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ABSTRACT

Fructose is a significant component in unprocessed food and has become one of the most commonly
sweeteners used in food manufacturing. Fructose is also a useful pharmaceutical excipient and derivatives of
fructose are exploited as renewable chemical building blocks. Fructose based polysaccharides have extensive
pharmaceutical and dietary functions. We discuss here the chemistry and physical behaviours of this
saccharide and how these factors affect the utility and health implications of fructose. 
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INTRODUCTION

Fructose is a naturally occurring mono-
saccharide first isolated from cane sugar in 1847
(1). It is found in many fruits and vegetables,
being the predominant sugar in apples, grapes,
oranges and watermelon, as well as comprising
of up to half of the total sugars in honey (2-5).
Up until 40 years ago the vast majority of
dietary fructose intake was from natural
sources. However, industrial scale production
of fructose from corn starch has resulted in a

dramatic increase in the fructose consumption.
Fructose rich products are now used
extensively by manufacturers to sweeten foods
and beverages instead of sucrose (6) such that
most fructose in the Western diet is now from
added sources (4). Fructose is also used by the
pharmaceutical and chemical industries. The
use of fructose as an excipient is mostly to
make medicines more palatable (7, 8), but it
also serves as a cryprotectant (9, 10), an aid for
the solubility of hydrophobic active ingredients
(11, 12) and a component to alter the
osmolarity of injectable solutions (13). Fructose
is also a useful starting material in the
formation of bio-based alternatives to
petrochemicals (14-16).
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Fructose is a component of other
carbohydrates, such as the disaccharide sucrose,
and is thus a constituent in many
oligosaccharides and polysaccharides that
contain sucrose (4). Additionally, fructose is the
chief component in the fructan polysaccharides,
levan and inulin (3-5). Such fructan
polysaccharides are being increasingly utilised in
the health food and pharmaceutical industries.
Given the importance of fructose as a dietary
component, key metabolite, pharmaceutical
element and chemical building block, it is timely
to review the physical behavior and chemistry
of fructose and how these factors influence its
commercial use.

CHEMISTRY

While the chemistries of monosaccharides are
closely related, the differences in chemical
behavior of these sugars are relevant to the uses
to which they are applied. Specifically, glucose
and fructose are structural isomers, having the
same molecular formula. Together with di-
saccharide sucrose, which contains both
glucose and fructose and is cleaved into the
monosaccharide components in the body (17),
glucose and fructose are the most commonly
used natural sweeteners. Their chemistries vary
in that glucose is an aldose that is found almost
exclusively in two anomeric, pyranose forms
and crystallises in either of these forms. In
contrast, fructose is a ketose that crystallises
exclusively in the β-D-fructopyranose form (18)
and mutarotates into at least five different
tau tomers  in  so lu t ion  ( shown in
Figure 1) (19-22). 

Mutarotation of fructose

At equilibrium, in solution at 20 ºC, β-D-
fructopyranose is the preponderant tautomer of
fructose comprising 68.2% of the total,
followed by β-D-fructofuranose (22.4%), α-D-
fructofuranose (6.2%), α-D-fructopyranose
(2.7%) and the linear keto form of fructose
(0.5%) (19). The mutarotation to achieve
equilibrium is complicated by varying rates of
transformation. The pyranose to pyranose
transformation occurs between two stable chair
conformations and is consequently slow (18,
23-25). In contrast, the transformation between
pyranose and furanose forms is quick (18) and
the furanose to furanose transformation occurs
effectively instantaneously between high energy
envelope and twist forms (26-29). Despite this
complexity, the mutarotation of fructose can
usually be approximated as a simple first-order
process (18-20), with the kinetics represented
by the conversion of β-pyranose to the
furanose forms (30). Using this kinetic
assumption the mutarotation of fructose has
recently been demonstrated to have an
activation energy of 62.6 kJ.mol-1 (19). 

Interconversion of the cyclic forms of fructose
occurs through the linear keto form. The
concentration of this keto form is relatively
high, being 2-3 orders of magnitude more
concentrated than the linear aldehydo form of
glucose (31, 32). This is significant because
these carbonyl tautomers are much more
reactive than the ring forms of sugars (33), and
can undergo transformations under relatively
mild conditions in food production and within
the body (34).

Non-enzymatic browning

As a reducing sugar, fructose can undergo non-
enzymatic browning reactions such as the
Maillard reaction and caramelisation. Due to
the increased concentration of the carbonyl-
containing form in solution, non-enzymatic
browning reactions occur quicker with fructose
than with glucose and require less energy (34-
37). The products of non-enzymatic browningFigure 1 Tautomeric Forms of D-Fructose in Solution

(19)
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reactions that occur during food processing
alter the appearance, aroma, flavour and texture
of the food, as well as, nutritional value and
shelf life (34, 37-42). While the sensorial aspects
of food can often be improved by the influence
of non-enzymatic browning, this is not always
the case (42), and the nutrition and shelf-life of
foods affected by non-enzymatic browning is
usually reduced (34, 35, 37-41). Non-enzymatic
browning, specifically the Maillard reaction, can
also occur within the body, leading to toxic by-
products described as advanced glycation end-
products (43, 44). As such the increased
reactivity of fructose to these types of reactions
is pertinent to its commercial use.

The Maillard reaction

The Maillard reaction is actually a series of
chemical modifications that occur between
reducing sugars and compounds containing free
amino groups, such as proteins and amino acids
commonly found in food, within the body and
in biopharmaceuticals (34, 44, 45). In the case
of fructose, the keto carbonyl group and the
amine condense to a Schiff base, which is
subsequently isomerised to fructosylamine.
Then a new carbonyl bond is generated in the
sugar, resulting in the formation of species
known as Heyns products in a process related
to the Amadori rearrangement of glucose.
These products then fragment into reactive
intermediates that take part in complex
polymerisation reactions, crosslinking proteins
and resulting in brown, fluorescent, high
molecular weight melanoidins as shown in
Figure 2 (34, 45-47). 

Caramelisation

The term caramelisation refers to a group of
reactions, related to the Maillard reaction, that
occur when carbohydrates are heated in the
absence of amino groups (48). In caramelisation
the carbohydrate undergoes 1,2-enolisation and
the resulting enol is susceptible to β-elimination
of water, forming anhydro- rings or other
reactive intermediates (Figure 3). Typical
products of this include furans, which in the

case of fructose is predominantly 5-hydro-
xymethylfurfural (HMF) (34, 40, 48-51). Such
intermediate products provide some of the
caramel aroma and flavor (49, 51) and are the
precursors to polymerisations that lead to the
brown color of caramel (48, 50). Many of the
reactions and products of caramelisation are the 
same  as,  or   are  similar to,   those   of  the 
Maillard reaction (34, 50). However,
caramelisation requires more energy than the
Maillard reaction (34, 49) and does not usually
occur below the melting point of fructose.

Figure 2 The Maillard Reaction of Fructose
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Thus, Maillard products will typically dominate
whenever amino groups are abundant. 

Nonetheless, the presence of the accelerators in
the form of carboxylic acids, and their salts, as
well as, phosphates and metal ions, can reduce
the temperature required for the caramelisation
reaction significantly (34).

HMF formation

5-Hydroxymethylfurfural (HMF) is not only a
byproduct of non-enzymatic browning reac-
tions, but is also an important product in its
own right, as discussed in more detail below.
HMF can be produced from a number of
starting materials, including various hexoses
and polysaccharides (52). Fructose is generally

an efficient and selective starting material for
the production of HMF, enabling more rapid
conversion with higher yields than for glucose
(49, 53). Nevertheless glucose is often used in
HMF production in industry due to its lower
cost (52). HMF is produced by the dehydration
of fructose, induced by an acid or metal catalyst

Figure 4 The most likely pathway for the formation of
HMF from fructose (52)

Figure 3 Caramelisation of Fructose
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(14, 16, 54). The dehydration involves the loss
of three water molecules through a complex, as
yet not fully defined reaction mechanism (14,
52, 55) to create the final furfural ring system
(Figure 4).

SOURCES OF FRUCTOSE

Though the fructose monosaccharide is found
in many natural sources, the relatively low
concentrations of fructose dictate that
commercial quantities of fructose are usually
manufactured from sucrose or polysaccharides.
These methods of production are, however,
complex, often using enzymatic processes for
chemical conversion. Additionally, there are
difficulties in isolating fructose from mixtures
of sugars and in crystallising the highly soluble
sugar from aqueous solutions (30, 41, 56). This
means that fructose, in its pure crystalline form,
is still a relatively high cost sugar (5), part of the
reason why pure fructose is still used sparingly
in the food industry (41). Much more prevalent
is the use of mixtures of fructose and other
sugars, mostly glucose and short chain
oligosaccharides, in high fructose syrups (HFS)
(3, 41).

Fructose from starch

HFS are primarily made from the starch
obtained from corn, to make high fructose corn
syrup (HFCS). This source is used because it is
a readily available, cost-effective source of
starch in high concentration (56, 57), though
other sources such as rice, wheat, tapioca and
potato are used where these crops are
predominant (41). The starch is separated from
other components of source material and
enzymatically hydrolysed to glucose, which in
turn is enzymatically isomerised to form
fructose. The equilibrium constraints of this
isomerisation process mean the concentration
of fructose is limited in the initial product (58),
commercially generating syrups containing 42%
fructose by mass. This syrup, HFCS-42, is
utilised mostly in baked goods. The
concentration of fructose can be increased by
using chromatography (59) to produce a syrup

containing 90% fructose, HFCS-90, which is
combined with HFCS-42 to form a 55% syrup,
HFCS-55, which is used extensively for
sweetened drinks such as carbonated beverages
(56, 57). 

Fructose from sucrose

HFS can also be produced from sucrose
isolated from cane sugar or sugar beets,
involving a process of heating sucrose solutions
to induce hydrolysis, most often in the presence
of an acid or enzymatic catalyst. This produces
a syrup containing equal quantities of fructose
and glucose, known as invert sugar syrup (57,
60). As with HFS produced from starch,
increasing the concentration of fructose in the
mixture relies on expensive chromatography
techniques (59), or potentially toxic additives (5,
61).

Fructose from fructans

Another method to produce fructose is by the
hydrolysis of fructan polysaccharides. Fructan
polymers, such as inulin and levan, occur as
storage carbohydrates in plants and contain
predominantly D-fructose residues linked
together, with a glucose end cap at the reducing
end of the fructosyl chain. Plant-derived inulin
is constructed almost exclusively of β(2→1)
glycosidic linkages between fructose units (62-
65). In contrast, levan is made up of β(2→6)
glycosidic linkages and is more significantly
branched than inulin, with the branches being
created from β(2→1) linkages (4, 66, 67). These
biopolymers are used in commercial fructose
production (4, 68). Inulin is a particularly
valuable source of the simple sugar as plants
such as chicory and Jerusalem artichoke can
contain inulin carbohydrate in concentrations
comparable with other sources of carbohydrate
used in fructose production (61).

Fructose can be produced from a simple acid
hydrolysis of inulin (69), but concomitant
production of undesirable colouring and
flavouring components requires costly post-
production purification (59). Therefore,
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enzymatic hydrolysis is generally used for
fructose production from inulin (57, 68). A
significant advantage to using inulin as the
source material of fructose production is that
the concentration of fructose generated can be
as high as 95% (70).

APPLICATIONS OF FRUCTOSE

Uses of fructose in food

The predominant commercial application of
fructose is in the food industry where it is used
extensively in beverages, dairy products and
baked goods (40, 41). Sugars in general are
important elements of food, providing much
more than simply a sweet taste. They also have
an impact on the overall flavor of food and are
active food components, influencing
parameters such as the look, feel and shelf-life 
of food (40). As an example, sugars affect
mouthfeel by providing body and texture
themselves while also aiding the formation and
retention of food texture influencing aerosols
and emulsions. The phase of the sugar is also
important to food texture, with dissolved or
amorphous sugar contributing to making a
product soft and smooth, while crystallised
sugar and sugar products of non-enzymatic
browning reactions can provide hard or crispy
textures. Non-enzymatic browning reactions
also influence the look of food, often providing
an appetising appearance (40, 41).

Fructose is a valuable sugar in the food industry
because, amongst other, it is the sweetest
natural sugar (71) and it is less glucogenic than
glucose or sucrose (3-5, 57, 61, 71-73). These
two factors mean that for a given quantity, it
provides less energy than the other sugars, and
compounding this benefit, less can used to
achieve the same sweetness. Additionally,
fructose is synergistic in terms of sweetness
when used in combination with other natural
and synthetic sweeteners (40, 74).

The way fructose interacts with water is
particularly useful in food manufacturing. First,
fructose is the most soluble of the
monosaccharide sugars which means that it is
less prone to crystallization, thus able to
maintain the desired texture of high sugar foods
and drinks (3, 5, 57). Second, the lower the
molecular weight of a sugar, the lesser the
amount required to lower the freezing point of
water, thus reducing the likelihood of
crystallization due to temperature variation.
This leads to greater smoothness of ice creams
when monosaccharides like fructose are used in
manufacture (40). Finally, fructose is also
particularly effective at lowering the water
activity of foods, retaining moisture in the food
and also inhibiting microbial growth (40, 41, 57,
75).

As mentioned previously, pure fructose is used
sparingly in the food industry. Where crystalline
fructose is used, its low volume to high
sweetness ratio is often exploited, such as in dry
mix beverages. Another example of a useful
application of crystalline fructose is in the
production of low calorie foods where
particular advantage can be taken of fructose’s
sweetness synergy with other sweeteners and its
relatively low energy relative to its sweetness
(41).

In general, manufacturers prefer sugars in
syrups for ease of use (57). HFSs are now used
almost exclusively to sweeten carbonated
beverages, and extensively in other sweetened
drinks and in baked products, being more
economical and easier to handle than sucrose or
sucrose syrups (41). Part of the reason for this
is that HFS takes up less space for equivalent
quantity of sweetening solids (due to greater
solubility and high sweetness of fructose). HFS
is also less susceptible to microbial spoilage
than sucrose syrups (41). For these reasons,
fructose is also used widely in dairy products
such as yoghurt, flavoured milks and ice cream.
Fructose also aids color stabilisation of jams
and jellies (41).

This Journal is © IPEC-Americas Inc June 2012 J. Excipients and Food Chem. 3 (2) 2012 -  72 



Review Article

Use of fructose as an excipient

Fructose is used as an excipient in
pharmaceutical tablets, syrups and solutions
(41, 57, 76). It is unsurprising, given the high
sweetness to volume ratio of fructose and its
safe history of use in food, that it is often used
to make medicines more palatable (7, 8). A
mixture of fructose with a small amount of
starch (Advantose® FS 95) can also be made
compressible, making a palatable excipient
suitable for tablet manufacture (8). The way
fructose interacts with water is important in its
use as an excipient. The high solubility of
fructose enables it to aid the solubility of
therapeutic agents (11, 12), and in adjusting
osmolarity of solutions to make them
compatible with parenteral administration (13).
The ability to inhibit water crystallisation allows
it to serve as a cryoprotectant (9, 10).
Moreover, the reluctance of fructose to
crystallise itself allows it to sympathetically
replace the water hydrogen bonding of labile
active ingredients during lyophilisation,
stabilising their structure (9, 10, 77). The ability
of fructose to protect against the fundamentally
different stresses of freezing and subsequent
dehydration is an invaluable property for
lyoprotectants (78). Of course, fructose and
fructose degradation products, such as HMF,
have been identified as undesirable side
products of using sugar based excipients that
need to be heated (79). Heating results in high
concentrations of aldehyde leading to a faster
formation of coloured, ill defined Maillard
products (79). This means that the presence of
fructose is not desirable in drug formulations
that require sterilization.

Use of fructose in the production of HMF

Another growing use for fructose is in the
synthesis of 5-hydroxymethylfurfural (HMF)
and other chemicals derived from HMF. These
products are a significant bio-based alternative
to petrochemicals, being important precursors
in chemical and polymer manufacture and the
production of biofuels (14-16, 80). It is the
functional groups of HMF, comprising the

furan ring, a primary aromatic alcohol and an
aldehyde, that provide the varied synthetic
opportunities that make it a valuable, renewable
chemical building block (14-16). A weakness to
this point is that high production costs limit its
use on an industrial scale (15, 16), but as the
cost of petroleum-based products increases,
HMF is likely to become an important
renewable alternative.

HEALTH IMPLICATIONS OF CONSUMING
FRUCTOSE 

Fructose is ‘generally recognised as safe’
(GRAS) by the United States Food and Drug
Administration (FDA) (81) and is less likely to
induce dental cavities than sucrose (82). Once
ingested, the specifics of the health implications
of fructose are related to the distinct differences
between the metabolism of glucose and
fructose. For example, fructose present in the
gut is absorbed more slowly than glucose, with
fructose specific transporters moving it through
the enterocytes to the portal bloodstream and
thereafter to the liver (83-85). Due to the slow
absorption of fructose, consumption of large
amounts can exceed the capacity of the
intestinal absorption, though co-consumption
with glucose can enhance fructose absorption
(86). Nevertheless, when consumed in excess of
dietary glucose, fructose may be malabsorbed
(86-88), leading to abdominal discomfort and
diarrhoea (89).

While the liver only accounts for approximately
20-30% of glucose metabolism, it is responsible
for 50-70% of fructose metabolism (90). This
metabolism of fructose leads to different
products than glucose, fructose being
metabolised more like fat than other
carbohydrates (85), being converted to
relatively high amounts of lactate (91, 92).
Lactate is a precursor for lipid synthesis, so that
fructose is more lipogenic than other
carbohydrates and can encourage unfavourable
lipid profiles (3, 57, 83, 85, 93-95). Lactate
production also enhances the formation of uric
acid (96), which may be detrimental for
individuals prone to gout (6).
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Fructose has a lower glycaemic index compared
with other natural sweeteners (72, 75, 83, 94),
and therefore from the late 17th century it has
been considered a valuable replacement sugar
for diabetics (3, 97). In particular, because it
does not induce insulin secretion and does not
require insulin to be transported and
metabolised, fructose has been recommended
for individuals with insulin resistance and type
2 diabetes (6). However, scientific data is still
inconclusive as to the benefits of fructose as a
sucrose substitute for the long term
management of diabetes (1, 6, 83). For patients
with hypertriglyceridemia it can also lead to
further increased insulin levels (98). 

As fructose does not stimulate insulin secretion
from pancreatic β-cells, less insulin is released
with fructose than if a glucose-containing food
was consumed (3, 99). The lower insulin levels,
the consequent lower leptin concentrations and
attenuation of the suppression of ghrelin may
increase the likelihood of obesity in individuals
with diets high in dietary fructose (94, 100-103).
It has also been suggested that consumption of
fructose contributes to insulin resistance
syndrome (85, 93, 104). Nonetheless, the
evidence of a link between consumption of
HFS and obesity is weak (56, 105). Part of the
reason for this is that many of the health issues
associated with fructose consumption have
been investigated using pure fructose.
However, the bulk of fructose added to food is
as HFS that, on average, contains almost 50%
glucose. Thus, in practice the metabolism and
energy consumption of fructose in HFS is
similar to that found for the consumption of
sucrose (56, 83, 105, 106), and so health studies
conducted on pure fructose may be irrelevant
to the effects of HFS (105).

The relatively high concentration of the reactive
keto form of fructose at equilibrium, means that
it can more readily be involved in reactions that
may lead to the formation of toxic by-products
(36, 43). Given that fructose is often used in
food products subject to conditions in which
non-enzymatic browning can occur, such as
cooking, the by-products of these reactions

have to be considered as well. Generally the
latter products of the Maillard reaction are not
energetically available to animals, so there is a
loss of the nutritional value of the sugars and
amino acids involved in these reactions (40, 42,
44, 107). Also, the Maillard reaction products
affect the absorption of other intact nutrients,
mostly from derivatised proteins in which the
digestibility is influenced (38, 107). Maillard
products that can influence other metabolic
functions, such as the absorption of minerals,
create further nutritional impact (38, 107).
Other health effects are generated by Maillard
products, which can have limited mutagenic
and anti-mutagenic properties (44). These
effects can be difficult to isolate as the same
conditions lead to both types of products (108).
HMF is one of the intermediate species created
during the Maillard and caramelisation reactions
and consequently can be found in many foods
(14). Investigations have been conducted into
the effects of HMF on humans, generally
finding little evidence of adverse effect in
concentrations correlated to the amounts found
in normal human diets (14). There has been
some weak evidence of a mutagenic effect, but
the compounds responsible for the effect were
not isolated, so other compounds related to
HMF may be responsible (109, 110). Moreover,
HMF is found in Asian natural remedies and
may be beneficial for the liver and for therapy
of sickle cell disease (111-113). Further benefit
of HMF specifically, and caramelisation
products in general, is that they have an
antioxidant effect (51). Fructose caramelisation
products have stronger antioxidant activity
compared to caramelisation products of
glucose, ribose or xylose (51, 114). 

Advanced glycation end-products of the
Maillard reactions occurring within the body
can accelerate the aging process through
protein cross-linking reactions (43, 44). High
dietary intake of fructose may lead to increased
fructose concentration in tissues, with fructose
undergoing faster Maillard reactions than other
simple carbohydrates. This could increase the
detrimental effects on body proteins (36) and
lead to increased triggering of the receptor for

This Journal is © IPEC-Americas Inc June 2012 J. Excipients and Food Chem. 3 (2) 2012 -  74 



Review Article

advanced glycation end products, through
which cells recognise and respond to these
Maillard products, often in a detrimental
fashion (115, 116). 

Fructose in fructans

Fructans, as well as being a source of the
monosaccharide fructose, can also be
considered a way of using fructose in
oligomeric or polymeric form. These species
are used in diverse applications including the
chemical, pharmaceutical and food industries
(62, 117). In the chemical industry fructans are
used as precursors in the synthesis of a wide
range of compounds (117, 118). In the
pharmaceutical industry their applications
includes use as stabilisers, excipients, clinical
tools and therapeutics (62). In the food industry
inulin and fructose oligosaccharides are one of
the largest classes of bifidogenic foods for
health (119). This is because humans cannot
digest the glycosidic linkages of fructans,
making them low energy foods. These linkages,
however, can be digested by bifidobacteria in
the gut, but not generally by pathogenic
bacteria (120), thereby encouraging the growth
of health promoting intestinal microflora (3, 57,
62, 119, 121-123). 

Fructooligosaccharides

Fructooligosaccharides are essentially short
chain inulin species that are enzymatically
hydrolysed from inulin (119) or enzymatically
synthesised from sucrose, and are water soluble,
non-caloric, non-cariogenic and indigestible
sweeteners (119, 123, 124). An important
feature of these sweeteners is that
fructooligosaccharides produced from sucrose
have no reducing ends and cannot reorganise
into carbonyl containing forms. Consequently,
such sweeteners are stabilised to non-enzymatic
browning reactions (57). 

Inulin

Long chain inulin is essentially tasteless, but is
nonetheless of value in the food industry

because of its probiotic promoting features and
its ability to gel aqueous solutions. The volume
of the gel makes it an ideal bulking agent,
replacing fat and flour.  Additionally the texture
of the gel mimics the mouthfeel of fat making it
an important component in low calorie foods
(118, 121, 125). After consumption, by-
products of the metabolite of inulin have been
shown to be protective against colon cancer
(126) and suppress appetite (127) thereby
creating health benefits. More specific health
benefits are also generated through the
pharmaceutical use of inulin. For example,
solubilised inulin can be used for testing kidney
function (128), gelled and solid amorphous
inulins can be used as drug delivery systems,
capable of stabilising labile therapeutics (77,
129) and providing controlled and targeted
drug release (130-132). Additionally, crystalline
forms of inulin have an immunomodulatory
effect relevant to its use as a vaccine adjuvant.
Advax™ adjuvant, currently in advanced stages
of clinical development, is produced from
plant-derived inulin by crystallising it into  a
lower solubility delta polymorphic type (133,
134). Intriguingly, while soluble inulin has no
measurable effects on immune cells, once
precipitated into particles of semi-crystalline
delta inulin, it becomes highly immunologically
active, binding to mononuclear cells, up-
regulating co-stimulatory molecules and
enhancing adaptive immune responses. This is 
consistent with the observation that several
plant-derived carbohydrates have vaccine
adjuvant activity (135). Inulin adjuvants have
been shown to successfully increase the
effectiveness of a broad range of inactivated or
recombinant protein antigens, including
vaccines against pandemic and seasonal
influenza, Japanese encephalitis, the West Nile
virus, hepatitis B, and malaria (136-140). The
demonstrated safety of inulin in humans
provides a major advantage for its use in the
design of vaccine adjuvants, particularly those
that are likely to be used in childhood vaccines
where safety considerations are paramount. 
Another important aspect of inulin adjuvants is
their excellent tolerability as assessed in a recent
camel immunization study which showed that

This Journal is © IPEC-Americas Inc June 2012 J. Excipients and Food Chem. 3 (2) 2012 -  75 



Review Article

Advax™ delta inulin adjuvant was better
tolerated than a range of commercially available
veterinary adjuvants (141).

Interestingly, another crystalline form of inulin,
gamma inulin, has been shown to have direct
anti-cancer effects, thought to be mediated via
its ability to modululate immune function via
activation of the alternative complement
pathway (142, 143). These anti-cancer effects of
gamma inulin synergise with other cancer
therapies, such as phototherapy, raising the
possibility of use as an adjunct to standard
cancer therapy (144).

CONCLUSION

Fructose is a valuable sugar and its use is
expected to continue to grow as its commercial
production expands and it becomes more cost
effective to manufacture. One way of lowering
the cost of manufacture is to change the source
of the raw material to fructose-containing
polysaccharides, such as inulin. This would
reduce the number of steps in the production
of fructose. However, more research in the use
of inulin in fructose production and in
maximizing the generation of inulin from cost
effective crops is required. Less expensive
sources of fructose will support its continued
use as an excipient and could also make HMF a
real, renewable alternative to petrochemicals in
the short to medium term. 

More cost effective production of fructose will
lead to its increased use in food manufacturing.
If this is to occur, more research must be
undertaken into the health implications of
dietary and pharmaceutical fructose. In
particular, the ambiguity in perceived health
concerns attributed specifically to fructose must
be resolved, not only for pure fructose, but also
for the high fructose/glucose mixtures
commonly used in food. By contrast the dietary
use of fructan polysaccharides is likely to
continue to expand given their proven health
promoting benefits. Finally, exciting new
applications of fructan polysaccharides as drug
stabilisers, controlled release drug delivery

systems and vaccine adjuvants herald expansion
of pharmaceutical applications of this highly
versatile plant-derived sugar.
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