Convergence of the Modified Eigenvalues of the p-Laplacian

Hiroshi Takeuchi

ABSTRACT

In a previous paper [4] we proved that the first eigenvalues of the p-Lapalacian on manifold $M \setminus B_{\varepsilon}$ converge to zero as ε tends to zero. In this paper we prove that the modified higher eigenvalues of the p-Laplacian on manifold $M \setminus B_{\varepsilon}$ converge to the modified eigenvalues of that on manifold M.

1 Introduction

We recall the notation in the previous paper [4]. In this paper we assume $p \ge 2$, thus $L^p \subset L^2$. Let M be a compact Riemannian manifold with dim M = m and \triangle_p the p-Laplacian acting on functions on M, where $\triangle_p u = \operatorname{div}(|\nabla u|^{p-2} \nabla u)$. Let M^* be a compact submanifold of M, and B_{ϵ} the tubular neighborhood of M^* of radius $\epsilon > 0$, that is,

$$B_{\varepsilon} = \{ x \in M ; d(x, M^*) < \varepsilon \}.$$

Denote by $\triangle_{p,\varepsilon}$ the restriction of \triangle to those functions on M vanishing identically in B_{ε} . Set

$$\Omega_{\epsilon} = M \backslash B_{\epsilon}, \partial \Omega_{\epsilon} = \partial B_{\epsilon}.$$

We consider the following Dirichlet problem

$$\begin{cases} \triangle_{\rho,\varepsilon} u(x) + \lambda(\varepsilon) |u(x)|^{p-2} u(x) = 0 & x \in \Omega_{\varepsilon} \\ u(x) = 0 & x \in \partial \Omega_{\varepsilon}. \end{cases}$$

In the case of p=2, many people have studied the asymptotic expansion of the eigenvalues $\lambda_{k,2}(\varepsilon)$ (k=1,2,...) for the 2-Laplacian of a manifold $M\backslash B_{\varepsilon}$ with the Dirichlet condition on the tubular neighborhood B_{ε} . The first eigenvalue $\lambda_{1,p}(\Omega_{\varepsilon})$ of the p-Laplacian is defined as the least number λ for which the Dirichlet problem has a nontrivial solution $u\in W_0^{1,p}(\Omega_{\varepsilon})$. Here the sobolev space $W_0^{1,p}(\Omega_{\varepsilon})$ is the completion of $C_0^{\infty}(\Omega_{\varepsilon})$ with respect to the Sobolev norm $\|u\|_{1,p} = \{\int_{\Omega_{\varepsilon}} (|u|^p + |\nabla u|^p) dv_g\}^{1/p}$. It can be characterized by

$$\lambda_{1,p}\left(\Omega_{\varepsilon}\right) = \inf_{u \neq 0} \frac{\int_{\Omega_{\varepsilon}} |\nabla u|^{p} dv_{g}}{\int_{\Omega_{\varepsilon}} |u|^{p} dv_{g}},$$

where u runs over $W_0^{1,p}(\Omega_{\varepsilon})$ and dv_{θ} denotes the volume element of M. For the higher eigenvalues, We will define the modified variational eigenvalues. Let $\{\phi_j\}(j=1,2,...)$ be eigenfunctions of p-Laplacian associated with $\lambda_{j,p}(\Omega_{\varepsilon})$ and $\|\phi\|_{\rho}=1$. Set

受理日:平成15年10月10日

$$\lambda_{k,p}\left(\Omega_{\varepsilon}\right)=\inf_{u}\left\{rac{\int_{\Omega_{\varepsilon}}|
abla u|^{p}dv_{g}}{\int_{\Omega_{\varepsilon}}|u|^{p}dv_{g}},\int_{\Omega_{\varepsilon}}u\phi_{j}dv_{g}=0\left(j=1,2,...,k-1
ight)
ight\}.$$

It can be characterized by

$$\lambda_{k,p}\left(arOmega_{arepsilon}
ight) = \inf_{V \in W_{k,q}} \sup_{arphi \mid V(0)} rac{\int_{arOmega_{arepsilon}} \left|
abla u
ight|^p dv_g}{\int_{arOmega_{arepsilon}} \left| u
ight|^p dv_g}.$$

Here

$$W_k = \{V : V \text{ is a subspace of } W_0^{1,p}, dimV \ge k, k \in N\}.$$

For $p > 1, \lambda_{k,p}$ $(\Omega_{\varepsilon}) \ge c_{k,p}$, where $\{c_{k,p}\}$ is the minimax sequence usually defined using genus γ , that is,

$$c_{k,p}\left(\Omega_{\varepsilon}\right) = \inf_{A \in \Sigma_{k}} \sup_{u \in A} \frac{\int_{\Omega_{\varepsilon}} |\nabla u|^{p} dv_{g}}{\int_{\Omega_{\varepsilon}} |u|^{p} dv_{g}},$$

where $\Sigma = \{A \in W_0^{1,p} : A = -A \text{ and } A \text{ is closed }\}$ and $\Sigma_k = \{A \in \Sigma : \gamma(A) \ge k\}$.

For $A \in \Sigma$ we define the genus $\gamma(A)$ as

 $n = \gamma(A) = \min\{k \in \mathbb{N} : \text{there exists } h \in C^0(A, \mathbb{R}^k \setminus \{0\}), h(x) = -h(-x) \text{ i.e. h is an odd continuous map}\}$

 $\gamma(A) = \infty$ if there exists no finite such n, and $\gamma(\phi) = 0$. Clearly, $\lambda_{1,p} = c_{1,p}$ and $\lambda_{k,p} \ge c_{k,p}$ for all $k \in \mathbb{N}$ since $W_k \subset \Sigma_k[1][2]$.

2 Result

Theorem 1 Given $N=1, 2,..., there exists a sequence of positive numbers <math>\{\varepsilon_l\} \downarrow 0$ as $l \to \infty$, N orthogonal p-eigenfunctions $\{\varphi_1,...,\varphi_N\}$ of the modified variational eigenvalues $\{\lambda_{1,p},....,\lambda_{N,p}\}$ on M, N orthogonal p-eigenfunctions $\{\varphi_1,...,\varphi_N(\varepsilon_l)\}$ of the modified variational eigenvalues $\{\lambda_{1,p}(\varepsilon_l),...,\lambda_{N,p}(\varepsilon_l)\}$ on Ω_{ε} such that

$$\lim_{l\to\infty}\varphi_{j}\left(\varepsilon_{l}\right)=\varphi_{j}\qquad and \qquad \lim_{l\to\infty}\lambda_{j}\left(\varepsilon_{l}\right)=\lambda_{j}$$

in $L^{p}(M)$ for j = 1,...N.

Proof: We prove this by induction. For N=1, the theorem is valid by theorem 2 in [4]. Assume that the theorem is valid for an positive integer N, that is, for $1 \le j \le N$,

$$\lim_{l\to\infty} \| \varphi_j \left(\varepsilon_l \right) - \varphi_j \|_{1,p} = 0$$

Let φ_{N+1} be an eigenfunction of p-Laplacian (briefly we call it a p-eigenfunction) associated with $\lambda_{N+1,p}$ with $\int_M |\varphi_{N+1}|^p dv_g = 1$, and L^2 orthogonal to $\{\varphi_1,....,\varphi_N\}$. By lemma 1 in [4] there exists $\psi_l \in W_0^{1,p}(\Omega_{el})$ such that $\lim_{l\to\infty} \|\psi_l - \varphi_{N+1}\|_{1,p} = 0$ and $\lim_{l\to\infty} \varepsilon_l = 0$. We have

$$\lim_{l\to\infty}\int_{\Omega_{sl}}|\nabla\left(\psi_{l}\right)|^{p}\,dv_{g}=\int_{M}|\nabla\varphi_{N+1}|^{p}\,dv_{g}=\lambda_{N+1,p}\,.$$

Set

$$egin{aligned} f_{l} &= \psi_{l} - \sum\limits_{j=1}^{N} \left\langle \psi_{l}, \pmb{arphi}_{j}\left(\pmb{arepsilon}_{l}
ight)
ight
angle \pmb{arphi}_{j}\left(\pmb{arepsilon}_{l}
ight), \ g_{l} &= rac{f_{l}}{\left\lVert f_{l}
ight
Vert_{p}}, \end{aligned}$$

where $||f_l||_p = (\int_{\Omega_{\epsilon l}} |f_l|^p dv_g)^{1/p}$.

Then g_l is orthogonal to $\{\varphi_1(\varepsilon_l), \varphi_2(\varepsilon_l), ..., \varphi_N(\varepsilon_l)\}$, so

$$g_l \in W_{N+1} = \{V : \text{subspace of } W_0^{1,p}(\Omega_{\varepsilon}) \text{ and } \dim V \ge N+1\}$$

and

$$\lim_{l\to\infty}\|g_l-\varphi_{N+1}\|_p=0.$$

The variational principle implies that

$$\int_{\Omega_{sl}} |\nabla g_l|^p \, dv_g \ge \lambda_{N+1,p} \left(\varepsilon_l\right) \tag{1}$$

for all l. Since $\int |\nabla g_l|^p dv_g \to \lambda_{N+1,p}$ as $l \to \infty$, we have

$$\lambda_{N+1,p} \ge \limsup_{l \to \infty} \lambda_{N+1,p} \left(\varepsilon_l \right). \tag{2}$$

Next we prove the following claim.

Claim 2

$$\lim_{l \to \infty} \inf_{\lambda_{N+1,p}} \lambda_{N+1,p} \left(\varepsilon_l \right) \ge \lambda_{N+1,p}. \tag{3}$$

From (2) and (3) we have

$$\lim_{l\to\infty}\lambda_{N+1,p}\left(\varepsilon_{l}\right)=\lambda_{N+1,p}.$$

To prove claime, for each l, take $\varphi_{N+1}(\varepsilon_l)$ to be a normalized p-eigenfunction associated with $\lambda_{N+1,p}(\varepsilon_l)$ orthogonal to $\{\varphi_1(\varepsilon_l),...,\varphi_N(\varepsilon_l)\}$. Since $C^{\infty}(M)$ is dence in $L_1^p(M)$, there exists $\psi_{N+1,l} \in C^{\infty}(M)$ such that

$$\|\psi_{N+1,l} - \varphi_{N+1}(\varepsilon_l)\|_{1,p} < \frac{1}{l},$$
 (4)

and

$$\int |\psi_{N+1,l}|^p dv_g = 1 \text{ for all } l.$$

The induction hypothesis implies

$$\left|\left\langle \varphi_{N+1}\left(\varepsilon_{l}\right),\varphi_{j}\right\rangle \right|=\left|\left\langle \varphi_{N+1}\left(\varepsilon_{l}\right),\varphi_{j}-\varphi_{j}\left(\varepsilon_{l}\right)\right\rangle \right|\leq\left\|\varphi_{j}-\varphi_{j}\left(\varepsilon_{l}\right)\right\|_{1,p}\rightarrow0\left(l\rightarrow\infty\right).$$

Thus we have

$$\lim_{l\to\infty}\langle \varphi_{N+1,l},\varphi_j\rangle=0$$
 for $j=1,....,N$.

Now set

$$\psi_{N+1,l} = \sum_{j=1}^{\infty} d_{l,j} \varphi_j, \tag{5}$$

then

$$1 = \sum_{j=1}^{\infty} (d_{l,j})^2,$$

and

$$\lim_{l \to \infty} d_{l,j} = 0 \qquad \text{for } j = 1, \dots, N.$$
 (6)

Let

$$f_{N+1,l} := \psi_{N+1,l} - \sum_{j=1}^{N} d_{l,j} \varphi_j,$$

$$g_{N+1,l} = \frac{f_{N+1,l}}{\|f_{N+1,l}\|_{b}}.$$
(7)

Then $g_{N+1,l}$ is orthogonal to $\{\varphi_1,....,\varphi_N\}$. The variational principle implies

$$\lambda_{N+1,p} \leq \int |\nabla g_{N+1,l}|^p dv_g = \lambda_{N+1,p} (\varepsilon_l) + b_l.$$

While we have $b_l \to 0$ as $l \to \infty$ by (4) and (6). We therefore have

$$\lambda_{N+1,p} \leq \liminf_{l\to\infty} \lambda_{N+1,p} (\varepsilon_l).$$

This completes the proof of the claim 2.

Now from (5) and (7),

$$g_{N+1,l} = \frac{\sum_{j=N+1}^{\infty} d_{l,j} \varphi_j}{\sqrt{1 - \sum_{i=1}^{N} (d_{l,j})^2}}.$$

Let l_0 be the smallest integer such that $\lambda_{N+l_0+1,p} > \lambda_{N+1,p}$, and set

$$c_l = \sum_{j=N+l_0+1}^{\infty} (d_{l,j})^2,$$

$$a=\limsup_{l\to\infty}c_l.$$

Assume a > 0.

$$\begin{split} \lambda_{N+1,p} = & \int_{M} |\nabla g_{N+1,l}|^{p} dv_{g} = -\int_{M} g_{N+1,l} \, \triangle_{p} \, g_{n+1} dv_{g} \\ = & -\frac{1}{1 - \sum\limits_{j=1}^{N} (d_{l,j})^{2}} \int \sum d_{l,j} \, \varphi_{j} \, \sum d_{l,j} \, \Delta_{p} \, \varphi_{j} dv_{g} \\ = & \frac{1}{1 - \sum\limits_{j=1}^{N} (d_{l,j})^{2}} \sum_{j=N+1}^{\infty} \lambda_{j,p} \, (d_{j,p})^{2} \, (\text{because of } \int |\varphi_{j}|^{p} \, dv_{g} = 1) \end{split}$$

Convergence of the modified Eigenvalues of the p-Laplacian

$$> \frac{1}{1 - \sum_{i=1}^{N} (d_{l,i})^2} \left\{ \lambda_{N+1,p} \sum_{j=N+1}^{N+l_0} (d_{l,j})^2 + \lambda_{N+l_0+1,p} \sum_{j=N+l_0+1}^{\infty} (d_{l,j})^2 \right\}.$$

Let $\{l'\}$ be a subsequence of $\{l\}$ such that

$$a = \lim_{l \to \infty} c_{l}$$

Then

$$\lambda_{N+1,p} \geq \lambda_{N+1,p} (1-a) + \lambda_{N+l_0+1,p} a > \lambda_{N+1,p}$$

which implies a contradiction. So we get a = 0. Thus

$$\lim_{l \to \infty} \varphi_{N+1}\left(arepsilon_l
ight) = \lim_{l \to \infty} \sum_{j=1}^{\infty} d_{l,j} \varphi_j = \sum_{j=N+1}^{N+l_0} d_{l,j} \varphi_j.$$

Let H be the subspace of $L^p(M)$ spanned by $\{\varphi_{N+1},...,\varphi_{N+l_0}\}$, H^{\perp} its othogonal complement in $L^p(M)$, and P_*P^{\perp} the respective projection operators associated with H_*H^{\perp} . Then we have

$$\lim_{l\to\infty} P^{\perp} \varphi_{N+1} \left(\varepsilon_l \right) = 0.$$

If, H is one-dimensional then we can see

$$\lim_{l\to\infty}\varphi_{N+1}\left(\varepsilon_{l}\right)=\varphi_{N+1}\quad\text{in }L^{p}\left(M\right).$$

(1) Since $\lambda_{1,p}$ (M) = 0 and $\lambda_{1,p}$ (Ω_{ε}) always have multiplicity 1, we have

$$\lim_{l\to\infty} \varphi_1\left(\varepsilon_l\right) = \varphi_1.$$

(2) When all eigenspaces have multiplicity 1, we construct orthonormal bases $\{\varphi_1, \varphi_2, ...\}, \{\varphi_1(\varepsilon_l), \varphi_2(\varepsilon_l), ...\}$ of the closed and boundary problems respectively such that

$$\lim_{l\to\infty}\varphi_{j}\left(\varepsilon_{l}\right)=\varphi_{j}\quad\left(j=1,2,...\right).$$

(3) When $l_0 > 1$, we have a subsequence $\{l'\} \subset \{l\}$ and numbers $\alpha_{N+1},...,\alpha_{N+l_0}$ such that

$$\lim_{l\to\infty} d_{l,j} = \alpha_j \quad \text{for } j = N+1,...N+l_0,$$

from which we have

$$\lim_{l\to\infty} \varphi_{N+1}\left(\varepsilon_l\right) = \sum_{j=N+1}^{N+l_0} \alpha_j \varphi_j.$$

 $\Delta_{p} \varphi_{j} + \lambda_{N} |\varphi_{j}|^{p-2} \varphi_{j} = 0$ for all $j = N,...,N + l_{0}$, and $\sum (\alpha_{j})^{2} = 1$. For the orthogonal set of p-eigenfunctions

$$\{\varphi_1,...\varphi_N,\sum_{j=N+1}^{N+l_0}\alpha_j\varphi_j\},$$

the induction (N+1) is true.

(4) We have for each j = 1,2,... a sequence $\varepsilon_l \to 0$ such that $\lambda_{j,p}$ (ε_l) $\to \lambda_{j,p}$ as $l \to \infty$.

References

- [1] G. B. Li and H.S. Zhou, Multiple solutions to p—Laplacian problems with asymtotic nonlinearity as $u^{\rho-1}$ at infinity, J. London Math. Soc (2) 65, 123-138 (2002).
- [2] P. Drábek and S.B. Robinson, On the generalization of the Courant nodal domain theorem, J. differential Equations 181, 58-71 (2002).
- [3] J. P. Garcia Azorero and I. Peral Alonso, Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues, Commun. Partial Differential Equations 12, 1389-1430 (1987).
- [4] H.Takeuchi, Convergence of the first eigenvalue of the p-Laplacian, Bull. Shikoku Univ. (B), 25-28 (2002).

Faculty of Management and Information Science Shikoku University, Ojin-cho, Tokushima, 771-1192, Japan

(竹内 博:四国大学 計算機科学研究室)