Extension of absolute weak topologies
and Riesz homomorphisms

Takeshi Ohno

Abstract. Let L be a Riesz space and I an ideal of L™. In this paper we show that if
I'C L, and I separates the points of L, then there exists a unique “largest” Riesz dual
system { L, L} >, called the largest enlargement of {L,I), which satisfies the statement
given in [3, 5.2], and at the same time we give a sequential version of its result. From
this, given in [1] theorem 23.33 extends to the argument on o¢-laterally complete Riesz

spaces and example 24.15 is generalized.

1. Introduction

Throughout this paper all Riesz spaces under consideration are assumed Archimedean.
For notation and basic terminology concerning Riesz spaces not explained below, we refer
to the books [1], [9] and [10].

A Riesz space L is laterally complete if every positive disjoint subset of L has the
supremum in L, and o-laterally complete if every positive disjoint sequence of L has the
supremum 1n L. The Riesz space that is both laterally and Dedekind complete is a univer-
sally complete Riesz space. Similarly, ¢-Dedekind and ¢ -laterally complete Riesz space is
a o-universally complete Riesz space. A universal (resp. o -universal) completion of a Riesz
space L is a universally (resp. ¢ -universally) complete Riesz space K having an order
dense (resp. super order dense) Riesz subspace M that is Riesz isomorphic to L. As usual,
identifying L with its image M in K, we shall treat L as a Riesz subspace of K. The uni-
versal completion of L denotes by L¥. The ideal generated by L in L¥ is precisely the
Dedekind completion L% of L. A Riesz space L is almost ¢ -Dedekind complete if it is Riesz
1somorphic to a super order dense Riesz subspace of some ¢-Dedekind complete Riesz space.
By [1, 23.27] L is almost o -Dedekind complete if and only if L has a ¢ -universal completion
which is determined uniquely up to a Riesz isbmorphism. The o -universal completion of
L denotes by LS. If L is almost ¢ -Dedekind complete, then the ideal of L° generated by
L is precisely the. o-Dedekind completion L% of L.

For any Riesz space L, L™ denotes the order dual of L. L, and L_ denote the bands
in L™ consisting of all order continuous linear functionals and all ¢ -order continuous
linear functionals on L resprctively. Let A be a nonempty subset of L™ . The absolute
weak .topology |o|(L,A) on L generated by A is a locally convex-solid Riesz topology
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generated by the Riesz semi-norms z—|f|(|z|)on L, where zE L and fE A . If 4 is an
ideal of L™ separating the points of L, then | ¢ |(L,A) is Hausdorff and the topological
dual of (L,|o|(L,A)) is precisely A([1,6.6]). Furthermore, the absolute weak topology
lo|(L,A) defines a Lebesgue topology on L if A C L, , and a o-Levi topology if every
increasing | o |(L,A )-bounded net of L' has a supremum in L. Similarly, the topology
| o|(L,A) is a o-Lebesgue topology on L if A C L., and a o-Levi topology if every
increasing | o |(L,A4 )-bounded sequence of L™ has a supremum in L.

In [6] and [8] Labuda has shown that if (L,7) is a Hausdorff locally solid Riesz
space with the Fatou property, then there exists an essentially unique “largest” Nakano
space (L',7%), called the largest enlargement of (L,7), which has the property that L &
L!'C I* and t=t*| L, and has shown in [7] some sequential versions of the arguments
given in [6]. The aim of this paper is to give the largest enlargement of a Riesz dual
system and its sequential version, and characterize those results in terms of the absolute

weak topologies.

2. The largest enlargement of <L, L, >

Let L be a Riesz space. For each &€ L* put L, =L, ={yE L||y|§ |z |} and for
any f & L™ define Ly= {z &€ L¥: sup (| (P |:yE L) < oo} If fE L, then L is expres-
sible as the set consisting of all elements z of L* such that sup,|f|(z,) < o for a net
{z,} of LT with § < z,1|x]| in L*

The proof of the following lemma is straightforward and we omit it.

LEMMA 1. For anyf€ L,;, Ly is a solid Riesz subspace of L* and L9 C Ly C L*.

Let § < f€ L, . For each § <z &€ Ly put f (x) = sup,f(z,), where {z,} C L, and
§ < z,1z in L% and define f by f (z) =f " (z*)—f"(z7) for all z € Ly. Since
ztxT € Lg, it is simple to verify that f ™ is well-defined and positive linear. Further-
more, f € (Lg), holds. To this end, let § < z,tz in Ly. For each z, choose a net of
L,
of L, that increases to z. For any & >0 choose 25 & {2,} such that f™(z)—e < f(zs).
It then follows that there exists some z, with 25 < z, and
fx)—e < fzs) < f(z,) <sup,f (z,) < f (x).
This means that f~(z) = sup,f (z,), and hence /™ € (Ly),, . In general, if f€ L;, put
f=f%—f" anddefine f~ by f(z) =fF" "(z)—f "(z) for all z& Ly. Since § < f 7,
fTe L, and Lg=Lys = Ls+NLg-, f is well-defined and it is not difficult to verify
that f ™ is a unique order continuous extension of f to all of Ls. Thus f~ & (Lg), holds
for all f& L.
Let I be an ideal of L; and define L; ={z € L*: L, is o(L,I)-bounded}. Since L, is a
solid subset of L¥, L; can denote as follows :
Ly={z&€ L*: L, is lo|(L,I)-bounded } (= N{Ls:fET}).
By Lemma 1, it is clear that L; is a Dedekind complete Riesz space in its own right and
18 C LiC L* Put L= {f"|L;: fE€ I}). For each f & I denote again by f~ the restriction

i that increases to z, . The net consisting of the finite suprema of these nets is a net {27}
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fTIL; of £ to Ly. Since (f+¢)™=f"+¢" holds for all § < f, g < I, we now have the
following lemma.

LEMMA 2. Let L be a Riesz space and let I be an ideal of L, . Then L is an ideal of
Ly

Proof. From the argument above it is clear that L} is a vector subspace of (Lp), .
In order to show that L} is a Riesz subspace of (Lp), , it is enough to prove that
(f)T=(f*)" for every fE I To this end let fE I and § < z € L. Then for {z,) C
L, and 6 < z, 1 z it follows that

Tz < sup{f (W) :0<y< 3, yELY = FHN(a) < (D),
and so (f T)7(z) =sup ,f T(z,) < (f7)T(z). On the other hand,
FH)T @) =suplf " (@):10<y<z yEL) < U ()

Hence (f 7)™ (z) = (f ")%(z) holds for all § < z € L;. This means that L} is a Riesz
subspace of (Lp); . It is simple to verify that L7 is a solid subset of (Lp), . Thus Lj is
an ideal of (Lp), .

Let L be a Riesz space and let I be an ideal of L™ separating the points of L. The
pair <{L,I> under its natural duality <{z,f>(= f(z)), where z € L and f € I, is said to be
a Riesz dual system. Let M be a Riesz subspace of L* with L C M C L%, and let I, ] be
the ideals of L™, M~ separating the points of L, M respectively.

A Riesz dual system <M,/ is said to be o-continuous enlargement of {L,I) if IC L,
JC M, and lol(M,)|L = lol(L,D).

LEMMA 3. Let L C M C L* and let {L,I> and {M,J> be Riesz dual systems defined
by IC L, and J C M, respectively. If {M,/> is an o-continuous enlargement of {L,D,
then (L,Lp is also an o-continuous enlargement of {M,J>.

Proof. Let {M,J> be an o-continuous enlargement of {L,I>.By [1, 6.6] the topological
dual of (M,|o|(M,])) is precisely J. Similarly, (L,| o |(L,D))" = I. Since I separates the
points of L, it follows easily that L} separates the points of L; and so by Lemma 2
{LpLp is a Riesz dual system. Since |0|(M,])|L =|a|(L,D), ]|L = I (See the proof of
[1, 6.6]) holds and L, is | ¢ |(L,I)-bounded for any z € M. Hence M C L, and L'IlM =]
holds. Since M¥ = L* by [1, 23.21], this means that {L,L}> is an o-continuous enlarge-
ment of {M.,]).

From the argument above the Riesz dual system {L,L}> can be characterized as the lar-
gest o-continuous enlargement of a given Riesz dual system <L,I>.

The following result satisfies the statements of proposition 5.2 given in [3] by
Burkinshaw and Dodds.

THEOREM 4. Let L be a Riesz space and let I be an ideal of L, separating the
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points of L. Then the following holds.
(1) e l(L,Lp is a Hausdorff locally convex-solid, Lebesgue and Levi topology.
) (Lplo(LpLp) is (LpLY) -complete.
3 Ly=(Lp,.
(4) Each order interval of L;is | o [(LL}) -compact.

Proof. (1) Since L} separates the points of L;, it is immediate that | o |(L,L}) is a
Hausdorff locally convex-solid, Lebesgue topology. In order to show that | o [(L,L)) is a
Levi topology, let {z,} be a |0 |(L;L}) -bounded net of L; with § < z, 1 in L;.

Since | ¢ [(L,Lp) is Hausdorff, for any 6 < y € L; there exist § < f~ & L} and € > 0 such
that £ (y) >e. Now, choose a n & N satisfying f “(n"'z,) <& for all @. Then there
exists § < z € L; such that n_lxa/\y < y—2z for all @. Indeed, if n—lxa/\y tyin Ly, then
fT(n"lzyAy) > FT(y) < e holds, contradicting the fact that f " (y) >e. Hence
(ny—z,)" = n(y—n"lz,Ay) > nz > 2 > 6 for all a, that is, {z,} is a dominable subset
of Ly. From this, it it follows by [1, 23.10 and 23.13] that v = sup, z, exists in L¥. Let
§<ze L, Since z,Az 1z in L; and {z,} is | 0| (LyL})-bounded, for each fE€ I it fol-
lows that there exists a positive number ay (depending upon f) satisfying | f~ [(z,Az)
t1f1(z) < as. This means that L, is | o |(L,I)-bounded. Hence v € L; and the proof is
finished.

(2) Since every locally convex-solid Lebesgue topology has a Fatou property [1, 11.1],
(Lplol{L,Lp) is a Nakano space by (1). Hence the result follows from [1, 13.9].

(3) By (1), it follows immediately from [1, 9.4].

(4) Tt follows from (3) by applying [1, 19.14] to L} equipped with the topology
| o [(L},(Lp), ), and the proof is complete.

REMARK. Let L be a Dedekind complete Riesz space and let ¢ be a Hausdorff locally
solid Fatou topology on L. Labuda showed in [6] and [8] that the largest enlargement
(1},7%) of (L,7) has both the Levi property and the Fatou property. If 7 is a Hausdorff
locally convex-solid Lebesgue topology on L and L’ its the topological dual, then we can
show that Z; = L* and L, is the set of all ¢*-continuous linear functionals defined on
Ly .

The following results are immediate from Theorem 4.

COROLLARY 5. Let (L,7z) be a Hausdorff locally convex-solid Riesz space with the
Lebesgue property and let L’ be its topological dual. Then the largest enlargement {LpLp
of {LjL") satisfies the statements (1) ~ (4) of Theorem 4.

COROLLARY 6. Let (L,7) be a Hausdorff locally convex-solid Riesz space with the
Lebesgue property and let L’ be its topological dual. Then L; = L if and only if (L,t)
has the Levi property. In particular, if L; = L holds, then (L,7) satisfies the statements
(i) ~ (v) given in [3, Prop. 5.2].
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3. The largest o-enlargement of <{L,L,>

In this section we will give the ¢ -analogues of the arguments given in the previous
section. Let L be an almost o-Dedekind complete Riesz space and let L° be its o -universal
completion. The ideal of L® generated by L is precisely the ¢-Dedekind completion L7 of
L and LC L°C LS. :

For each z€ L put L, =L, = {yE L: |yI<|z|} and for any f& L™ define
Li={z€L:sup (| AW]:yE L) < }. Lyis a solid subset of L%, and since L is super
order dense in L°, we have that

Ly={z &€ L*:supl|fl|(x,) is bounded for a {z,} C L, with 6 < z,1[z| inL%}.
Hence it is easily verified that Ls is a solid Riesz subspace of L and L° C Ly C L®.

Let L be an almost ¢-Dedekind complete Riesz space and let § < f& L. For each
6 <z € Ly put f~(z) = sup, f(z,), where {z,} C L, and 6 < z, 1z in L°, and define
fF () =f"(zT)—f(z7) forall z € L. Using the argument similar to the previous
section, f ™ is well-defined and it follows that 8 < f~ &€ (Ly). . Furthermore, if f€ L,
let f=/f"—f" and define f~ by f(z) =f+ "(2)—f~ "(z) for all z € Ly. Since
< ftf e L and Ly=L| g = Lg+MNLg-, it follows immediately that f~ is a unique
o -order continuous extension of f. Thus f~ &€ (Ly). holds for all f&€ L. Let I be an
ideal of L7 and define L;={z € L*: L, is o(L,D)-bounded } (={z € L*: L, is | g |(L,D
-bounded } =N{Ls: fE}). Put L7 = {f~|LI:f€ I}. For each f € I we denote again by
f 7 the restriction fﬂLf of f7.

The following result is easily verified by replacing the word “net” with “sequence”
used in Lemmal and Lemma 2.

LEMMA 7. Let L be an almost ¢-Dedekind complete Riesz space and let I be an ideal
of L. . Then the following holds.

(1) L;is a g-Dedekind complete Riesz space in its own right and LYC L;C L®.

(2) Ljis an ideal of (Lp); .

Let L be an almost ¢ -Dedekind complete Riesz space and let I be an ideal of L.
separating the points of L. Then L} separates the points of L; and it follows by Lemma 7
that {L,L}> is a Riesz dual system. Let M be a Riesz subspace with L C M C L°. Let
I,J be the ideals of L™,M ™ separating the points of L, M respectively. A Riesz dual
system <{M,J> is called og-continuous enlargement of <L,I> if IC L_, JC M. and
Ial(M,J)l L=|o|(L,I). If {M,]) is a o-continuous enlargement of <{L,I>, then it is fol-
lows by the argument similar to Lemma 3 that {L,L} is also a o-continuous enlargement
of {M,J]>, where M*® = L% by [1, 23.27]. Hence {L;L}> is the largest o-continuous en-
largement of {L,I>. We now have the following result which corresponds to Theorem 4.

THEOREM 8. Let L be an almost ¢ -Dedekind complete Riesz space and let I be an

ideal of L separating the points of L. Then | o |(LyL}) is a Hausdorff locally convex-
solid, o -Lebesgue and ¢-Levi topology.
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Proof. Every countable dominable subset of L5" has a supremum in Z° [1, 23.23]. The
proof is almost the same as that in Theorem 4.

COROLLARY 9. Let (L,7) be an almost ¢-Dedekind complete, Hausdorff locally
convex-solid Riesz space with the o-Lebesgue topology, and let L’ be its topological dual.
Then 7 is a o-Levi topology if and only if L, = L.

THEOREM 10. Let L be an almost ¢-Dedekind complete Riesz space and let I be an
ideal of L. separating the points of L. Then following statements are equivalent :

(1) L;is sequentially | o |(L,L}) -complete.

(2) The order intervals of L? are sequentially | |(L%L}) -complete.

Proof. (1) = (2) Since L7 is a solid subspace of L°, it is obvious.
(2) = (1) By Theorem 8 and [1, Chap. 2, Exer. 9] we need only to show that every order
intervals of Lj is sequentially | o |(LjL})-complete. To this end let {u,} bea |o [(LpLY -
Cauchy sequence of Lj satisfying § < u € L; and 6 < u, < u for all n. Choose a sequence
{z;} of L™ with 6 < z;1 . Since 6 < u,Az; < z; in L° and | U NT;— Uy AT | S upy—u,, |,
it follows by (2) that u,Nz;—>y; (| o | (L%LD) in L°. Clearly, 8 < y; 1< u. Hence y =
sup; ¥; exists in Ly and § < ¥ < u. On the other hand, since 6 < u,~u,Nz; < u—uzx;, it
follows that | y—uwu, |< (y—y;)+ | y;—u,Az; | +{u—z;) for all i, n. From this it is
simple to verify that w, =y (| ¢|(L,Lp) in L;. Thus every order intervals of L; are se-
quentially | o [(LpL}) -complete, and the proof is finished.

4, o-laterally complete spaces
Let L be a Riesz space and let 7 € L, be a Riesz homomorphism on L. By Lemma 1
L, is a solid Riesz subspace of L¥ satisfying L° C L, C L*, and 7 extends to an order
continuous Riesz homomorphism on L. Indeed, let Ay = 6 in L, and choose nets {z,}
and {yg} of L with § <z, tz and §< Y1y in L,. Since zoN\Yg = 6 for all @, B, it is
immediate that
7 ()N (Y) =supy, g (zy) N1(yg) = sup, ga(zyAYg) =0.
Hence 7 "is a Riesz homomorphism on L, and 7~ € (L.),. Similary, if L is almost
0 -Dedekind complete and 7 & L. is a Riesz homomorphism on L, then 77 is a o -order

continuous Riesz homomorphism on L, with L9C L, C L*.
We now have the following result.

THEOREM 11. (1) Let L be a Riesz space and let 7 € L, be a Riesz homomorphism.
Then L, = L%, that is, 7 extends to all of L* as an order continuous Riesz homomorphism.

(2) Let L be an almost o¢-Dedekind complete Riesz space and let 7 & L be a Riesz
homomorphism. Then L, = L®, that is, 7 extends to all of LS as a ¢-order continuous

Riesz homomorphism.
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Proof. (1) Since L, is Dedekind complete, to see that L, = L* we need only to show
that L, is laterally complete. To this end let {z,} be disjoint subset of L} . Let {yg} be
the net consisting of the finite suprema of elements in {z,}. Then £ = sup, z, exists in
L* and 6 < ygtz. Since 77 (z,) =0 holds except for at most one element of {z,}, it
follows that for any z € L,,

n(z) = n"(2) =supgn (2Ayg) <supgn ™ (yg) (<L o).
This means that z € L:,
plete Riesz space and hence it follows by [1, 23.18] that L, = L*.
(2) The proof is almost the same as that in (1).

and so L, is laterally complete. Thus L, is an universally com-

Let L be a o-laterally complete Riesz space. Then L™ = L7 holds by [1, 23.7], and
using the argument given by Fremlin in [4, 1.15], we can show that each § < ¢ E L7 is
expressible as a sum of finite number of Riesz homomorphisms on L. Hence L™ is a dis-
crete Riesz space [9, 26].

COROLLARY 12. Let L be a Riesz space and let I be an ideal of L, . Then the fol-
lowing are equivalent :

1 Ly=1L"

(2) Each 8 < ¢ €1 is expressible as a sum of finite number of order-continuous Riesz
homomorphisms on L.

Proof. From Lemmal, Lemma 2 and Theorem 11 it is abvious.

COROLLARY 13. Let L be an almost ¢-Dedekind complete Riesz space and let I be
an ideal of L. Then the following are equivalent :

1 Ly=1L°%

(2) Each 8§ < ¢ €I is expressible as a sum of finite number of o -order continuous
Riesz homomorphisms of L.

Proof. From Lemma7 and Theorem 11 it is obvious.

THEOREM 14. Let (L,7) be a o-laterally complete, Hausdorff locally (not necessarily
convex) solid Riesz space and let L’ be its topological dual. Then the following holds.

1O L,cLrcCL].

(2) If t satisfies the Lebesgue property, then L' = L7 .

Proof. (1) Since L' C L; holds by [1, 5.7 and 23.7], we need only to show that L
C L'. To this end let # < ¢ € L} and let C, be the carrier of ¢, that is, C, = Ng and
Ny = {z:¢(lz])=0}. Note that ¢ is strictly positive on C,. Let {z,} be any disjoint
sequence of CJ. Since C, is o-laterally complete in its own right, it follows for any
sequence {a,} in R™ that
T = sup, a,%, exists in C, and @(z) =X’ _ | a,9(z,).
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From this, it is simple to verify that z, = 8 except for finitely many » € N. Hence by [9,
26.10 and 26.11] C, has a basis (e e, **, ¢,) consisting of mutually disjoint atoms for
some n € N, and so it is Riesz isomorphic to 7 -dimensional real number space R” under
the usual coordinatewise ordering. Put u = sup,.;<, ¢; and let B, be the band of L
generated by u. Then C, = B, and it follows by [1, 23.4] that L = B,®BI = Co® N, .
Now, assume that z,—>6(t) in L, and put z, = ¥, +2,, where ¥, € C, and 2, E N, .
Then it is immediate that y,— 6 (¢) in C,. Since C, =R", it follows by [5, P.142] that
¢(z,) = ¢{y,) = 0. This means that ¢ is t-continuous, and hence we haveL, C L.

(2) If 7 is a Lebesgue topology, then it is clear that L' C L . Hence L' = L, holds by
(.

The following result shows the extention of Theorem 23.33 given in [1].

THEOREM 15. Let L be a o -laterally complete Riesz space carrying a Hausdorff
locally convex-solid Lebesque topology 7 and let L' be its topological dual. Furthermore,
let {L;,, L;-> be the largest enlargement of <L,L>. Then the following holds..

1 Lp =1

(2) LY is a discrete Riesz space.

(8) L* is Riesz isomorphic to some ( Riesz space of the form ) R¥.

4) t=0(L,L)=]0|(L,L)and t extends to a locally convex-solid Lebesque
topology on LY.

(5) [L*is Riesz isomorphic to the topological completion L of (L,7)..

Proof. (1) It is immediate from Corollary 12 and Theorem 14,

(2) It is enough to show that if # < z € L¥ then there exists a discrete element e of
L* with § < e < z. Since L' = L, holds by Theorem 14, it is immediate that L; =
(L;),; =™, , and for any § < z € L* there exists a § < ¢ € (L*); such that ¢(z) >
0. Using the argument given in the proof of Theorem 14, it follows that L* = Cyo®N,, and
C, has a basis {e, e, **, ¢,} consisting of pairwise disjoint discrete elements for some
n € N. Hence there exists at least one element e; satisfying z/\e; > 6. Then e = zN\e; is a
discrete element of L* with 8 < e < z, and this means that L¥ is a discrete Riesz space.

(3) By (2) the result follows immediately from [1, 2.17].

(4) Note first that each ¢ € L’ is expressible as a linear combination of finite number
of order-continuous Riesz homomorphisms on L. Hence it is clear that | o |[(L,L") =
o(L,L') < t. Conversely, to show that t <|o|(L,L"), we assume that for a net {z,} of
LY, z,—~8al(L,L)) in L but z,— 8 (7) does not hold. Then there exists a t-neigh-
borhood V of zero such that for any a there exists 8 = a with zg & V. Choose a normal
sequence {V,} consisting of t-closed neighborhoods of zero with +¥ C V and V, |+
V,4+1 C V, for all n, and put N =N {V,:n € N}. Each V, is order closed, and so N is a
band of L. Using the argument given in [2, 3.3] it follows that every disjoint system
consisting of strictly positive elements of N® in L is at most countable. Since L* is dis-
crete by (2) and L is order dense in L¥, by Zorn’s lemma there exists an at most countable
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complete disjoint system {e;} consisting of discrete elements of N in L. For each iEN
choose a Riesz homomorphism 7; on L such that 7; € L and 7;(¢;) =1, and put ¢, =
>P_, n; for each n» € N. Since L has the principal projection property and N is a band of
L, it is immediate that L = B®N, where B denots the band of L generated by # = sup
{e,:n €N} € L. Denote by B® and N° the polar of B and N respectively. Then L =
B°®N° holds by [1, 19.5]. Since L’ is a discrete space, for any ¥ € N° it is not difficult
to verify that there exist some n € N and @ > 0 such that
o) 1< ¥ (z]) Lap,(lz]) for all z€ B.

Hence | o |(B,N°) generates a metrizable Lebesque topology " on B, and |o |(B,L") =
| o |(B,N°) holds. For each & put z, = ¥,+2,, where ¥, € B and 2, € N. It then follows
immediately that 4,~> 6 (¢"). Hence there exists a subsequence {y,} of {¥,} such that g,
6 (') and z, & V. For each i and each n, let v = n,(y,) and put st = sup, <y 7§ Since
7 —>0 as n— oo, {si: n, iEN} CRY and w, = sup; si ¢! exists in L for all ». It is not
difficult to verify that # <y, < w, and w, | # in L. Hence it follows that y,— 6 (1),
and so there exists a some 7y such that z, =y,+2z, € |+ C V for all n > ny. But
this is a contradiction. Thus © <| o |(L,L’) holds and hence we have t=|¢ |[(L,L"). From
this, it follows that ¢ exists to a | o |(L*(L*)") -topology on L* and (Lu,IUI(L“,(L“)'))
has the Lebesgue property.

(5) By (4), the result now follows immediately from [1, 24.3].

COROLLARY 16 ([1, 23.33]). If a laterally complete Riesz space L admits a Hausdorff
locally convex-solid Lebesque topology, then L = L; and L is Riesz isomorphic to some
R¥.

Proof. By Theorem 15 is a discrete Riesz space and L¥ = L. Let {e;: @ € X} be a
complete disjoint system of L; consisting of discrete elements. Since L is order dense in
Ly, it is immediate that {e,:a &€ X} C L. Furthermore, since L is laterally complete, it
follows easily that L¥ = L and L is Riesz isomorphic to R*.

Finally, we close this paper by generalizing example 24.15 given in [1] (compare (1,
20.26]).

THEOREM 17. Let L be a o-laterally complete Riesz space carrying a Hausdorff
locally covex-solid Lebesgue topology 7, and let L’ be its topological dual. If L has the
countable sup property, then the following holds.

(1) L is t-sequentially complete.

(2) L is Riesz isomorphic to a g-ideal A of some R* such that

A={feR*:(z€ X: f(z) #0) is at most countable}.
(3) (L,7) (which must be necessarily (L, a(L,L’))) has the o-Levi Property.

Proof. (1) Note first that by Theorem 15 L is a discrete Riesz space in its own
right. Choose a complete disjoint system {e,:a € X} consisting of discrete elememts of
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L. For each § <z € L, z = sup{F,(z) : @ € X} holds in L, where P, denotes the projec-
tion of L onto the band of L generated by ¢,. By the assumption there exists a subse-
quence {ey:n =1} of {e,:a € X} such that z =sup{B,(z):n > 1}. Now, let {z,} be a
t-Cauchy sequence of L. For each » there exists a subset {4, o: @ € X} CR such that
z, = sup{Fy(z,) : @ € X} = sup{4, ,e,:a € X}, where 2, , = 0 except for at most count-
able many indices @ € X. For each @ € X choose a Riesz homomorphism @, of L satis-
fying 7, € L" and m,(e,) = 1. Then for ¢ >0 and @ € X there exists some 7y € N such
that
| 702, —2,,) |=| 2, 4= Ay o |< & for m, n2>ny.
Hence 4, ,— 4, holds in R with 2, = 0 except for at most countable many indices
a € X, and so z =sup{1,e,:a € X} exists in L. For any ¢ € L’ choose Riesz homomor-
phisms 7, on L such ¢ =Zf_ % 7r,, where {:1<i<n}CR and {e;:1<i<n}CX.
Then it follows that for any & > 0 there exists some my € N such that
l€0(:1:—$)|=|2”_1 —Z}’-’_]r,malSeZ_ll % | for all m > my.
This means that L is o(L,L") -sequentially complete and hence it follows by Theorem 15
(4) that L is t-sequentially complete.

(2) From the argument given in (1), each 6 < z € L is expressible as
z = sup{F,(z): 2 € X} =sup{Fy(z):n > 1} for some {e,:n>1} C {e,:a & X}. Since
z/N\e, = ¢ holds except for at most countable many indices @ € X, the result now follows
immediately from the argument given in [1, 2.17].

(3) It follows immediately from the argument used in (1).
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