were begun with other versions of the OpenHDS

might be able to incorporate some aspects of this work. The incorporation process

would require system configuration and deployment effort, as well as Java development

effort.

Portions of the code may be useful for existing implementations. It might be possible for

ongoing projects to incorporate the self-descriptive HATEOAS / HAL link generation into

the REST API of the OpenHDS-Rest server. The essential components for this are the

Spring Framework's HATEOAS package and annotations, the several classes developed

in this work including the ShallowCopier LinkRegistry, and

102

EntityLinkAssembler. These components use the Java Reflection API in order to

function in a generic, reusable way and avoid intrusion into the rest of the project code.

Changes required to incorporate these components would include adding Spring

HATEOAS annotations to Resource classes, adding EntityLinkAssembler method

calls to rest endpoint handler methods, and refactoring Domain classes to use the

UuidIdentifiable interface which the ShallowCopier uses to identify related

records and generation stub objects.

Other aspects of the OpenHDS-Rest server implementation are thoroughly integrated

and would be difficult to incorporate in other projects.

The OpenHDS-Tablet application developed for this work assumes that its server

counterpart will provide HATEOAS / HAL descriptions of available resources. Aside from

this assumption, the tablet application should be available for incorporation into ongoing

projects. This might allow ongoing projects to take advantage of declarative form

behaviors and flexible data mapping.

Incorporating the new OpenHDS-Tablet application into an existing project based on a

previous version of OpenHDS would require reimplementing the client-server

communications, to use fixed, known resource paths instead of paths provided as

HATEOAS / HAL links. Because older versions of the OpenHDS server application don't

expect direct form submissions from the client, it would be necessary to use an indirect

mechanism for form submission, perhaps including the ODK Aggregate and other

server-side applications.

103

Web Clients and Security

As discussed above in Web Clients, the OpenHDS-Rest server developed in this work is

intended to support multiple browser-based web clients. Development of the these

clients should be facilitated by the self-descriptive features of the OpenHDS-Rest server,

including HATEOAS / HAL links, sample Registration templates, and sample data

generation. These clients could be developed and hosted separately from the

OpenHDS-Rest server because the server provides CORS response headers to satisfy

web browser security standards related to cross-origin requests. Web clients would be

natural extensions of this work.

Development of multiple browser-based web clients might be accompanied by

application Users with various project Roles and Privileges. The current

OpenHDS-Rest implementation defines a security model which requires Users to

authenticate with username and password, and which associates Users with flexible

sets of Roles and Privileges. However, the current implementation does not

demonstrate a consistent User authorization policy and user permissions may not be

checked consistently. A natural and necessary continuation of this work would be to

revisit the Resource and Service implementation layers to apply a consistent

authorization policy based on Roles and Privileges.

Queries and Optimizations

For auditing and reporting of project data collection, it might be necessary to report

which User or which surveyor initially inserted, modified, or collected a record. The

current OpenHDS-Rest implementation provides this information as attributes of

104

Auditable and AuditableCollected entities, which includes most of the entities in

the system. However, the current implementation does not support queries for records

based on these attributes. For example, it it is not possible to request the Individual

records, and only those Individual records, that were collected by a particular

surveyor, or last modified by a particular User. A natural extension of this work would be

to add User-based and FieldWorker-based queries to the Service and Resource

layers.

The current implementation supports location-based queries, for example, all the

Location records, and only those Location records, fall within the partition region of

a given LocationHierarchy record. While functional, these query implementations

are inefficient, requiring multiple database queries and manipulations of results sets per

request. The central difficulty is that the location-based queries require recursive

traversal of the LocationHierarchy tree structure, in addition to database queries

and joins. Recursive searches are not generally expressible with typical query

languages like SQL. Supporting efficient location-based queries would be a natural

extension of this work, and would require some additional research and database design

(Celko, 2012).

All resources of the OpenHDS-Rest REST API may send and receive data represented

as JSON or XML. These data representations are ubiquitous and should be appropriate

for many clients. However, creating responses in these representations requires

significant computational work: The database must be queried for results, the result set

must be converted via object-relational-mapping process to a set of Java objects, then

the Java objects must converted again to JSON or XML via a marshalling process. For

105

https://paperpile.com/c/WhztOS/91T8v

large results sets, such as the downloaded record sets required by the OpenHDS-Tablet

application, the conversion may be a rate limiting and impractical step. The OpenHDS-

Tablet application developed in this work offers a partial solution to this problem, by

allowing incremental downloading of only the most recently updated records.

A complete solution would avoid unnecessary conversion altogether. For example,

resources of the OpenHDS-Rest server might express result sets as binary database

files, rather than JSON or XML text. These data files could be transferred to clients and

applied directly to the local database. This approach has been used with a separate

version of OpenHDS for the CIMS project. A similar feature would be a valuable

extension the OpenHDS system developed in this work.

Declarative Link Relation Interpretations

The PODS implementation of the OpenHDS-Tablet application uses

RelInterpretation objects to associate OpenHDS-Rest resources with appropriate

client-side parsing and database objects. These RelInterpretations are declared

in a static, declarative style which has advantages of concision readability over the

imperative style.

Future work might replace the static Java declarations of RelInterpretations with

dynamic, data-based declarations. For example, the RelInterpretations might be

declared using XML or JSON documents which contain HATEOAS / HAL link relation

names along with the names of appropriate EntityParser and database gateway

classes. The tablet application could parse these declarations at runtime in order to

populate its registry of RelInterpretations.

106

Declaring RelInterpretations in this dynamic, data-based way would carry

advantages similar to the declarative FormBehaviors introduced in this work. For

example, the behavior of the tablet application could be changed and adapted to server-

side changes, without incurring Java development and redistribution of the tablet

application itself. Indeed, the relation interpretation documents could be published from

a central server and detected and downloaded automatically by OpenHDS-Tablet clients.

107

Conclusion

This work made significant architectural and implementation changes to the OpenHDS

system, producing a new PODS OpenHDS system. The PODS system was guided by

four design themes which are represented by the PODS acronym: polymorphism,

developer operations, declarative style, and self-description.

Application of these themes to the OpenHDS system assisted in addressing challenges

of interoperability and adaptability to change which accompany the OpenHDS distributed

application, offline data collection, the OpenHDS data model, and projects such as the

CIMS project in Equatorial Guinea which must extend the OpenHDS system and evolve

over time.

This work yielded a new server application called OpenHDS-Rest and a significantly

revised version of the OpenHDS-Tablet client application. It may aid future development

of these applications, as well as the development of browser-based web client

applications which would supplement the tablet client.

108

THE UNIVERSITY OF SOUTHERN MAINE

DEPARTMENT OF COMPUTER SCIENCE

22 January 2016

We hereby recommend that the thesis of Benjamin Heasly entitled

SOFTWARE INTEROPERABILITY

AND THE PODS OPENHDS SYSTEM

be accepted in partial fulfillment of the requirements for the Degree of Master of

Science

________________ Advisor

Accepted

109

References
Amazon.com. (n.d.). Amazon Web Services. Retrieved 4 June, 2016, from

https://aws.amazon.com/

Benzler, J., Herbst, K., & MacLeod, B. (1998). A Data Model for Demographic

Surveillance Systems. Retrieved from

https://www.researchgate.net/profile/Abraham_Herbst/publication/228705686_A_dat

a_model_for_demographic_surveillance_systems/links/09e41507fa27b71c7f000000

.pdf

Bernard, E., & Peterson, S. (2009). JSR 303: Bean validation. Retrieved June 4, 2016,

from http://beanvalidation.org/1.0/spec/

Beziz, P., & Directorate General of Statistics and National Accounts. (2005, May 25).

Evolution and Distribution of the total population by sex and region. Retrieved May

15, 2016, from http://www.dgecnstat-ge.org/

Borriello, G., Brunette, W., Dell, N., Larson, C., Sudar, S., Sundt, M., & Others. (n.d.-a).

Open Data Kit » Aggregate. Retrieved June 4, 2016, from

https://opendatakit.org/use/aggregate/

Borriello, G., Brunette, W., Dell, N., Larson, C., Sudar, S., Sundt, M., & Others. (n.d.-b).

Open Data Kit » Collect. Retrieved June 4, 2016, from

https://opendatakit.org/use/collect/

Cardelli, L., & Wegner, P. (1985). On Understanding Types, Data Abstraction, and

Polymorphism. ACM Comput. Surv., 17(4), 471–523.

Celko, J. (2012). Joe Celko’s Trees and Hierarchies in SQL for Smarties.

Elsevier/Morgan Kaufmann.

Dijkstra, E. W. (1982). On the Role of Scientific Thought. In Selected Writings on

110

Computing: A personal Perspective (pp. 60–66). Springer New York.

Fahland, D., Lübke, D., Mendling, J., Reijers, H., Weber, B., Weidlich, M., & Zugal, S.

(2009). Declarative versus Imperative Process Modeling Languages: The Issue of

Understandability. In T. Halpin, J. Krogstie, S. Nurcan, E. Proper, R. Schmidt, P.

Soffer, & R. Ukor (Eds.), Enterprise, Business-Process and Information Systems

Modeling (pp. 353–366). Springer Berlin Heidelberg.

Fowler, M. (2002). Patterns of Enterprise Application Architecture. Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc.

Fowler, M. (2010). Richardson Maturity Model. Retrieved June 4, 2016, from

http://martinfowler.com/articles/richardsonMaturityModel.html

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). 1. Introduction. In Design

patterns: elements of reusable object-oriented software (pp. 20–21). Pearson

Education India.

Google. (n.d.-a). Android. Retrieved June 4, 2016, from https://www.android.com/

Google. (n.d.-b). Application Fundamentals | Android Developers. Retrieved June 4,

2016, from https://developer.android.com/guide/components/fundamentals.html

Google, & Others. (n.d.). AngularJS — Superheroic JavaScript MVW Framework.

Retrieved May 15, 2016, from https://angularjs.org/

Heasly, B., Lienhardt, N. W., & Others. (n.d.). OpenHDS REST. Retrieved May 15, 2016,

from https://github.com/benjamin-heasly/openhds-rest

Heasly, B., Lienhardt, N. W., Taylor, A., & Others. (n.d.). OpenHDS Tablet. Retrieved May

15, 2016, from https://github.com/benjamin-heasly/openhds-tablet

Kelly, M. (2013, September 18). Hypertext Application Language. Retrieved June 4,

2016, from http://stateless.co/hal_specification.html

Marquis, J. (n.d.). Angular Hateoas. Retrieved May 15, 2016, from

https://github.com/jmarquis/angular-hateoas

111

Nottingham, M., Reschke, J., & Algermissen, J. (19 April, 2016). Link Relations.

Retrieved June 4, 2016, from http://www.iana.org/assignments/link-relations/link-

relations.xhtml

Oracle. (n.d.-a). Java Persistence API. Retrieved June 4, 2016, from

http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html

Oracle. (n.d.-b). Trail: The Reflection API (The JavaTM Tutorials). Retrieved June 4, 2016,

from https://docs.oracle.com/javase/tutorial/reflect/

Oracle. (n.d.-c). UUID (Java Platform SE 7). Retrieved June 4, 2016, from

https://docs.oracle.com/javase/7/docs/api/java/util/UUID.html

Pemberton, S., & Klotz, L. (n.d.). The Forms Working Group. Retrieved June 4, 2016,

from https://www.w3.org/MarkUp/Forms/

Pivotal. (n.d.-a). 10. Aspect Oriented Programming with Spring. Retrieved June 4, 2016,

from http://docs.spring.io/spring/docs/current/spring-framework-

reference/html/aop.html

Pivotal. (n.d.-b). 21. Web MVC framework. Retrieved June 4, 2016, from

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html

Pivotal. (n.d.-c). ExceptionHandler (Spring Framework 4.2.6.RELEASE API). Retrieved

June 4, 2016, from http://docs.spring.io/spring/docs/current/javadoc-

api/org/springframework/web/bind/annotation/ExceptionHandler.html

Pivotal. (n.d.-d). Spring. Retrieved June 4, 2016, from https://spring.io/

Pivotal. (n.d.-e). Spring Boot. Retrieved June 4, 2016, from

http://projects.spring.io/spring-boot/

Pivotal. (n.d.-f). Spring Data. Retrieved June 4, 2016, from

http://projects.spring.io/spring-data/

Pivotal. (n.d.-g). Spring HATEOAS. Retrieved June 4, 2016, from

http://projects.spring.io/spring-hateoas/

112

Thriemer, K., Ley, B., Ame, S. M., Puri, M. K., Hashim, R., Chang, N. Y., … Ali, M.

(2012). Replacing paper data collection forms with electronic data entry in the field:

findings from a study of community-acquired bloodstream infections in Pemba,

Zanzibar. BMC Research Notes, 5, 113.

van Heesch, D. (n.d.). Doxygen: Main Page. Retrieved June 4, 2016, from

http://www.stack.nl/~dimitri/doxygen/

Van Kesteren, A., & Others. (2010). Cross-Origin Resource Sharing. Retrieved June 4,

2016, from https://www.w3.org/TR/cors/

113

	Software Interoperability and the Pods OpenHDS System
	Recommended Citation

	tmp.1497370347.pdf.QQ1OA

