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The spectral and temporal evolution of distributed sensing based on stimulated Brillouin scattering (SBS) in optical fibers for several-
nanosecond Stokes pulses is demonstrated by using the method of lines (MOL) solution of the transient SBS equations. A superbee flux
limiter is utilized to avoid numerical damping and dispersion that would otherwise be brought on by the approximation of spatial derivatives
associated with the partial differential equations (PDEs). In order to increase computational efficiency, an approach is adopted whereby
the sparse PDE Jacobian matrix integrator option of the ODE solver(s) is employed. Simulation examples of SBS-based sensing for fibers
containing sections with different Brillouin frequencies are presented. To the best of our knowledge, this MOL solution is proposed for the
first time for modeling of the transient SBS equations for nanosecond Stokes pulses with different waveforms in a SBS based fiber optic
sensor. [DOI: http://dx.doi.org/10.2971/jeos.2013.13049]
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1 INTRODUCTION

Stimulated Brillouin scattering (SBS) in optical fibers per-
mits us to measure temperature and/or strain on a truly
distributed basis, over kilometric ranges with high resolu-
tion [1]– [3]. It consists in the coupling between two counter-
propagating optical waves, the pump and the Stokes wave,
and an acoustic wave. In this three-wave mixing process,
power is transferred from the pump light wave to the Stokes
light wave (that is, to the light wave having a lower frequency)
and also to the acoustic wave. The interaction strength de-
pends on the frequency offset between the two light waves
and attains its maximum at the so-called Brillouin frequency
νB. As the Brillouin frequency shift changes linearly with tem-
perature and strain, a distributed temperature-strain sensor
can be realized using SBS.

The theoretical model used to simulate the sensing in single-
mode fiber is based on the wave equations for the pump
and Stokes waves with the slowly-varying field amplitudes
Ap(z, t) and As(z, t), respectively, which interact nonlinearly
by the excitation of the acoustic wave ρ(z, t) [4]:
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where Ap(z, t) and As(z, t) [W] stand for the amplitudes of
pump Ep(z, t) and stokes Es(z, t) waves respectively, and n
is the refractive index of the medium, c is the speed of light
[m/sec], γe is the is the electrostrictive constant, ρ0 is the un-
perturbed density [g/m3] and ΓB is the Brillouin linewidth

[MHz] [4]. A∗ represents the complex conjugate of the respec-
tive field. In the case of a transient SBS regime for nanosecond
optical pulses participating in SBS, the slowly-varying ampli-
tude approximation normally used may no longer be valid for
the acoustic field. Therefore, the evolution of acoustic wave
equation for the field ρ(z, t) with second-order time deriva-
tive follows [5]:
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Simulation has proven to be a valuable tool in understanding
SBS based distributed sensor systems. Accurate simulation
models allow for the rapid design and optimization of both
sensor infrastructure and signal processing techniques. Visu-
alization of the spatiotemporal behavior of all three fields in-
volved in SBS, at all points through the fiber, and is especially
desirable in investigating phenomena whose origins may not
be clear from the ’observable’ data in an experiment [6]– [8].

If long pulses are assumed, the time dependence in Eq. (1) can
be neglected, resulting in a simple and accurate solution to
the problem. However, in the short pulse regime, the tempo-
ral derivatives cannot be neglected and the solution becomes
more complex [9]. For this solution, high speed and accu-
racy with the low complexity is highly desirable. In general,
for the solution of Eq. (1), conventional first order finite dif-
ference time domain (FDTD) solution schemes are preferred
since they offer simplicity with respect to the form of the so-
lution, although they suffer from several drawbacks, e.g. they
require more spatial nodes to achieve the same accuracy as
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higher order schemes, and this often results in longer com-
puter run-times.

To solve Eq. (1), a numerical method based on the Simpson’s
rule to approximate temporal integrals was introduced by
[10]. However, they used an implicit method and employed
linearization by assuming that

∣∣Em+1
sn

∣∣ ≈ |Em
sn| and this re-

placement weakens the coupling of the two laser fields and
hence the results deviate from the exact solutions. In Ref. [6]
the authors proposed a modified solution which is valid only
when the time step size is equal to spatial step size. Moreover,
their solution differs considerably from the real solution at lo-
cations where abrupt change takes place. Recently, we intro-
duced the MOL solution of the SBS equations with appropri-
ate flux limiter and sparse matrix integrator [11]. In this paper,
we extent the results in Ref. [11] while computing a system of
three second-order hyperbolic PDEs (Eqs. (1)).

In this paper we introduce, for the first time to the best of
our knowledge, the solution of transient SBS equations for
nanosecond Stokes pulses using Matlab ODE solvers [12]. Bu
using this solution, the spectral and temporal evolution of
distributed sensing based on stimulated Brillouin scattering
(SBS) in optical fibers for several-nanosecond Stokes pulses
is demonstrated. We introduce the solution technique and
have adapted the software to provide a fast and stable solu-
tion by employing sparse matrix techniques and by using an
appropriate flux limiter. Briefly, our solution technique com-
bined with the Matlab software abilities provides a powerful
method of simulating this SBS problem.

In arriving at a solution, the problem domain is first dis-
cretized over a finite grid and organized in a way that pro-
vides solutions for the optical and acoustic fields. The res-
olution of the solution can thus be varied to suit computa-
tional requirements. We have also employed an appropriate
flux limiter to combat numerical damping/dispersion which
avoids spurious oscillations in the solution. We have used
software which identifies the sparsity pattern of the solu-
tion which is then supplied as an input to the solver. Ad-
ditionally, we have determined the appropriate Matlab ode
solver for this particular application. By use of an appropriate
sparse matrix ode solver along with an effective flux limiter,
for nanosecond pulse widths, it is shown that the computa-
tion can be successfully performed in a reasonable computa-
tion time without the damping factor exceeding 3%. Examples
are presented, showing the utility of this efficient simulation
technique.

2 PROBLEM FORMULATION

2.1 The Dynamics of St imulated Bri l louin
Scattering (SBS)

In this paper we consider a system whereby continuous wave
(CW) light, at frequency, νp, is injected into the fiber at position
z = L. Pulses of light, known as Stokes pulses, are injected into
the fiber at z = 0, at frequency, νs. Due to the SBS, there will
be coupling of a counter propagating CW pump wave and
a Stokes pulse wave via an induced acoustic wave. An en-

FIG. 1 Diagram of a typical BOTDA distributed sensor system. The energy is transferred

from the CW pump to the low frequency Stokes pulse. The amount of loss of the

pump is recorded at z = 0 as a function of the frequency difference in the form of

the Brillouin spectrum, Thus the power of the CW field intensity over time at z = 0

corresponds to the available time domain information in a real sensing experiment.

hanced interaction between the two beams occurs when the
frequency difference of the lasers matches the frequency of
the longitudinal acoustic phonons of the optical fiber. There
is then a transfer of energy from the high frequency beam
(pump) to the low frequency beam (Stokes). The amount of
loss of the pump is recorded at z = 0 as a function of the
frequency difference in the form of a Brillouin spectrum and
thus the power of the CW field intensity over time at z = 0
corresponds to the available time domain information in a
real sensing experiment. The maximum loss occurs when the
frequency difference of two beams matches the Brillouin fre-
quency of the fiber. This maximum loss depends on the reso-
nance detuning parameter, given by

δ(z) = 2 ∗ π
[
νp − νs − δνRes(z)

]
(2)

where δνRes(z) is the Brillouin frequency along the fiber and
depends on the local strain and temperature. The resonance
detuning parameter, δ(z), is the value of the pump-Stokes fre-
quency shift for a resonant interaction at a given point. The
resonance detuning parameter, δ(z) is dependent on the tem-
perature and strain along the fiber. This dependence can form
the basis of distributed fiber optic strain and temperature sen-
sors.

A distributed Brillouin sensor, based on a Brillouin Optical
Time Domain Analysis (BOTDA), is a device where Stokes
and pump beams counter-propagate and where frequency
and time dependent variations of the Stokes (or pump) inten-
sity is detected. These sensors have been shown to provide
the best performances in terms of sensing length, spatial reso-
lution, temperature, and, strain accuracies [2, 13]. The interac-
tion is a maximum when the optical frequency difference be-
tween pump (νp) and Stokes (νs) corresponds to the Brillouin
frequency (νB). At the Brillouin frequency, the Stokes beam is
amplified at the expense of the pump. νB is the longitudinal
acoustic phonon frequency and is a local material signature.
An increase (decrease) in temperature or strain induces a pro-
portional increase (decrease) of νB. The sensor detects the Bril-
louin frequency variation as a function of position. The dis-
tributed nature of the sensor is achieved by field modulation
of the probe beam. The topology of this sensor is shown in
Figure 1 [14].

2.2 Theoretical Model

By making suitable transformation, Eqs. (1) can be written as
in Eqs. (3) which is a system of three second-order hyperbolic
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FIG. 1a Stokes coding for different waveforms. (a) Intensity pulse (α = γ = 0 and

β > 0); (b) Bright pulse with a CW component (α = γ > 0 and β > γ); (c) dark

pulse (α = γ > 0 and β = 0); and (d) π-phase pulse (α = γ > 0 and β = −γ).

The pump pulse T determines the spatial resolution [15].

PDEs,

∂Ep∂t− ν
∂Ep

∂z
= −Ea · Es (3a)

∂Es∂t + ν
∂Es

∂z
= E∗a Ep (3b)

∂2Ea∂t2 + 2 (Γ− jΩ) · ∂Ea

∂t
+ · · ·(

Ω2
B −Ω2 − 2jΓΩ

)
Ea = jgEpE∗s

(3c)

where Ep, Es, and Ea are the pump, Stokes, and acoustic
fields, respectively, and j represents imaginary number

√
−1.

Γ = 1/τph is the relaxation rate ω = ωp − ωs, ωp, ωs are the
acoustic field, pump, and Stokes frequencies, respectively, ΩB
is the Brillouin frequency, g = νΓΩgB and gB is the SBS gain
factor. Here, τph is the phonon lifetime and it is 10ns for silica
fibers.

2.3 Boundary and Init ial Condit ions

The CW light from a laser source representing the pump field,
Ep(z = L) is injected into the fiber at z = L. Therefore, the
boundary condition of the pump wave is:

Ep(z = L, t) = Ep(z = L) (4)

where Ep(z = L) is the power of the CW laser. At the opposite
end, the Stokes field, Es, is introduced via a pulsed source. We
assume a three-section pump pulse of the form (Fig. 1a):

Es(z, t) =E0
s [α · u(t− z/v) + · · ·

(β− α) · u(t− t0 − z/v) + · · · (5a)

(γ− β) · u(t− t0 − T − z/v)]

Es(z = 0, t) =E0
s [α · u(t) + · · ·

(β− α) · u(t− t0) + · · · (5b)

(γ− β) · u(t− t0 − T)]

where α,β,γ are amplitudes of the corresponding time inter-
vals. Here u(·) represent the Heaviside unit step function. The
first section of the pulse of height αA0

s and width t0 enters the
fiber (z = 0) at t = 0, followed by a βA0

s -high, T-wide middle
section, ending with an infinitely long section of height γA0

s .
In Matlab u(·) can be implemented via the function heaviside
function. For the Bright pulse with a CW component wave-
form the base level of the Stokes pulse is characterized by the
extinction ratio ER = 10log(β/α).

After propagating through the fiber, it is assumed that the
pump and Stokes pulses exit the fiber without reflection. The

acoustic field is assumed to be zero everywhere at t = 0, and
the CW light and Stokes leakage intensities turn on every-
where at t = 0. Therefore the initial conditions are [6],

Ep(z, t = 0) = Ep(z = L) (6a)

Es(z, t = 0) is β for intensity pulse and α for the bright pulse
with a CW component, dark pulse waveform and π-phase
pulse, respectively.

Ea(z, t = 0) = 0 (6b)

2.4 AC Detection of the pump output in
the case of a finite CW component
(base) of the Stokes pulse

Distributed sensing based on stimulated Brillouin scatter-
ing (SBS) is obtained by temporally resolved Brillouin spec-
tra, i.e. the depleted output pump as a function of the de-
tuning from the Brillouin frequency. The Brillouin frequency
gives the strain and/or temperature along the fiber. The time-
dependent output pump power or the time-dependent devia-
tion from the stationary output power, induced by the Stokes
pulse, is measured in the experiment. There are two possibil-
ities of pump loss definition as DC or AC detection, respec-
tively. However, AC detection is most likely to be used in
the experiment to measure the small relative variations of the
output pump signal in the case of several-nanosecond Stokes
pulses. The pump loss defined as AC detection, αAC = Ep(z =

0, t = 0)− Ep(z = 0, t), each as a function of the time and fre-
quency detuning ∆Ω = Ω−ΩB, represent the Brillouin spec-
trum. Here Ep(z = 0, t) is the time-dependent output pump
power at z = 0, Ep(z = 0, t = 0) is the output pump power at
the initial time moment, defined by the stationary pump-base
SBS before the Stokes pulse arrives in the fiber [7].

3 NUMERICAL SOLUTION METHOD

3.1 Finite Difference Time Domain (FDTD)
Solution

To obtain a solution to Eqs. (3a)-(3c), we follow the authors in
Ref. [9] and substitute the following:

Ep = Apejφp

Es = Asejφs (7a)

Ea = Aaejφa

∂Ea

∂t
= ejφa

(
∂Aa

∂t
+ jAa(

∂Aa

∂t
)

)
(7b)

∂2Ea

∂t2 =ejφa

{
∂2 Aa

∂t2 − Aa

[
(

∂φa

∂t
)

]2
}
+ · · ·

jejφa

{
2

∂Aa

∂t
∂φa

∂t
+ Aa(

∂2φa

∂2t
)

} (7c)
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into Eqs. (3a)-(3c) and with making transformation z′ = z
1/ν ·

γa to remove ν yields the equations,

∂As

∂t
+

∂As

∂z
= Ap Aa · cos(Φ) (8a)

∂Ap

∂t
−

∂Ap

∂z
= −As Aa · cos(Φ) (8b)

∂2 Aa

∂t2 =− gAp As cos Φ− · · ·{
2Γ

∂Aa

∂t
+ 2AaΩ(

∂Aa

∂t
)

}
− · · ·

(Ω2
B −Ω2)Aa + Aa

[
(

∂Aa

∂t
)

]2

(8c)

∂φs

∂t
+

∂φs

∂z
= −

Ap Aa

As
· sin(Φ) (8d)

∂φp

∂t
−

∂φp

∂z
= −As Aa

Ap
· sin(Φ) (8e)

Aa(
∂2φp

∂t2 ) =− gAp As cos Φ− · · ·

2(
∂φa

∂t
)

{
∂Aa

∂t
+ ΓAa

}
+ · · ·

2Ω
{
(∂Aa

∂t
) + ΓAa

} (8f)

Where, Φ = Φa + Φs − Φp. The steady state is obtained by
setting the time derivatives to zero. Combining Eqs. (8c) and
(8f) yields tan Φ = −(Ω2

s − Ω2)/(2ΓΩ). Taking the positive
part of the amplitudes, from Eq. (8c) it can be concluded that,

cos Φ =
2ΓΩ√

4Γ2Ω2 + (Ω2
B −Ω2)2

sin Φ = − Ω2
s −Ω2√

4Γ2Ω2 + (Ω2
B −Ω2)2

(8g)

The basic idea of the method of lines (MOL) is to replace the
spatial derivatives with algebraic approximations [16]. Since,
spatial variables are discretized and time is used as the con-
tinuous variable, this approach is called a semidiscretization.
This effectively removes the spatial derivatives from the PDE
and, since only the initial value independent variable remains,
e.g., t, the PDE has been converted to a system of approximat-
ing ordinary differential equations (ODEs) that can integrated
by standard, well-established numerical algorithms for initial
value ODEs.

Eqs. (3a)-(3c) are formulated by making some transformations
which are treal · γa = ttrans f ormed, zreal · γa/v = ztrans f ormed,
where v is the speed of light in the fiber and γa is 110 · 106.
Thus, the problem is discretized on a domain of,

(Ztrans f ormed,ttrans f ormed
) ∈=

{
0 ≤ zreal

v γa ≤ fiber length
0 ≤ treal · γa ≤ fiber length

v

}
(9)

The solution is obtained on uniform grids in z and t,

ztrans f ormed i, ttrans f ormed j :=(
zi, tj

)
:

{
ztrans f ormed i = i · ∆z 0 ≤ i ≤ N
ttrans f ormed j = j · ∆t 0 ≤ j ≤ M

}

For the MOL solution of Eq.(1b), Ep(z, t) can be approximated
by using the upwind finite difference (FD) approximations

for the first derivatives in z so that Ep ≈ (Epi − Epi−1)/∆z,
where i is an index designating a position along a grid in z
and ∆z is the spacing in z along the grid (i− 1 designates the
upwind direction). For the MOL solution of Eq.(1b), Es(z, t)
can also be approximated by upwind FD approximations, i.e.,
Es ≈ (Es i+1 − Es i)/∆z (i + 1 designates the upwind direc-
tion).

For the discretization of Eqs. (8a)-(8f), variables
are defined as y1 = As, y2 = Ap, y3 = Aa,
y4 = dy3/dt, y5 = Φa, y6 = dy5/dt. The bound-
ary conditions are y1(z = 0, t) = Es(z = 0, t),
y2(z = L, t) = Ep(z = L). The initial conditions are,
y1(z, t = 0) = β for intensity pulse and α for the bright
pulse with a CW component, dark pulse waveform and
π-phase pulse, respectively, y2(z, t = 0) = Ep(z = L),
y3(z, t = 0) = 1 · 10−11, y4(z, t = 0) = 0, y5(z, t = 0) = 0,
y6(z, t = 0) = 0. By discretizing Eqs. (10a)-(10f) in the space
variable z, the resulting system of ODEs is as follows:

dy1i
dt

=− (y1i − y1i−1)/(xi − xi−1)− · · ·

y2i · y3i · cos(Φ) 2 ≤ i ≤ N
(10a)

y11 = Es(z = 0, t)
dy2i
dt

=− (y2i − y2i+1)/(xi − xi+1) + · · ·

y1i · y3i · cos(Φ) 2 ≤ i ≤ N
(10b)

y2N = Ep(z = L)
dy3i
dt

= y4i (10c)

dy4i
dt

=− g · y1i · y2i · sin(Φ)− · · ·

(2 · Γ · y4i + 2 · y3i ·Ω · y6i) + · · ·
y3i · (y6i)

2 − y3i · (Ω2
b −Ω) 1 ≤ i ≤ N

(10d)

dy5i
dt

= y6i 1 ≤ i ≤ N (10e)

dy6i
dt

=(−g · y1i · y2i · sin(Φ) + · · ·

2 ·Ω · (y4i + Γ · y3i)− · · ·
2 · y6i · (y4i + Γ · y3i))/y3i 1 ≤ i ≤ N

(10f)

The handling of Eqs.(10a)-(10f) is discussed in the appendix.
The solver integrates the PDEs via the Matlab statement,
[t,u]=ode23t(@pde,tout,u0,options);

The initial conditions u0, transformed time interval tout, and
options, which include tolerances and Jacobian sparsity infor-
mation, are supplied to the solver.

3.2 Applicat ion of a Sparse Matrix
Integrator

For a large system of ODEs, it is typical that only a few com-
ponents of y appear in each equation. If component j of y does
not appear in component i of f (t, y), then the partial deriva-
tive ∂ fi/∂yj is zero. If most of the entries of a matrix are zero,
the matrix is said to be sparse. By storing only the nonzero en-
tries of a sparse Jacobian, storage is reduced from the square
of the number of equations d to a modest multiple of d. If the
Jacobian is sparse then so is the iteration matrix. As with stor-
age, the cost of solving linear systems by elimination can be
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reduced dramatically by paying attention to zero entries in
the matrix. By taking into account the known value of zero for
most of the entries in the Jacobian, it is typically possible to ap-
proximate all the nonzero entries of several columns at a time.
An important special case of a sparse Jacobian is one that has
all its nonzero entries located in a band of diagonals [17, 18].

If the system of PDEs could be represented purely by banded
Jacobians, then a banded integrator would be even more ef-
ficient than the sparse integrator since the banded integra-
tor would know in advance where the nonzero elements oc-
cur (they all are in the band). It would therefore not have to
search for the nonzero elements, and follow the resulting logic
to use these nonzero elements, all of which add complexity
to a sparse integrator. However, these nonzero elements are
located/displayed with the Matlab command spy( ). For the
PDE systems of Eqs. (10a)-(10f), some of the nonzero elements
are located along the main diagonal as well as the others lo-
cated outside the band. Therefore, for this case, a sparse inte-
grator is particularly effective since it also operates on out-of-
band elements, the so-called outliers, in performing the nu-
merical integration. Thus, this combination of elements in a
band along the main diagonal, plus outliers, leads to the effi-
ciency of sparse matrix integration [11].

Since this particular application has a main diagonal, plus out-
liers, we have used the routine jpattern˙num() to produce a
Jacobian map for the sparse matrix option of the ode solver.
In this routine, the elements of the Jacobian matrix are com-
puted by finite differences (FDs). This requires a base point,
or base points, around which the numerical derivatives are
computed. A base point can be any value within the range of
the variation of the associated dependent variable. A precise
value is not required (but if the ode solver fails, some experi-
mentation with this value may be required). In our application
we set the base points ybase(i), equal to the initial condition
for each dependent variable which is sufficiently accurate to
provide a good solution.

In order to calculate the partial derivatives in the Jacobian
matrix by FD approximations, the derivatives at the base
point, dyi/dt, are also required. Note that the routine pde()

(see Appendix), that calculates the derivatives dyi/dt in
Eqs. (10a)-(10f) is called by the Matlab command:
ytbase=pde(tbase,ybase);

The elements of the Jacobian matrix are evaluated numeri-
cally by the Matlab command:
[Jac,fac]=numjac(@pde,tbase,ybase,ytbase,thresh,fac,

vectorized);

where the following argument values are used: tbase=0,
thresh=1·10−16 and fac=[]. The input variable thresh repre-
sents the threshold of significance for Y(i), such that Y(i) <

thresh is not important; the input variable fac represents a
working storage column vector and should not be changed
between calls; and vectorized = ’off’ or ’on’ tells numjac()

whether single or multiple values of Y respectively can be
obtained with a single function evaluation.

Once the Jacobian matrix has been defined by this call to
numjac(), a map of the Jacobian is plotted by the code that
follows the call to numjac(). With a call to the routine spones(),

FIG. 2 Sparsity Pattern of the Eqs.(10a)-(10f). The solution is obtained with n = 300

each non-zero element is replaced by a ”1” so as to create a
”0-1” map of the Jacobian matrix [11, 16].
S=spones(sparse(Jac));

In Figure 2, the sparsity pattern of Eqs. (10a)-(10f) is plot-
ted by a subsequent call to the routine spy(S). Code for
jpattern˙num() is available as a library routine which can be
downloaded from Ref. [19].

Note that only 0.185 % of the 6x300× 6x300 elements of the
Jacobian map of Figure 2 are nonzero. This is not uncommon;
that is, most of the elements are zero. This condition is the rea-
son for the use of sparse matrix integrators since they will in
general process only the nonzero elements and will not ex-
pend computer time processing the many zero elements. The
processing time with and without jpattern num() is illustrated
in Table 1 for the implicit (stiff) ODE solvers (ode15s, ode23s,
ode23t, and ode23tb). The computation is performed on a i5
Core, 4 GB RAM, Laptop computer running the Windows 7
operating system. From Table 1, it can be seen that the sav-

Run Time (sec)
AbsTol and RelTol= 1× 10−5, Pulse width=5 ns.

Without Flux-limiter

n=300 Without Jpattern num With Jpattern num

ode15s 204 58
ode23t 242 70
ode23tb 292 84
ode23s Computation failed 122

Table 1: Run-time comparison of implicit ODE solvers
with/without use of jpattern num()

ing in computer time can be very substantial. It is clear that
the additional logic of the sparse matrix integrator (to detect
the nonzero elements of the Jacobian matrix and then perform
the numerical integration using only these nonzero elements)
is well worth the additional complexity of the coding for the
sparse matrix. Moreover, for ode23s, using Jpattern num() is
the difference between success and failure.
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3.3 Use of a Flux Limiter

Numerical dissipation is generally observed when solving
strongly convective or strongly hyperbolic PDEs. The main
cause of the dissipation is low order approximation of the dis-
cretization. It should be noted that numerical dissipation pro-
duced by first order approximations is to be expected due to
truncation of the Taylor series that is the basis for the approx-
imations. In recent years, various high resolution schemes
have been developed to obviate this effect with a high degree
of accuracy, albeit at the expense of algorithmic and computa-
tional complexity. Examples of particularly effective schemes
are based upon flux/slope limiters [20] and WENO methods
[21].

Flux limiters are used in numerical schemes to solve prob-
lems in science and engineering that are described by partial
differential equations (PDEs). Their main purpose is to avoid
the spurious oscillations (wiggles) that would otherwise oc-
cur with high-order spatial discretization due to shocks, dis-
continuities, or steep gradients in the solution domain. They
can be used directly on finite difference schemes for simple
applications. Use of flux limiters, together with an appropri-
ate high-resolution scheme, makes the solutions total varia-
tion diminishing. Flux limiters are also referred to as slope
limiters because they both have the same mathematical form
and both have the effect of limiting the solution gradient near
shocks or discontinuities. In general, the term flux limiter is
used when the limiter acts on system fluxes, and slope lim-
iter is used when the limiter acts on system states. The main
idea behind the construction of flux limiter schemes is to limit
the spatial derivatives to realistic values; this usually means
physically realizable values. They are used in high-resolution
schemes for solving problems described by PDE’s and only
come into operation when sharp wave fronts are present [22].

Considering the semidiscrete scheme below,

dui
dt

+
1

∆xi

[
F(ui+ 1

2
)− F(ui− 1

2
)
]
= 0 (11a)

where, for a finite difference scheme, F(ui+1/2) and F(ui−1/2)

represent flux values on the grid at point x = xi+1/2 and point
x = xi−1/2. If these fluxes can be represented by low- and
high resolution schemes, then a flux limiter can switch be-
tween these schemes depending upon the gradients close to
the particular cell as follows:

F(ui+ 1
2
) = f low

i+ 1
2
− φ(ri)( f low

i+ 1
2
− f high

i+ 1
2
) (11b)

F(ui− 1
2
) = f low

i− 1
2
− φ(ri−1)( f low

i− 1
2
− f high

i− 1
2
) (11c)

where, f low low-resolution flux, f high high-resolution
flux,φ(r) = flux limiter function, and r represents the ratio of
successive gradients on the solution mesh, i.e.,

ri = (ui − ui−1)/(ui+1 − ui) (11d)

The limiter function is constrained to be greater than or equal
to zero, i.e., r ≥ 0. Therefore, when the limiter is equal to zero
(sharp gradient, opposite slopes, or zero gradient), the flux
is represented by a low-resolution scheme. Similarly, when

the limiter is equal to 1 (smooth solution), it is represented
by a high-resolution scheme. The various limiters listed be-
low have differing switching characteristics and are selected
to suit the particular problem and numerical solution scheme.
No particular limiter has been found to work well for all prob-
lems, and a particular choice is usually made on a trial-and-
error basis [11, 22].

van Leer: φvl =
r + |r|
1 + r

; lim
r→∞

φvl(r) = 2 (12a)

smart: φsm(r) = max [0, min(2r, (0.25 + 0.75r), 4)] ;

lim
r→∞

φsm(r) = 4
(12b)

superbee: φsb(r) = max [0, min(2r, 1, min(r, 2))] ;

lim
r→∞

φsb(r) = 2
(12c)

The parameters of the flux limiter, which available as a library
routine which can be downloaded from [23], are as follows,
y1x=-flux˙function(xl,xu,n,y1,1);

y2x= flux˙function(xl,xu,n,y2,-1);

The fifth parameter is direction of the flow for the linear ad-
vection equation ut + cux = 0. This argument is required,
since the limiter requires the direction of flow or wave prop-
agation. It takes the values +1 or −1 depending on the direc-
tion of the upwinding of the FD. The fifth parameter value of
−1 for y2x indicates that the pulse moves right to left in z at
velocity c = −1 ( i.e., counter propagating in z). The spatial
domain in z is defined as xl ≤ z ≤ xu with n points. The
interval xu− xl is determined by the fiber length.

It should be noted that when applying flux limiter solutions
it is necessary to have sufficient grid points (say 10 or more)
between the occurrence of adjacent steep gradients. If insuffi-
cient grid points are used, then smearing of the solution may
occur or, in extreme cases, the solution could blow up.

In order to establish the best flux limiter function to suit our
particular application we performed numerical experiments
to compute the degree of smearing. In Figure 3, The effect of
van Leer, Smart and Suberbee limiters in terms of smearing
can be seen.

In Figure 3(a), it is clearly seen that the Stokes magnitude
is damped due to the numerical dissipation. In Figure 3(b)-
(e), the effect of different flux limiters on the Stokes pulse is
demonstrated. Damping which can be considered as the am-
plitude ratio at z = 0 and at z = L is calculated as, (b) 62.2 %
for van Leer, (c) 55.44 % for smart (d) 47.74% for superbee flux
limiter, respectively (n=100). In Figure 3(e), the damping effect
is decreased to only 2.8 % with superbee flux limiter for 300
discretization points. In Figure 3(b)-(e), it is clearly seen that,
for this particular application, the superbee limiter is more ca-
pable of avoiding numerical damping compared to the perfor-
mance of van Leer and Smart flux limiters. Since it has supe-
rior performance for this application, the superbee flux limiter
is preferred.

4 EXAMPLE

The simulation models an optical fiber, 15 m in length, and the
parameter values of the simulation are inferred from the pa-
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FIG. 3 The simulation of the pulse, (a) without using flux limiter, with using (b) van Leer, (c) smart (d) superbee flux limiter with n=100 discretization points. In (e) superbee flux

limiter is used with n=300 discretization points.

per [7]. The Brillouin frequency, δνRes(z), is 12.800 GHz along
the fiber, except for a specified section in the center where its
δνRes(z) is different from the main fibers’ Brillouin frequency,
representing a strained section. The moment in time, when
the Stokes pulse enters the fiber is assumed to be equal to t0
with respect to the pulse leading edge. Bright pulse with a
CW component is used as a Stokes waveform. The other rele-
vant parameters are: CW power = 5 mW; Stokes power = 10
mW (β); Stokes pulse rise time = 100ps. The simulation mod-
els a pulse on-resonance, with the strained section (νp − νs is
varied). The other Brillouin parameters typical for the single-
mode silica fibers at the wavelength 1.3 µm: τph = 10ns,
Ae f f = 50 µm2, gB = 5× 10−11 m/W, ν = 0.2 m/ns.

The expected result of this simulation is that the Stokes pulse
will propagate down the section of fiber with no loss or disper-
sion. Since the fiber’s natural δνRes(z) is much different from
νp − νs, there should be little interaction in the ’unstrained’
portions of the fiber. Upon entering the ’strained’ section, the
pulse will interact with the CW field, causing a rise in the
acoustic field intensity. The CW field will be depleted, and

the pulse will be enhanced. The range of the depletion de-
pends on the extinction ratio and the interaction is stronger for
a low extinction ratio. After the Stokes pulse passes through
the strained section, the acoustic field will decay away and the
CW field will return to its steady state value. The effect of the
interaction will take the form of a depleted region of CW light
propagating to the end of the fiber [6].

Figure 4 shows the Stokes, CW, and acoustic fields, simulated
with and without the superbee flux limiter. As can be seen in
Figure 4(a), dissipation and damping is clearly observed. Over
time, the Stokes pulse broadens, as well as decreases in in-
tensity. However, the expectation from this simulation is that
Stokes pulse will propagate down the section of fiber with no
loss or dispersion. It must be noted that, in the ’unstrained’
portions of the fiber ∆ 6= 0 i.e., νp − νs 6= δνRes(z), in the
”strained” section of the fiber ∆ = 0, i.e., νp − νs = δνRes(z).
Plots (c) and (d) show the fields simulated with the superbee
flux limiter. Especially in plot (c), with flux limiter, it can be
clearly seen that damping is suppressed and the ratio of the
amplitudes at z = 0 and at z = L becomes 0.972 which means
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(a) (b)

(c) (d)

FIG. 4 Using the simulation of Eqs. (10a)-(10f) with n = 190 discretization points and t0 = 0 ns, evolution of the Stokes (y1), and Acoustic (y3) fields for a 15 m section of

fiber is plotted in Figure 4(a)-(c), (b)-(d), respectively. The frequency difference of Stokes pulse wave was set to be on resonance with a 2 m section in the center of the fiber.

Since, in plots (a), (b), flux limiter is not used, the dispersion and attenuation is evident. Plots (c), (d), and show the results when the flux limiter is used. Compared with the

low order discretization, with the introduction of the flux limiter, dispersive attenuation (smoothing of sharp edges) along the fiber obviously is eliminated.

that Stokes wave lost only 2.8% of its magnitude. Another ex-
pectation of the simulation is that, when the pulse enters the
strained section there should be a rise in the acoustic field in-
tensity. However, the superbee flux limiter prevents this rise
during stabilization.

For the case of a 4-ns Stokes pulse with ER = 15 dB and 50
dB, in Figure 5, AC detection is plotted as a function of the
time and frequency detuning ∆Ω = Ω − ΩB. Here t0 and
fiber length is assumed to be 5 ns and 15m, respectively. As
can be seen in Figure 5, AC detection shows different char-
acteristics at the time t < t0, before the probe pulse arrives
in the fiber, and at t > 2L/ν + t0 + τs (159 ns), after it has left
the fiber and the related pump depletion has propagated from
z = 0 to the output z = L. The AC-detected Brillouin spec-
trum shows a Lorentzian line shape with the Brillouin nat-
ural width ∆νB = Γ/π ≈ 32MHz resulting from the pump-
base SBS and this corresponds to no signal before pulse arrival
(t < t0) and transient relaxation again to zero signal through
complicated Brillouin loss signal oscillations with even nega-
tive values when out-of-resonance (t > 2L/ν + t0 + τs).

Now we address the SBS-based sensing for longitudinally in-
homogeneous distribution of the Brillouin frequency along
the fiber. First we consider AC-detected Brillouin spectra of
the fiber consisting of two 10-m long sections with Brillouin
frequencies 12.800 and 12.840 GHz for the case of a 4-ns Stokes
pulse (Figure 6). We verify how the sections and especially the
boundary between them are identified AC detection for two
different base levels of 15 and 50 dB. The thick dashed curve
is drawn at the time t = 157 ns, when the pulse peak cen-
ter is passing through the middle of the fiber, and this point
should be identified by sensing as a boundary between the
sections. Additionally, at the moment in time corresponding
to the boundary, the spectrum transition from one line to an-
other is clearly visible. However, due to broad pulse spectrum
this transition is complicated by the prolonged relaxation of

the acoustic field at the frequency related to the previous sec-
tion, as the pulse has already progressed to the next section.

Figure 7 illustrates the SBS-based sensing of a 20-cm section
in the middle of a 10-m fiber, where the Brillouin frequency of
the section is shifted by 80 MHz relative to that of the rest of
the fiber. In Figure 7, we have used a 2-ns Stokes pulse with
ER = 15 dB (Figure 7(a)) and 50 dB (Figure 7(b)), respectively.
The other parameters are taken from Figure 5. Thick dashed
curves are drawn for the output pump at times when the pulse
peak center passes through the section’s center, and at the fre-
quency shift corresponding to the Brillouin frequency of the
section. They denote the time and the frequency, which should
be revealed from the detection as a section’s spatial and spec-
tral ”location”.

However, it was observed that, for pulses substantially shorter
than the acoustic lifetime in silica, the measured gain profiles
abandon their expected spectral broadening and the linewidth
was shown to gradually return to the natural value, as deter-
mined by the acoustic lifetime [15]. This was explained by the
fact that in a real experiment the Stokes pulses have a small
cw component (base) due to unavoidable leakage of any opti-
cal amplitude modulator used to generate nanosecond pulses.
In this case the linewidth could still be close to the natural
linewidth, provided the relative contribution of the transient
regime on the output pump depletion is weak [7]. In our nu-
merical experiment the same trend is observed in Figure 8.

5 CONCLUSIONS

In this paper we introduce, for the first time to the best of
our knowledge, the solution of transient SBS equations for
nanosecond Stokes pulses with different waveforms using
Matlab ODE solvers (MATLAB, 2012). Bu using this solution
the spectral and temporal evolution of the AC detection is
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(a)

(b)

(c)

FIG. 5 Brillouin spectra resolved in the time domain by AC detection for the pump

power Pp = 5 mW and the Stokes pulse with duration τs = 4 ns, t0 = 5 ns, peak

power Ps = 10 mW, extinction ratio (a) ER = 15 dB (b) ER = 50 dB, (c) ER = 50 dB with

back view of Brillouin spectra, for the fiber length L = 15 m and n=190 discretization

points.

simulated. The MOL scheme provided the basis for a solution
which was adapted to a suitable mesh size allowing rapid cal-
culation of the fields involved in the SBS interaction. We intro-
duce the solution technique and have adapted the software to
provide a fast and stable solution by employing sparse matrix
techniques and by using an appropriate flux limiter. The simu-
lation method presented here can be used to foster a rapid un-
derstanding of the internal dynamics of the distributed sens-
ing based on SBS, lending insight for both experimental de-
sign and interpretation of results.
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A APPENDIX

function ut=pde(t,u)

%

% Problem parameters

global xl xu n ncall gamma k

global coeff1 coeff2 coeff3 coeff4 TT1 TT2 omega1 omega2

global dx1 dx2 g1 g2

i = 1:n; % spatial index

i1 = i(dx1<=i & i<=dx2); % ’inner’ region

i2 = i(i<dx1 | dx2<i); % ’outer’ region

coeff = zeros(n,1);

coeff(i1) = coeff2;

coeff(i2) = coeff1;

coeffsin = zeros(n,1);

coeffsin(i1) = coeff4;

coeffsin(i2) = coeff3;

omega = zeros(n,1);

omega(i1) = omega2;

omega(i2) = omega1;

TT = zeros(n,1);

TT(i1) = TT2;

TT(i2) = TT1;

g = zeros(n,1);

g(i1) = g2;

g(i2) = g1;

% u to y, columnn vectors

u = reshape(u,n,6);

y1 = u(:,1); %As

y2 = u(:,2); %Ap

y3 = u(:,3); %Aa

y4 = u(:,4); %dAa/dt

y5 = u(:,5); %Phi a

y6 = u(:,6); %dPhi a/dt

% BCs

y1(1)=pulse(t);

y2(n)=5e-3;
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y1x=-super(xl,xu,n,y1,1)’;

y2x=super(xl,xu,n,y2,-1)’;

% Derivatives in t

% d(y1)/dt

y1t = y1x - y2.*y3.*coeff;

y1t(1) = 0; % boundary condition

% d(y2)/dt

y2t = y2x + y1.*y3.*coeff;

y2t(n) = 0; % boundary condition

y3t(i)=y4; % y3t= dAa/dt

y5t(i)=y6; % y5t= dPhi a/dt y6t= dˆ2Phi a/dtˆ2

y4t= (-g*y1*y2*coeffsin-(2*gamma k*y4+2*y3*omega*y6 )+...

y3*y6*y6 -TT*y3 );

y6t= (-g*y1*y2*coeffsin+2*omega*( y4+ gamma˙k*y3 )-...

2*y6*(y4+y3*gamma k))/y3 ;

% yt to ut, column vector

ut = [y1t;y2t;y3t;y4t;y5t;y6t];

% Increment calls to pde˙1

ncall=ncall+1;
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