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ABSTRACT

Nanocrystals have emerged as a viable tool to increase oral bioavailability of poorly water soluble oral solid
dosage drugs. They also enable parenteral administration of these drugs as nanosuspensions. The high free
surface energy, due to the large surface area to volume ratio of nanocrystals, makes them prone to
aggregation, that can result in physical instability and loss of the previously increased solubility/dissolution.
Stabilizers are incorporated into nanocrystalline formulations to prevent aggregation. These include excipients
such as polymers and surfactants. They achieve stabilization though electrostatic repulsion and/or steric
hindrance. This article focuses on aggregation in nanocrystal based formulations, stabilizers for the inhibition
of aggregation, classification of stabilizers, properties of stabilizers and the mechanisms involved in
stabilization. A review of stabilizers, drugs that have been stabilized, formulation types and methods for
generating nanocrystals will be presented. Current challenges and future trends in the field of stabilizers will
also be reviewed.
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INTRODUCTION

It is estimated that approximately 70% of new
chemical entities identified in drug discovery
programs are poorly soluble in aqueous media
(1, 2). This can pose significant challenges
during drug discovery and the development
phases (3, 4). It has, consequently, fuelled a

considerable amount of research into increasing
the solubility of the drug, in order to be able to
formulate them successfully. Attempts have
been made to either increase oral bioavailability
or use alternative routes of administration.
Traditional approaches to increasing solubility
include the use of prodrugs (5), salt formation
(6), complexation (inclusion complexes) (7), co-
solvents (8), emulsions (9), surface active agents
(10), and solid-state manipulation (11). The last
couple of decades have seen the emergence of
various formulation approaches that are based
on nanotechnology. These include micro/nano
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Figure 1 Nanotechnology based drug delivery systems. Reproduced with permission
from Reference (16).

emulsions (12), polymeric nanoparticles (13),
solid lipid nanoparticles (14), nanostructured
lipid carriers (15) and nano-crystals (16) (Figure
1) and these approaches are reviewed here. As
Table 1 shows there are already several
medicinal drugs formulated with nano-crystals
have been launched commerically.

Drug nano-crystals are crystals with a size in the
nanometer range i.e., 10 to 1000 nm and are
composed predominantly of a crystalline drug
stabilized with excipients. Therefore, these
particles have a very high drug load compared
to nanoparticles consisting of a polymeric or
lipidic matrix (17-21). A high drug load in
nano-crystals significantly reduces the excipient
load in the drug product.

Nano-crystals offer apparent solubility and
dissolution rate benefits by virtue of particle
size reduction and increased surface area (16).
However, an increased surface area increases
the surface free energy. In order to minimize
the increase in surface free energy, nano-

crystals tend to aggregate spontaneously (16).
Products based on nano-crystals are mostly
formulated into  solid dosage forms or
nanosuspensions (see Table 1). The aggregation
of particles poses significant challenges during
nano-crystal based product development. The
aggregation of nano-crystals can take place at
various stages including: (i) during the
generation of nano-crystals, (ii) the storage of
nanosuspensions and, (iii) the dissolution of
nano-crystal based solid dosage forms.

The inclusion of stabilizer(s) in the formulation
is the most common strategy to overcome
aggregation in colloidal systems. Nanosystems
and colloidal systems discussed in this paper are
synonymous, with the latter being the older
term. Strategies for overcoming the problem of
aggregation is based on conventional colloid
science where capping agents or surface charges
are used to provide stabilization of nano-
crystals against aggregation (22).  However,
selecting a stabilizer is challenging due to the
lack of a   fundamental   understanding   of  the 

This Journal is © IPEC-Americas Inc December 2014 J. Excipients and Food Chem. 5 (4) 2014 -  185 

                                   DOWNLOAD FREE FROM HTTP://OJS.ABO.FI/JEFC 
This material MAY NOT be used for commercial purposes - see Creative Commons Attribution licence



Review Article

Table 1 Examples of nano-crystal products on the market.

TRADE NAME THERAPEUTIC USE APPLIED TECHNOLOGY PHARMA COMPANY
ADMINISTRATION

ROUTE AND DOSAGE
FORM 

APPROVAL
DATE

Gris-PEG® (Griseofulvin) Antifungal Bottom up, coprecipitation Novartis Oral, tablet 1982

Verelan PM® (Verapamil) Antiarrhythmic Top-down, media milling
Schwarz
Pharmaceuticals

Oral, sustained release
capsule

1998

Rapamune® (Rapamycin, Sirolimus) Immunosuppressive Top-down, media milling Wyeth Pharmaceuticals Oral, tablet 2000

Focalin® XR (Dexmethyl-phenidate
HCl)

Psychostimulant drug Top-down, media milling Novartis
Oral, extended release
capsule

2001

Herbesser® (Diltiazem) Antianginal Top-down, media milling Mitsubishi Tanabe Pharmaceuticals
Oral, extended release
capsule

2002

Avinza® (Morphine sulfate) Psychostimulant Top-down, media milling King Pharmaceuticals
Oral, extended release
capsule

2002

Ritalin® LA (Methylphenidate HCl) Psychostimulant Top-down, media milling Novartis
Oral, extended release
capsule

2002

ZanaflexTM (Tizanidine HCl) Muscle relaxant Top-down, media milling Acorda Oral, tablet 2002

Emend® (Aprepitant) Antiemetic Top-down, media milling Merck & Co. Oral, capsules 2003

Tricor® (Fenofibrate) Hypercholesterolemia Top-down, media milling Abbott Laboratories Oral, tablet 2004

Triglide® (Fenofibrate) Hypercholesterolemia
Top-down, high-pressure
homogenization

SkyePharma Oral, tablet 2005

Megace ES® (Megestrol acetate) Antianorexic Top-down, media milling Par Pharmaceutical Companies Inc. Oral, nanosuspension 2005

Cesamet® (Nabilone) Antiemetic Bottom up, coprecipitation Eli Lilly Oral, capsule 2005

Naprelan® (Naproxen sodium) Anti-inflammatory Top-down, media milling Wyeth
Oral, sustained release
tablet

2006

Theodur® (Theophylline) Bronchial dilator Top-down, media milling
Mitsubishi Tanabe
Pharmaceuticals

Oral, extended release
tablet

2008

Invega® Sustenna (Paliperidone
palmitate)

Antidepressant
Top-down, high-pressure
Homogenization

Johnson &
Johnson

Intramuscular,
nanosuspension

2009

interactions within the colloidal systems and the
lack of effective methods to screen stabilizers.
This article will review stabilizers used in nano-
crystal based formulations. Additionally the
mechanisms involved in the aggregation of
nano-crystals and their stabilization will be
explained. Detailed insights will be provided on
the problem of aggregation, collision
mechanisms responsible for aggregation,
theories of colloidal stability and mechanisms of
stabilization. Methods used to screen stabilizers
for nano-crystal based formulations will also be
presented.

NANO-CRYSTALLINE DRUG DELIVERY SYSTEMS

Nano-crystals began to be developed in the
early 1980s. The first medicinal product
appeared on the market in 1982 followed by
several other medicinal products from 1998
onwards (23). Nano-crystals are primarily
formulated into oral solid dosage forms because
of the potential of a larger commercial market
and easier manufacturing. To a much lesser
extent they are formulated into parenteral
dosage forms. The various medicinal products
on the market have been formulated using

different technology platforms for generating
nano-crystals an overview of which are
provided in Table 1.

Studies on the in vitro and in vivo performance
of nano-crystals have shown that they provide
biopharmaceutical advantages by increasing (i)
dissolution rate (24), (ii) apparent solubility
(25), and (i i i)  mucoadhesion (26). 
Enhancement of dissolution kinetics is
governed by the Noyes-Whitney equation,
while increased apparent solubility is governed
by the Kelvin-Ostwald-Freundlich equation.
Increased mucoadhesion is due to the
enhanced penetration of nano-crystals in the
gastric mucosa by virtue of reduced particle
size. A diagram showing these  mechanisms is
shown in Figure 2. Interested readers are
further referred to other reports on the
mechanisms involved in formulating nano-
crystals (16, 23-28).

Methods for producing nano-crystals

Methods for the production of nano-crystals
can be broadly classified into ‘bottom-up’
(controlled precipitation/ crystallization) and
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Figure 2 Features of nanocrystals: (1) increased dissolution rate due to increased
surface area, (2) increased apparent solubility due to increased dissolution pressure
of strongly curved small nanocrystals, and (3) increased mucoadhesiveness of
nanocrystals due to increased contact area of small versus large particles.

‘top-down’ (particle size reduction by
mechanical means). Combination methods
involving precipitation followed by a size
reduction step have also been used. Nano-
crystals can also be generated through chemical
synthesis. A classification of methods for the
production of nano-crystals is outlined in Figure
3 (16, 23, 28).
 
Bottom-up methods

Bottom-up methods involve the controlled
precipitation/crystallization of drug from its
solution state. Process parameters are controlled
to encourage crystal nucleation and allow crystal
growth only upto the nanometer range. The
preparation of nano-crystalline material using
freeze drying was reported by De Waard et al.

(29). In this method, a drug dissolved in an
organic solvent mixed with an aqueous
solution of a cryoprotectant was immediately
frozen and lyophilized. The freeze drying was
performed at a relatively high temperature to
induce the formation of nano-crystals (29).
Nano-crystals have also been generated using
spray drying. A solution of drug and excipient
in a solvent or solvent mixture is spray dried to
obtain discrete particles of micron size. Each
particle consists of drug nano-crystals in a
range of 10 to 1000 nm dispersed in the matrix
of excipients (30). A nano spray dryer can be
used to obtain nano-crystals directly through
spray drying. Spray dryers that use piezoelectric
driven actuator to generate nanosized porous
particles are commercially available (31).
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Figure 3 Methods for generating nanocrystals.

Top-down methods

Top-down methods involve breaking down
larger crystals into smaller particles using milling
techniques. The Nano-crystals® technology by
Élan corporation uses bead milling to achieve
particle size reduction. Milling media, dispersion
medium containing stabilizer together with a
drug are charged into a milling chamber. Shear
forces generated by the milling media generate
nano-crystals. The Nanomill® system is a lab
scale version of this technology (Élan Drug
Discovery, PA, USA). High pressure
homogenization involves Micro-fluidizer
technology (IDD-PTM technology), or piston-
gap homogenization in aqueous media
(Dissocubes® technology, SkyePharma), or in
non-aqueous media (Nanopure® technology,
Abbott Laboratories). The drug particles are
reduced in size by cavitation (32).

Combination of methods

The Nanoedge™ technology by Baxter uses a
precipitation step followed by annealing using a
high energy process such as high pressure
homogenization. The annealing step prevents
the growth of the precipitated nano-crystals. In
this method, annealing has been defined as the
process of converting a thermodynamically
unstable matter into a more stable form by

single or repeated application of energy,
followed by thermal relaxation. Another
combination technology is smartCrystal®,
developed by Abbott Laboratories. It
combines a number of different processes
which either accelerate production by reducing
the number of passes through the
homogenizer or result in very small nano-
crystals below 100 nm (16). 

Nano-crystals on the market

Gris-PEG® , the first nano-crystal product to
be launched commercially was developed using
the bottom-up co-precipitation method (33).
Later ,  more  products  have  been
commercialized and as shown in Table 1. As
can be seen, the majority of the products are
for oral administration. There are currently
several medicinal products using nano-crystals
in advanced stages of clinical trials (34).

AGGREGATION IN DISPERSED SYSTEMS

A dispersed system is defined as a
heterogeneous biphasic system in which the
internal phase is dispersed within the
continuous phase (35). Dispersed systems are
classified as suspensions and emulsions based
on the physical state of the constituent phases.
Another classification system is based on the
size of the dispersed particles within the
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dispersion medium. The particle size of the
dispersed phase varies considerably ranging
from atomic/molecular dimensions to >1µm.
Dispersed systems, based on size, are classified
as molecular, colloidal or coarse dispersions
(Table 2) (35).

Table 2 Various pharmaceutical colloidal systems

CATEGORY
PARTICLE

SIZE
CHARACTERISTIC

OF SYSTEM
EXAMPLES

Molecular
dispersion

< 1 nm

Particles invisible by
electron microscopy; Pass
through semi-permeable
membrane

Oxygen molecules
dissolved in water 

Colloidal
dispersion

1 nm-1000
nm

Particles are visible by
electron microscope; pass
through filter paper but not
through semi-permeable
membrane

Colloidal silver sols,
surfactant micelles in
an aqueous phase,
pharmaceutical
nanodispersions

Coarse
dispersion

>1000 nm

Particles visible by
ordinary microscope; do
not pass through filter
paper and semi-permeable
membrane 

Pharmaceutical
emulsion and
suspension

Molecular dispersions are homogeneous in
nature and form true solutions. Colloidal
dispersions are intermediate in size between true
solutions and coarse dispersions. A colloid is
generally defined as a system comprised of
discrete particles in the range of 10 to 1000 nm,
dispersed in a continuous phase. Dispersions
containing larger dispersed phases, 10 to 50 µm
in size, are called coarse dispersions (23). Nano-
crystals, either during processing, during
performance, or both, are present in a
suspended state. These nanosuspensions fall
under the category of colloidal dispersions by
virtue of their size from 10 to 1000 nm.

The aggregation of dispersed particles and the
resulting instabilities such as flocculation and
sedimentation in suspensions represent major
challenges in formulating nano-crystal based
pharmaceutical dispersed systems. Particle
aggregation refers to the formation of clusters
in a colloidal suspension and is the most
frequent reason for destabilization. During this
process, which normally occurs within seconds
to hours or over a longer time, as well as,
particles dispersed in the liquid phase stick to
each other, and form aggregates. Flocculation
refers to the process by which destabilized
particles conglomerate into larger aggregates.

The latter are loosely bound clusters with an
open structure. Sedimentation is the tendency
of particles in a suspension to settle under
gravity in the fluid in which they are entrained
(36-38).

Aggregation is caused by the mutual attraction
between particles through van der Waals forces
or chemical bonding. This is a fundamental
growth process for all dispersions of
particulate matter (39). Aggregation in drug
delivery systems such as nanosuspension is
responsible for other issues including settling,
crystal growth, dose inconsistency and most
importantly loss of the solubility/dissolution
advantage (40). Aggregation plays an important
role in defining the physical instability and
performance of nano-crystalline drug delivery
systems. 

AGGREGATION AND COLLISION MECHANISMS

Three different mechanisms account for the
aggregation of particles: (i) perikinetic
aggregation, (ii) differential sedimentation, and
(iii) orthokinetic aggregation. These mecha-
nisms are shown in Figure 4.

Perikinetic aggregation

The rate of aggregation is in general
determined by the frequency of collisions and
the probability of cohesion during collision. If
the collisions are caused by Brownian motion,
the process is called perikinetic aggregation and
is solely driven by diffusion. Small particles in
colloidal suspensions continuously undergo
Brownian motion. These particles collide with
each other and stick together due to attractive
forces acting between them. Multiple collisions
can lead to the formation of multi-particle
aggregates (41, 42).

Differential sedimentation

Another important collision mechanism arises
whenever particles of different sizes and
density settle from a suspension. Particles of
different diameters settle at different velocities
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Figure 4 Schematic representation of (a) perikinetic aggregation (b) differential sedimentation
and (c) orthokinetic aggregation.

causing the faster moving particles to collide
with the slower moving particles resulting in
aggregation. Even for an initially uniform
suspension of equal particles, aggregates of
different size are formed which settle at
different rates. It is often at the later stages of
flocculation that floccule growth becomes
significant in sedimentation (43, 44).

Orthokinetic aggregation

Particle transportation brought through fluid
motion can cause an enormous increase in the
rate of inter-particle collisions, and aggregation
brought about in this way is known as
orthokinetic collision. Such collisions occur
under conditions of shear, either by stirring or
by flow. Orthokinetic aggregation is dependent
on the initial particle size and velocity gradient,
but is independent of temperature. For instance,
stirring does not enhance the aggregation rate of
small particles until they grow to a size of about
1 µm. Once particle size reaches 1 µm, stirring
must be provided to promote further
aggregation (45, 46).

INHIBITION OF AGGREGATION IN NANO-
CRYSTALLINE SYSTEMS

In both aqueous and non-aqueous media,
electrostatic repulsion and steric stabilization are
the two major mechanisms involved in the
stabilization of colloidal nanosuspensions.

Electrostatic stabilization occurs through an
electrical double layer surrounding the colloidal
particles, and steric stabilization is achieved
when polymeric molecules are adsorbed or
attached chemically (47-51). It is also possible
to combine chemical functionalities within the
same molecule to achieve both steric and
electrostatic stabilization known as electrosteric
stabilization (52, 53). Ionic-polymers impart
electrostatic repulsion from surfactant
properties and steric stabilization from
polymeric properties. Electrosteric stabilization
can also be provided by using a combination of
two different stabilizers, an ionic surfactant
and a polymer, respectively (54). Electrostatic,
steric and electrosteric stabilization
mechanisms are shown in Figure 5.

Electrostatic stabilization

Electrostatic stabilization involves the
adsorption of ionic charges on the particle
surface resulting in mutual repulsive forces
between the particles (55-57). The ionic
strength of the medium significantly influences
the repulsive forces. For a given colloidal
system, an increase in the ionic strength
reduces the thickness of electrical double layer
which leads to a decrease in the repulsion
potential of the particles (58, 59). Thus, other
factors remaining the same, coalescence of
electrically stabilized dispersed particles can be
observed with increasing ionic strength of the
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Figure 5 Schematic illustration of electrostatic, steric and
electrosteric stabilization.

dispersion medium.

Moorthi et al. prepared nano-crystals of
curcumin using a nanoprecipitation method
(60). The nano-crystals were coated using either
sodium lauryl sulphate (SLS) or poloxamer 188
for stabilization. Both stabilizers produced very
small nano-crystals. The study concluded that
the anionic nature of sodium lauryl sulfate (SLS)
provided a higher zeta potential and provided
higher electrostatic repulsive force between
particles (60-62). This overcame the van der
Waals attraction and gravitational force
preventing nano-crystal aggregation resulting in
narrow sized and stable curcumin nano-crystals
(60). Similarly, Vergote et al. developed a nano-

crystalline dispersion of ketoprofen using
Nano-crystal® technology (63). SLS and
Cremophor RH40 as stabilizers. SLS stabilized
the system through electrostatic repulsion (63-
66).

Electrostatic stabilization is widely used due to
its simplicity and low cost (56). Nonetheless,
shortcomings are associated with this method.
It is effective only in aqueous medium and is
less effective after drying the formulation, as
the ionized state is no longer maintained (56).
It is sensitive to changes in the ionic strength
of the dispersion medium and is difficult to
apply to multiple phase systems because
different solids develop different electric
potentials (67-72). Electrostatic stabilization is
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also sensitive to processing such as heat
sterilization. However, if the components of
formulation are heat labile, alternative strategies
like filtration sterilization can be used (55, 73).

Steric stabilization

Steric stabilization involves the adsorption or
attachment of non-ionic amphipathic polymers
on the particle surface thus preventing
aggregation. The stabilizing moieties are
mutually repulsive in order to effectively keep
the particles at a distance from each other. They
have to be attached, partially absorbed or
adsorbed to the particle strongly enough so that
they are not affected by Brownian collisions of
particles.  Complete surface coverage also helps
prevent escape. Polymers having specific
affinity for the surface are generally used for
steric stabilization. They are adsorbed in such a
way that segments of polymeric chains extend
to some distance from the surface into the
dispersion medium. As particles approach
sufficiently close, the adsorbed layers come into
contact resulting in interpenetration of the
hydrophilic chains (74). Since these chains are
hydrated, overlap of these layers causes some
dehydration and an increase in free energy (75-
77). This results in repulsion between the
particles thus stabilizing the nanosuspensions.

Polymeric stabilization offers several advantages
over electrostatic stabilization, including (i) the
particles stabilized by steric method are usually
re-dispersible (78-80) (ii) a very high
concentration of nano-crystals can be
accommodated and the dispersion medium can
be completely removed (81-83) (iii) it is not
sensitive to the addition of electrolytes below
their ‘salting out’ concentrations (52, 84-86),
and (iv) it is suitable for multiple phase systems
(85).

Sterically stabilized dispersions are usually
sensitive to temperature changes. Flocculation
may occur upon heating or cooling, or both, but
is reversible. However, if the ratio between the
hydrophilic to hydrophobic parts of the
polymer is such that their cloud points exceed

the applied temperature variations, sterically
stabilized dispersions exhibit stability towards
temperature changes (32, 51, 87-91).

The most useful steric stabilizers are povidone
(PVP), hypromellose (HPMC), hydroxypropyl
cellulose (HPC), block and graft co-polymers
(23, 51, 87-91). They generally comprise of an
anchor group and a stabilizing moiety. The
anchor group connects the polymer to the
surface of the colloidal particle (47, 85, 92, 93).
The stabilizing moiety is soluble in the
dispersion medium and provides steric
repulsion. Polymeric stabilizers are effective
only when they have affinity for the surface of
the particle and are adsorbed in such a way that
segments of polymeric chains extend to some
distance into the dispersion medium (94). The
dispersion medium should be a good solvent
for the adsorbed polymer. The main drawback
associated with steric stabilization is the
constant need to tailor the anchoring segment
according to the particular drug of interest. 

CLASSIFICATION OF STABILIZERS 

Figure 6 shows a classification of commonly
used stabilizers for pharmaceutical colloidal
systems. These include synthetic linear
polymers, synthetic co-polymers, semi-
synthetic non-ionic polymers, amphiphilic
amino acid co-polymers, celluloses, ionic
surfactants and non-ionic surfactants (95, 96).
Apart from these conventionally used stabi-
lizers, the development and discovery of new
stabilizers is underway for nanosuspension
technology. The mechanism of stabilization
depends on the physico-chemical nature of the
stabilizer.

It has been reported that food biopolymers
such as zein and polylactic acid, and food
proteins such as soybean protein isolate, whey
protein isolate and β-lactoglobulin can be used
as stabilizers for colloidal systems (97, 98).
Various amino acid co-polymers can also be
used for stabilization (99-101). For example,
naproxen nanosuspensions were stabilized with
phenylalanine and leucine (32). Block co-
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Figure 6 Various types of the stabilizers used for stabilization of nanoformulations. PVP
(Povidone), PVA (Polyvinyl alcohol), PEG (Polyethylene glycol), HPMC (Hypromellose),
HPC (Hydroxypropyl cellulose), HEC (Hydroxyethyl cellulose), NaCMC
(Carboxymethylcellulose sodium), SD (Docusate sodium), SLS (Sodium lauryl sulfate), PEI
(Polyehtylene imine), TPGS (D-α-tocopheryl polyethylene glycol succinate), PEO
(Polyethylene oxide) and PPO (Polypropylene oxide).

polymers such as poloxamers have been
extensively used in a variety of pharmaceutical
formulations (102-106). Stability of the drugs
during processing can be maintained by
polymeric stabilization as the crystal structure of
drug particles is not affected by the polymers. In
contrast, conventional small molecular weight
surfactants such as SLS lack this property (107).
Table 3 shows a list of stabilizers used in nano-
crystalline formulations together with the
mechanism of stabilization used.

PRACTICAL CONSIDERATIONS FOR THE
SELECTION OF STABILIZERS
 
Studies focusing on developing empirical
relationships between stabilizer efficacy and
their properties have been published to aid in
stabilizer selection (110, 133-139). These
properties are summarized in Figure 7. A large
number of research papers focusing on
pharmaceutical nanosuspensions are available in
the literature (87). This review focuses mainly
on the studies that provide directions for
selection of stabilizers for nanosuspensions.

Drug related parameters

Zeta potential

Zeta potential (ζ) is the electrokinetic potential
of a colloidal system.  It is the potential
difference between the dispersion medium and
the stationary layer of fluid surrounding the
dispersed particle. Zeta potential is the
potential at a hydrodynamic shear plane and is
calculated from electrophoretic mobility (140).
The zeta potential provides a measure of the
magnitude of the interaction between colloidal
particles (141). The zeta potential caused by a
stabilizer is affected by the pH of the
dispersion medium (142), conductivity (142),
valency of ions (142, 143), concentration of
drug in dispersion (144), and electrokinetic
effects such as electrophoresis and electro-
osmosis (145). Electrostatic stabilization gives
rise to a mobile, charged, colloidal particle
whose electrophoretic mobility can be
measured (146).
The square of the zeta potential is proportional
to the force of electrostatic repulsion between
charged particles. The zeta potential is,
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Figure 7 Practical considerations for the selection of stabilizers.

therefore, a measure of the stability of a
colloidal systems. Increasing the absolute
magnitude of the zeta potential increases the
electrostatic stabilization. As the zeta potential
approaches zero, electrostatic repulsion
becomes small compared to the ever-present
van der Waals attraction. Eventually, instability
increases, which can result in aggregation
followed by sedimentation and phase
separation. Generally, for a suspension to be
electrostatically stable, a zeta potential of ± 30
mV is required, whereas, for a combined
electrostatic and steric stabilization, a minimum
zeta potential of ± 20 mV is desirable (61, 140-
144, 147).

Log P and enthalpy of melting

George et al. identified the correlation between
drug/stabilizer properties and critical quality
attributes of nanosuspension formulation
prepared by wet media milling (148). A
combination of a drug and a stabilizer with a
similar log P value formed a stable
nanosuspension. This was due to the affinity
between the drug and the stabilizer resulting in

the adsorption of the stabilizer onto the drug
surface (149). Drugs with low enthalpy of
melting have been observed to form the least
stable nanosuspensions regardless of the
stabilizer  used  (87, 148, 150).  Van Eerdenbrugh
et al. reported no significant co-relation between
physicochemical properties (molecular weight,
melting point, log P, solubility and density) with
the ease of nanosuspension stabilization
(151).They demonstrated that surface
hydrophobicity of the drug candidates was the
driving force for nano-crystal agglomeration, thus
reducing the success rate of producing
nanosuspensions.

Drug solubility in a stabilizer solution

The solubility of a drug in a stabilizer solution
impacts significantly the selection of the
stabilizer. Ostwald ripening refers to the
growth of larger particles at the expense of
smaller particles. It occurs due to the faster rate
of the  solubilization of smaller particles
because of their larger surface area and smaller
curvature relative to the larger particles.
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Table 3 List of stabilizers together with their mechanism of stabilization

STABILIZING
AGENT(S)

MECHANISM OF
STABILIZATION

DRUG COMPOUND FORMULATION TYPE
TECHNIQUES FOR MAKING

NANO-CRYSTALS
REF.

POLYMERS (SYNTHETIC)

PVP K15 Steric Danazol Nanosuspension Ball milling (108) 

PVA Steric Nitrendipine Nanosuspension Precipitation-ultrasonication (109) 

POLYMERS (SEMISYNTHETIC)

HPMC Steric Ibuprofen Nanosupension
Precipitation under sonication
followed by microfluidization

(110) 

HPMC Steric Nifedipine
Freeze dried

nanosuspension
High pressure homogenization (24) 

HPMC Steric Spironolactone Nanosuspension Antisolvent precipitation (111) 

HPMC Steric Naproxen Nanosuspension Media milling (112) 

Plantacare® 2000
(decyl glucoside)

Steric Lutein
Cream and gel containing

Freeze dried
nanosuspension

High pressure homogenization (113) 

SURFACTANTS (IONIC)

SLS Electrostatic Curcumin Nanosuspension Nanoprecipitation (60) 

SLS Electrostatic Ketoprofen
Matrix Pellet containing

nano-crystals
Bead milling followed by spray
drying and melt pelletization

(63) 

SURFACTANTS (NONIONIC)

TPGS Steric Itraconazole
Freeze dried

nanosuspension
Ball milling followed by freeze drying (114) 

Tween 80 Steric Spironolactone Nanocapsules Nanoprecipitation (115) 

Tween 80 Steric Baicalein Nanosuspension
Antisolvent recrystallization followed

by high pressure homogenization
(116) 

Tween 80 Steric Quercetin Nanosuspension Bead milling (117) 

Poloxamer 188 Steric Simvastatin Nanosuspension Sonoprecipitation (118) 

Poloxamer 188 Steric Piroxicam Orally disintegrating tablet High pressure homogenization (119) 

Poloxamer 188 Steric Diclofenac Nanosuspension High pressure homogenization (120) 

Poloxamer 188 Steric Naproxen Nanosuspension Milling (121) 

Poloxamer 338 Steric Azithromycin 
Freeze dried

nanosuspension
High pressure homogenization (122) 

Poloxamer 407 Steric Paclitaxel Nanosuspension Stabilization of nano-crystal method (123) 

Poloxamer 407 Steric Cyclosporine Nanosuspension Media milling (124) 

COMBINATION OF STABILIZERS

Capryol 90 and Solutol
HS 15

Steric Atovaquone
Freeze dried

nanosuspension
Microprecipitation followed by high

pressure homogenization 
(125) 

PVP K30 and SLS Electrosteric Celecoxib Nanosuspension and tablet
Emulsion diffusion (solvent

exchange) followed by spray drying
(126) 

Lutrol F127 and SLS Electrosteric Itraconazole Nanosupension High pressure homogenization (127) 

HPMC and SLS Electrosteric Miconazole Nanosuspension High energy milling (128) 

Tween 80, Poloxamer
188 and Sodium cholate 

Electrosteric Amphotericin B Nanosuspension High pressure homogenization (129) 

Lecithin and Tyloxapol Electrosteric Budenoside Nanosuspension High pressure homogenization (130) 

Poloxamer 188 and
Lecithin

Electrosteric Oridonin Nanosuspension High pressure homogenization (131) 

Poloxamer 188,
Phospholipon 90 and
Sodium cholic acid 

Electrosteric Clofazimine Nanosuspension High pressure homogenization (132)

As the smaller particles dissolve and
crystallization occurs around large particles, the
particle sizes of the latter grow over time. Many
small crystals disappear, and the larger ones
grow at the expense of the small crystals. The

smaller crystals act as fuel for the growth of
large crystals. Molecules on the surface are
energetically less stable than the ones already
well ordered and packed in the interior. As the
small particles dissolve and large particles grow,
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the free energy of the dispersion is reduced (87,
110, 152-154). 
 
A study of ibuprofen nanosuspensions
demonstrated greater apparent aqueous
solubility of ibuprofen in the presence of
stabilizers such as SLS, Tween 80 and
poloxamer 407 (155). Further, Ostwald
ripening was observed through the increase in
particle size. In contrast, stabilizers such as
PVP K30 and HPMC minimally affected the
intrinsic aqueous solubility of ibuprofen
nanosuspension.  Thus, stabilizers having
minimal effect on apparent drug solubility
should be used for the preparation of
nanosuspensions (155).

Stabilizer related parameters

Concentration of stabilizer

The concentration of stabilizer in the dispersion
media is important for the stabilization of
colloidal systems. The amount of the stabilizer
contributes to the stability of the suspension by
influencing absorption affinity of the stabilizer
on the surface of drug particles (155). An
optimum concentration of stabilizer is required,
since an inadequate amount of stabilizer may
not provide a complete coverage of the drug
surface, thus compromising the steric repulsion
between the particles (156-159). The effective
concentration of the surfactant required for
stabilization depends on its molecular structure.
It has been observed that a lower molar
concentration is required for surfactants having
a longer hydrophobic chain and a larger
hydrophilic head, as these impart better steric
hindrance and thus reduce the tendency to
agglomerate (31, 160-162). 

Van Eerdenbrugh et al. generated drug nano-
crystals using wet media milling. The success
rate in producing nanosuspensions using
polysaccharide based stabilizers was limited by
the high viscosity of these polymeric stabilizer
solutions. Increasing the concentration of these
stabilizers was not helpful for the generation of
nanosuspensions. In contrast, the other

stabilizers such as PVP K30, PVA, poloxamer
188, polyvinyl alcohol–polyethylene glycol graft
copolymer (K-IR), Tween 80 and TPGS did
not show the dependency of nanosuspension
formation on viscosity. The formation of
nanosuspensions using PVP K30, PVP K90,
F68 and K-IR was highly dependent on their
concentration, where higher concentrations 
increased the stabilizing effect significantly
(155, 163). Some literature reports suggest that,
the use of a stabilizer in a concentration above
the critical micelle concentration (CMC) could
destabilize the nanosuspension (123, 164, 165).
However, colloidal science is mostly empirical
at this stage and the effect of the stabilizer
concentration on nanosuspension stability
depends on the properties of the drug, the
stabilizer, the dispersion media and overall
system. 

Molecular weight 

Polymeric stabilizers with higher molecular
weight are generally effective steric stabilizers
(166). The chain length of the polymers should
be large enough to overcome the van der Waals
forces of attraction. Short chain lengths offer a
thin barrier to steric repulsion and promote
aggregation. Polymers ranging from
approximately 5000 to 25000 g/mol are usually
suitable for the stabilization of nano-crystals
(123, 167, 168).

Hydrophobicity

Lee et al. investigated amphiphilic amino acid
co-polymers as stabilizers for the preparation of
naproxen nano-crystal dispersions (169). The
use of different amino acids imparted different
hydrophobicity to the amino acid co-polymers.
The hydrophobicity of the co-polymers was
quantified using the hydrophobicity scale
developed by Black and Mould (170). It was
concluded that co-polymers with higher
hydrophobicity successfully produced stable
nano-crystals of hydrophobic drugs in
comparison to those with lower hydro-
phobicity. This was attributed to the strong
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polymer adsorption onto the hydrophobic drug
surfaces (169).  Thus, it can be concluded that,
the drug and polymer hydrophobicity have a
combined effect the formation of nanos-
uspensions, and their stability (87, 148, 150,
151, 169).

HLB (Hydrophilic Lipophilic Balance) is an
empirical expression for the relationship
between hydrophilic ("water-loving") and
hydrophobic ("water-hating") groups of a
surfactant (171). It is a measure of the degree to
which a surfactant is hydrophilic or lipophilic.
HLB numbers are low for hydrophobic
surfactants and high for hydrophilic surfactants.
HLB values of surfactants can serve as a rough,
but quick, tool to assess their efficacy in
stabilizing drug nano-crystals (172-179). 

Viscosity

Van Eerdenbrugh et al. studied 13 stabilizers at
3 different concentrations to stabilize 9 drug
compounds (32). Both surfactants and
polymeric stabilizers were used. Overall,
surfactants gave the best results in stabilizing
the nanosuspensions as they exhibited low
viscosity and high surface activity.
Polysaccharide based stabilizers such as HPMC,
methylcellulose, HEC, HPC, NaCMC and Na
alginate had a negative effect during the
formation of nano-crystals by media milling.
These polymers were not able to produce sub-
micron sized particles because of the high
viscosity of these polymeric solutions. A high
viscosity medium was inefficient in producing
sub-micron size particles. 

However, high viscosity can have a positive
influence on the stability of colloidal particles
(97). According to the Stokes-Einstein
equation, a high viscosity medium leads to
reduced diffusion velocity and ensures colloidal
stability. The Stokes-Einstein equation (1) is as
follows:

Eq. 1D  
kT

6 r




where, D is the diffusion coefficient, K is the
Boltzmann’s constant, T is the absolute
temperature,  η is the viscosity and r is the
radius of the spherical particle (180-183). 

Rachmawati et al. investigated the influence of
five stabilizers on the particle size in curcumin
nanosuspensions (184). The smallest particle
size was obtained from the TPGS stabilized
system. The particle size increased in the order
of TPGS < SLS < PVP < PVA < NaCMC.
TPGS has a hydrophilic tail (polyethylene
glycol) and hydrophobic portion (tocopherol),
as well as, a large surface area. The combination
of low viscosity and high surface activity makes
it a superior stabilizer for nanosuspensions (14,
184).

Surface energy

Knowledge of the surface energy can be used
to assist in the selection of an appropriate
stabilizer (55, 110, 138, 155). Static contact
angle measurements can provide a rough
approximation of the surface energy. Lee et al.
investigated the effectiveness of stabilizing
polymers as a function of the similarity between
the surface energies of the stabilizer and the
drug (139). Correlations between the surface
energies of the stabilizers and drugs were taken
into account. The study concluded that nano-
crystals with minimal particle size deviation
could be prepared when the surface energy of
the stabilizing polymer is similar to that of the
surface of drug.  However, no general trend
between surface energy and particle size
reduction was observed in a separate study
carried out with the stabilizers HPC, PVP K30,
poloxamer 407, poloxamer 188, PEG, SLS,
benzethonium chloride and eleven model drugs
(139). Thus, it is important to properly
determine the role of surface energy when
selecting a stabilizer. This will require carrying
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out further experimental studies to obtain
pertinent information.

Particle-stabilizer affinity

The affinity of the stabilizer for the particle
surface regulates its adsorption kinetics (94,
185-188). Higher affinity leads to faster
adsorption of the stabilizer. For effective
stabilization, stronger and faster adsorption of
stabilizer at full coverage is required. Possible
interactions between the functionalities of the
stabilizer and dispersed particles strengthen the
adsorption of stabilizer (189). Hydrophobicity
of a drug and a stabilizer generally serves as an
indicator of a possible affinity between them
(190).

Dispersion medium related parameters

pH of the dispersion medium

The pH of the dispersion medium plays an
important role in electrostatic stabilization and
steric stabilization using ionizable polymers (56,
86). The pH of an aqueous medium affects
stabilizer performance. He et al. prepared
indomethacin nanosuspen-sions using food
proteins (whey protein and soybean protein
isolate and β-lactoglobulin) as novel stabilizers
(191). The isoelectric points (pI) of these
denatured food proteins are in the range of 4-6.
At the pI, a limited stabilization effect was
obtained as the net charge on proteins was
zero. Thus, colloidal instability was significant
at the isoelectric point and resulted in
aggregation. At pH values, above or below the
pI, food proteins exhibit amphiphilic properties
and thus could act as effective stabilizers.
However, at highly acidic or highly basic pH,
monomers are generated compromising the
effectiveness of the stabilization of food
proteins. A slightly basic pH is considered
beneficial for food protein stabilizers (191). 

Temperature of the dispersion medium

Temperature affects the affinity of the stabilizer
for drug nano-crystals which may result in the

destabilization of the system (55, 123).  As
stated earlier, reversible flocculation may occur
upon heating or cooling in sterically stabilized
dispersions if the cloud point of polymer is
lower than the applied temperature variations
(32, 51, 87-91). Furthermore, an increase in
temperature can alter the dynamic viscosity and
the diffusion coefficient (180-183). Kakran et al.
observed the effects of temperature on the
stability of quercetin nanosuspensions. They
found that, nano-suspensions stored at 40°C
were unstable, compared to those stored at
25°C and 4°C (192). 

TECHNIQUES FOR SCREENING STABILIZERS

The total surface area of the particles in a
nanosuspension is typically extremely high
compared to a conventional suspension. This
encourages particle aggregation and therefore
the selection of the type and quantity of
stabilizer is critical for the development and
subsequent physical stability of the
nanosuspension. The selection of stabilizers for
the successful formation of drug nano-crystals
is influenced by the processing methods. Thus,
it is very important to understand the process
of particle formation to enable the selection of
optimum stabilizer(s). Top-down or bottom-up
methods rely on completely different
mechanisms for the generation of nano-crystals
and therefore the criteria for the selection of
stabilizers for these two methods also differ.
For example, for the bottom-up precipitation
method, the HLB value of the stabilizer is
critical to enable stabilization of the formed
nano-crystals. In contrast, for the top-down
high pressure homogenization method, the
nano-crystal size depends, not only on the
hardness of the drug material, but also on the
homogenization pressure and number of
passes. Larger particles are broken down into
smaller ones thus generating new surfaces. In
such cases, successful nano-crystal formation is
based on the kinetics of stabilization of the
newly formed surfaces. Therefore the affinity of
a stabilizer for the particle surface is critical for
the success of the process.
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So far only a limited number of studies of a
systematic selection of stabilizers for
nanosuspensions have been reported. The
reported methods for these selections are
reviewed further below.

Selection based on surface free energy

The greatest challenge during processing drug
nano-crystals is to ‘stabilize’ the free energy
contributed by the newly created surfaces.
Effective stabilization requires fast adsorption
of the stabilizers onto these surfaces. Surface
free energy determinations have been reported
to be useful for the selection of stabilizers. Van
Eerdenbrugh et al. described the analysis of
surface free energy required for the selection of
stabilizer for nano-crystalline formulations of
several drugs (163). For polymeric stabilizers,
the surface free energies of the drug and the
stabilizers need to be similar for the effective
stabilization of nano-crystals. The addition of a
surfactant appears to provide benefits when the
difference in the surface free energy between
the drug and the polymer is high. The addition
of a surfactant modulates the surface free
energy encouraging favorable interaction
between the drug and the stabilizer (193).

Selection based on the affinity of the stabilizer
towards the nano-crystal surface

The affinity of a stabilizer to the particle surface
can be studied using several different analytical
methods. Atomic force microscopy (AFM) has
been reported to be an useful tool for the
selection of stabilizers as it provides
information on the extent of interaction
between the drug and the stabilizer. It also
provides information about the characteristics
of the adsorbed layer and the strength of the
interfacial film. This information is useful for
predicting wettability, aggregation, crystal
growth and Ostwald ripening of the colloidal
particles. AFM has been successfully used for
the investigation of the interaction between
polymeric stabilizers and ibuprofen to
determine their suitability for the preparation

and stabilization of ibuprofen nanosuspensions.
It was found that HPMC and HPC interacted
strongly with ibuprofen resulting in extensive
surface adsorption, confirming their suitability
fo r  p repara t ion  o f  an  ibuprofen
nanosuspension (138).

The stabilizer should be adsorbed onto the
particle surfaces in order for suitable
stabilization to be achieved. Furthermore, the
adsorption should be strong enough to last for
a long time. Adsorption of the stabilizer may
occur through ionic interaction, hydrogen
bonding, van der Waals attraction, ion–dipole
interaction or by a hydrophobic effect. The
surface of wet-milled drug nano-crystals is
hydrophobic. High affinity of the stabilizer to
the hydrophobic surfaces is thus important. In
light of this, HLB values can help in selecting
appropriate stabilizer (110).

Solubility of a drug in the dispersion vehicle

The solubility of a drug molecule in aqueous
stabilizer solutions may also play a role in the
stabilization of nano-crystals. In microflui-
dization processes, a higher solubility of
ibuprofen in the presence of a stabilizer
contributed to Ostwald ripening and an
increase in particle size. Ostwald ripening is the
change of an inhomogeneous structure over
time, i.e., small crystals dissolve, and redeposit
onto larger crystals. It is directly correlated to
the concentration of the drug in the dispersed
phase (194). Aqueous surfactant solutions
increase the apparent solubility of small
molecular weight materials by forming micelle-
like structures and thus they result in Ostwald
ripening. These systems may therefore present
stability problems on storage.

Crystal growth inhibition

Ochi et al. developed nano-crystal formulations
of meloxicam by wet-milling followed by
lyophilization (195). Hydrophilic polymers were
used as aggregation inhibitors. The polymers
were selected based on high-throughput

This Journal is © IPEC-Americas Inc December 2014 J. Excipients and Food Chem. 5 (4) 2014 -  199 

                                   DOWNLOAD FREE FROM HTTP://OJS.ABO.FI/JEFC 
This material MAY NOT be used for commercial purposes - see Creative Commons Attribution licence



Review Article

screening of crystal growth inhibition from
supersaturated meloxicam solutions. Super-
saturation of meloxicam was observed in PVP
K30, HPC, and Povacoat Type F (polyvinyl
alcohol/acrylic acid/methyl metha-crylate co-
polymer) solutions. The particle size distri-
butions of pulverized meloxicam with PVP
K30, HPC and Povacoat Type F were in the
nanometer range following lyophilization.
Micron-sized aggregates were formed in the
formulations after storage at 60EC for 21 days.
A correlation was observed between the
effectiveness of the crystal growth inhibition of
the polymer and the solubility of meloxicam in
the polymer solution. This study showed that
hydrophilic polymers that inhibit crystal growth
in supersaturated meloxicam solutions tend to
prevent aggregation. In this study, the
stabilizers had been screened using the drug
solubilization capacity of a polymer solution.
Although this method can help narrow down
the candidates for stabilizing a nano-crystal
formulation, there are some limitations to this
approach. Some combinations of polymers and
drug molecules can induce a polymorphic
transformation in the drug (196, 197). In
addition, surfactants cannot be screened using
this method because their ability to prevent
precipitation could result in the overestimation
of the solubility of the drug (4, 198, 199). 

FUTURE TRENDS

The last two decades have witnessed the
evolution of drug nano-crystals from an
exploratory approach to a successful
commercial approach in the field of drug
delivery. Most of the research has focused on
the discovery of novel technologies for
producing nano-crystals. These technologies
have been patented both by drug delivery and
pharmaceutical companies. As a result, a wide
selection of technologies are now available in
the market. The research on nano-crystals is
currently focused on the mechanistic
understanding of drug/stabilizer interactions to
provide a scientific framework for the selection
of stabilizers.  Attempts are being made to
evaluate novel combinations of existing

stabilizers, to achieve synergistic effects.
Another area of research is the selection of
novel excipients for the stabilization of nano-
crystals. These advancements will assist in the
development of novel approaches for nano-
crystal stabilization.

CONCLUSIONS

The use of colloidal systems in the
pharmaceutical industry has gained considerable
attention. These systems have been investigated
primarily to increase the dissolution
rate/bioavailability of poorly water soluble
drugs. However, the physical stability of sub-
micron size particles remains a challenge during
pharmaceutical product development. The
addition of electrostatic or steric stabilizers, or
combinations of both, is a common approach
to increase the stability of colloidal systems.
Understanding particle-particle interactions
within the colloidal system assists in the
selection of stabilizer. Various factors related to
drug, stabilizer and dispersion medium
influence the activity of stabilizer. A scientific
understanding of the mechanisms involved in
the stabilization of nano-crystals will help in the
rational selection of stabilizers. This, together 
with the discovery of new stabilizers, can
broaden the scope of applications of nano-
crystals.
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