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The phase shift induced by a single atom in free space
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In this article we theoretically study the phase shift a single atom imprints onto a coherent state light beam in free space. The calculations
are performed in a semiclassical framework. The key parameters governing the interaction and thus the measurable phase shift are the
solid angle from which the light is focused onto the atom and the overlap of the incident radiation with the atomic dipole radiation pattern.
The analysis includes saturation effects and discusses the associated Kerr-type non-linearity of a single atom.
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1 INTRODUCTION

The interaction of light and single atoms in free space has re-
ceived a considerable amount of interest over the past years,
see Ref. [1] for an overview of recent achievements in this
field. Here, the term free space is used to describe a situation
in which the atom interacts with the whole continuum of the
free-space field modes and has also the characteristic free-
space spatial emission properties. Besides other phenomena,
the phase shift imprinted by a single quantum system onto a
coherent beam has been studied in prior experiments [2]–[4].
The reported phase shifts amount to about 1◦ using a single
neutral atom [2] and 3◦ for a single molecule [3]. Phase shifts
of about 0.3◦ have been achieved recently for a single ion [4].
For the sake of simplicity, all kinds of quantum systems will
be denoted by the term ‘atom’ throughout this paper.

The maximum phase shift observed for a free-space setup is
still an order of magnitude below the values achieved with
cavity quantum electrodynamics setups [5]–[7], but a phase
shift close to the maximum possible value of 180◦ has not been
observed in either system. Dispersive interaction has also
been studied for an atomic ensemble trapped in the evanes-
cent field of a nano fibre [8]. However, the deduced phase shift
per single atom does not exceed the values measured so far in
a free-space setup.

The typical phase-shift setup in free space can be simplified
to the scheme shown in Figure 1. The incident electromag-
netic field mode is focused onto the atom by a focusing device,
e.g. a large numerical aperture lens [2]–[4] or a parabolic mir-
ror [9]. Depending on the electric field strength acting upon
the atom, the atom scatters a certain amount of dipole radia-
tion which is phase-shifted with respect to the incident field.
The phase of the scattered field is determined solely by the
detuning of the incident light from the atomic resonance. The
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FIG. 1 Basic layout of a phase shift experiment with a single atom and a coherent

beam. For further explanations see text.

scattered radiation as well as the re-diverging incident field
are both collected by the same optical element. This can be a
second lens [2, 4] or the focusing device itself. The latter is the
case e.g. in Ref. [3], where a reflective element retro-reflects the
incident radiation towards the focusing lens, or when using a
deep parabolic mirror as envisaged earlier [9, 10].

After collection, scattered and incident radiation are pro-
cessed in a phase measuring setup. This may be a Mach-
Zehnder interferometer [2], a heterodyning setup [3] or a
scheme utilizing polarization degrees of freedom [4]. As part
of the phase measuring setup the scattered and re-collimated
incident radiation are focused onto some detector where they
interfere. From this it is clear that the overall overlap of the
scattered radiation with the incident one plays a decisive role
in determining the measurable phase shift, see also Ref. [2].
Moreover, the amount of coherently scattered light deter-
mines the impact of the phase of the scattered light onto the
phase of the total field, i.e. the superposition of scattered field
and incident field.

Theoretical treatments can be found in several publications. In
Ref. [2] the central parameter governing the phase of the total
field is the so called scattering ratio, i.e. the ratio of scattered
power to incident power. This parameter includes the overlap
of the incident field with the dipole field radiated by the atom.
The scattering ratio can reach a value of two when focusing

Received June 13, 2013; Ms. accepted July 26, 2013; published August 14, 2013 ISSN 1990-2573

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by JEOS:RP - Journal of the European Optical Society Rapid publications

https://core.ac.uk/display/230265277?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.2971/jeos.2013.13052


J. Europ. Opt. Soc. Rap. Public. 8, 13052 (2013) M. Sondermann, et al.

from half solid angle [11, 12], which is the upper limit consid-
ered in Ref. [2] leading to a maximum phase shift approach-
ing 90◦ for arbitrarily small but non-zero detunings. This is in
accordance with the findings of Ref. [3] where the same max-
imum phase shift is predicted. There, a single overlap param-
eter is used to account for the focusing geometry as well as
various aspects related to the use of a molecule. Nevertheless,
phase shifts of more than 90◦ are possible. This is already ev-
ident from Eq. (26) of Ref. [13]: When considering a dipole
wave incident from full solid angle, which corresponds to a
semi-aperture angle α = π in the nomenclature of Ref. [13],
one finds a phase shift of 180◦ on resonance. The same result
is obtained when using the formulas of Ref. [2] and calculat-
ing the scattering ratio for arbitrary solid angle, including the
full solid angle case [1].

Another aspect is the influence of saturation of the atomic
transition on the achievable phase shift. This aspect has been
treated in the calculations of Ref. [3], where also a corre-
sponding measurement has been performed, as well as by
van Enk [14]. Although the latter paper is not explicitly de-
voted to the phase shift problem, the results reported here
and elsewhere can be obtained by calculating the argument
of Eq. (26) of Ref. [14], using Eq. (41) of the same reference.
There, the treatment is fully quantum-mechanical. However,
also Ref. [14] quantifies the similarity of the incident wave
with a dipole mode by using a single parameter, which is in-
convenient when modelling real experiments. The nonlinear
phase shift induced onto a pulse containing more than one
photon has been derived in Ref. [15], where perfect coupling
of atom and light field has been assumed implicitly. Conse-
quently, the influence of the key parameters discussed here
has not been treated.

In this paper, we present a discussion of the phase shift in-
duced by a single atom in free space accounting for all of
the above effects in an explicit way. Section 2 comprises the
derivation of a formula for the phase shift, followed by the
treatment of some examples in Section 3. Finally, in Section 4
the inclusion of saturation effects is used to derive a formula
for the phase shift that is reminiscent of the Kerr effect found
in other non-linear optical media.

2 DERIVATION OF THE PHASE SHIFT

We consider a two-level atom with upper level |a〉 and lower
level |b〉. It is located at the origin of the coordinate system.
The atom is illuminated by a weak classical field of frequency
ω and amplitude E0 at the place of the atom. We take E0 to
be real. Thus, the relative phase of the field at the place of
the atom is zero. Furthermore, E0 is the amplitude of the field
component parallel to the atomic dipole.

The expectation value of the positive frequency part of the
electric field which is scattered by the atom is given by [16]

〈Ê+(r, t)〉 =
ω2

0µ sin ϑ

4πε0c2r
· 〈σ̂−(t− r/c)〉 (1)

where ω0 and µ are the atomic transition frequency and the
dipole matrix element (taken to be real), respectively, ϑ is the

angle between the quantization axis and the point ~r = r ·~er
and σ̂− is the atomic lowering operator. The expectation value
of the lowering operator is given by [16] 〈σ̂−(t)〉 = ρab(t) with
ρab being the density matrix element describing the polariza-
tion of the atom.

In the steady state, we have

ρab = −i
ΩR

2
· (2ρaa − 1) · Γ/2 + i∆

∆2 + Γ2/4
(2)

with the spontaneous emission rate Γ = ω3
0µ2/(3πε0h̄c3), the

Rabi frequency ΩR = E0µ/h̄, the detuning ∆ = ω − ω0 and
the density matrix element ρaa giving the probability to find
the atom in the upper state. The steady state solution of the
latter is given by

ρaa =
Ω2

R
4∆2 + Γ2 + 2Ω2

R
(3)

which leads to

ρab =
ΩR · (iΓ− 2∆)

4∆2 + Γ2 + 2Ω2
R

. (4)

Thus, the scattered field amplitude is

Esc =
ω2

0µ sin ϑ

4πε0c2r
· ΩR · (iΓ− 2∆)

4∆2 + Γ2 + 2Ω2
R

. (5)

The phase of the scattered field is hence given by

ϕsc = arctan
(
− Γ

2∆

)
= arctan

(
2∆
Γ

)
+

π

2
. (6)

For a wave of power P incident onto the atom the field ampli-
tude parallel to the atomic dipole is given by [17]

E0 =

√
2P

λ
√

ε0c
·
√

Ω · η (7)

with λ = 2πc/ω. Ω is the effective solid angle over which
the incident field extends calculated weighting by the atomic
dipole characteristics. It has a maximum value of 8π/3. η is
the overlap of the incident field with the field emitted by the
atomic dipole, calculated only in the region covered by the
incident light. Next, we insert this expression for E0 into the
definition of the Rabi frequency, approximating ω ' ω0. Plug-
ging the result into Eq. (5) and integrating over the full solid
angle we arrive at the scattered power

Psc = P · 3
2π
·Ωη2 · 4∆2/Γ2 + 1(

4∆2/Γ2 + 1 + 3PΩη2

πh̄ω0Γ

)2 . (8)

The last term in the sum of the the denomi-
nator is the saturation parameter on resonance
s0 = 2Ω2

R/Γ2 = 3PΩη2/(πh̄ω0Γ).

For the sake of simplicity we normalize the solid angle Ω
to its maximum value, ΩN = Ω/(8π/3), which results in
s0 = 8PΩNη2/(h̄ω0Γ). Furthermore, the saturation parameter
at non-zero detuning is s = s0/(1 + 4∆2/Γ2). This leads to

Psc =
4P ·ΩNη2

(4∆2/Γ2 + 1)(1 + s)2 . (9)
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Now, we have all ingredients at hand to calculate the phase of
the field resulting from the superposition of the incident field
and the scattered field. However, one has to distinguish two
scenarios. The first one is a symmetric setup in the sense that
the re-diverging incident field is collected with optics covering
the same amount of solid angle as used for focusing. Further-
more, the spatial radiation pattern of the incident light after
re-collimation is identical to the one before focusing. This sce-
nario is the one occurring in Refs. [2]–[4]. In an asymmetric
setup, the optics used for collection/re-collimation may cover
a different fraction of the solid angle than the one used for
focusing, as also treated e.g. in Ref. [11] for the extinction of
a coherent beam. Another example for an asymmetric setup
is the usage of different types of optics for focusing and col-
lection, respectively [18, 19]. Also every finite size parabolic
mirror constitutes an asymmetric setup as outlined in more
detail below.

2.1 Symmetric case

First, we have to account for the fact that only the part of the
scattered field emitted into the solid angle cone of the trans-
mitted incident field has to be considered. The power of this
fraction is

PΩN = Psc ·ΩN =
4P ·ΩN

2η2

(4∆2/Γ2 + 1)(1 + s)2 . (10)

The amplitude of the corresponding field mode is
AΩN ∼

√
PΩN . Taking the phase of the scattered field

into account yields EΩN = AΩN · e
iϕsc . Furthermore, we have

Ein = Ain ∼
√

P. We also have to account for the Gouy phase
shift of π/2 that the transmitted wave experiences while
re-diverging from the location of the atom [2, 3, 11, 20]. We

do this by ϕsc → arctan
(

2∆
Γ

)
+ π. Furthermore, only the

part of the scattered wave that overlaps with the transmitted
incident wave can interfere with it. Moreover, only the
coherent part of the scattered light will interfere with the
incident light [21]. The coherently scattered power fraction is
given by 1/(1 + s) [22]. We take this into account by writing

EΩN → EΩN = EΩN · η · (1 + s)−1/2 . (11)

The phase of the coherent superposition of incident and scat-

tered field can then be expressed as φ = arg(
Ein+EΩN

Ein
) [2]. This

leads to

φ = arg

(
1 +

2ΩNη2

(1 + s)3/2
√

1 + 4∆2/Γ2
· eiϕsc

)
. (12)

With sin ϕsc = −2∆/Γ/
√

4∆2/Γ2 + 1 and cos ϕsc =

−1/
√

4∆2/Γ2 + 1 we finally arrive at

φ = arg
[

1− 2ΩNη2 1 + i · 2∆/Γ
(1 + s)3/2(1 + 4∆2/Γ2)

]
. (13)

2.2 Asymmetric case

We now treat the asymmetric case. Using optics of different
aperture for focusing and re-collimation results in an dipole
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FIG. 2 Example calculations of the phase shift induced by a single atom. Solid line:

ΩN = η = 1, s0 = 0; dashed line: same but ΩN = 0.38; dotted line: ΩN = 0.94,

η = 0.98, ΩN
′ = 0.88, η′ = 0.99, p = 0.97, s0 = 0.1; dash-dotted line: same but

s0 = 10. For a description of the corresponding scenarios see text.

weighted solid angle covered by the re-collimation optics
ΩN
′ 6= ΩN. Thus Eq. (10) changes to

PΩN
′ = Psc ·ΩN

′ =
4P ·ΩNΩN

′η2

(4∆2/Γ2 + 1)(1 + s)2 (14)

and we write EΩN
′ = AΩN

′ · eiϕsc with AΩN
′ ∼

√
PΩN

′ . A

further consequence of such a scenario is that the overlap pa-
rameter η, calculated only for the part of the solid angle used
for focusing, may change for the re-collimation optics. Hence,
for the part of the scattered light interfering with the incident
light we have

EΩN
′ = EΩN

′ · η′ · (1 + s)−1/2 . (15)

Last but not least, the case ΩN
′ < ΩN induces a power loss to

the re-collimated incident beam. We account for this by intro-
ducing the parameter p with 0 ≤ p ≤ 1. When calculating the

arg()-function, we now write φ = arg(
√

pEin+EΩN
′

√
pEin

).

With these modifications we arrive at the phase shift for the
asymmetric, i.e. general case:

φ =

arg

[
1− 2

√
ΩNΩN

′ηη′
1 + i · 2∆/Γ

√
p(1 + s)3/2(1 + 4∆2/Γ2)

]
. (16)

3 EXAMPLES

The results of some example calculations are given in Fig-
ure 2, starting the discussion with the symmetric case. Since
the phase shift just changes sign when the detuning does, only
values for ∆/Γ ≤ 0 are plotted. The solid line depicts the case
that results in the maximum possible phase shift at any de-
tuning: focusing from full solid angle with a dipolar radiation
pattern and a negligible saturation parameter.

The dashed line depicts the case when focusing from 38% of
the solid angle weighted with the radiation pattern of a linear
dipole oriented perpendicular to the optical axis. The solid an-
gle fraction corresponds to the one covered by a microscope
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objective with a numerical aperture of NA=0.95. Again, we
assume perfect mode overlap and negligible saturation.

Next, we treat an example for the asymmetric case. The dot-
ted line corresponds to the experimental setup described in
Refs. [9, 23] and a low but non-negligible saturation parame-
ter. The setup consists of a parabolic mirror covering almost
the entire solid angle, described by a parameter ΩN = 0.94.
As incident light field a radially polarized doughnut mode
is considered. Such a mode is expected to couple efficiently
to an atom with a linear dipole transition located at the mir-
ror’s focus. A doughnut mode with an overlap parameter of
η = 0.98 has been achieved recently in experiments [23]. The
dash-dotted line shows the phase shift for the same setup and
strong saturation of the atom.

However, using a parabolic mirror brings some intricate de-
tails that necessitate the use of Eq. (16). Any ray propagating
along the optical axis of the parabola which enters the mir-
ror at a distance d to the optical axis leaves the mirror at a
distance d′ = 4 f 2/d with f the focal length of the parabolic
mirror [24]. This has the following consequences: For a finite
parabolic mirror, the change d → d′ entails that rays enter-
ing the mirror close to the optical axis do not hit the parabolic
surface a second time and are not re-collimated. This results
in a smaller effective solid angle for the re-collimated incident
light ΩN

′ < ΩN and a re-collimated power-fraction p < 1.
Furthermore, a parabolic mirror reshapes the radiation pat-
tern of the incident beam. That is, after re-collimation by the
parabolic mirror the transmitted incident beam has another
overlap η′ 6= η with the dipole mode than upon focusing onto
the ion. In the present example, we account for all these effects
by setting ΩN

′ = 0.88, η′ = 0.99, and p = 0.97.

Performing the calculations for the same setup using Eq. (13)
for the symmetric case, i.e. setting ΩN

′ = ΩN, η′ = η and
p = 1, leads to larger phase shifts. But the deviations are so
small, on the order of 1.5%, that Eq. (13) will be used in the re-
mainder of this paper for the sake of simplicity. Nevertheless,
one can construct realistic examples in which the deviation is
more pronounced.

In what follows, we examine the phase shift close to resonance
in more detail. For arbitrary η and ΩN the phase shift on res-
onance is determined by the sign of the real part of the argu-
ment of the arg-function in Eq. (13):

ϕ∆=0 =

{
π , if 2ΩNη2 > (1 + s0)

3/2

0 , else
(17)

In other words, the solid angle fraction must be larger than
(1+ s0)

3/2/(2η2) for observing a non-zero phase shift on reso-
nance: Illumination has to occur from more than half the solid
angle (see also Ref. [1]). However, even for ΩN > 1/2 a low η

or a large saturation parameter may result in zero phase shift.
Figure 3 illustrates this discussion in a phase space picture.

The change of the phase shift at ∆ = 0 from π to zero occurs
in an abrupt manner, i.e. the phase shift depends nonlinearly
on the parameter combination ΩNη2/(1+ s0)

3/2. This is illus-
trated in Figure 4 in more detail for detunings |∆| � Γ. The
first example (solid line and dashed line) with the change of
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FIG. 3 Illustration of the phase shift on resonance (∆ = 0) in a phase space picture.
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FIG. 4 Phase shift close to zero detuning. Solid line: s0 = 0, η = 1,

ΩN = 0.5 + 10−4; dashed line: same but ΩN = 0.5− 10−4; dotted line:

ΩN = η = 1, s0 = 3
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10−5.

ΩN from slightly below to slightly above half solid angle may
seem unrealistic. However, this case is realizable by using a
parabolic mirror covering almost the entire solid angle and
restricting the solid angle cone of the incident light to a frac-
tion of the mirror surface corresponding to the values given
above.

We conclude this section noting that it is obvious from
Eqs. (17) and Figure 3 that the overall phase shift is not
determined by the atom but rather by the properties of
the incident field and the set-up. No matter how large the
coupling efficiency is in dependence of η and ΩN [1, 23],
the phase of the light scattered coherently by the atom is
fixed for a given detuning. This phase lag has been examined
recently by a background subtraction technique [19] in an
experimental regime of low coupling efficiency, i.e. exciting
the atom from small solid angle. The better the coupling
efficiency and the lower the saturation parameter, the larger
is the amount of light scattered coherently into the mode of
the incident field. This amount determines the phase of the
superposition of incident and scattered field.

4 INTENSITY DEPENDENT PHASE SHIFT

The examples presented in Figures 2 and 4 already demon-
strated that the phase shift induced by a single atom is
strongly influenced by the intensity of the light driving the
atom. In what follows, the phase shift derived above is put
into a shape reminiscent of the typical formulas used to de-
scribe the optical Kerr effect. One way of describing this effect

13052- 4



J. Europ. Opt. Soc. Rap. Public. 8, 13052 (2013) M. Sondermann, et al.

∆/Γ=-10

 4.4

 4.6

 4.8

 5

 5.2

 0  0.05  0.1

∆/Γ=-50

saturation parameter s

p
h

a
s
e

 s
h

if
t 

φ
 (

d
e

g
re

e
)

 0.88

 0.92

 0.96

 1

 1.04

 0  0.05  0.1

FIG. 5 Illustration of the single atom Kerr effect for ΩN = 0.94, η = 0.98, ∆/Γ = −10

(left) and ∆/Γ = −50 (right). The phase shift is calculated using the full model via

Eq. (13) (solid lines) and via Eq. (21) approximating the atom as a pure Kerr-type

medium (dashed lines).

is to write the refractive index as [25]–[27]

n = n0 + n2 · I , (18)

where n0 is the weak-field refractive index and n2 describes
the change of refractive index due to the intensity I of the op-
tical field. Corresponding more detailed expressions can be
found for an ensemble of two-level atoms in free space e.g. in
Ref. [27] and e.g. in Ref. [28] for an an atomic ensemble in a
cavity. To arrive at a similar expression in the scenario treated
here requires several approximations.

In order to have an interaction that is predominantly dis-
persive, we assume a saturation parameter s � 1. In other
words, the atom is not excited on average and the light is
scattered coherently by the atom. The condition of low sat-
uration is met easiest at large detunings. Therefore, we as-
sume |∆| � Γ. This includes the case |∆| ≥ Γ/2 for which
one finds that (1+ s)3/2(1+ 4∆2/Γ2)− 2ΩNη2 ≥ 0 and hence
|ϕ| ≤ π/2 ∀ ΩN, η, s. In other words, we can rewrite Eq. (13)
as

ϕ = arctan
(
− 4ΩNη2∆/Γ
(1 + s)3/2(1 + 4∆2/Γ2)− 2ΩNη2

)
. (19)

Furthermore, the large detuning approximation allows to re-
place the arctan function by its argument yielding

ϕ ≈ − 4ΩNη2∆/Γ
(1 + s)3/2(1 + 4∆2/Γ2)− 2ΩNη2 . (20)

A Taylor expansion of the above equation around s = 0 finally
yields a Kerr-type expression reading

ϕ = ϕ0 −
3
2

ϕ0 · s ,

ϕ0 = − 4ΩNη2∆/Γ
1 + 4∆2/Γ2 − 2ΩNη2 . (21)

Figure 5 compares the above result to the full model of
Eq. (13). As to be expected, the quality of the approximate ex-
pression of Eq. (21) improves with increasing detuning and
decreasing saturation parameters.

5 CONCLUDING REMARKS

As outlined above, the phase shift induced on the exciting
field by a single atom in free space is maximized by coupling
the incident light to the atom from full solid angle. In this case,
the phase shifts observed for large detunings are still of con-
siderable magnitude. As evident from Figure 5, the phase shift
observed at 50 linewidths detuning is on the order of the ones
reported for low detuning in previous experiments using free-
space setups. This suggests that a single atom in free space
might be a good candidate for the realization of a quantum-
repeater scheme based on dispersive light-matter interaction.
Such a scheme has been proposed by van Loock et al. for cav-
ity based setups [29]. When realizing such a system one has
to balance all parameters carefully. For example, the induced
phase shift should exceed the uncertainty of the phase of the
incident coherent state, which is given by the inverse of the
square root of the state’s amplitude if the latter is sufficiently
large. Thus, on might be tempted to improve the performance
by using coherent states of larger amplitude. But this in turn
results in a larger saturation parameter and a reduction of the
imprinted phase shift, unless the temporal width of the inci-
dent pulse is increased as well to maintain constant incident
power. On the other hand, the pulse duration affects the suc-
cess rate of the repeater scheme. This brief discussion high-
lights that a detailed assessment of all parameters using a free-
space setup is desirable. However, this is beyond the scope of
the present paper and subject of future work.
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D. Kielpinski, “Controllable optical phase shift over one radian
from a single isolated atom,” Phys. Rev. Lett. 110, 113605 (2013).

[20] T. Tyc, “Gouy phase for full-aperture spherical and cylindrical
waves,” Opt. Lett. 37, 924–926 (2012).

[21] G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar,
“Efficient coupling of photons to a single molecule and the obser-
vation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).

[22] D. Meschede, Optik, Licht und Laser (Teubner, Wiesbaden, 2005).

[23] A. Golla, B. Chalopin, M. Bader, I. Harder, K. Mantel, R. Maiwald,
N. Lindlein, M. Sondermann, and G. Leuchs, “Generation of a wave
packet tailored to efficient free space excitation of a single atom,”
Eur. Phys. J. D 66, 190 (2012).

[24] G. Leuchs, K. Mantel, A. Berger, H. Konermann, M. Sondermann,
U. Peschel, N. Lindlein, and J. Schwider, “Interferometric null test
of a deep parabolic reflector generating a Hertzian dipole field,”
Appl. Optics 47, 5570–5584 (2008).

[25] P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-
dependent changes in the refractive index of liquids,” Phys. Rev.
Lett. 12, 507–509 (1964).

[26] R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical
beams,” Phys. Rev. Lett. 13, 479–482 (1964).

[27] R. W. Boyd, Nonlinear optics (Academic Press, San Diego, 1992).

[28] L. Hilico, C. Fabre, S. Reynaud, and E. Giacobino, “Linear input-
output method for quantum fluctuations in optical bistability with
two-level atoms,” Phys. Rev. A 46, 4397–4405 (1992).

[29] P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto,
W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using
bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).

13052- 6


	INTRODUCTION
	DERIVATION OF THE PHASE SHIFT
	Symmetric case
	Asymmetric case

	EXAMPLES
	INTENSITY DEPENDENT PHASE SHIFT
	CONCLUDING REMARKS
	ACKNOWLEDGEMENTS

