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1 INTRODUCTION

Optical solitons play a major role in large amount of data com-
munication, through optical fibers, the veins of modern com-
munication. Therefore, this is one of the major research topics
in Nonlinear Optics. There has been a large amount of success
in this area of research during the past few decades. Thus, to-
day optical solitons are a reality in many areas across the globe
including many continents, especially in Europe and Oceania.

The governing equation is the Nonlinear Schrödinger’s equa-
tion (NLSE), that governs the propagation of solitons through
optical fibers, through trans-continental and trans-oceanic dis-
tances [1]–[10]. There are many mathematical features to this
equation that interests the Nonlinear Optics community. One
such feature is the integrability aspect of this equation, espe-
cially in presence of perturbation terms. While there are many
numerical solutions available to this equation, it is always nice
and convenient to have an analytical solution to the perturbed
NLSE. This paper will study the integrability of the NLSE in
presence of perturbation terms.

The NLSE falls under the category of nonlinear evolution
equations in the mathematical world. There are various
techniques that have been developed in the past few decades
to carry out the integration of these equations. Some of
these techniques are Hirota’s bilinear method, Lie symme-
try method, F expansion method, G′/G method, Riccati’s
equation method, soliton ansatz method and many others
that even lead to multiple solutions [10]. In this paper, one
such method will be used to carry out the integration of the

perturbed NLSE. This is called He’s variational principle
(HVP) [1, 5, 9].

2 MATHEMATICAL ANALYSIS

The dimensionless form of the NLSE in a non-Kerr law media
is given by [4]–[10]

iqt + aqxx + bF
(
|q|2
)

q = 0, (1)

where x and t represents the spatial and temporal variables
respectively. The first term is the evolution term, The second
term is the group velocity dispersion and the third term is the
nonlinear term where the function F dictates the type of non-
linearity in question. The dependent variable q represents the
wave profile and is a complex valued function. Solitons are
the result of a delicate balance between dispersion and non-
linearity.

In Eq. (1), F is a real-valued algebraic nonlinear function and
it is necessary to have the smoothness of the complex function
F
(
|q|2
)

q : C 7→ C. Considering the complex plane C as a two-
dimensional linear space R2, the function F

(
|q|2
)

q is k times
continuously differentiable, so that [4, 5]

F
(
|q|2
)

q ∈
∞⋃

m,n=1

Ck
(
(−n, n)× (−m, m); R2

)
. (2)
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2.1 Perturbation terms

The perturbed NLSE that is going to be studied in this paper
is given by [5]

iqt + aqxx + bF
(
|q|2
)

q

= iαqx + iλ
(
|q|2m q

)
x
+ iν

(
|q|2m

)
x

q (3)

where the perturbation terms are located on the right-hand
side of the equation. Here, in Eq. (3), α is the coefficient of
inter-modal dispersion, λ is the coefficient of self-steepening
term for short pulses (typically ≤ 100 femto seconds), ν is
the higher order dispersion coefficient [4]. The parameter m
on two of the terms in the right-hand side of Eq. (3) makes
these terms fully nonlinear. The special case when m = 1 was
studied earlier in 2009 [4]. This perturbed NLSE is going to be
studied via HVP, in this paper, for Kerr and power law non-
linearity, with fully nonlinear perturbation terms.

3 HE’S VARIATIONAL PRINCIPLE

In this section, HVP will be introduced. Subsequently, it will
be applied to carry out the integration of Eq. (3) for Kerr and
power laws of nonlinearity for F in Eq. (1).

The starting point is the solitary wave ansatz that is given by

q(x, t) = g(s)eiφ, (4)

where P = g(s) represents the shape of the pulse and

s = x− vt, (5)

φ = −κx + ωt + θ. (6)

Here, v is the velocity of the soliton, κ is the frequency while ω

is the soliton wave number and θ is the phase constant. Substi-
tuting this ansatz into Eq. (3) and decomposing into real and
imaginary parts yields the following pair of relations, respec-
tively

−
(

ω + aκ2
)

g + ag′′ + bgF
(

g2
)

= ακg + λκg2m+1 (7)

and

v + α + 2aκ + {(2m + 1)λ + 2mν} g2m = 0 (8)

where the notations g′ = dg/ds and g′′ = d2g/ds2 are used.
Now, Eq. (8) yields

g(s) =
[
− v + α + 2aκ

(2m + 1)λ + 2mν

] 1
2m

(9)

From Eq. (9), it is important to note that solitons will exist for

(v + α + 2aκ) {(2m + 1)λ + 2mν} < 0 (10)

This is the expression for the function g(s) in terms of the soli-
ton velocity (v).

Now, multiplying both sides of the real part equation, given
by Eq. (7), by g′ and integrating yields

a
(

g′
)2 −

(
ω + ακ + aκ2

)
g2 +

λκg2m+2

m + 1

+ 2b
∫

gg′F
(

g2
)

dg = K (11)

where K is a constant. The stationary integral J is then defined
as

J =
∫ ∞

−∞
Kds (12)

which, from Eq. (11), is therefore given by

J =
∫ ∞

−∞

[
a
(

dg
ds

)2
−
(

ω + ακ + aκ2
)

g2

+
λκg2m+2

m + 1
− 2b

∫
gg′F

(
g2
)

dg
]

ds (13)

Finally, the 1-soliton solution ansatz, given by

g(s) = A f
[

1
cosh(Bs)

]
, (14)

is substituted into Eq. (13). Here, in Eq. (14), the parameters A
and B represent the amplitude and inverse width of the soli-
ton respectively, and the functional f depends on whether the
nonlinear function F is Kerr or power. He’s semi-inverse vari-
ational principle states that the parameters A and B are deter-
mined from the solution of the equations [1, 5, 9]

∂J
∂A

= 0 (15)

and

∂J
∂B

= 0. (16)

The parameters A and B will now be determined for the fol-
lowing cases of nonlinearity in the following subsections.

3.1 Kerr law

The Kerr law of nonlinearity originates from the fact that a
light wave in an optical fiber faces nonlinear responses from
non-harmonic motion of electrons bound in molecules, caused
by an external electric field. Even though the nonlinear re-
sponses are extremely weak, their effects appear in various
ways over long distance of propagation that is measured in
terms of light wavelength. The origin of nonlinear response is
related to the non-harmonic motion of bound electrons under
the influence of an applied field. As a result the induced po-
larization is not linear in the electric field, but involves higher
order terms in electric field amplitude [4, 5].

In the case of Kerr law nonlinearity where F(u) = u, the per-
turbed NLSE is given by

iqt + aqxx + b|q|2q = iαqx + iλ
(
|q|2m q

)
x
+ iν

(
|q|2m

)
x

q (17)

and therefore Eq. (7) reduces to

ag′′ + bg3 −
(

ω + aκ2
)

g + λκg2m+1 = 0 (18)

Thus, the stationary integral, from Eq. (17), is given by

J =
∫ ∞

−∞

[
a
(

dg
ds

)2
−
(

ω + ακ + aκ2
)

g2

+
λκg2m+2

m + 1
− b

2
g4
]

ds (19)
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For Kerr law nonlinearity, the appropriate form of the soliton
is given by

g(s) =
A

cosh(Bs)
(20)

and so J, from Eq. (19), simplifies to

J =
2a
3

A2B +
2bA4

3B
− 2

(
ω + ακ + aκ2

) A2

B

=
2mλκ

(m + 1)(2m + 1)

Γ (m) Γ
(

1
2

)
Γ
(

m + 1
2

) A2m+2

B
(21)

Equations (15) and (16) give the following pair of algebraic
equations

a
3

AB2 +
2bA3

3
−
(

ω + ακ + aκ2
)

A

+
mλκ

2m + 1

Γ (m) Γ
(

1
2

)
Γ
(

m + 1
2

) A2m+1 = 0 (22)

a
3

AB2 − bA3

3
−
(

ω + ακ + aκ2
)

A

− mλκ

(m + 1)(2m + 1)

Γ (m) Γ
(

1
2

)
Γ
(

m + 1
2

) A2m+1 = 0 (23)

From Eqs. (22) and (23), the equation for the soliton amplitude
A is given by

bA2 +
m(m + 2)λκ

(m + 1)(2m + 1)

Γ (m) Γ
(

1
2

)
Γ
(

m + 1
2

) A2m

= 2
(

ω + ακ + aκ2
)

(24)

while the inverse width B is obtained from

B =

[
bA2

a
− 3

a

(
ω + ακ + aκ2

)

+
3mλκ

a(m + 1)(2m + 1)

Γ (m) Γ
(

1
2

)
Γ
(

m + 1
2

) A2m

] 1
2

(25)

The special case for m = 1 with α = 0 was solved in 2009 [5].
From Eq. (25), it is possible to observe that it is necessary to
have

a > 0 (26)

and

m > 0 (27)

for the solitons to exist.

3.2 Power law

This law of nonlinearity arises in nonlinear plasmas that
solves the problem of small K-condensation in weak turbu-
lence theory. It also arises in the context of nonlinear optics.
Physically, various materials, including semiconductors, ex-
hibit power law nonlinearities [4, 5].

For the case of power law nonlinearity, where F(u) = un, the
perturbed NLSE is given by

iqt + aqxx + b|q|2nq = iαqx + iλ
(
|q|2m q

)
x
+ iν

(
|q|2m

)
x

q (28)

In Eq. (28), the parameter n dictates the power law parameter.
The special case with n = 1 reduces to Kerr law nonlinearity.
For power law nonlinearity, it is necessary to have 0 < n < 2
to prevent wave collapse [1, 4, 5] and, in particular, n 6= 2 to
avoid self-focusing singularity [4]. Thus, Eq. (7) reduces to

ag′′ + bg2n+1 −
(

ω + aκ2
)

g + λκg2m+1 = 0 (29)

In this case, therefore, the stationary integral Eq. (13) is given
by

J =
∫ ∞

−∞

[
a
(

dg
ds

)2
−
(

ω + ακ + aκ2
)

g2

− bg2n+2

n + 1
+

λκg2m+2

m + 1

]
ds (30)

For power law nonlinearity, the hypothesis

g(s) =
A

cosh
1
n (Bs)

(31)

simplifies J to

J =
{

aA2B
n(n + 2)

−
(

ω + ακ + aκ2
) A2

B

+
2bA2n+2

(n + 1)(n + 2)B

} Γ
(

1
n

)
Γ
(

1
2

)
Γ
(

1
n + 1

2

)
+

λκ

m + 1

Γ
(

m+1
n

)
Γ
(

1
2

)
Γ
(

m+1
n + 1

2

) A2m+2

B
(32)

By HVP, the two equations from Eqs. (15) and (16) are{
aB2

n(n + 2)
−
(

ω + ακ + aκ2
)

+
2bA2n

n + 2

}

+ λκA2m
Γ
(

1
n + 1

2

)
Γ
(

1
n

) Γ
(

1
n + m

n

)
Γ
(

1
n + 1

2 + m
n

) = 0 (33)

and{
aB2

n(n + 2)
−
(

ω + ακ + aκ2
)

+
2bA2n

(n + 1)(n + 2)

}

+
λκA2m

m + 1

Γ
(

1
n + 1

2

)
Γ
(

1
n

) Γ
(

1
n + m

n

)
Γ
(

1
n + 1

2 + m
n

) = 0 (34)

respectively. From Eqs (33) and (34) eliminating B gives

(m + 2)λκA2m

2(m + 1)

Γ
(

1
n + 1

2

)
Γ
(

1
n

) Γ
(

1
n + m

n

)
Γ
(

1
n + 1

2 + m
n

) +
bA2n

n + 1

= ω + ακ + aκ2 (35)

which is the algebraic equation for obtaining amplitude A
with power law nonlinearity. After obtaining the amplitude
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A from Eq. (35), the inverse width B can be obtained from

B =

[
n(n + 2)

a

(
ω + ακ + aκ2

)
− 2nbA2n

a

− n(n + 2)λκA2m

a

Γ
(

1
n + 1

2

)
Γ
(

1
n

) Γ
(

1
n + m

n

)
Γ
(

1
n + 1

2 + m
n

)] 1
2

(36)

which is obtained by eliminating the amplitude A between
Eqs. (33) and (34). From Eq. (36), it is again possible to con-
clude that solitons will exist provided the same condition, as
seen Eq. (26), is valid.

4 CONCLUSIONS

In this paper, the He’s semi-inverse variational principle is
used to carry out the integration of the NLSE with a few
Hamiltonian perturbation terms and the Raman scattering
term. Both the Kerr law as well as the power law nonlin-
earities are considered. After obtaining the 1-soliton solutions
with these two kind of nonlinearities, the parameter domains
are also identified for the soliton solution to exist. These re-
sults are from purely analytical studies and thus a closed form
soliton solution has been obtained.
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