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The accurate information derived from high accuracy of remote sensing imagery analyses coupled with field 
observation data are required to develop a sound forest management. The study is mainly emphasized on assessment 
of the capabilities of remote sensing imageries to identify ecosystem types within the transitional  ecosystem. Since, 
the predominant transition ecosystems found within the study area were secondary forest, rubber jungle, rubber, oil 
palm plantation, and also other land cover such as mixed plantation and shrubs,  therefore,  the models developed 
were focused for those ecosystem types.  Prior to any further analysis, this study was initiated  to develop the 
biomass estimation model using 50 m resolution of ALOS PALSAR image in transition ecosystem, Jambi Province. 
Biomass models were developed by analyzing the relationship between  backscatter magnitude and field biomass. 
Backscatter magnitude from 1 polarization images, namely HH,  HV, and one additional band of  ratio of HH/HV  
were analyzed simultaneously with  field biomass. The best models established are AGB = 42,069 exp (0.510 HV) 
and AGB = 1,610 exp (-0.02 HV²) with R² of 52.3% and 50,8%, respectively. The models are then used to map out the 
biomass distribution within the transition ecosystem and to identify the factors affecting the magnitude of biomass 
content for all transition ecosystem types.
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Introduction

Deforestation in tropical forest has been identified by 
International Panel on Climate Change as the main source of 
green house gasses emission (IPCC 2006). To avoid or to 
reduce deforestation, stakeholders must recognize the 
driving factors of deforestation (Geist & Lambin 2001). 
Deforestation could be caused by natural disturbances and 
ecosystem processes as well as human civilization, however,  
has greater impact than that of natural disturbances and 
ecosystem processes (Zeledon & Kelly 2009). One example 
of natural disturbance causing deforestation was the peat 
swamp forest fire in Jambi Province in 1997 due to el Nino 
effect. The human factors  or anthropogenic factors affecting 
deforestation can be identified as a result of human activities 
related to landuse such as, agricultural and plantation, 
mining, and others (Chambers et al. 2007). 

Deforestastion in Jambi Province in 2012 was 76,522.7 
-1ha year  (MoF 2012). Deforestation occured in the last two 

decades mainly triggered by the following factors: forest 
utilization (IUPHHK-HA), mining, transmigration, 
plantation and forest encroachment. Furthermore, the forest  
land tend to be converted into oil palm plantation (Abdullah 
2010).

To identify deforestation and forest degradation, the 

approach of carbon content measurement and its temporal 
changes over certain areas was applied. Forest carbon is 
quantified by its forest biomass. Biomass is defined as the 
total amount of tree organic matter above ground, including 
leaves, twigs, branches, main stem, and bark, and are 
expressed in dry-oven weight of tones per unit area (Brown 
et al.1995). Biomass is an important measure for assessing 
changes in forest structure. According to Jaya et al. (2013), 
forest biomass distribution depends on its forest ecosystem 
type. Biomass estimation is a big challenge in tropical 
forestry research due to the biodiversity and the variation of 
forest types (Elias & Wistara 2009).

Biomass information can be obtained by terrestrial 
through destructive and non destructive field survey, and 
also by aerial using remote sensing technology both active 
and passive. Terrestrial biomass calculation can provide 
accurate data but less efficient because of time consuming, 
high cost, and very difficult in remote or less accessible 
location (Clark et al. 2001; Wang et al. 2003; Chen et al. 
2004; Lu 2006). In contrast, remote sensing is considered 
reliable in providing information and relatively low cost. 
Remote sensing techniques coupled with inventory data are 
potential to solve the obstacles of direct measurement of 
biomass (Houghton et al. 2001; Lu 2005; Lu 2006).
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Passive remote sensing such as Landsat TM, has been 
applied widely to estimate biomass. Steininger (2000) used 
Landsat TM coupled with field data to estimate biomass of 
regenerating secondary forest in Bolivia and Brazil. Foody et 
al. (2003) applied Landsat TM to estimate biomass of  dense 
tropical forest in Brazil, and of logged over forests in 
Malaysia and Thailand, meanwhile, Lu et al. (2004) used 
Landsat TM to estimate biomass of secondary forest in 
Brazilian Amazon. The approach  in estimating biomass 
from Landsat TM was mainly based on its spectral 
characteristics such as vegetation indices and image 
transform. Radar remote sensing has advantages to estimate 
biomass due to cloud existence problem. 

ALOS PALSAR one of radar imagery has been examined 
to assess above ground biomass (AGB) in Indonesia and 
other tropical countries (JICA-FAHUTAN IPB 2011). 
Application of ALOS PALSAR  in estimating above ground 
biomass in Indonesia are quite numerous. Jaya et al. (2013) 
modelled the AGB of dryland tropical forest in Central 
Kalimantan. Basuki (2012) has found the potential use of 
fusion between ALOS PALSAR and Landsat TM imageries 
in order to improve the accuracy of AGB model developed  in 
Labanan Dipterocarp forest in East Kalimantan.  Wijaya 
(2010) also examined the use of ALOS PALSAR to develop  
the biomass model of tropical forest in East Kalimantan. 

In this study, the method to develop accurate and simple 
biomass estimation model was performed.  The models are 
particularly dedicated for the transition ecosystem types of 
lowland forest in Muaro Jambi and Batanghari Regency in 
Jambi Province using ALOS PALSAR. Field data to develop 
model were collected from transition ecosystem types, 
namely, secondary forest, jungle rubber, rubber, and oil palm 
plantation. Biomass distribution derived from estimation 
model then could be used to identify transition ecosystem in 
study area.

The main objective of this paper is to develop  estimation 
model of biomass using ALOS PALSAR 50 m resolution and 
to assess the capabilities of biomass-based identification of 
transition ecosystems.The output of this research would then 

be used to support identification of transition ecosystem 
types in lowland forest in Jambi Province.

Methods

There were 4 types of transition ecosystems in this study 
namely secondary forest, rubber agroforest (jungle rubber), 
rubber plantation, and oil palm plantation. Secondary forest 
located in PT. REKI (Harapan rainforest), is a specific 
purpose concession for forest restoration of which 
previously managed by PT. Asialog.  Jungle rubber as well 
as rubber and oil palm plantation are predominantly located 
surrounding Harapan rainforest towards Jambi City, Jambi 
Province.  The study sites belong into 2 regencies, 
Batanghari and Muaro Jambi Regencies.  Study area and 
distribution of sample plots over transition ecosystems is 
presented in Figure 1.  Field data collection was conducted 
June 2012-March 2013 and data processing took place in 
Laboratory of GIS and Remote Sensing, Faculty of Forestry 
Bogor Agricultural University.

Material used in this study is primary data taken directly 
from field and ALOS PALSAR imagery with acquisition 
year 2009. There were 2 shapes of the plots used in this study, 
the first was rectangular plot for secondary forest and jungle 
rubber with the size of 20 × 125 m, and the second was 
circular plot for rubber and oil palm plantation with certain 
radius depend on the age of planting.  The radius of plot was 
17.85 m for old crop, 11.8 m for middle age crop, and 7.9 m 
for young crop (Mukalil 2012).  Data collected from the field 
were the plot coordinates using global positioning system 
(GPS), diameter at the breast height (dbh), total height, 
canopy diameter, crown thickness, slope, aspect, and leaf 
area index (LAI) using fish-eye camera.

Total field plots analyzed in this study were 80 plots, 
where  20 plots belongs to  jungle rubber, 30 plots belongs to  
rubber plantation, and the rest 30 plots belongs to  oil palm 
plantation. For secondary forest, the study used the forest 
inventory data that had been collected by PT. REKI. The 
steps in in this research involving field plot measurement 
and processing, image processing and biomass estimation 
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Figure 1 Study area and distribution of sample plots over transition ecosystem. 



model developed (Figure 2). 

Biomass estimation of jungle rubber and secondary 
forest  Prior to biomass estimation, the correlation analysis 
was conducted to observe the relationship among variables 
from field measurement data. Stand biomass was estimated 
using allometric equation based on wood density of the tree 
measure in the plot. This study used the Equation [1] of 
Ketterings et al.(2001) as follows:

                   [1]

-1note: Y = above ground biomass (kg tree )
-3    ρ = wood density (g cm )

   D = diameter at the breast height (cm)

Biomass estimation for rubber and oil palm plantation 
Field data estimation was conducted to obtain the amount of 
above ground biomass in selected plots and Yulianti (2009). 
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Alometric equation for rubber was using Yulyana 2005, as 
shown in Equation [2]:

2 0.2444                         W = 0.0124(D ) [2]
note:

-1W = above ground biomass (t ha )
D = diameter at the breast height (m)

For oil palm, the biomass was estimated using Yuliani (2009) 
as shown in Equation [3]:

-5 1.51 1.33W = 2.14 exp  (D H )                   [3] 
note :

-1W = above ground biomass (t ha )
D = diameter at the breast height (m)
H = total height (m)

Image processing  Prior to further analysis, there were 2 
steps of image pre-processing applied namely spectral and 
spatial enhancement. In spectral enhancement, the addition 
of one band as the result of ratio HH to HV was applied. 
Spatial enhancement was performed using speckle 
suppression technique with Sigma Lee filter. Kernel sizes 
used were  3×3, 5×5, and 7×7. Furthermore, the conversion 
of digital number (DN) of ALOS PALSAR imagery was done 
using equation [4] found by Shimada et al. (2009).

2NRCS = 10 log 10 (DN ) –CF    [4]
note:

NCRS = normalized radar cross section (in dB), 
DN = digital number 
CF = calibration factor = 83.

The display of image composite was using RGB display of 
HH, HV, HH/HV bands to give better visualization. HH is the 
polarization of the horizontal backscattered received, 
meanwhile HV is the polarization of vertical backscattered 
received by radar sensor. 

Visual interpretation of transition ecosystem types  
ALOS PALSAR and LANDSAT TM imagery were visually 
interpreted to identify the types of transition ecosystem over 
the study area. The result of visual interpretation was then 
used to estimate biomass by overlaying the map of biomass 
with land cover map developed. The supporting imageries 
used in this process were LANDSAT TM having the same 
year of acquisition with ALOS PALSAR image. The 
classification was aided by the land cover in year of 2009 
map developed by Ministry of Forestry Republic of 
Indonesia, coupled with land cover derived in this study 
using LANDSAT TM interpretation.

Correlation of stand variables of transition ecosystem 
Correlations among stand variables were examined  using 
Pearson correlation statistics test. The correlation of 
secondary forest, jungle rubber, rubber, and oil palm are 
summarized in Table 1, 2, 3, and 4 respectively. Stand 
variables of secondary forest which have strong relationship 
were diameter, basal area, biomass and tree volume. 
Diameter and biomass has positive correlation value of 0.88 
which indicates the strong correlation between them. This 
means that the stand can be characterized either by their own 

Results and Discussion

diameter of biomass distribution. Instead of diameter, the 
biomass calculation employed was wood density as derived 
from allometric equation found by Ketterings et al. (2001). 

Correlations for stand variables (Table 2) in jungle 
rubber also show strong correlation between diameter, 
numbers of tree per hectare, basal area, biomass and tree 
volume. Diameter and biomass show a good correlation with 
the value of 0.61. The correlation value between diameter 
and biomass in jungle rubber is lower than that of in the 
secondary forest. This might be due to the stand structure of 
jungle rubber that is relatively homogenous both in tree size 
and tree species.  In jungle rubber, the stand is dominated by  
rubber tree (Gouyon et al. 1993; Dove 1994). and the 
biomass calculation was derived from Ketterings allometric 
equation that also employed wood density.

Correlations among variables in rubber plantation (Table 
3) were relatively better than both secondary forest and 
rubber jungle, where good correlation among  diameter, total 
height, crown diameter, crown thickness, and basal area 
were found. There was strong correlation between diameter 
and biomass with the correlation value of 0.93 and followed 
by volume and basal area.  This finding is also in line with 
the study of Mukalil (2012) who found the strong correlation 
of plant variables in jungle rubber between diameter and 
biomass as 0.95, and between volume and basal area. In case 
of oil palm plantation (Table 4), the correlation among plant 
variables do not show strong correlation. The strong 
correlations were shown between diameter and biomass, and 
also between diameter and basal area. 

Strong correlation among variables indicates the linear 
relationship among variables, which means the variance of 
one variable is able to explain other variable variances 
(Mattjik & Sumertajaya 2006). Therefore, some stand or 
plant variables could explain its effect on backscatter of 
ALOS PALSAR in transition ecosystem under study. 

Relationship between biomass and backscatter  Based on 
the backscatter magnitude of polarization HH and HV, and 
HH/HV ratio that have been related to field biomass in four 
ecosystem types, logarithmic-shaped scatter diagrams were 
obtained. From HH and HV polarization and biomass, the 

2value of R  was 0.235 and 0.523 respectively, and for HH/HV 
ratio was 0.122. Low correlation between backscatter and 
biomass mainly due to variation of vegetation properties in 
various transition ecosystem observed and the saturation 
(asymptote) problem of backscatter. 

From observed polarization, HV shows a good 
relationship with field biomass indicated by its higher 
correlation among others. It also found that there was 
biomass saturation even though the backscatter magnitude 
increased. In this study, it showed that the saturation 

-1occurred at 100 t ha . Saturation is a common problem found 
in image processing, in accordance to the study of Luckman 
et al. 1997; Austin et al. 2003; Morrel et al. 2011; and Jaya et 
al. 2013.The study in eucalyptus plantation was conducted 
by Austin et al. (2003) using radar image and the saturation 

-1was about 600 t ha . Jaya et al. 2013 reported the saturation 
over dryland forest using ALOS PALSAR in Central 

-1Kalimantan was 300 t ha , meanwhile Morrel et al. 2011 
found the saturation using ALOS PALSAR for oil palm and 

-1forest in Sabah Malaysia was 80 ton ha . Saturation using 
-1 SAR image of 60 t ha in Amazon tropical forest was 

reported by Luckman et al. (1997). 
HV polarization was sensitive to biomass density, 

especially to assess above ground biomass in lowland and 
flat terrains (Wijaya 2009).  HV polarization is also sensitive 
to be used to estimate the biomass over less complex 
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vegetation landscape as concluded by Luckman et al. 1997; 
Morrel et al. 2011, and Jaya et al. 2013.  In this study, the 
secondary forests are logged over forests. Furthermore, 
models examined in this study confirmed that HV 
polarization is sensitive to biomass content.  The selection of 
polarization being used in developing biomass model from 
radar backscatter is a critical factor (Jaya et al. 2013). In this 
study, biomass estimation model was developed based on its 
own model derived from backscatter and field biomass due to 

that the nature of model is site specific and the model 
obtained then will be used as one of discriminant to identify 
transition ecosystem under study.

Biomass regression model and validation  Prior to 
develop models from all transition ecosystem types, each 
regression equation was tested using the variance of 
regression model with covariance analysis. The grouping of 
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Table 4  Correlation among plant variables of oil palm plantation   
Plant variables

 
Diameter

 
TT

 
CT

 
CD
 

Frond 
 

Biomass
 

BA

Diameter 1.00 0.35 0.33 0.37 0.33  0.62  0.96

TT  1.00 0.57 0.59 0.11  0.91  0.32

CT
 

1.00
 

0.48
 

0.38
 

0.52
 

0.31

CD
 

1.00 0.05
 

0.54
 

0.26

Frond/Pelepah

  

1.00 0.19

 

0.29

Biomass

     

1.00

 

0.64

BA

     

1.00

TT= total height, CT= crown thickness, CD= crown diameter, BA = basal area. 

 
Plant variables Diameter TT CT CD Biomass BA Volume  
Diameter

 

1.00
 

0.69
 

0.65
 

0.71
 

0.93
 

0.72
 

0.73
 

TT
 

1.00
 

0.77
 

0.66
 

0.53
 

0.97
 

0.90
 

CT

  
1.00

 
0.71

 
0.50

 
0.71

 
0.65

 CD

   

1.00

 

0.59

 

0.62

 

0.58

 Biomass

 

    

1.00

 

0.62

 

0.68

 BA

     

1.00

 

0.98

 
Volume

 

      

1.00

 
TT= total height, CT= crown thickness, CD= crown diameter, BA = basal area. 

 

  
Table 1 Correlation among stand variables of secondary forest  

Stand variables
 

Diameter
 

N ha-1

 
BA

 
Biomass

 
TT

 
Volume

 
TBC

Diameter
 

1.00
 

-0.64
 

0.97
 

0.88
 

0.49
 

0.94
 

0.34

N ha-1  1.00 -0.49 -0.40  -0.41  -0.45  -0.19

BA   1.00 0.94  0.43  0.97  0.33

Biomass    1.00  0.36  0.92  0.30

TT     1.00  0.55  0.69

Volume
     

1.00
 

0.43

TBC

      
1.00

BA = basal area, TT= total height, TBC= free trunk of height, correlation value is Pearson correlation test. 

     

 

Table 2  Correlation among stand variables of jungle rubber 
 

Stand variables Diameter N ha-1

 BA TT Biomass 
Diameter

 
1.00

 
- 0.82

 
0.96
 

0.35
 

0.61
 

N ha-1

 
1.00

 
- 0.76
 

- 0.26
 

- 0.14
 BA

  
1.00

 
0.30

 
0.62

 TT

   

1.00

 

0.25

 Biomass 1.00

BA = basal area, TT= total height. 

Table 3 Correlation among crop variables of rubber plantation 
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using all transition ecosystem (secondary forest, jungle 
rubber, rubber plantation and oil palm plantation) provided 
F-calculation (F-calc) of 1.03, which was smaller than F-
table (2.71) at confidence level of 5%. This value implied that 
the grouping factor did not give significant role and did not 
have significantly different model, therefore, regression 
models met the requirement to be used altogether to develop 
biomass model for all transition ecosystem  types under 
study. 

The models examined in this study were linear, 
exponential, and polynomial model forms. Correlation 
between backscatter HH, HV, and HH/HV and field biomass 
are illustrated in Figure 3. Initially, there were 72 models 
developed and examined. The study found that the increasing 
of filter size (speckle suppression) with the kernel size of 5×5 
and 7×7 did not improve determination coefficient, therefore, 
36 models were selected that would be tested for the best 
model. Best model selection was identified on the basis of 

2determination coefficient (R ) and p-values each model being 
developed. All selected models are statistically significant 
effect to estimate biomass using the independent variable of 

2 2backscatter of HH, HV, ratio of HH/HV, HH , HV , and 
2squared ratio (HH/HV) . Determination coefficient value 

provided by the models is ranging from 41.71% to 52.3%, 
with the correlation coefficient between 0.65 and 0.75 and 
coefficient of regression have p-values less than 5%. The 
selected models should also consider the simplicity for 
practical and the ease of use purposes (Jaya et.al 2013). 
Models selected are presented in Table 5. 

Models developed were validated using mean deviation 
(MD), agregative deviation (AD), root mean square error 
(RMSE), Bias (℮), and χ² test measures. The validation test 
was conducted using 30 data plots derived from inventory 
plots consisted of 27 plot collected by  PT. REKI  and 3 plots 
from field measurement data within transition ecosystems 
collected by authors. Verification plots were selected using 
systematic sampling with random start.

The validation values shows that the examined models 
provided  good biomass estimation.  All models show very 
low  AD in a range of -0.01 to 0.05, belong within the range 
of -1 to +1, therefore, the models are acceptable. Mean 
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Tabel 5  Selected model based on R  and p-value. 2

   

Images Buffer
 

No
 

Equation
 

R 2
 

   r
 
p-value (Sig)

Raw images
 

1 1×
 

1
 

AGB = 42.069 exp (0.510 HV)
 

0.523
 
0.72

 
0.000

3 3× 2 AGB = 58.018 exp (0.534 HV)  0.435  0.66  0.000

3 3× 3 AGB = 1.646 exp (- )0.02 HV    2
 0.425  0.65  0.000

Speckle Supression
 Kernel 3 3×

 

1 1×
 

4
 

AGB = 54.432 exp (0.528 HV)
 

0.514
 
0.72

 
0.000

1 1×
 

5
 

AGB = 1.610 exp (-0.02 HV²)
 

0.508
 
0.71

 
0.000

3 3×

 

6

 

AGB = 1.701 exp (-0.02 HV²)

 
0.417

 

0.65

 

0.000

deviations are also in the range of 3.25% and 10.88%. Good 
models should have MD less than 10% (Spurr 1952). 
Acceptable models also consider small value of bias resulted 
in the range of 3.04 and 11.77. The χ² test determined the 
acceptable selected models if χ² calculated were larger than χ² 
table. It showed that there is no significantly different 
between estimated biomass and actual biomass. Based on the 
simplicity and the easiness to use, and polarization sensitive 
to biomass, the selected models to map the biomass under 
study were AGB = 42,069 exp (0.510 HV) and, AGB = 1,610 
exp (-0.02 HV²).

Biomass-based mapping in visual identification of 
transition ecosystem Selected biomass estimation models 
were then was used to map the biomass distribution of 
transition ecosystem within the study area. In Figure 5, 
visually there was significant different between secondary 
forest and oil palm plantation which displayed indifferent 
color. The big oil palm plantation is commonly the intensive 
plantation managed by private  company, while small oil 
palm pantation in transmigration area is owned by 
community at Muaro Jambi and Batanghari Regency. 

In Figure 4, average biomass based on field study showed 
the pattern of biomass content in transition ecosystem. Oil 
palm and rubber plantation have relatively low biomass 
content rather than jungle rubber and secondary forest. 
Rubber plantation in the study area shows low biomass 
content due to the age of planting for rubber plot mostly in 
less than 10 years. The biomass content for rubber and oil 
palm plantation will increase as well as the age of the crop 
increases.  Meanwhile, between secondary forest and jungle 
rubber are almost the same in biomass content. Jungle rubber 
is land cover that has similarities with secondary forest 
(Gouyon et al. 1993 & Dove 1994) having stand structure 
similar to natural forest with high diversity of tree species 
dominated by rubber (Hevea brasiliensis). Differences of 
biomass content in each ecosystem types exist due to the 
differences of ecological factors. Masripatin et al. (2010) 
mentioned that the range of biomass in every type of 
ecosystems are different as follows, for logged-over 
secondary forest in Malinau and Nunukan Regency, East 
Kalimantan has biomass content ranging from 343.6 to 498.4 

-1t ha , forest with agroforestry system has biomass content of 
-1182 t ha , bush and shrubs with the biomass content of 38.8 t 

-1ha . Mukalil (2012) found that average biomass content of oil 
-1 -1palm and rubber plantation are  25.89 t ha and 6.94 t ha , 

respectively.
From biomass distribution map depicted in Figure 5, 

secondary forest ecosystem commonly adjacent  to oil palm 
plantation  have relatively higher biomass content  than oil 
palm plantation. Transition from forest into agricultural land 
such as mixed field and monoculture plantation are moving 
towards Jambi City. Rubber and dry field agriculture 
historically were cultivated by community since the early of 
twentieth century (Gouyon et al. 1993), therefore, the area of 
this agricultural systems are located close to the settlement. 
Classes derived from biomass distribution then were used as 
a discriminant to identify transition ecosystem in Jambi 
Province, from Harapan rainforest to Jambi City. 

In transition area of secondary forest in the north-east of 
PT.REKI, there were significant changes of biomass. The 
fuzzy border and access close to the road has triggered  
landuse change from forest into agricultural systems such as 
dry field agricultural and establishment oil palm plantation. 
This also become the major source of conflicts between the 
forest restoration concession holder and the people who 
enclave the area inside.

Based on visual interpretation to classify the land cover 
of study area, the problems of mixed pixel and spatial 
uncertainty were emerged. The source of mixed pixel in 
visual classification was due to slightly changes of landcover 
area. For example, changes from rubber plantation or old 
shrubs to oil palm have caused mixed classes of oil palm and 
bareland (land clearing) in relatively small area but 
randomly distributed. Recently, there is a trend of landcover 
changes from tropical lowland forest into oil palm, 
secondary forest, jungle rubber, rubber plantation, and other 
land use.

Ambiguity or spatial uncertainty could be caused by 
uncertainty of the methods in landscape analysis like spatial 
and temporal heterogenity and also ambiguity in 
classification (Hou et al. 2012). In case of transition 
ecosystem, the source of uncertainty mainly due to spatial 
pattern or landscape structure from natural condition 
(wilderness) to settlement area. It is also affected by 
relationship between pattern and process in landscape, 
process and changes, human activity and landscape pattern 
(Hou et al. 2012). 

Visual interpretation of ALOS PALSAR to classify land 
cover within  study area were supported using land cover 
map published by ministry of forestry at the same year of 
acquisition.  LANDSAT TM imagery was also involved to 
aid visual classification. Furthermore, the result of the 
classification was overlaid with biomass map derived from 
the model developed using ALOS PALSAR to identify the 
types of transition ecosystem based on biomass. The result of 
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Figure 5  Biomass distribution of transition ecosystem in Jambi Province.
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Figure 4  Field biomass in transition ecosystem types. 

biomass for each type of transition ecosystems was then 
summarized in Table 6.  The minimum, maximum, and mean 
values were varied for each class and also there were some 
overlapping value. The minimum value showed the lowest 
biomass content and it belonged to lowest vegetation covered 
in the area. Pixel based mapping has limitation of high level 
of spatial uncertainty. Mixed pixels is the common problem 
arisen in classification of remotely sensed imageries both in 
low and medium resolution (Li et al. 2011; Hou et al. 2012).

Figure 7 shows the overlapping biomass value among 
classes. There were mixed pixels in each class and 

consequently, the range of biomass content varied in its 
minimum and maximum value. Based on the mean value, oil 
palm had the lowest biomass content among transition 
ecosystem types found. Ambiguity or uncertainty might be 
occurred between old jungle rubber and secondary forest 
because the similarity of complex structure, meanwhile 
young jungle rubber would have ambiguity with 
monoculture rubber (rubber plantation) because the 
numbers of rubber trees are higher than other forest tree 
species. Transition pattern were from secondary forest in 
Harapan rainforest (PT. REKI) to agricultural 
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transformation system, oil palm in large area, and become 
dry field and shrubs. Rubber monocultures are widely 
distributed over the regencies and tend to change into oil 
palm with scattered pattern in small areas, particularly along 
the road towards Jambi City. 

ALOS PALSAR imagery could be used to develop 
biomass estimation model in transition ecosystem which has 
been transformed from secondary forest into agricultural 
system and other landuse. Cross polarization HV is more 
sensitive than HH to estimate biomass in transition 
ecosystem. Acceptable models are AGB = 42,069 exp 
(0.510HV) and with using filtering with the equation of AGB 
= 1,610 exp (-0.02 HV²). Biomass spatial distribution 
derived from the model being developed could be used to 
identify transition ecosystem by overlaid it with landcover 
resulted from visual interpretation. Biomass distribution had 
problems of spatial uncertainty because the classes is mainly 
derived from visual interpretation. Biomass-based transition 
ecosystem identification enriched the existing methods 
based on ecological approach to identify ecosystems. 
Furthermore, it needs to develop methods to reduce the 
spatial uncertainty and mixed problems and fuzzyness. 

Abdullah L. 2010. Model dynamic of forest and land use 
change and carbon trade scenario in Jambi [thesis]. 
Bogor: Graduate School of Bogor Agricultural 
University.

Conclusion
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