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Rotating vortex imaging implemented by a quantized
spiral phase modulation
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We demonstrate both theoretically and experimentally that a spiral mask with a finite number of discrete phase levels allows a defocusing
induced rotation of the point spread function in the vortex imaging. Two experimental configurations based on a spiral phase modulation
of light and a spiral filtering of the spatial spectrum are studied in a unified theoretical treatment. The rotating point spread functions are
analyzed in detail for imaging realized by the vortex lens and the 4-f system used in the spiral phase contrast microscopy. The theoretical
results are verified by experiments using a spatial light modulator. The method is applicable to a precise focusing and optical imaging
allowing depth estimation from diffracted rotation. Apart from implementation simplicity, the main advantages of the method are high
energy efficiency, a possibility to operate with either complex amplitude or spatial spectrum of light and variability allowing a simple
control of number of lobes of the point spread function.
[DOI: http://dx.doi.org/10.2971/jeos.2013.13017]
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1 INTRODUCTION

Rotating optical beams represent a wide class of light fields
whose transversal intensity profile rotates around the axis
during propagation in free space [1]–[4]. This feature has
been thoroughly investigated theoretically, demonstrated ex-
perimentally and utilized in manipulation of atoms and mi-
croparticles [5]. Usually, the rotating beams are examined in
a Gauss-Laguerre (G-L) modal beam decomposition that en-
ables to find general characteristics of light waves resulting
in rotational effects [1]. Methods used in the design of rotat-
ing beams can be effectively adapted to the preparation of
the double helix point spread function (PSF) in optical mi-
croscopy. In this case, the PSF is engineered to have two ro-
tating lobes where the angle of rotation depends on the ax-
ial position of the observed point object and significantly in-
creases the sensitivity of depth estimation [6]. In the origi-
nal design, the rotating PSF system was implemented by a
mask placed in the Fourier plane of the 4-f optical system.
The mask modulates incident light and generates a super-
position of the G-L beams representing the transfer function
of the system. The relevant PSF of the system then rotates
with defocus. The main disadvantage of this method is its
very low transfer function efficiency defined as the ratio of
the energy in the main lobes and the energy incident on the
mask. Its value is below 2%, so the method is not suitable
for photon-limited applications [6]. By using iterative opti-
mization algorithms, the theoretical efficiency of the method
can be increased up to 56%. The mask used for the genera-
tion of a superposition of the G-L beams then operates with-
out absorption, but the rotational response is available only
in a limited area instead of the whole 3D space [7]. The ro-
tating PSF is of great importance for optical microscopy and

was used for three-dimensional, single-molecule fluorescence
imaging beyond the diffraction limit [8], three-dimensional
tracking of microparticles [9], and for the nanoscale localiza-
tion of pointlike objects [10]. The double-helix PSF was also
utilized in holographic optical tweezers enabling parallel ma-
nipulation and multiple-particle tracking [11]. Recently, a 3D
nanoscopic system based on a Fisher information optimized
rotating PSF was proposed and implemented, resulting in the
new methodology termed Super-resolution Photon-efficient
Imaging by Nanometric Double-helix Localization of Emitters
(SPINDLE) [12]. The 3D optical transfer function of rotating
beams was also examined and used to increase the axial reso-
lution in the volumetric imaging [13].

In this paper, two different methods of the vortex imaging are
proposed and analyzed, in which the rotation of the PSF is
achieved by a quantized spiral phase modulation. It is shown
that a discrete spiral phase mask with an appropriately cho-
sen number of phase levels produces the PSF with multiple
lobes, which rotate when changing the longitudinal position
of the observed point object. The image rotation is achieved
by interference of the pure vortex modes with different topo-
logical charges, which have a full azimuthal overlapping and
appear naturally as the Fourier components of a spiral mask
with discrete phase levels. Hence, the method has a high effi-
ciency and simple implementation. The discrete spiral phase
modulation providing the rotating PSF can be applied in the
frequency domain using a 4-f optical system. In contrast to the
methods using G-L beams, the discrete spiral phase modula-
tion can also operate in the complex amplitude of light, so that
the rotating PSF can be obtained in the lens imaging. This is
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advantageous if the rotating PSF is used for a precise localiza-
tion of objects in optical microscopy.

The paper is organized as follows. In the second section, a
unified mathematical description of the vortex imaging and
the 4-f optical system with a spiral filtration is presented. In
the third section, the PSF for the vortex imaging with a con-
tinuous spiral phase modulation is determined. In the fourth
section, the rotation of the PSF is explained as a cooperation
of the vortex modes generated by a spiral mask with discrete
phase levels. In the fifth section, the rotating PSF is analyzed
in detail and conditions of special rotating effects found. In the
sixth section, experimental results are demonstrated that ver-
ify the correctness of the theoretical analysis of the defocusing
induced PSF rotation.

2 UNIFIED MODEL OF VORTEX IMAGING

The proposed method of the PSF rotation is based on the vor-
tex imaging, which can be achieved by a spiral phase modu-
lation either in the frequency or spatial domain. If the spiral
phase modulation is implemented by the mask whose phase
continuously changes with the azimuthal angle, the diffrac-
tion image of a point object is changed from the Airy pat-
tern to a doughnut spot. The spiral mask is then character-
ized by the topological charge m specifying the jump of opti-
cal path that occurs when the azimuthal angle is changed by
2π. We show that the discrete spiral mask with an appropri-
ately chosen number of phase levels creates the vortex modes
whose interference results in the defocusing induced rotation
of the PSF. A similar mechanism appears also in rotating op-
tical beams where the intensity profile rotates in a free-space
propagation. In this paper, the rotational effects are studied
in a unified mathematical description usable for both the vor-
tex lens imaging and the spiral filtering implemented by the
4-f optical system. First, a mathematical description of a con-
tinuous spiral phase modulation will be proposed and subse-
quently effects caused by the discrete spiral modulation will
be thoroughly investigated.

2.1 Vortex lens with spiral phase
modulation

The vortex imaging with a continuous spiral modulation is
investigated for the geometry shown in Figure 1. Monochro-
matic radiation with the wavelength λ is emitted by a point
source and transformed by the vortex lens, whose operation
is specified by the aperture function G, the quadratic phase
associated with the lens focal length f , and the spiral phase
function S corresponding to a continuous spiral phase mask
with the topological charge m.

The complex amplitude describing imaging of a point object
is then given by the Fourier transform

ψ(r′⊥) ∝
∫∫ ∞

−∞
G(r⊥)S(r⊥) exp

[
i
k∆Φ

2
|r⊥|2

]
× exp

[
i2π

r⊥ · r′⊥
λz′

]
dr⊥,

(1)

where k = 2π/λ, r⊥ ≡ (x, y), r′⊥ ≡ (x′, y′), z = z0 + ∆z and

FIG. 1 Schema of vortex imaging with the rotating PSF.

z′ = z′0 + ∆z′. ∆Φ describes the image defocusing and can be
written as

∆Φ =
1
f
− 1

z
− 1

z′
≈ ∆z

z2
0
+

∆z′

z′20
. (2)

The image is sharp only when the point source and the de-
tection plane are at the positions z0 and z′0 fulfilling the lens
equation. If the detection plane is fixed at the distance z′0, the
shift of a point source to the position z0 + ∆z causes the im-
age defocusing. A similar situation arises when the source is
in the position z0 and the detection plane is shifted to the dis-
tance z′0 + ∆z′. As will be shown later, the defocusing shifts
∆z and ∆z′ can be sensitively indicated by the PSF rotation
when a spiral phase mask with discrete phase levels is used
as a phase modulating element.

2.2 Optical 4-f system with spiral f i l ter ing

The PSF rotation is also examined for the 4-f optical system,
which performs a spiral phase modulation of the spatial spec-
trum. This system has been successfully used in spiral phase
contrast microscopy and its principle is explained in Figure 2.
The light wave generated by a point source placed near the
object focal plane is transformed by the lens L1 and modu-
lated by the spiral phase filter placed in the image focal plane.
A lateral bounding of the wave is given by the aperture func-
tion of the lens G and can be also applied at the image focal
plane of the lens. This simplification is acceptable because the
wave is nearly collimated.

The helical light wave is then transformed by the lens L2 and
a doughnut image spot is detected near the image focal plane.
The optical path between object and image planes can be writ-
ten in terms of the Fresnel diffraction theory. The complex am-
plitude of the image can then be expressed as

ψ(r′⊥) ∝
∫∫ ∞

−∞
G(r⊥)S(r⊥) exp

[
−i

k|r⊥|2
2

(
1
Z
+

1
f2

)]
×
∫∫ ∞

−∞
exp

(
−i

k|R⊥|2
2z′

)
× exp

[
ikR⊥ ·

(
r⊥
f2

+
r′⊥
z′

)]
dR⊥dr⊥,

(3)

where R⊥ ≡ (X, Y), Z = − f 2
1 /∆z and z′ = f2 + ∆z′.

The second integral is the Fourier transform of a quadratic
phase function and can be calculated analytically. The com-
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FIG. 2 Illustration of the PSF rotation in the 4-f optical system.

plex amplitude then can be simplified to the form

ψ(r′⊥) ∝
∫ ∫ ∞

−∞
G(r⊥)S(r⊥) exp

[
i
k∆Φ

2
|r⊥|2

]
× exp

[
i2π

r⊥ · r′⊥
λ f2

]
dr⊥,

(4)

where G and S again denote the aperture and spiral modula-
tion functions but this time expressed in the coordinates of the
image focal plane of the lens L1, and ∆Φ is a defocusing term.
It can be written as

∆Φ =
z′

f 2
2
− 1

f2
− 1

Z
=

∆z
f 2
1
+

∆z′

f 2
2

. (5)

As is obvious, the point image is described by formally iden-
tical relations in Eqs. (1) and (4) valid for both the vortex lens
imaging, and the spiral filtration in the 4-f system. The only
difference is the form of the function ∆Φ that describes the
image defocusing. The unified mathematical formalism sim-
plifies the analysis of the PSF rotation in both practically im-
portant cases of the vortex imaging.

3 Vortex imaging with continuous
spiral phase modulation

To solve the integrals in Eqs. (1) and (4), it is appropriate to in-
troduce the cylindrical coordinates r, ϕ given as x = r cos ϕ

and y = r sin ϕ. In a similar way, the image space coordi-
nates r′, ϕ′ are used. The function S corresponding to the spi-
ral mask with a continuous azimuthal change of the phase can
then be written as

S = exp(imϕ), (6)

where m is an integer indicating the topological charge of the
mask. In optical imaging, the aperture function corresponding
to a circular aperture is usually used. Here, we use a Gaus-
sian apodization given by G = exp(−|r⊥|2/∆r2), where ∆r
is the commonly defined radius of the Gaussian profile. This
approach simplifies the calculations and does not affect the
analysis of the rotation of the PSF, which is the main objective
of the paper. Under these assumptions, the integrals in Eqs. (1)
and (4) can be solved analytically. The complex amplitude de-
scribing the image of a point object can then be expressed as

ψ(r′, ϕ′) ∝ im ν′

g3/2 exp
(

imϕ′ − π2ν′2

2g

)
×
[

I 1
2 (m−1)

(
π2ν′2

2g

)
− I 1

2 (m+1)

(
π2ν′2

2g

)]
,

(7)

where In denotes the modified Bessel function of the n-th or-
der and

g =
1

∆r2 − i
k
2

∆Φ. (8)

Eq. (7) is valid only if the order of the Bessel functions satisfies
the inequality n>-2 [14]. It is applicable to both configurations
of the vortex imaging, but ∆Φ and ν′ differ in individual cases,

∆Φ =
∆z
z2

0
+

∆z′

z′20
, ν′ =

r′

λz′
· · · for vortex lens, (9)

∆Φ =
∆z
f 2
1
+

∆z′

f 2
2

, ν′ =
r′

λ f2
· · · for spiral filtering. (10)

As can be seen, the light field in the image space has a he-
lical wavefront defined by exp(imϕ′). The pitch of the helix
is specified by the topological charge of the used mask m. If
the spiral mask is not continuous and has a finite number of
discrete phase levels, the light field consists of helical modes
with different topological charges. Under appropriate condi-
tions, their interference leads to the rotation effects.

4 Vortex imaging with quantized
spiral phase modulation

In experiments, the spiral mask is implemented by a spa-
tial light modulator (SLM) or by photolithography techniques
and its phase is sampled to a finite number of levels. If the
number of phase levels of the discrete mask is sufficiently
high, it operates as a continuous mask in a very good approx-
imation. In the case of the mask with a small number of phase
levels, the PSF becomes rotationally asymmetrical and its ro-
tation occurs when the image is out of focus. To quantify the
dependence of the PSF rotation on defocus shifts, a calculation
model is proposed including effects caused by the spiral phase
sampling. We consider a discrete mask composed of L angular
segments that cause constant phase changes. The phase of the
l-th segment is given as

Sl = exp[im2π(l − 1)/L] for ϕ ∈ [2π(l − 1)/L, 2πl/L], (11)

where m is the intrinsic topological charge of the mask, L is
the total number of phase levels and l = 1, 2, · · · , L, denotes
the sequence number of the phase segments. An action of the
mask is then given by the function S = ∑l Sl . Because the
mask is periodic in ϕ, it can be written using the Fourier series,

S(ϕ) =
+∞

∑
n=−∞

cn exp(inϕ). (12)

If the transparency of the mask is known, the Fourier coeffi-
cients can be obtained by

cn =
1

2π

∫ 2π

0
S(ϕ) exp(−inϕ)dϕ. (13)

When the mask with the segments given by Eq. (11) is inserted
into Eq. (13), its Fourier coefficients can be calculated and ar-
ranged to the form [15],

cn =

{
exp(i nπ

L )sinc( n
L ), n = m− sL, s = 0,±1,±2, ...

0, others.
(14)
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To facilitate calculations, it is appropriate to adjust Eq. (12)
so that the summation is performed only over the positive
indices. If S is then substituted into Eqs. (1) and (4) and the
Fourier transform is calculated, we get

ψ(r′, ϕ′) ∝
ν′

g3/2 exp
(
−π2ν′2

2g

)
×

∞

∑
n=1

in [c−n exp(−inϕ′) + cn exp(inϕ′)
]

×
[

I 1
2 (n−1)

(
π2ν′2

2g

)
− I 1

2 (n+1)

(
π2ν′2

2g

)]
,

(15)

where g, ∆Φ and ν′ are given by Eqs. (8)–(10). The intensity
I = |ψ|2 normalized to a unit maximum then represents the
PSF for the spiral imaging implemented by a quantized spiral
phase modulation. Unlike the case with a continuous spiral
mask, the PSF does not have rotational symmetry and the in-
tensity profile depends on the azimuthal angle ϕ′.

5 Rotation of out of focus image

The image rotation can be studied using Eq. (15) derived un-
der conditions that include both defocusing and quantized
spiral modulation. The rotational effects are first proved by
approximate analytical calculations and subsequently ana-
lyzed numerically and demonstrated experimentally.

5.1 Approximate analysis of image rotation

The calculation of the PSF can be simplified by the fact that
a quantized spiral mask may be represented in a good ap-
proximation by only two dominant members of the Fourier
series. As can be shown by numerical evaluation of Eq. (14),
the spiral phase mask with the intrinsic topological charge m
and the number of phase levels L is represented with suffi-
cient accuracy by terms with coefficients cm and c(m−L). In the
case of defocusing, g is a complex function and the modified
Bessel functions used in Eq. (15) are also complex. In subse-
quent analysis they will be denoted as

Im

(
π2ν′2

2g

)
− In

(
π2ν′2

2g

)
≡ Am,n exp(iΩm,n). (16)

The intensity I corresponding to the PSF can then be written
as

I(r′,ϕ′) ∝

ν′2 I0

[
C2

m A2
1
2 m− , 1

2 m+
+ C2

m−L A2
1
2 (L−m+), 1

2 (L−m−)

]
+ ν′2 I0 i2m+3LCmCm−L A 1

2 m− , 1
2 m+

A 1
2 (L−m+), 1

2 (L−m−)

×
{

ei(Lϕ′+∆Ω+π) + (−1)Le−i(Lϕ′+∆Ω+π]
}

,

(17)

where

I0 =
1
|g|3 exp

[
−π2ν′2<{g}

|g|2

]
,

∆Ω = Ω 1
2 m− , 1

2 m+
−Ω 1

2 (L−m+), 1
2 (L−m−)

,

Cn = sinc
( n

L

)
, n = m, L−m,

and the used indices indicate m± = m ± 1. The image of a
point source is now expressed as an interference law for two

general vortex fields with topological charges M1 and M2 ful-
filling the condition M1 − M2 = ±L. The investigated mask
with L phase levels and the intrinsic topological charge m is
represented by M1 = m and M2 = m− L.

5.1.1 Defocusing-induced image rotation

The detailed analysis of (17) demonstrates that the intensity
profile can rotate during image defocusing. The conditions
leading to the rotation are investigated separately for two dif-
ferent cases in which the number of phase levels L is given by
an odd or even number. As the simplest example, the imaging
implemented by a mask with the intrinsic topological charge
m = 1 and the number of phase levels L = 3 is discussed. In
this case, the intensity can be simplified to the form

I(r′, ϕ′) ∝ ν′2 I0[C2
1 A2

0,1 + C2
−2 A2

1
2 , 3

2

+ 2C1C−2 A0,1 A 1
2 , 3

2
sin(3ϕ′ + ∆Ω + π)],

(18)

where ∆Ω = Ω0,1 −Ω 1
2 , 3

2
. The lateral intensity distribution of

the image spot is bounded by the Gaussian function I0 whose
width depends on the function g describing the defocusing.
As a result, the image spot spreads if the out of focus shift ∆z
or ∆z′ increases. If the image is in focus, g given by Eq. (8)
becomes real and the modified Bessel functions In are also
real functions. The phases Ωn are then equal to zero for an
arbitrary index n and ∆Ω = 0. At the plane of best focus,
the image spot has three lobes with the intensity maxima in
the directions specified by the angles ϕ′max = π/2, 7π/6 and
11π/6. If the image is out of focus then ∆Ω 6= 0, and the in-
tensity maxima appear in the directions given by the angles
ϕ′out

max = ϕ′max − ∆Ω/3. With regard to Eq. (16), ∆Ω depends
on g and thus also on ∆z and ∆z′. The dependence of ϕ′out

max on
the out of focus shifts indicates that the intensity spot rotates
during the defocusing. The specific form of the dependence
of the rotation angle on the defocusing shift was found by
an approximate analysis based on the properties of the Bessel
functions and by numerical simulations. It was verified that
the dependence of ϕ′out

max on ∆z reminds the inverse tangent
function with the slope of the linear region depending on the
numerical aperture of the used optical system. This theoreti-
cal prediction is in excellent accordance with the experimental
results.

5.1.2 Rotation invariant imaging

The imaging implemented by a quantized spiral mask can re-
main rotation invariant during defocusing only if the intrinsic
topological charge and the number of phase levels are suitably
adapted. To demonstrate this case, the spiral mask with the
intrinsic topological charge m and the number of phase levels
L = 2m must be used. With these parameters, m− = L− m+

and m+ = L−m−, so that ∆Ω = 0 for an arbitrary defocusing
∆z or ∆z′, and the image spot does not rotate. As the simplest
example, the imaging implemented by the quantized spiral
mask with m = 1 and L = 2 can be demonstrated,

I ∝ ν′2 I0C2
1 A2

0,1 sin2 ϕ′. (19)

The image spot is formed by two lobes that spread during de-
focusing but do not rotate. According to Eq. (17), the number
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of lobes is uniquely determined by the number of phase levels
L and does not depend on the intrinsic topological charge of
the mask m. This allows to create both the rotating and non-
rotating images with the same number of lobes.

5.1.3 Images with reverse rotation

The rotation of the PSF depends on the phase difference
∆Φ = Φi,j − Φp,s, where the indices i, j and p, s are defined
by Eq. (17) as i = m−/2, j = m+/2, p = (L − m+)/2 and
s = (L − m−)/2. A simple analysis shows, that the images
created by the quantized phase masks with L phase levels
and the intrinsic topological charges m1 and m2, rotate in re-
verse directions, if the condition L = m1 + m2 is satisfied. The
reverse rotation appears as a consequence of the mutual ex-
change of indices i↔ p and j↔ s resulting in ∆Φ1 = ∆Φ and
∆Φ2 = −∆Φ.

In Figure 3, the reverse rotation is demonstrated for three- and
four-level spiral phase masks. In the left panel, in focus and

FIG. 3 Demonstration of the reverse image rotation obtained for the phase masks

with the topological charges m1 and m2, whose number of phase levels is given by

L = m1 + m2. Left panel: in focus and out of focus PSF for a negative defocusing and

parameters L = 3, m1 = 1 and m2 = 2, respectively. Right panel: the same as in left

panel but for a positive defocusing and L = 4, m1 = 1 and m2 = 3, respectively.

FIG. 4 Dependence of the PSF rotation on the defocusing shift ∆z. The reverse rotations

are demonstrated for the spiral masks whose number of phase levels L and the

intrinsic topological charges m1 and m2 satisfy the condition L = m1 +m2: ’ooo’ · · ·
L = 3, m1 = 1, ’∆∆∆’ · · · L = 3, m2 = 2, ’+++’· · · L = 4, m1 = 1 and ’∗ ∗ ∗’
L = 4, m2 = 3.

out of focus PSF is compared for L = 3 and the intrinsic topo-
logical charges m1 = 1 and m2 = 2, respectively. As is demon-
strated, the images rotate in the reverse directions under the
same negative defocusing. In the right panel, the reverse im-
age rotation is shown for the mask with L = 4 and the in-
trinsic topological charges m1 = 1 and m2 = 3, respectively.
The dependence of the PSF rotation on the defocusing is illus-
trated in Figure 4 for three- and four-level masks. The curves
showing the exact reverse rotation are again obtained for the
masks with the intrinsic topological charges adapted to the
number of phase levels, L = m1 + m2. As is evident, the max-
imal achievable rotation increases with an increasing number
of phase levels L.

6 Experimental results and
comparison with theory

Although the PSF rotation was verified successfully for both
the vortex imaging and the spiral filtration, in this paper only
the results obtained in the 4-f system illustrated in Figure 5
are presented. This set-up is commonly used in spiral phase
contrast microscopy [16, 17], in which the edge contrast en-
hancement of phase objects is achieved by means of a contin-
uous spiral phase mask placed in the plane, where the spatial
spectrum of the specimen is created. The method proposed in
this paper allows applying the same system also for the longi-
tudinal location of pointlike objects by means of the rotating
PSF. To achieve this operation, the only required modification
of the system is the replacement of the continuous spiral mask
by a discrete mask with a finite number of phase levels.

In the verification experiment, the He-Ne laser coupled into a
single-mode fiber was used as a point source. Light emanat-
ing from the fiber was collimated by the microscope objective
MO (Melles Griot, NA=0.55, 50×) and transferred on an ac-
tive display of the SLM (Boulder, 512×512) using a relay op-
tics composed of the lenses L1 and L2. The spiral mask with
a quantized phase ensuring the PSF rotation was displayed
on the SLM together with the grating providing separation of
modulated light from the zero diffraction order. The SLM was
placed in the back focal plane of the lens L2 and the light re-
flected in the first diffraction order was captured by the lens
L3 realizing the inverse Fourier transform. The rotating PSF
was detected by the CCD in the focal plane of the lens L3.

FIG. 5 Experimental verification of the PSF rotation implemented by a quantized spiral

phase modulation in the 4− f system: FC - optical fiber NA=0.1 (He-Ne laser, 20 mW,

632.8 nm), MO - microscope objective (Melles Griot NA=0.55, 50x), SLM - spatial light

modulator (Boulder, 512x512), BS - beam splitter, M - mirror, L1, L2, L3 - lenses

( f1 = f2 = 200 mm, f3 = 400 mm), CCD - Olympus, F-View II.
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FIG. 6 Numerical simulations (top row) and experimental verification (bottom row) of a

defocusing-induced rotation of the PSF in the 4-f system with the discrete spiral phase

mask (object-side numerical aperture NA = 0.1, intrinsic topological charge m = 1,

number of phase levels L = 3, defocusing shift ∆z = ±40 µm, ∆z′ = 0).

FIG. 7 The same as in Figure 6, but for the topological charge m = 1 and the number

of phase levels L = 4.

The correctness of the theoretical model proposed for the eval-
uation of the rotating imaging was experimentally verified
for special combinations of the intrinsic topological charge m
of the spiral phase mask and the number of phase levels L.
In Figures 6 and 7, the theoretical and experimental results
demonstrating the defocusing-induced rotation of the PSF are
compared for a quantized spiral phase mask with the param-
eters m = 1 and L = 3 and L = 4, respectively. The theoretical
results (top row) were obtained by numerical simulations us-
ing Eq. (15), the experimental verification (bottom row) was
carried out in the set-up shown in Figure 5. The object-side
numerical aperture of the microscope objective MO was lim-
ited by the output numerical aperture of the used optical fiber
(NA = 0.1). Defocusing was performed in the object space by
a longitudinal shift of the fiber (∆z = ±40 µm), the CCD was
located at the focal plane of the lens L3 (∆z′ = 0). In accor-
dance with Eq. (17), the number of lobes of the PSF is directly
determined by the number of phase levels of the mask L. As
was previously demonstrated by Eq. (18), the mask with the
intrinsic topological charge m and the number of phase levels
L creates a pair of dominant vortex fields with the topological
charges m and L− m, whose interference causes the rotation
of the defocused image. In cases demonstrated in Figures 6
and 7, the PSF expands and rotates clockwise or anticlock-

FIG. 8 The same as in Figure 6, but for the topological charge m = 2 and the number

of phase levels L = 4. In accordance with the theoretical analysis, the PSF does not

rotate during defocusing, because the condition L = 2m is satisfied.

wise depending on the direction of the defocusing shift. On
the contrary, the results of the approximate rotation analysis
indicate that the PSF remains rotationally invariant during de-
focusing when the condition L = 2m is fulfilled. This feature
allows to create both the rotating and non-rotating PSF with
the same number of lobes. As an illustrative example, the PSF
generated by the mask with m = 2 and L = 4 is used. Rotat-
ing and non-rotating versions of the PSF with four lobes are
demonstrated in Figures 7 and 8 with a very good agreement
between theory and experiment.

To use the PSF rotation for a localization of pointlike objects,
dependence of the rotation angle on the defocusing shift must
be determined. This task can be solved using analytical or nu-
merical calculation methods. As is obvious from Eq. (17), the
PSF rotates by the angle ∆ϕ′out = ∆Ω/L, if the object or de-
tector are shifted outside the object or image paraxial plane.
Using the established symbols, ∆Ω can be written as

∆Ω = arctan
=(Ip − Iq)

<(Ip − Iq)
− arctan

=(Ir − Is)

<(Ir − Is)
. (20)

For spiral mask with the parameters m and L, the indices be-
come p = m−/2, q = m+/2, r = (L − m+)/2 and s =

(L− m−)/2. The dependence of ∆Ω on the defocusing shifts
∆z and ∆z′ is intricately hidden in the complex argument of
the Bessel functions Eq. (16). A detailed analysis can be done
using the properties of the Bessel functions. Numerical anal-
ysis shows that the dependence of the rotation angle on the
defocusing shift is similar to the arctangent function. To deter-
mine the position of pointlike objects, the linear part is used,
whose slope varies with the numerical aperture of optics used.
Numerical and experimental results are demonstrated in Fig-
ure 9. The numerical analysis was performed for the spiral
mask with m = 1 and L = 3 in the 4-f set-up using lenses
with the numerical apertures NA = 0.1, 0.3 and 0.6, respec-
tively. As is obvious, the PSF rotation is more sensitive to
defocusing at higher numerical apertures NA, and also the
maximal achievable rotation angle of the intensity profile is
greater when NA is increased. Experimental results obtained
for NA = 0.1 closely match the simulation.
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FIG. 9 Theoretical and experimental dependence of the PSF rotation on the object-side

defocusing ∆z for the spiral mask with m = 1 and L = 3 and different numerical

apertures of the microscope objective MO.

7 CONCLUSION

In the paper, the rotating vortex imaging is examined in two
basic experimental configurations based on a quantized spi-
ral phase modulation. The studied configurations represent
either a vortex lens, where the spiral modulation is applied
directly to the complex amplitude of light, or the 4-f system,
which allows the spiral modulation of the spatial spectrum.
Analysis of both systems is based on a unified mathematical
description enabling determination of the PSF. The main at-
tention is devoted to the rotating effects that occur when the
spiral modulation with a quantized phase is used and the im-
age is out of focus. The main theoretical and experimental re-
sults can be summarized as follows:

• The PSF valid for both experimental configurations of the
vortex imaging was determined and applied to analysis
of the defocused image created by the spiral modulation
with a quantized phase. It was shown that the image of
a point object is given by an infinite sum of the vortex
fields with different topological charges (Eq. (15)). In this
treatment, the quality of the spiral imaging using a quasi-
continuous mask with a large number of phase levels can
be assessed.

• It was verified that the spiral imaging implemented by
the spiral mask with the intrinsic topological charge m
and the low number of phase levels L can be described
by the PSF determined by a superposition of two domi-
nant vortex modes. Their topological charges depend on
the mask parameters and are given as m and L − m, re-
spectively. An approximate two-mode analysis provides
a sufficient accuracy and was used to clarify the reasons
for the image rotation when the spiral modulation with a
quantized phase is applied.

• A detailed analysis of the PSF rotation caused by the de-
focusing was performed and special rotational regimes
found. When the spiral mask with L phase levels is used,
the PSF has L lobes and rotates during defocusing. The
rotation is due to interference of the vortex modes gener-
ated by the mask and depends on its intrinsic topological
charge m and the number of phase levels L. It was ver-
ified both theoretically and experimentally that the PSF
remains rotationally invariant only if L = 2m, in all other
cases the PSF rotates during defocusing.

• Using the proposed theoretical models, the condition of
the reverse PSF rotations was found and experimentally
verified in the 4-f system. It was shown that two point
images can rotate in the exactly reverse directions even
if the same defocusing shift was applied. The reverse ro-
tation occurs, when the images were created by the spi-
ral masks with L phase levels and the topological charges
m1 and m2, which satisfy the condition L = m1 +m2. This
property was used in the correlation method enabling de-
termination of the angular rotation of the PSF from the
detected intensity spots.

• It was shown that the dependence of the rotation angle of
the PSF on the defocusing shift corresponds to the arctan-
gent function. The slope of the linear region usable for ap-
plications increases with increasing numerical aperture
of optics used and the number of phase levels of the spi-
ral mask. The usable range of the angular rotation can be
adjusted using the mask parameters.

The defocusing rotation of the image can be used as a sensitive
tool for the precise localization of pointlike objects. In previ-
ous experiments, the image rotation was implemented in opti-
cal systems with the double helix PSF [6]–[8],[10]. The PSF ro-
tation proposed in the paper is based on the quantized spiral
phase modulation which can be applied either to the spatial
spectrum or the complex amplitude of light. This is advan-
tageous for microscopy because the particle localization does
not require the Fourier filtering in the 4-f system and can be
realized by a direct lens imaging.
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