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Surface characterization by structure function analysis
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The structure function is a tool for characterizing technical surfaces which exhibits a number of advantages over Fourier-based analysis
methods. So it is optimally suited for analyzing the height distributions of surfaces measured by full-field non-contacting methods. After the
definition of line- and area-structure function and offering effective procedures for their calculation this tutorial paper presents examples
using simulated and measured data of machined surfaces as well as optical components. Comparisons with the results of Fourier-based
evaluations clearly prove the advantages of structure function analysis.
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1 INTRODUCTION
The last decades have seen a rapid development of optical
noncontacting metrology systems for measuring surface con-
tours of technical components with high precision in the mi-
croscopic as well as in the macroscopic realms [1, 2]. For
microscopic components the confocal scanning methods are
state of the art [3]. For macroscopic objects most methods are
based on the triangulation principle such as photogrammet-
ric methods [4]. If patterns are projected, these may be points,
as in the Shack-Hartmann methods [5], lines, grids, or even
complex synthesized patterns in reverse engineering appli-
cations [6]. Fringes are projected onto the surface in Fourier-
transform profilometry [7] or moire-techniques [8]. Specularly
reflecting surfaces are measured by deflectometry [9, 10]. In-
terferometric methods like holographic contouring also find
numerous application fields [11]. The resolution achievable
by these methods can be further improved by using multi-
ple redundant images employing phase-shifting [12] or Gray-
code [13].

A common problem of all these metrologic methods is the
handling of the raw data [5]. Normally the measured surface
data are delivered as a point cloud which is stored in a suitable
format in computer. But the utilization of the data for quality
assurance purposes demands a representation of the data in a
form appropriate for the problem to be solved. The questions
to be answered by evaluation of the raw data can be manifold:
In quality control one may be interested in the existence of
defects such as holes, dents, bumps, scratches, or other flaws
which normally manifest as localized high spatial frequency
variations of the surface heights. On the other hand there may
be interest in global criteria like e. g. periodicities, waviness,
lay, or roughness.

Often Fourier-transform based methods are the first

choice [14, 15]. So a few Fourier descriptors can indicate
the existence of defects, or the power spectral density can
describe global parameters of the measured surface data.
Nevertheless the Fourier-approach exhibits severe draw-
backs: Discontinuities at the edges of the sampling interval
in 1D or 2D spread power all across the spectrum, an effect
which is minimized by the application of window functions,
like the well-known Hanning window. But this has the
undesirable consequence that the measured samples enter the
calculation of the spectra with unequal weights. Furthermore
the 2D Fourier-transform assumes rectangular fields. In prac-
tice we often have arbitrary aperture shapes, so we can use
zero-padding or choose a sub-aperture and assume it being
sufficiently representative of the true surface characteristics.
As a result we insert extrapolated data not really measured or
discard measured values.

If the intention of our measurements is defect detection, a
wavelet approach [16] was suggested as an alternative. If on
the other hand one is more interested in the global criteria, the
structure function is a suitable tool and will be presented in
more detail in the following.

2 DEFINITION OF STRUCTURE FUNCTION

The structure function originally was introduced by Kol-
mogorov in 1941 for analysis of statistical problems asso-
ciated with turbulence theory [17, 18]. In the meantime
it found numerous applications in diverse fields: It was
used for the characterization of technical surfaces [19],
of optical surfaces [20, 21], of velocity fields in turbulent
flows [17, 18, 22], and of phase and frequency instabilities in
frequency sources [23], as well as for time series analysis in
astronomy [24, 25], to name just a few.
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Let f (~x) be the measured data, which may be the height pro-
file of a rough surface [19] or an optical surface [20, 21], a flow
velocity [22], optical flux [25], optical phase differences [26] or
similar data sets. Generally f (~x) can be treated as a random
process. Then the structure function of order d is defined by
Sd(~x′−~x) = 〈(δ f (~x, ~x′))d〉with δ f (~x, ~x′) = | f (~x+ ~x′)− f (~x)|,
see [22]. Most important and the only one used in the follow-
ing is the structure function of order 2, so the subscript d will
be omitted: S = Sd.

In detail, we have in one dimension the so called line structure
function

S(x′) =
∫ ∞

−∞
[ f (x)− f (x + x′)]2dx. (1)

If the ~x = (x, y) is two-dimensional, as e. g. the coordinates of
a surface with heights f (x, y), then the 2D structure function,
also called area structure function, is

S(x′, y′) =
∫ ∞

−∞

∫ ∞

−∞
[ f (x, y)− f (x + x′, y + y′)]2 dx dy. (2)

To allow a meaningful comparison of the structure function
in various spatial frequency bands, the normalized structure
function NSF(x) can be introduced [25]

NSF{ f }(x′) =
S(x′)

σ2 . (3)

There are applications where the 1D line structure function
suffices for evaluation of 2D data sets. Then each pixel pair
is not represented by the pair of distances in each coordi-
nate direction (x2 − x1, y2 − y1) but only by the distance√
(x2 − x1)2 + (y2 − y1)2. This already allows separation into

characteristics like figure, roughness, and mid-spatial fre-
quencies [21].

As an example we analyse a Zernike polynomial Z2
6(ρ, φ), Fig-

ure 1(a). Several point pairs are indicated. They correspond
to points along the line structure function, see Figure 1(b), as
well as to points in the area structure function, see Figure 1(c),
where due to redundancy only two quadrants are displayed.
The colours in Figure 1 represent pixel differences: (10, 10)
in 2D corresponding to 14.14 in 1D (red); (−8, 10) and 12.81
(green); (0, 60) and 60 (violet); (27, 0) and 27 (orange); (−4, 4)
and 5.66 (dark blue); (−14, 14) and 19.80 (yellow).

3 CALCULATION OF THE STRUCTURE
FUNCTION

In practice we are dealing with discrete measured data
{ fi, i = 1, . . . , I}. Then the structure function is calculated as

S(n) =
1

I − |n|

min{I,I−n}

∑
i=max{1,1−n}

( fi − fi+n)
2

−N ≤ n ≤ N (4)

with N < I. Due to the squaring we have an even structure
function S(−n) = S(n) for all n and also S(0) = 0, so it is not
necessary to calculate redundant information and it suffices to
determine the structure function only for positive differences
n

S(n) =
1

I − n

I−n

∑
i=1

( fi − fi+n)
2 n = 1, . . . , N (5)
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FIG. 1 a) Zernike polynomial Z2
6(ρ, φ), b) line structure function, c) area structure

function. Abscissa values: pixel coordinates in a), pixel differences in b) and c). Colours

explained in text.

In two dimensions with { fi,j, i = 1, . . . , I, j = 1, . . . , J} we cal-
culate the finite sum

S(n, m) =
1

I − |n|
1

J − |m|

×
min{I,I−n}

∑
i=max{1,1−n}

min{J,J−m}

∑
j=max{1,1−m}

( fi+n,j+m − fi,j)
2

−N ≤ n ≤ N
−M ≤ m ≤ M

(6)

with N < I and M < J. This area structure function exhibits
point symmetry S(−n, m) = S(n,−m) for all n and m and
also S(0, 0) = 0 so it suffices to calculate the area structure
function in two quadrants. The parameters N and M are in the
same range as the I and J and theoretically can be chosen up
to N = I − 1, M = J − 1. But then for large n or m we average
over only a few squared differences, so the determined values
become unreliable due to noise and roughness. Therefore a
choice of N and M as at most 80 % to 90 % of the magnitude
of I and J is recommended.

It has to be mentioned that the calculation of S(n, m) is not
separable into a product of two sums, therefore the compu-
tational effort in the two-dimensional case is proportional to
I2 J2 multiplications. In the case of 2D data sets to be ana-
lyzed with data value numbers in the range I × J = 103 × 103

this would lead to a number of floating-point multiplications
proportional to 1012/4. A significantly lower number of mul-
tiplications is required by the following algorithm that also
works for arbitrarily shaped apertures. Let I = max{i} and
J = max{j} be the maximum numbers of points in i- and j-
direction and assume a rectangle of I × J measured values,
that contains all actually measured points. Then the algorithm
works as follows:

• The rectangle of the I × J measured pixels is divided into
I′ × J′ subareas, each of the same of length about 10× 10
measured values.
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• For each of these subareas we initialize its sum by zero
and also its count by zero.

• Using a random number generator we select a random
pair of points. If one of these points falls outside the aper-
ture, the random selection is repeated.

• The distance vector~r between these two points is calcu-
lated.

• We calculate the squared difference of the measured val-
ues at the two points.

• The subarea containing vector ~r gets its sum increased
by the just calculated squared difference and its count in-
creased by one.

• The steps beginning with the random choice of a point
are repeated about 105 to 106 times.

• Finally for each subarea its cumulated sum is divided by
its cumulated count.

This algorithm determines an area structure function which
approximates the averaged exact area structure function,
where averaging is performed over rectangles of size
(I/I′) × (J/J′). Due to the random choice of point pairs,
small differences will occur more frequently. Thus the ap-
proximation is highly reliable for differences close to zero, but
becomes noisy when approaching large differences, requiring
both randomly chosen points to be positioned at opposite
ends in the measurement aperture, see results in Section 5.
The big advantage is the significant decrease of the number
of multiplications which is of the order of 103 to 104, see
Section 5.

4 PROPERTIES OF THE STRUCTURE
FUNCTION

For statistically stationary processes the structure function
S(~x) of order 2 is related to the autocovariance function R(~x)
by S(~x) = 2[R(0)− R(~x)] [19]. It contains the same informa-
tion as the autocovariance function and its Fourier transform,
the power spectral density function, but offers some practi-
cal advantages: it is stable and easy to compute, it does not
impose a periodogram model on the measured surface, and
it avoids the singularity at the origin of the autocovariance
function [19]. Also the structure function can be related to the
autocorrelation function φ f f (x′): Let σ2 be the variance of the
underlying stochastic process then S(x) = 2σ2[1 − φ f f (x)],
see Appendix A. Although the structure function thus car-
ries principally the same information as the power spectral
density function, it does not have the disadvantages of the
Fourier-transform based indicators named in the Introduc-
tion. The structure function can easily deal with arbitrary
apertures and does not need any windowing. A more general
approach to the structure function is given in Appendix B.

The structure function has a minimal value of 0 at pixel dis-
tance zero, S(0) = 0. This corresponds to the maximum of the
autocorrelation function at zero, φ f f (0) = 0. The squaring in

the calculation of S2 causes the evenness of S2, so the 1D struc-
ture function S2(x′) normally is only used for positive pixel
distances x′ ≥ 0.

The advantages of the structure function approach compared
to Fourier-based methods are pointed out in the next exam-
ple, Figure 2. We assume an irregularly shaped surface which
furthermore shows a hole, Figure 2(a). In practice it does
not matter whether this hole physically exists or only repre-
sents corrupted data which are to be excluded from evalua-
tion. In Figure 2(a) bright area represents surface data points,
dark stands for no data. This results in possible and impos-
sible point pair distances. Figure 2(b) displays the first quad-
rant of the plane of point pair distances indicating possible
pairs in bright, impossible pairs in dark. E. g. for the distance
(400,100), represented in red, no valid point pair can be found
in Figure 2(a). Three point pairs with distance (400,100) are
given in Figure 2(a), none with both endpoints can be found
inside the surface. On the other hand point pair distance
(90,250) shown in green is a possible one, also three point pairs
for this distance are drawn into Figure 2(a).The simulated
measurement values describe a cosine-valued displacement
A cos( f πx) with A = 1.5, f = 0.038 and the x-coordinate
along the horizontal axis, Figure 2(c). The resulting area struc-
ture function can be seen in Figure 2(d). It reflects the periodic
nature of the displacement function in horizontal direction as
expected. Only at the margins of the allowed area can higher
fluctuations be seen. For these distances only a few pixel pairs
can be found in the measured data, so errors are not com-
pensated by averaging a high number of measured points.
For comparison purposes a Fourier based evaluation was per-
formed. The pixels outside the surface were given the value
zero to fill the full 512× 512-pixel square - the common zero
padding. The Fourier transform F(u, v) = F{ f (x, y)} of this
real distribution is calculated employing the FFT-procedure
and the power spectral density S(u, v) is derived pointwise
by S(u, v) = F(u, v)F∗(u, v). We then obtained the autocor-
relation φ f f (x, y) by applying the inverse Fourier transform
φ f f (x, y) = F−1{S(u, v)} where the x, y can be interpreted as
shifts or point pair distances. 1.0 − φ f f (x, y) is given in Fig-
ure 2(e), it should be proportional to the structure function,
Figure 2(d). For better visual comparison this distribution of
Figure 2(e) is masked by the values 1. and 0. of Figure 2(b) and
in the resulting Figure 2(f) we recognize severe differences to
Figure 2(d), which result from aliasing and zero padding in
the Fourier approach. The advantages of structure function
evaluation are therefore obvious.

5 APPLICATION OF THE STRUCTURE
FUNCTION

Figure 3 shows an example from practice, a measured height
profile of 445× 403 points. As can be seen in the gray-scale dis-
play, only values in a rectangular, inclined aperture are mea-
sured. The height-values along a single column, here arbitrar-
ily the one with index 201, are extracted, see Figure 4. Along
this line the 1D structure function is calculated with param-
eters I = 445 and N = 400, see Figure 5. This line structure
function starts with zero at the origin and has a local min-
imum at a displacement of about 175 pixels, and two local
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maxima at about 100 and about 275 pixels. The local minimum
indicates small squared differences, thus similar structures in
the gray scale image of the measured values which have a
distance of about 175 pixels. This is pointed out in Figure 6
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FIG. 4 Measured values along column 201 in Figure 3, abscissa: pixel numbers (spatial

coordinate), ordinate: height values [mm]
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FIG. 5 Line structure function along column 201 Figure 3, abscissa: pixel number dif-
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FIG. 6 Distances of different (100 and 275) and repeating (175) structures in the data

set

by the double arrow marked by 175. This value can be inter-
preted as period of the waviness of the surface. The local max-
ima indicate large squared differences corresponding to half-
numbered periods if we assume nearly harmonic functions.
The two-dimensional area structure function of the whole 2D
data file calculated by the algorithm given above is shown in
Figure 7. The whole picture of I × J = 445× 403 pixels was
subdivided into I′ × J′ = 45× 41 subareas of 10× 10 pixels,
resulting in a discrete area structure function of 90× 82 val-
ues due to positive as well as negative~r. The number of the
cumulated squared differences has been varied to a) 10000, b)
50000, c) 100000, d) 500000 randomly chosen pairs of points. If
a pair was selected with at least one of the points lying outside
the object, this pair was excluded from computation. Instead
of more than 1010 multiplications we have used fewer than
106 multiplications when calculating the area structure func-
tion shown in Figure 7(d). Nevertheless we obtain a smooth
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and meaningful approximation, at least at all point pairs not
too close to the margins. Figure 7 clearly demonstrates the de-
creasing noise when increasing the number of randomly cho-
sen pairs. The long spatial wavelength components in verti-
cal direction in the measured surface can be recognized in the
area structure function of Figure 7. The appearance of paral-
lel fringes in the area structure function gives strong evidence
that the detected waviness is a global one, it does not vary
from one column to another. There is no direct correlation be-
tween the local amplitudes of the area structure function and
the height of the waviness in the measured data. But due to
its integrating nature the structure function will detect regu-
lar patterns like lay or waviness even if these are embedded in
noise, which may be generated by surface roughness or speck-
les, if coherent light was used for measurement. Furthermore
in the interpretation of Figure 7 one has to pay attention to the
subarea size: the numbering along the axes relates to this sub-
area size. In our example we have chosen subareas of 10× 10
pixels, so the large differences at distances 100 and 275 indi-
cated in Figure 6 are reflected at subarea distances of 10 and
27.5.

The next example is from characterization of optical compo-
nents. Here usually the transmitted optical wave fronts are in-
vestigated, so we must analyse the structure of optical phase
distributions. If the exit pupil of an optical system to be tested
is circular, which is the case in most applications, then the
aberrations present in the system can be represented in terms
of Zernike polynomials. These are orthogonal and normal-
ized within a circle of unit radius [27]. Then the phase error
φA(x, y) is represented by an expansion into the Zernike poly-
nomials Zk(ρ, φ) where ρ is the radial coordinate within the
unit circle and φ is the polar angle. Each Zernike polynomial
is of the form Zm

n (ρ, φ) = Rm
n (ρ) cos(mφ) with

Rm
n (ρ)=

{
∑
(n−m)/2
k=0

(−1)k(n−k)!
k![(n+m)/2−k]![(n−m)/2−k]! : n−m even

0 : n−m odd
(7)
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FIG. 9 Measured surface height data of airplane wing section

Thus φA(ρ, φ) can be written [27]

φA(ρ, φ) =
K

∑
k=1

wkZk(ρ, φ) (8)

and the root-mean square error φA due to aberrations is

φA =

√
∞

∑
k=K+1

w2
k (9)

As He et al [21] pointed out, the residual error in φA(ρ, φ) can
be determined by subtracting the first K Zernike terms, then
this error should be analyzed by the area structure function
for detecting e. g. ripples.

Figure 8(a) shows the Zernike polynomial Z1
7(ρ, φ) and Fig-

ure 8(b) displays its area structure function. While the Zernike
polynomial Z1

7(ρ, φ) is odd in the vertical direction, its corre-
sponding area structure function by principle is even in the
horizontal as well as in the vertical direction. He et al [20, 21]
have pointed out the capability of the area structure function
for detecting surface anisotropy and distinguishing different
error geometries when investigating measured phase distri-
butions, while the line structure function does not exhibit this
ability.

Figure 9 gives the last example, the height distribution along
an airplane wing section measured by fringe projection. We
observe that the wing section does not fill the full rectangu-
lar area of 919× 481 measurement points. Especially there is a
hole which is clearly seen in the mask image of Figure 10 with
all measurement points marked white and the points with no
measured value marked black. Here we have a typical exam-
ple of a non-rectangular aperture. First we calculate all 1D
line structure functions along the columns, see Figure 11. The
columns are numbered from 1 to 919 along the abscissa, while
along the ordinate we have spatial differences, the arguments
of the structure functions. For the low numbered columns the
structure function values of large differences are lacking, be-
cause due to the non-rectangular aperture there do not exist
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FIG. 12 1D-structure function along all lines (below) and averaged values along all col-
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Only positive spatial differences.

two measured points far apart. The same effect, but not as pro-
nounced as before, is seen for the high numbered columns.
Local minima appear at differences around 130, 260 and 390
pixels, which indicates a waviness with a periodicity around
130 pixels. This also is made obvious in the average of all these
line structure functions displayed at the left of Figure 11. The
outliers at point differences higher than 420 are due to the fact
that there is averaging over only very few point pair differ-
ences.

The 1D line structure functions along all lines are shown in
Figure 12. Here no distinct local minima are present in the
structure functions, neither in the integral over all line struc-
ture functions displayed above, nor locally in the individual
line structure function. Thus no waviness in horizontal direc-
tion is detected. Nevertheless we observe increasing ampli-
tudes with increasing differences (from right to left) in the in-
tegrated structure function. This indicates a slight overall tilt
of the measured structure, which can be eliminated before the
structure function calculation, see Section 6.
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FIG. 13 2D-structure function and integrated values along all line (left) and column
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differences of spatial positions in each direction.

The area structure function calculated using 5× 106 randomly
chosen point pairs is given in Figure. 13. Especially the av-
erage structure function gained by integration over all lines
or columns, confirm the aforementioned statements regard-
ing the waviness. The area structure function in Figure 13 is
approximately point symmetric. It is not perfectly point sym-
metric, since due to the stochastic choice of point pairs not for
each point pair ((x1, y1), (x2, y2)) also the corresponding sym-
metric pair ((x2, y2), (x1, y1)) is used for calculation. This pro-
cedure maps each point difference into the corresponding one
of the four quadrants. A better procedure would be the cal-
culation of the 2D structure function in only two quadrants,
thus using in the average twice as many samples at each point
difference of the structure function.

6 STRUCTURE FUNCTION AND FILTERING

Generally the form of the structure function is influenced by
an uneven background in the data set. In many cases the mea-
sured underlying background of a plane surface is a linear
function due to a tilt of the surface, a parabolic function in-
dicating a bending, or a bellshaped curve caused by irregu-
lar illumination when using optical intensity based measure-
ment methods, to name just a few. The effect of determin-
ing such background by linear regression and removing it be-
fore calculating the structure function is shown in Figures 14
to 16. The measured heights of a rectangular surface are dis-
played as gray values in Figure 14. The heights along a cen-
tral line are given in Figure 15. A cubic function describing a
global deformation is fitted by linear regression, Figure 16(a),
the differences of the heights from this parabola are shown
in Figure 16(b). The structure function calculated from the
original values is displayed in Figure 16(c), while the struc-
ture function of the heights without background can be seen
in Fig. 16(d). The dissimilarity between Figures 16(c) and d
can be interpreted as follows: The difference between the first
left maximum and the rightmost local minimum is amplified
by the uneven background. This difference is reflected in the
structure function as a local maximum near a 360 pixel shift,
the right local maximum in Figure 16(c). In contrast, the left
local maximum is the higher one in Figure 16(d), resembling
the differences between neighboring opposite local extrema in
Figure 16(b). The measured values exhibit a waviness with a
period of about 260 pixels. This is seen in Figure 16(d) as a cen-
tral local minimum. As a consequence one must conclude that
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FIG. 14 Measured surface heights in 801×519 pixels
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FIG. 15 Measured surface heights along line 401 in Figure 14
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FIG. 16 Calculation of structure function. (a) measured data with fitted parabola. (b)

Data after removing background. (c) Structure function of data without background

removal. (d) Structure function calculated after background removal.

a previous background correction yields more reliable struc-
ture functions and thus is strongly recommended.

The background elimination can be viewed as a sort of
highpass-filtering. It has to be applied judiciously depending
on the spatial frequencies of interest. Furthermore one has
to keep in mind that each value of S(n) is an average over
I − n differences or a subset thereof. So for rough surfaces the
values S(n) for small n are more reliable than those for large
n. This effect can be diminished by a low-pass-filter with
a cutoff-frequency chosen to eliminate the high-frequency
surface height fluctuations due to roughness.

7 CONCLUSION AND OUTLOOK

In this paper we have defined and analyzed the structure
function and have shown its ability to characterize surfaces
whose height distribution is measured by one of the numer-
ous optical noncontacting methods. Various ways to extract
1D structure function information from the 2D height distri-
bution have been demonstrated, some of them - those aver-

aging pointwise over all line structure functions - for the first
time. The advantages of the structure function compared to
Fourier-based approaches have been pointed out and shown
by example. Especially if the contour of the measured sur-
face is not rectangular or if the continuation at the surface’s
margins is not smooth, then the structure function approach
has to be favoured, since it exhibits no leakage nor aliasing.
The structure function’s applicability is demonstrated by sim-
ulated as well as practically measured examples like surface
height variations or optical phase distributions. We have seen
that the positions of local extrema indicate precisely the exis-
tence or non-existence of waviness as well as its spatial fre-
quency. What is still lacking, is a general procedure to draw
significant parameters from the structure function which char-
acterize the investigated surface, such as indicating and quan-
tifying lay, waviness, slope, roughness and other parameters.
Although the emphasis of the paper was on evaluation of
optically measured height distributions, the capability of the
structure function approach to phase error characterization in
the testing of optics also was mentioned. The results regard-
ing the structure function presented in this paper should draw
the attention of those analyzing technical or optical surfaces to
structure function analysis and its manifold capabilities.
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A APPENDIX

Let f (x) be a stationary random variable and φ f f (x′) the re-
lated autocorrelation function. Then

S(x) = 2σ2[1− φ f f (x)] (10)

Proof: Let R(x′) = 〈 f (x) f (x + x′)〉 be the autocovariance
function, then due to stationarity

〈 f 2(x)〉 = 〈 f 2(x + x′)〉 = R(0) = σ2 (11)

Thus

S(x′) = 〈[ f (x)− f (x + x′)]2〉
= 〈 f 2(x)〉+ 〈 f 2(x + x′)〉+ 2〈 f (x) f (x + x′)〉

= R(0) + R(0)− 2R(x′) = 2σ2 − 2σ2 R(x′)
σ2

= 2σ2[1− φ f f (x′)] (12)

B APPENDIX

Rutman [23] defines the structure function by the increment
of a random process: Let g(t) be a random process. For M ≥ 1
the Mth increment of this process is defined by

∆(M)g(t; τ) =
M

∑
k=0

(−1)k
(

M
k

)
g(t + (M− k)τ) (13)
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The process g(t) has a stationary Mth increment, if the follow-
ing averages exist for all real T and τ and do not depend on
the instant t:

〈∆(M)g(t; τ)〉 = α(τ)

〈∆(M)g(t; τ) · ∆(M)g(t + T; τ)〉 = D(M)
g (T; τ) (14)

In other words, the Mth increment has a time independent
mean and its autocorrelation depends only on the time differ-
ence T (wide sense stationarity) [23].

By definition D(M)
g (T; τ) is the structure function of the Mth

increment. The Mth structure function of the random process
g(t) is defined as D(M)

g (τ) = D(M)
g (T = 0; τ):

D(M)
g (τ) = 〈[∆(M)g(t; τ)]2〉 (15)

Special case: The 1st increment of the random process g(t) is

∆(1)g(t; τ) =
1

∑
k=0

(−1)k
(

1
k

)
g(t + (1− k)τ)

= (−1)0
(

1
0

)
g(t + (1− 0)τ)

+ (−1)1
(

1
1

)
g(t + (1− 1)τ)

= g(t + τ)− g(τ) (16)

So the 1st structure function of the process is

D(1)
g (τ) = 〈[∆(1)g(t; τ)]2〉 = 〈[g(t + τ)− g(τ)]2〉 (17)

which coincides with our previous definition of the structure
function.
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