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We propose in this paper an analytical solution to the problem of scalar diffraction of a partially coherent beam by an opaque disk. This
analytical solution is applied in digital in-line holography of particles. We demonstrate that the reconstruction by means of fractional Fourier
transformation is still possible when a spatially partially coherent beam is used. Numerical simulations and experiments have been carried
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1 INTRODUCTION

Generally, digital in-line or off-axis holography require a co-
herent laser source to record a diffraction pattern by means
of a CCD sensor [1]. These coherent sources are sensitive to
defects in the optical system on one hand and generate un-
wanted high spatial frequencies in the plane of the CCD sen-
sor on the other hand. It is well known that the interaction
of the such beams with the periodic structures of the pix-
els matrix create Moiré effects. In particular cases, this phe-
nomenon allows to elaborate some metrology techniques [2]
but in the case of particle field analysis the Moiré fringes are
considered here as a drawback in Digital In-line Holography
(DIH). Several methods are possible to reduce these effects.
Firstly, it is possible to choose an optimal sampling rate of
solid-state detectors to eliminate the under-sampling of the
hologram (Shannon’s criterium). The second possibility is to
impose some constraints on the maximum angle between the
object beam and the reference wave [3, 4]. The third and final
point concerns the characteristics of the laser source. There are
two ways that can be considered in order to adapt the light
source so that the above problem is avoided. The first way
consists in enlarging the frequency spectrum (linked to the
wavelengths) of the laser source to attenuate the high frequen-
cies contained in the recorded hologram. In this context, a nat-
ural low-pass filter is applied on the fringe pattern [5]. The
second way is to work on the spatial coherence of the source
(generally we called visibility function) [6, 7]. This paper is
devoted to propose an analytical solution to the problem of
scalar diffraction of a partially spatially coherent beam by an
opaque disk. Recall that the basic idea in digital in-line holog-
raphy is firstly to record the intensity distribution, with a CCD

sensor, of the diffraction pattern of a particle field illuminated
by a light wave [8, 9, 10]. The second step is to reconstruct the
image of this field by means of an operator [11, 12, 15]. The
knowledge of the theoretical model in digital in-line holog-
raphy allows us to digitally refocus, in an optical sense, on
the objects. Consequently, in the following section, the analyt-
ical model is given in the case of a partially spatially coher-
ent beam and the theoretical intensity is computed in semi-
analytical form. This model is illustrated by simulations and
experiments in Section 3. In Section 4, after recalling the frac-
tional Fourier transformation (FRFT) operator, we show that
hologram reconstruction can be achieved by FRFT.

2 DIGITAL IN-LINE HOLOGRAPHY WITH A
SPATIALLY PARTIALLY COHERENT
SOURCE

Spatially partially coherent sources are already widely used
in digital holography. Nevertheless, the analytical theory of
the distribution of the intensity of the spatially partially coher-
ent field diffracted by a particle is not sufficiently developed.
The advantage of the knowledge of the recorded intensity is
that one can study the influence of the different parameters
of the experimental set-up and the effects of the spatially par-
tially coherent beam on recorded holograms can be predicted.
Figure 1 represents the numerical and experimental setup in
which all parameters are identified.

To obtain a spatially partially coherent source, it is possible to
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FIG. 1 Experimental set-up for digital in-line holography from propagation of the mutual

intensity function. ζs: distance between the filter and the particle, ζe: the distance

between the particle and the CCD sensor.

use a coherent spatial source [16]. Alternatively, it is possible
to use a LED. The LED (light-emitting diode) can be a red with
mean wavelength λm = 625 nm or blue with λm = 455 nm.
The used LED at λm = 625 nm has an experimental band-
width in 21.5 nm range. This would have a small effect in the
results since one should then add contributions at different
wavelengths incoherently. The resulting scaling range in the
diffraction pattern is small. Moreover, . Note that here, These
are the interactions between the source and the object of inter-
est and not the intrinsic characteristics of the source even if we
know it is related. The first lens focuses the beam over the pin-
hole filter. It is considered that the output numerical aperture
of the first lens before the pinhole filter is very large. The effec-
tive coherence area is much smaller than the area of the filter.
Then, the assumption of spatially partially coherent illumina-
tion is valid in practise. In the (α, β)-plane, the pinhole filter is
placed with A and B the respective apertures along the axes.
The opaque disk of diameter Dth is localized at distance ζs
from the pinhole and at distance ζe from the CCD sensor. The
distance between the filter and the CCD sensor is denoted by
ζsc. In the spatial coherence point of view, the cross-correlation
between two spatial points from the wavefront is needed. For
this, two points along each axis must be considered. Along the
ξ-axis the two points are ξ1 and ξ2. Along the ν-axis, the two
points are ν1 and ν2. By noting that ∆ξ = ξ2− ξ1, ∆ν = ν2− ν1,
ξ = (ξ2 + ξ1)/2, ν = (ν2 + ν1)/2 and from Eq. (5.6-8) on
p. 209 of [17], the mutual intensity function Ĵo(ξ, ∆ξ, ν, ∆ν) in
the plane just before the opaque disk versus the intensity dis-
tribution of the Gaussian filter is expressed by means of Van
Cittert-Zernike theorem according to

Ĵo(ξ, ∆ξ, ν, ∆ν) =
λ2

m
π(λmζs)2 exp

[
−i2π

ξ∆ξ + ν∆ν

λmζs

]
×
∫

R2
I(α, β) · exp

[
i

2π

λmζs
(β∆ξ + α∆ν)

]
dαdβ, (1)

where Ĵo(ξ, ∆ξ, ν, ∆ν) = Jo(ξ − ∆ξ/2, ν− ∆ν/2, ξ + ∆ξ/2, ν +

∆ν/2) and the Gaussian aperture filter I(α, β) is given by, see
[18], Eq. (29) on p.786

I(α, β) = I0 exp
[
−
(

α2

A2 +
β2

B2

)]
, (2)

with I0 = I(0, 0) and A, B the 1/e2 width of the filter. It is im-
portant to note that we have considered the general case, i.e.
A 6= B, in the theoretical developments but from the practical

experiences we have chosen A ≈ B. These cases correspond
to an elliptical and a circular filter, respectively. The combina-
tion of Eqs. (2) and (1) gives us the following mutual intensity
function Ĵo:

Ĵo(ξ, ∆ξ, ν, ∆ν) = K exp
(
− π2 A2

(λmζs)2 ∆ξ2
)

× exp
(
− π2B2

(λmζs)2 ∆ν2
)
× exp

[
−i2π

ξ∆ξ + ν∆ν

λmζs

]
, (3)

where K = λ2
m ABI0

(λmζs)2 . Note that the mutual intensity function
is a Gaussian function involving ξ1, ξ2, ν1, ν2. This situation
is reminiscent of the situation in [12] where an incident el-
liptic and astigmatic Gaussian beam illuminates an opaque
disk. In [12], the high frequencies in the diffraction pattern are
smoothed in a more regular way than what one gets with a
circular filter where the mutual intensity function is governed
by a Bessel function. The spatial transmittance of the opaque
2D-opaque disk is defined by [1− T(ξ, ν)]. From [17], Eq. (5.7-
4) on p.223, the mutual intensity function, denoted by Ĵt, of
the transmitted light is thus

Ĵt(ξ, ∆ξ, ν, ∆ν) =

[
1− T

(
ξ − ∆ξ

2
, ν− ∆ν

2

)]
×
[

1− T
(

ξ +
∆ξ

2
, ν +

∆ν

2

)]
× Ĵo(ξ, ∆ξ, ν, ∆ν). (4)

The overhead bar on T denotes the complex conjugation of T.
As T is real then T = T. To calculate the observed intensity dis-
tribution of the interferences between the reference beam and
the part of this beam diffracted by the opaque disk, we begin
with [17], Eq. (5.7-6) on p.224 in the paraxial approximation.
Then, the intensity is given by:

I(x, y) =
1

(λmζe)
2

∫
R4

Ĵt(ξ, ∆ξ, ν, ∆ν)

× exp
[
−i

2π

λmζe
(ξ∆ξ + ν∆ν)

]
× exp

[
i

2π

λmζe
(x∆ξ + y∆ν)

]
dξdνd∆ξd∆ν. (5)

In the plane of the CCD sensor, the intensity distribution
I(x, y) is also the sum of four terms, i.e.:

I(x, y) = I1 − [I2 + I3] + I4. (6)

These four terms arise from expanding of Eq. (4) into four
terms and expanding Eq. (5) accordingly.

2.1 Expression for I1(x, y)

The first term I1 at the right-hand side of Eq. (6) is given by

I1(x, y) =
1

(λmζe)
2

∫
R4

Ĵo(ξ, ∆ξ, ν, ∆ν)

× exp
[
−i

2π

λmζe
(ξ∆ξ + ν∆ν)

]
× exp

[
i

2π

λmζe
(x∆ξ + y∆ν)

]
dξdνd∆ξd∆ν. (7)

This I1 is expressed in 7.1 of appendix 7 as

I1(x, y) =
AB

(ζs + ζe)
2 · I0. (8)
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This Eq. (41) embodies the transition to the spatially partially
coherent case from the coherent case in Eq. (25).

2.2 Expression for I2(x, y) and I3(x, y)

Now, for the second term I2, we have to calculate the follow-
ing integral:

I2(x, y) =
1

(λmζe)
2

∫
R4

T
(

ξ − ∆ξ

2
, ν− ∆ν

2

)
Ĵo(ξ, ∆ξ, ν, ∆ν)

× exp
[
−i

2π

λmζe
(ξ∆ξ + ν∆ν)

]
× exp

[
i

2π

λmζe
(x∆ξ + y∆ν)

]
dξdνd∆ξd∆ν. (9)

In 7.2 of appendix 7, this I2 is expressed as

I2(r, ϕ) =
π2KD2

th

(λζe)2
√

MN
· exp

[
−(αxx2 + αyy2)

]
·

∞

∑
k=0

(−i)kεk Tk(r, γ) cos(2kϕ). (10)

The exponential function at the right-hand side of Eq. (10) is
a linearly chirped Gaussian controlled by the parameters αx
and αy defined by

αx =
π2

(λmζe)2
M
|M|2 , αy =

π2

(λmζe)2
N
|N|2 , (11)

with

M =
π2 A2

(λmζs)2 + iπL, N =
π2B2

(λmζs)2 + iπL,

L =

(
1

λmζe
+

1
λmζs

)
, (12)

Furthermore, r and ϕ are such that

r cos ϕ = a, r sin ϕ = b, (13)

with

a = −iL
π2Dth
λmζe

· M
|M|2 · x, b = −iL

π2Dth
λmζe

· N
|N|2 · y, (14)

by assuming that a± ib 6= 0, see appendix 8, which is gener-
ally the case from experimental point of view. The parameter
γ is given by

γ = iπ2 D2
th

8

(
M
|M|2 +

N
|N|2

)
L2, (15)

and it is linked to the apertures of the filter and to the position
of the opaque disk along the optical-axis from the CCD sensor
and from the filter. The functions Tk (see Eqs. (51) and (18)) are
given in terms of Bessel functions as follows:

Tk(r, γ) =
∞

∑
p=0

β2k
2k+2p(δ)V

2k
2k+2p(r, γ). (16)

The parameters δ is given by

δ = iπ2 D2
th

8

(
M
|M|2 −

N
|N|2

)
L2. (17)

The δ-parameter is linked to the ellipticity of the filter. In-
deed, in the particular case where the filter is circular, we have
δ = 0. In 7.2 in appendix 7, the expansion coefficients β2k

2k+2p
are expressed explicitly in terms of the hypergeometric func-
tions 2F3 as in [12]. Note that, in the case of an elliptical filter
β2k

2k+2p(0) = 1 if k = p = 0 and 0 otherwise. The V-functions
have the series expression ([12, 29, 28]):

Vm
n (r, f ) = exp (i f ) ·

∞

∑
l=1

(−2i f )l−1
P

∑
j=0

vl j ·
Jm+l+2j(r)

l(r)l , (18)

where n and m are integers ≥ 0 with n − m even and non-
negative, and

vl j =(−1)P(m + l + 2j)
(

m + j + l − 1
l − 1

)(
j + l − 1

l − 1

)
×
(

l − 1
P− j

)
/
(

Q + l + j
l

)
, (19)

for l = 1, 2, ..., j = 0, 1, ..., P, P = n−m
2 and Q = n+m

2 . Further-
more, I3 is the complex conjugate of I2. Consequently, the sum
of I2 and I3 gives us the following result:

I2(r, ϕ)+ I3(r, ϕ) = I2(r, ϕ)+ I2(r, ϕ) = 2 · < {I2(r, ϕ)} , (20)

where < denotes the real part. Eq. (20) can be compared to
the second term at the right-hand side of Eq. (25) where the
linearly chirped Gaussian is replaced by the real linear chirp
of Eq. (10) and the V-functions defined in Eq. (18) replace the
Jinc1-function in Eq. (25). One thus see that the mathematical
structure is the same in the case of a spatially partially coher-
ent source.

2.3 Expression for I4

To derive a semi-analytic expression for

I4(x, y) =
1

(λmζe)
2

∫
R4

T
(

ξ − ∆ξ

2
, ν− ∆ν

2

)

× T
(

ξ +
∆ξ

2
, ν +

∆ν

2

)
Ĵo(ξ, ∆ξ, ν, ∆ν)

× exp
[
−i

2π

λmζe
(ξ∆ξ + ν∆ν)

]
× exp

[
i

2π

λmζe
(x∆ξ + y∆ν)

]
dξdνd∆ξd∆ν, (21)

it is necessary to use mathematical results on (i) a special
Zernike expansion, (ii) the correlation product of Zernike
polynomials [30], (iii) the linearization of products of Zernike
polynomials [31], and (iv), the extended Nijboer-Zernike the-
ory (ENZ)[29]. The details of the computations are given in 7.3
of appendix 7. The semi-analytical expression for the integral
I4 is then

I4(r, ϕ) =
π2D4

th
8

K

(λmζe)
2

∞

∑
q=0

Cq(κ)
∞

∑
n=−∞

∞

∑
p=0

inβ
|2n|
|2n|+2p(ψ)

×
p+q

∑
s=max(0,p−q,q−p−|2n|)

A|2n|,0,|2n|
|2n|+2p,2q,|2n|+2s

×V|2n|
|2n|+2s(2r, χ) exp[i2nϕ], (22)
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with

Cq(κ) =
∞

∑
l,l′

(2q + 1)Γ000
2l,2l′ ,2q

(2l + 1)(2l′ + 1)
B0

2l(κ)B0
2l′ (κ), (23)

where the Γ000
2l,2l′ ,2q are expressed in terms of at most four Jacobi

polynomials evaluated at 0, the B0
2l are expansion coefficients

involving spherical Bessel functions of the first kind, β
|2n|
|2n|+2p

are expressed in terms of the hypergeometric function 2F3, the
A|2n|,0,|2n|
|2n|+2p,2q,|2n|+2s are Wigner coefficients, and V|2n|

|2n|+2s are func-
tions from ENZ theory as in Eq. (18). The coefficients κ, ψ, χ,A
and B are as follows:

κ =
LD2

th
4

, ψ = i2(A−B) χ = 2i(A+ B),

A =
π2D2

th
4

A2

(λζs)2 , B =
π2D2

th
4

B2

(λζs)2 . (24)

As one can see, this fourth term, I4, is expressed in terms of
Bessel functions, (just as the last terms of Eq. (25)). The only
difference is that the square of the Jinc1-function is replaced
by a series involving V-functions.

2.4 Part icular case: A = B = 0

In this particular case, the mathematical model of the intensity
distribution obtained with partially spatially coherent beam
must tend to the intensity distribution obtained with a laser.
In the case of an opaque disk, the mathematical definition of
the normalized intensity distribution in far-field approxima-
tion (i.e., πD2

th/2λz � 1 in [12], Eq. (18)), denoted in Eq. (25)
as Icoh(r), is

Icoh(r) =1−
πD2

th
λz

sin
[

πr2

λz

]
·

J1(
πDthr

λz )
πDthr

λz

+

[
πD2

th
2λz

J1(
πDthr

λz )
πDthr

λz

]2

. (25)

To treat this case, Eq. (6) must be normalized by the coefficient

K = λ2
m ABI0

(λmζs)2 . Then, in the far-field approximation, i.e. ζs � ζe,

lim
A→0

I1

K
= 1.

This limit corresponds to the first term of the Eq. (25). In the
same way, the second and third terms,

lim
A→0

I2 + I3

K
=

πD2
th

λmζe

J1(
πDthr

λz )
πDthr

λz

. (26)

And for the fourth term, we have, by identification:

lim
A→0

I4

K
=

π2D4
th

8 (λmζe)
2 ·

∞

∑
q=0

Cq(κ) ·V0
2q(4πr, 0)

=

[
πD2

th
2λz

J1(
πDthr

λz )
πDthr

λz

]2

, (27)

with r = Dth
2λmζe

(x2 + y2)1/2.

3 NUMERICAL EXPERIMENT AND
EXPERIMENTALRESULT

Firstly, in the theoretical developments, the filter is consid-
ered as a Gaussian function (see Eq. (2)) to simplify the cal-
culus. In the experiences, the filter is a pinhole. As we will
see it, the results are similar. However, it is possible to con-
sider the method of Gaussian functions superposition to de-
scribe the pinhole [13, 14]. Secondly, knowing that the theo-
retical curvature of the wave in the plane of the object is de-
fined by the quadratic phase of Eq. (3), the second lens has
two purposes: it allows to collect the maximum energy fo-
cused by the first lens, and adjusts the experimental curvature
of the wave with the theoretical curvature of (3). In practical
experiments, one has typically Dth ≈ 10−4 m, ζe,s ≈ 10−2 m
and λ ≈ 10−6 m. Then κ ≈ 0.5. The apertures A and B of
the pinhole are approximately of the order of 10−4 m. Then
|ψ| ≈ 3.70 and |χ| ≈ 10. If the pinhole is close to being circu-
lar, A ≈ B then |ψ| ≈ 0+. Furthermore, δ ≈ −0.454 + 0.0885i
and γ ≈ 0.907 + 0.623i. As the diameter Dth is of the order
of or less than 10−4 m we have that κ, ψ, δ, γ and χ are of the
order of or less than 10−2. With these values, we can limit the
truncation of the sums at 3 in Eq. (23), at l = 5 in Eq. (18), at
p = 5 in Eq. (51), and at k = 3 in Eq. (10). In order to give
an illustration of our results, we first have simulated diffrac-
tion patterns produced by an opaque disk of 80 µm diame-
ter. The aperture values of the pinhole are A = 50 µm and
B = 50.1 µm. The particle is localized at ζs = 216 mm from the
pinhole and at ζe = 80 mm from the CCD sensor. Figure 2(a)
shows the simulated intensity distribution at the observation
plane and Figure 2(b) the experimental intensity distribution
recorded by the CCD sensor.

The holograms consist of a 1000 × 1000 array of
4.4 µm×4.4 µm size pixels. The mean wavelength of the
LED source is equal to λm=625 nm. These illustrations reveal
a good agreement between numerical and experimental
diffraction patterns with a partially coherent source. To
confirm this point, the transverse intensity profiles obtained
from Figure 2(a) and Figure 2(b) are presented in Figure 4.

Here the intensity distribution has been modified so as to
match the experimental grey level of each pixel with the theo-
retical values.

In this first result the effective coherence area of the beam
is equal to 1.158 mm2 while the object’s area is equal to
0.005 mm2. This situation is closed to an object illuminated
by a coherence beam. However, the choice of apertures A and
B must allow us then to demonstrate the capability to recon-
struct the image of the object and to deduce the axial position
ζe and to estimate its diameter Dth. If the effective coherence
is equal to the object’s area, the aperture of the filter must be
equal to A=B=759.6 µm. With this aperture, it is not possible
to reconstruct the image of the particle. Thus, a metrology of
the reconstructed image is not possible. Note that again, when
the apertures A, B are greater than 200 µm, the diffraction pat-
tern does not contained interference rings. At these apertures,
we consider that a metrology on the reconstructed image of
the object is not possible.
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FIG. 2 Theoretical result of the intensity distributions for A =50 µm, B =50.1 µm,

ζs =216 mm, Dth =80 µm, ζe =80 mm.
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FIG. 3 Experimental result of the intensity distributions for A =50 µm, B =50.1 µm,

ζs =216 mm, Dth =80 µm, ζe =80 mm.

Now, as the theoretical developments are in accordance with
the experimental result, remember that the purpose is to ob-
tain an image of the opaque disk by means of a digital refocus-
ing. This is precisely the role of the fractional Fourier transfor-
mation, and this is elaborated in the next section.

4 DIGITAL IN-LINE RECONSTRUCTION BY
FRACTIONAL FOURIER
TRANSFORMATION ANALYSIS

Fractional Fourier Transformation (FRFT) is an integral oper-
ator that has various application in signal and image process-
ing. Its mathematical definition is given in Ref. [25, 24, 26].
The two-dimensional fractional Fourier transformation of or-
der ax for x-cross-section and ay for y-cross-section with

−1.5 −1 −0.5 0 0.5 1 1.5
40

60

80

100

120

140

160

x [mm]

In
te

ns
ity

 p
ro

fil
es

 [u
.a

.]

FIG. 4 Comparison between simulated and experimental intensity distributions: theo-

retical result (solid width line), experimental result (solid line).

0 ≤ |θx| ≤ π/2 and 0 ≤ |θy| ≤ π/2, respectively, of a 2D-
function I(x, y) is defined as (with θj =

ajπ

2 and j = x, y)

Fθx ,θy [I(x, y)](xa, ya)

=
∫

R2
Nθx (x, xa) Nθy (y, ya)I(x, y) dx dy, (28)

where the kernel of the fractional operator is defined by

Nθj (x, xa) = C(θj) exp

(
i π

x2 + x2
a

s2
j tan θj

)
exp

(
− i 2πxax

s2
j sin θj

)
, (29)

and

C(θj) =
exp(−i(π

4 sign(sin θj)−
θj
2 ))

|s2
j sin θj|1/2

. (30)

Generally, the parameter sj is considered as a normalization
constant. It can take any value. In our case, its value is defined
from the experimental set-up according to [20]: s2

j = Nj · δ2
j .

Recall that the aim is to reconstruct the image of the object.
To do this, we know from literature [9, 21, 15, 22, 23] that the
second or the third term of Eq. (6), containing the linear chirp,
allows us a digital refocusing to form images from recorded
holograms. We write the fractional Fourier transformation of
I in Eq. (6) as

Fθx ,θy [I](xa, ya) =Fθx ,θy [I1]−Fθx ,θy [I2]−Fθx ,θy [I3]

+Fθx ,θy [I4]. (31)

As to the second or third term of Eq. (31), the basic assump-
tion is that the linear chirps of the FRFT, controlled by the
fractional orders, cancel the linear chirps contained in I2 or I3.
Consequently, for the term Fθx ,θy [I2], the following conditions
must be satisfied:

cot θxo = −
s2

x
π
· ={αx} and cot θyo = −

s2
y

π
· ={αy}. (32)

Here ={.} denotes the imaginary part. The coefficients θxo,yo
are the optimal fractional orders to reconstruct the image
of the particle. For example, the reconstructed image of the
80 µm diameter particle from the diffraction pattern in Fig-
ure 2(a) with ax = ay = 0.833091 is illustrated in Figure 5.
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FIG. 5 Reconstruction of the image of the particle with the FRFT: ax = ay = 0.833091,

Nx = Ny = 950.

Conversely, the knowledge of these optimized fractional or-
ders leads to the determination of the position ζe of the opaque
disk from one of the two Eqs. (32) as the real root of the cubic
equation

ζ3
e − a1 · ζ2

e + a2 · ζe − a3 = 0, (33)

with

a1 =
2λ2

m · ζ3
sc cot θxo + 3λm · s2

x · ζ2
sc

π2 A4 cot θxo + λ2
mζ2

sc cot θxo + λs2
xζsc

,

a2 =
λ2

m · ζ4
sc cot θxo + 3λm · s2

x · ζ3
sc

π2 A4 cot θxo + λ2
mζ2

sc cot θxo + λs2
xζsc

, (34)

a3 =
λm · s2

x · ζ4
sc

π2 A4 cot θxo + λ2
m · ζ2

sc cot θxo + λs2
xζsc

.

If Eqs. (32) are satisfied, to evaluate the second term in Eq. (31),
an approximation of I2 for k = p = 0 and l = 1 must be done
and gives

I2 =
π2KD2

th

(λζe)2
√

MN
exp

[
−(αxr · x2 + αyr · y2)

]
× 1

2
β0

0(δ) exp(iγ)
J1(r)

r
. (35)

The optimal fractional Fourier transformation of I2 is then

F θxo ,θyo [I2](xa, ya) = C(xa, ya)

·
∫

R2
exp

[
−(αxr · x2 + αyr · y2)

] J1(r)
r

· exp

[
−i2π

(
xax

s2
x sin θxo

+
yay

s2
y sin θyo

)]
dxdy, (36)

with

C(xa, ya) =C(θxo)C(θyo)
π2KD2

2(λmζe)2
β0

0(δ)

(MN)1/2

× exp(iγ) exp
[
iπ
(

x2
a cot θxo + y2

a cot θyo

)]
. (37)

The function C(xa, ya) only appears as a proportionality con-
stant because we work in intensity. The Eq. (36) is no more

than a classical 2D Fourier transformation over the frequen-
cies (u, v) of the product of two functions which is the convo-
lution of their transforms, thus

F I2(u, v) = C(u · s2
x sin θxo, v · s2

y sin θyo)

×
(
F
[
exp

[
−(αxr · x2 + αyr · y2)

]]
∗∗

conv
F
[

J1(r)
r

])
, (38)

with the coordinates xa = u · s2
x sin θxo, ya = v · s2

y sin θyo and
F I2(u, v) = Fθxo ,θyo [I2](u · s2

x sin θxo, v · s2
y sin θyo). The symbol

∗∗conv denotes 2D spatial convolution. Eq. (38) shows that the
reconstructed image of the disk is convolved by a Gaussian
function. The Fourier transformation of the Jinc1-function is
discussed in appendix (9) and it exhibits, in the case where
the aperture of the filter is circular, the necessity to apply scale
factors on the coordinates to retrieve the diameter Dth. These
scale factors, denoted by ∆j, are equal to:

∆j =
|M|2
π2L2 ·

λmζe

s2
j sin θjo

, (39)

with j = x, y. In the previous theoretical example the scale
factors are equal to ∆x = ∆y = 2.815. In the case where the
aperture of the filter is elliptical, the reconstruction give us, in
first approximation, an autocorrelation of the disk function of
radius 1.

4.1 Experimental results

In order to validate the reconstruction process with the frac-
tional Fourier transformation in practice, we have realized the
experimental set-up illustrated in Figure 1). The intensity dis-
tribution of the interference between the incident beam and
the part diffracted by the particle has been recorded and it
is illustrated in Figure 2(b). Recall that the parameters are
ζsc = 296 mm, A = B = 50 µm, and that the LED has mean
wavelength λm = 625 nm. The diameter of the particle is
equal to 80 µm. The pixel size of the CCD sensor is equal to
4.4 µm by 4.4 µm. In Figure 6(a), we have computed the re-
constructed image of the opaque disk for optimal fractional
orders axo = ayo = 0.834.

These experimental optimal fractional orders allow us to esti-
mate the distance, denoted by ζest, between the opaque disk
and CCD sensor at ζest = 80.33 mm. In Figure 6(b), the in-
tensity profile is given to demonstrate that the diameter of the
particle can be estimated with an accuracy of 0.5 units.

The previous experimental results presented here are in good
accordance with the expected results and validate our theoret-
ical model of digital in-line holography with a spatially par-
tially coherent beam.

5 CONCLUSION

To the best of our knowledge, we have proposed in this paper
the first analytical solution to the problem of scalar diffrac-
tion of a partially coherent beam by an opaque disk. We have
demonstrated that the expression for the intensity distribu-
tion in the spatially partially coherent beam is close to the
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FIG. 6a Reconstruction of the image of the particle by the FRFT for fractional orders

axo = ayo = 0.834, ζest = 80.33 mm.

expression of the intensity distribution in the case of a coher-
ent beam. These expressions have been used in digital in-line
holography. We have demonstrated that in the presence of a
spatially partially coherent beam, the reconstruction process
remains possible as in the case of a coherent beam. The opti-
mal fractional orders that allow the reconstruction of the im-
age of the opaque disk have been established theoretically in
the case where the aperture of the filter is circular. We could
demonstrate that there are fundamental differences in the re-
construction process when using a spatially partially coher-
ent beam and coherent laser light. When using a spatially par-
tially coherent beam, the orders of reconstruction and the di-
ameter of the reconstructed object depend significantly on the
source geometrie. The dependence of these parameters with
the set-up could be established theoretically. Finally, digital
in-line experiments have been carried out. A good agreement
between the simulated intensity distributions and experimen-
tal results has been demonstrated and reconstructions could
be performed by using the fractional Fourier transformation.
They confirm the theoretical developments and predictions.

6 APPENDIX

7 Definit ion of the functions I(x, y)

7.1 Expression for I1

The result of Eq. (7) is obtained by introducing Eq. (3) in
Eq. (7). So

I1(x, y) =
K

(λmζe)
2

∫
R2

exp
(
− π2 A2

(λmζs)2 ∆ξ2
)

× exp
(
− π2B2

(λmζs)2 ∆ν2
)

exp
[

i
2π

λmζe
(x∆ξ + y∆ν)

]
×
∫

R2

exp
[
− i2π

(
ξ

(
∆ξ

λmζe
+

∆ξ

λmζs

)

+ ν

(
∆ν

λmζe
+

∆ν

λmζs

))]
dξdνd∆ξd∆ν,

=
K

(Lλmζe)
2

∫
R2

exp
(
− π2 A2

(λmζs)2 ∆ξ2
)

× exp
(
− π2B2

(λmζs)2 ∆ν2
)

exp
[

i
2π

λmζe
(x∆ξ + y∆ν)

]
× δ (∆ξ, ∆ν) d∆ξd∆ν, (40)

with δ(x, y) the Dirac impulse and the constant

L =
(

1
λmζe

+ 1
λmζs

)
. From this one gets

I1(x, y) =
AB

(ζs + ζe)
2 · I0. (41)

7.2 Expression for I2

Again, the result of Eq. (9) is obtained by introducing Eq. (3)
in Eq. (9). So

I2(x, y) =
K

(λmζe)
2

∫
R4

T
(

ξ − ∆ξ

2
, ν− ∆ν

2

)

exp
(
− π2 A2

(λmζs)2 ∆ξ2
)

exp
(
− π2B2

(λmζs)2 ∆ν2
)

exp
[
−i2π

ξ∆ξ + ν∆ν

λmζs

]
exp

[
−i

2π

λmζe
(ξ∆ξ + ν∆ν)

]
exp

[
i

2π

λmζe
(x∆ξ + y∆ν)

]
dξdνd∆ξd∆ν. (42)

To calculate this integral, three steps are necessary. The first
step is to change variables ξ − ∆ξ/2 −→ ξ ′, ν− ∆ν/2 −→ ν′,
and one gets in a straightforward manner:

I2 =
πK

(λmζe)
2√MN

· exp
[
−(αxx2 + αyy2)

]
·
∫

R2

T(ξ ′, ν′) · exp
[
−π2L2 M
|M|2 ξ ′2 − π2L2N

|N|2 ν′2
]

exp
[
−i

2π

λmζe

(
iπML
|M|2 x ξ ′ +

iπNL
|N|2 y ν′

)]
dξ ′dν′, (43)

with the coefficients

M =
π2 A2

(λmζs)2 + iπL, N =
π2B2

(λmζs)2 + iπL,

αx =
π2

(λζe)2

M
|M|2 , αy =

π2

(λζe)2

N
|N|2 . (44)
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The second step is to use polar coordinates ξ ′ = (1/2) ·
Dσ cos θ and ν′ = (1/2) · Dσ sin θ in the integral in Eq. (43)
to get

I2 =
πD2

th
4

K

(λmζe)
2√MN

· exp
[
−(αxx2 + αyy2)

]
×
∫ 2π

0

∫ 1

0
exp

[
iγσ2

]
exp

[
iδσ2 cos(2θ)

]
× exp [iaσ cos θ + ibσ sin θ] σdσdθ, (45)

with

a = −iL
π2Dth
λmζe

· M
|M|2 · x, and

b = −iL
π2Dth
λmζe

· N
|N|2 · y. (46)

The parameters γ, δ are

γ = iπ2 D2
th

8

(
M
|M|2 +

N
|N|2

)
L2,

δ = iπ2 D2
th

8

(
M
|M|2 −

N
|N|2

)
L2. (47)

By writing (see appendix 9 for comments)

a cos θ + b sin θ = r cos(ϕ− θ), (48)

for which we have the condition

a = r cos ϕ, b = r sin ϕ, (49)

with complex r and θ, the integral in Eq. (45) has been evalu-
ated in [12]. This gives then the result

I2(r, ϕ) =
π2KD2

th

(λζe)2
√

MN
· exp

[
−(αxx2 + αyy2)

]
·

∞

∑
k=0

(−i)kεk Tk(r, γ) cos(2kϕ), (50)

with εk = 1/2 if k = 0 and 1 otherwise. The function Tk(r, γ)

is defined as

Tk(r, γ) =
∞

∑
p=0

β2k
2k+2p(δ)V

2k
2k+2p(r, γ), (51)

where the expansion coefficients β2k
2k+2p are expressed explic-

itly in terms of the hypergeometric functions 2F3 [12] as

β2k
2k+2p(γ2) = d0

0 (−1)r(2k + 4r + 1)
(

1
2

γ2

)k+2r
(52)

2F3

(
r + 1

2 k + r + 1
2

1
2 k + 2r + 3

2 k + 2r + 1
;−1

4
γ2

2

)
(53)

in the case where 2r− p = 0 and

β2k
2k+2p(γ2) = d1

0 (−1)r(2k + 4r− 1)
(

1
2

γ2

)k+2r
(54)

2F3

(
r + 1

2 k + r + 1
2

3
2 k + 2r + 1 k + 2r + 1

2
;−1

4
γ2

2

)
(55)

in the case where 2r− p = 1. In Eqs. (52) and (54), the coeffi-
cients d0

0 and d1
0 are defined as follows:

d0
0 =

(2r)!(2k + 2r)!
r!(k + r)!(2k + 4r + 1)!

, d1
0 =

(2r)!(2k + 2r)!
r!(k + r)!(2k + 4r)!

. (56)

7.3 Expression for I4

The characteristic function of the unit disk is real and even
and so the conjugate T of T is equal to T. Therefore we must
compute

I4(x, y) =
1

(λmζe)
2

∫
R4

T
(

ξ − ∆ξ

2
, ν− ∆ν

2

)

× T
(

ξ +
∆ξ

2
, ν +

∆ν

2

)
Ĵo(ξ, ∆ξ, ν, ∆ν)

× exp
[
−i

2π

λmζe
(ξ∆ξ + ν∆ν)

]
× exp

[
i

2π

λmζe
(x∆ξ + y∆ν)

]
dξdνd∆ξd∆ν. (57)

Firstly, by changing variables ξ − ∆ξ/2 −→ ξ ′, ν− ∆ν/2 −→
ν′ and by repeating the developments for I2, the expression
for I4 becomes

I4 =
K

(λmζe)
2

∫
R2

exp
[
−M∆ξ2 − N∆ν2 + i2π(X∆ξ + Y∆ν)

]

×
( ∫

R2

T
(
ξ ′, ν′

)
T
(
ξ ′ + ∆ξ, ν′ + ∆ν

)

exp
[
−i2πL(∆ξ · ξ ′ + ∆ν · ν′)

]
dξ ′dν′

)
d∆ξd∆ν, (58)

with X = x/(λζe) and Y = y/(λζe). Changing variables
ξ ′′ = ξ ′/(Dth/2), ∆ξ ′ = ∆ξ/(Dth/2), ν′′ = ν′/(Dth/2), ∆ν′ =

∆ν/(Dth/2) and by noting that T̃ (ξ ′′, ν′′) = T
(

Dth
2 ξ ′′, Dth

2 ν′′
)

,
we get

I4 =
D4

th
16

K

(λmζe)
2

∫
R2

exp

[
−

MD2
th

4
∆ξ ′2 −

ND2
th

4
∆ν′2 + i2π

Dth
2

(X∆ξ ′ + Y∆ν′)

]

×
( ∫

R2

T̃
(
ξ ′′, ν′′

)
T̃
(
ξ ′′ + ∆ξ ′, ν′′ + ∆ν′

)

× exp

[
−i2π

LD2
th

4
(∆ξ ′ · ξ ′′ + ∆ν′ · ν′′)

]
dξ ′′dν′′

)
d∆ξ ′d∆ν′.

(59)

Now, by setting T̃(σ) = T̃(∆ξ ′, ∆ν′) where σ = (∆ξ ′, ∆ν′), we
have (

T̃(σ) exp

[
−iπ

LD2
th

4
σ · σ

]
??
corr

T̃(σ)

exp

[
−iπ

LD2
th

4
σ · σ

])
× (∆ξ ′, ∆ν′)

= exp

[
−iπ

LD2
th

4
(∆ξ ′2 + ∆ν′2)

]
∫

R2

T̃(ξ ′′, ν′′)T̃(ξ ′′ + ∆ξ ′, ν′′ + ∆ν′)

× exp

[
−i2π

LD2
th

4
(ξ ′′∆ξ ′ + ν′′∆ν′)

]
dξ ′′ dν′′, (60)
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where ??corr denotes 2-D spatial correlation. Hence Eq. (59)
for I4 becomes

I4 =
D4

th
16

K

(λmζe)
2

∫
R2

× exp

[
−

MD2
th

4
∆ξ ′2 − ND2

4
∆ν′2

]

× exp
[

i2π
Dth
2

(X∆ξ ′ + Y∆ν′)

]
× exp

[
iπ

LD2
th

4
(∆ξ ′2 + ∆ν′2)

]

×
(

T̃(σ) exp

[
−iπL

D2
th

4
σ · σ

]
??
corr

T̃(σ)

× exp

[
−iπL

D2
th

4
σ · σ

])
(∆ξ ′, ∆ν′) · d∆ξ ′ d∆ν′. (61)

From the definition of the coefficients M and N, the integral I4
can be written as

I4 =
D4

th
16

K

(λmζe)
2

×
∫

R2

exp
[
−A∆ξ ′2 −B∆ν′2 + i2π(X∆ξ ′ + Y∆ν′)

]
×
(

T̃(σ) exp [−iπκ σ · σ] ??
corr

T̃(σ) exp [−iπκ σ · σ]
)

× (∆ξ ′, ∆ν′) · d∆ξ ′ d∆ν′, (62)

with

A =
π2D2

th
4

A2

(λζs)2 , B =
π2D2

th
4

B2

(λζs)2 ,

κ =
LD2

th
4

, X =
Dth

2λζe
· x, Y =

Dth
2λζe

· y. (63)

The variables in the integral in Eq. (62) are dimensionless and
will be used in the sequel. To compute the autocorrelation in
Eq. (62), the well-known Zernike expansion of the function
T̃(σ) exp [−iπκ σ · σ] is used. We have only to consider R0

2l(σ)

by radial symmetry and by using Bauer’s identity, see, for in-
stance [31], Eq. (8), we have

T̃(σ) exp [−iπκ σ · σ] =
∞

∑
l=0
B0

2l(κ) · R
0
2l(σ), (64)

where

B0
2l(κ) = (2l + 1) exp

[
−i

πκ

2

]
(−i)l · jl

(πκ

2

)
, (65)

with jl the spherical Bessel functions of the first kind. Accord-
ingly, the autocorrelation of the function T̃(σ) exp [−iπκ σ · σ]
can be expressed as

T̃(σ) exp [−iπκ σ · σ] ??
corr

T̃(σ) exp [−iπκ σ · σ]

=
∞

∑
l,l′
B0

2l(κ)B0
2l′ (κ)

[
R0

2l(σ) ??corr
R0

2l′ (σ)
]

. (66)

From [30], the correlation of two Zernike polynomials has the
Zernike expansion

R0
2l(σ) ??corr

R0
2l′ (σ) =

π/4
(2l + 1)(2l′ + 1)

×
∞

∑
q=0

(2q + 1) · Γ000
2l,2l′ ,2q · R

0
2q

(σ

2

)
. (67)

Note that we want R0
2q
(

σ
2
)

rather than R0
2q(σ) since the corre-

lation of two Zernike terms is non-vanishing for σ ≤ 2. The
expansion coefficients Γ000

2l,2l′ ,2p are expressed in [30] in terms
of at most four Jacobi polynomials according to

Γ000
2l,2l′ ,2q =2(−1)

2l+2l′+2q
2

·
[

Q2q+1
2l,2l′ + Q2q+1

2l+2,2l′ + Q2q+1
2l,2l′+2 + Q2q+1

2l+2,2l′+2

]
, (68)

with

Qn′′+1
i,j

=


( 1

2 (n
′′+i+j))!( 1

2 (n
′′−i−j))!

( 1
2 (n
′′+i−j))!( 1

2 (n
′′+j−i))!

·
(

1
2

)i+j+1
· P(i,j)

n′′−i−j
2

(0) · P(j,i)
n′′−i−j

2

(0),

0,

if n′′ ≥ i + j,

otherwise. (69)

and P the general Jacobi polynomial. We can conclude that the
autocorrelation takes the form:

T̃(σ) exp [−iπκ σ · σ] ??
corr

T̃(σ) exp [−iπκ σ · σ]

=
π

4

∞

∑
q=0

Cq(κ) · R0
2q

(σ

2

)
, (70)

with

Cq(κ) =
∞

∑
l,l′

(2q + 1)Γ000
2l,2l′ ,2q

(2l + 1)(2l′ + 1)
B0

2l(κ)B0
2l′ (κ). (71)

Consequently by combining Eqs. (70) and (62)

I4 =
πD4

th
64

K

(λmζe)
2

∞

∑
q=0

Cq(κ)

×
∫

R2

exp
[
−A∆ξ ′2 −B∆ν′2 + i2π(X∆ξ ′ + Y∆ν′)

]
· R0

2q

(σ

2

)
· d∆ξ ′ d∆ν′. (72)

To get a semi-analytical computation method for the remain-
ing integral in Eq. (72), the approach is as follows. Firstly, write

exp
[
−A∆ξ ′2 −B∆ν′2

]
= exp

[
−1

2
(A+ B)σ2

]
· exp

[
−1

2
(A−B) σ2 cos(2θ)

]
, (73)

where ∆ξ ′ + i∆ν′ = σ exp(iθ). Then expand, using β-
coefficients as earlier

exp
[
−1

2
(A−B) σ2 cos(2θ)

]
=

+∞

∑
n=−∞

∞

∑
p=0

in · β|2n|
|2n|+2p(ψ) · R

|2n|
|2n|+2p

(σ

2

)
exp(i2nθ), (74)

with ψ = 2i(A− B). The coefficients β are expressed explic-
itly in terms of the hypergeometric functions 2F3 as in [12],
see Eqs. (A-11)-(A-13). Note that, we want R( 1

2 σ) rather than
R(σ), see Eq. (70). When Eq. (74) is introduced in Eq. (72), we
see that the product of two Zernike polynomials

R0
2q

(σ

2

)
· R|2n|
|2n|+2p

(σ

2

)
(75)
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arises. In [31] these products are linearized, but in [32] there
occurs an easier expression in terms of Wigner coefficients (or
Clebsch-Gordan coefficients), see Eq. (27.9.1) on p.1006 of [27].
Thus we have

R0
2q

(σ

2

)
· R|2n|
|2n|+2p

(σ

2

)
=

p+q

∑
s=max(0,p−q,q−p−|2n|)

A|2n|,0,|2n|
|2n|+2p,2q,|2n|+2s · R

|2n|
|2n|+2s

(σ

2

)
, (76)

with

A|2n|,0,|2n|
|2n|+2p,2q,|2n|+2s =

(
C
|2n|+2p

2 , 2q
2 , |2n|+2s

2
|2n|

2 ,0, |2n|
2

)2

. (77)

With steps one and two, the integral in question is now given
as ∫ 2

0

∫ 2π

0
R|2n|
|2n|+2s

(σ

2

)
exp [i2nθ] exp

[
−1

2
(A+ B)σ2

]
× exp [i2π(X cos(θ) + Y sin(θ))σ] σ dσ dθ. (78)

This latter integral can be expressed in term of V-functions
from the extended Nijboer-Zernike theory [12, 29]. Indeed, as
we have integers |2n| and |2n|+ 2s and |2n|+ 2s− |2n| = 2s
even and non-negative, we have∫ 2

0

∫ 2π

0
R|2n|
|2n|+2s

(σ

2

)
exp [i2nθ] exp

[
−1

2
(A+ B)σ2

]
× exp [i2π(X cos(θ) + Y sin(θ))σ] σ dσ dθ

= 8π(−1)n exp[i2nϕ] ·V|2n|
|2n|+2s(4πr, χ), (79)

where X + iY = r exp(iϕ), χ = 2i(A + B) and the power-
Bessel series is given by Eq. (18). This finally results into the
the semi-analytical formula for the integral I4 that we were
looking for:

I4(r, ϕ) =
π2D4

th
8

K

(λmζe)
2

∞

∑
q=0

Cq(κ)
∞

∑
n=−∞

∞

∑
p=0

inβ
|2n|
|2n|+2p(ψ)

×
p+q

∑
s=max(0,p−q,q−p−|2n|)

A|2n|,0,|2n|
|2n|+2p,2q,|2n|+2sV|2n|

|2n|+2s

× (4πr, χ) exp[i2nϕ] (80)

8 Comments about condit ions
Eq. (13)

Given complex numbers a, b such that a + ib 6= 0 6= a− ib, it
is required to find (complex) r and ϕ such that

a = r cos ϕ, b = r sin ϕ. (81)

Eq. (81) is equivalent with

z := a + ib = r cos ϕ + ir sin ϕ = r exp(iϕ),

w := a− ib = r cos ϕ− ir sin ϕ = r exp(−iϕ). (82)

Thus, given two complex numbers z 6= 0 6= w, we want to
find r and s such that

r s = z, r/s = w. (83)

To that end, we let r be one of the square roots of zw, so
r2 = zw, and we let s = z/r. Then r 6= 0 6= s, and it is verified
that Eq. (83) holds. Finally, we must choose ϕ (complex) such
that s = exp(iϕ).

9 Reconstruction of the image of the
part ic le

Formally, the Fourier transformation of the Jinc1-function is
expressed, using polar coordinates x = ρ cos θ, y = ρ sin θ and
u = ρa cos θa, v = ρa sin θa, as

F
[

J1(r)
r

]
=
∫ +∞

0

∫ 2π

0

J1(r)
r
· exp [−i2πρρa cos(θ − θa)] ρdρdθ,

(84)
where

r2 =
1
2

ρ2 ·
[

a′2 + b′2 + (a′2 − b′2) cos(2θ)
]

, (85)

with

a′ = −iL
π2Dth
λmζe

· M
|M|2 , b′ = −iL

π2Dth
λmζe

· N
|N|2 . (86)

Now, to propose an evaluation of Eq. (84), the Gegenbauer’s
addition theorem is used, see [27], Eq. (9.1.80) on p.363,

Cν(v)

vν
=2νΓ(ν) ·

∞

∑
k=0

(ν + k)

· Cν+k(U)

Uν
· Jν+k(V)

Vν
· C(ν)

k (cos φ), (87)

where v =
(
U2 + V2 − 2UV cos φ

)1/2 and where C(1)
m repre-

sents the Gegenbauer’s polynomial involving trigonometric
function, for C = J, ν = 1. By considering the variables:

U =
1
2

ρ(b′ − a′) V =
1
2

ρ(b′ + a′), (88)

we obtain
r =

√
U2 + V2 − 2UV cos(2θ). (89)

With this definition of r and Eq. (87) , the Jinc1-function can be
expressed as

J1(r)
r

= 2
∞

∑
m=0

(m+ 1)
Jm+1(U)

U
· Jm+1(V)

V
·C(1)

m (cos(2θ)). (90)

Now r = r(x, y) is complex and J1(r)/r decays only along the
real axis while J1(r)/r grows exponentially in any other direc-
tion. Hence its Fourier transform is not defined. We get around
this problem as follows. It is seen from Eqs. (88) and (90) that
J1(r)/r depends analytically on a′ and b′ (Eq. (90) converges
rapidly, also in case of complex U and V). Therefore, the inte-
gral expression in Eq. (36) depends analytically on a′ and b′.
If we consider that the imaginary parts of a′ and b′ are small,
we could use in Eq. (36) J1(r)/r, with a′, b′ replaced by their
real parts <(a′) and <(b′). Then U and V in Eq. (88) are real,
and we obtain from Eqs. (84) and (88) that, for evaluation of
Eq. (36), we can use

F
[

J1(r)
r

]
≈ 2

∞

∑
m=0

(m + 1)
∫ +∞

0

Jm+1(U)

U
· Jm+1(V)

V

×
∫ 2π

0
C(1)

m (cos(2θ)) · exp [−i2πρρa cos(θ − θa)] dθ · ρdρ.

(91)

By using [27], Eq. (22.312) on p.776,

C(1)
m (cos(2θ)) =

m

∑
k=0

cos[2(m− 2k)θ], (92)
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then

∫ 2π

0
C(1)

m (cos(2θ)) exp [−i2πρρa cos(θ − θa)] dθ

= 2π
m

∑
k=0

(−1)m−2k · J2m−4k(2πρρa) · cos(2(m− 2k)θa). (93)

Consequently,

F
[

J1(r)
r

]
≈ 4π

∞

∑
m=0

(m + 1)
m

∑
k=0

cos(4kθa)

·
∫ +∞

0

Jm+1(U)

U
· Jm+1(V)

V
J2m−4k(2πρρa)ρdρ. (94)

Now, we can discuss about Eq. (94) for two particular cases.
The case where the filter is circular and the case where it is
elliptical.

9.1 First case: circular f i l ter, A=B

In this case, a′ = b′ and <(a′) = <(b′) thus U = 0 and
V = a′ρ. For (m + 1) fixed and U = 0, Jm+1(U)

U is equal to
1/2 if m = 0 and zero otherwise, thus

F
[

J1(r)
r

]
=

2π

a′

∫ +∞

0
J1(a′ρ)J0(2πρρa)dρ. (95)

As we have considered a′ ≈ <(a′), for the purpose of evaluat-
ing the integral in Eq. (36), we can replace Eq. (95) by

F
[

J1(r)
r

]
≈ 2π

<(a′)

∫ +∞

0
J1
(
<(a′)ρ)

)
J0(2πρρa)dρ. (96)

With the discontinuous Weber-Schafheitlin integral in [27]
11.4.42 on p.487, we have:

F
[

J1(r)
r

]
≈ 2π

<(a′)
×
{

1, if 2π
√

u2 + v2 < |<(a′)|,
0, otherwise.

(97)

The condition of (97) allows us to define the scale factor to
apply on the axes to retrieve the diameter of the opaque disk.
Indeed, with the definition of the frequencies (u, v), we have
the inequality(

x2
a + y2

a

)1/2
<
|<(a′)|

2π
· s2

x sin (θxo) . (98)

with

|<(a′)| = π3L2

λmζe
· Dth
|M|2 . (99)

The estimated diameter, denoted Dest, in the reconstructed im-
age of the opaque disk is then:

Dest =
π2L2

λmζe
· s2

x sin (θxo)

|M|2 · Dth. (100)

In conclusion, the scale factor to apply on the axes is then

∆x =
λmζe

π2L2 ·
|M|2

s2
x sin (θxo)

, ∆y =
λmζe

π2L2 ·
|N|2

s2
y sin

(
θyo
) , (101)

where N = M, θxo = θyo and sx = sy to retrieve the real
diameter of the opaque disk.

9.2 Second case: el l ipt ical f i l ter, A 6=B

In first approximation, m = k = 0, and using the relations
(88), we have

F
[

J1(r)
r

]
≈ 4π

∫ +∞

0

J1(U)

U
· J1(V)

V
J0(2πρρa)ρdρ. (102)

As previously mentioned, the imaginary parts of b′ − a′ and
b′+ a′ are small. Furthermore<(b′− a′) ≈ <(b′+ a′) and thus
U ≈ V = 1

2 ρ<(b′ + a′). Then Eq. (102) becomes

F
[

J1(r)
r

]
≈ 16π

<(b′ + a′)2

∫ +∞

0
J1

(
1
2

ρ<(b′ + a′)
)

· J1

(
1
2

ρ<(b′ + a′)
)

J0(2πρρa)
1
ρ

dρ. (103)

Finally, from [30], Eq. (60), the integral at the right-hand side
of Eq. (103) can be evaluated, and we obtain

F
[

J1(r)
r

]
≈ 16π

< (b′ + a′)2

(
T ??

corr
T
)(

4π
ρa

< (b′ + a′)

)
, (104)

where ??corr denotes the 2D-correlation product and T is the
indicator function of the disk of radius 1.
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[7] H. T. Eyyuboǧlu, Y. Baykal, and Y. Cai, “Complex degree of coher-
ence for partially coherent general beams in atmospheric turbu-
lence” J. Opt. Soc. Am. A 24, 2891–2901 (2007).

[8] D. Gabor, “A new microscopic principle” Nature 161, 777–778
(1948).

[9] J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts
and Company Publishers, Greenwood village, USA, 2005).

[10] U. Schnars, and W. Jüptner, “Direct recording of holograms by a
CCD target and numerical reconstruction” Appl. Opt. 33, 179–181
(1994).

11060- 11



Journal of the European Optical Society - Rapid Publications 6, 11060 (2011) Coëtmellec, et al.

[11] D. J. Stigliani, JR., R. Mittra, and R. G. Semonin, “Particle-Size Mea-
surement Using Forward-Scatter Holography” J. Opt. Soc. Am. 60,
1059–1067 (1970)

[12] F. Nicolas, S. Coëtmellec, M. Brunel, D. Allano, D. Lebrun, and A. J.
E. M. Janssen, “Application of the fractional Fourier transformation
to digital holography recorded by an elliptical, astigmatic Gaussian
beam” J. Opt. Soc. Am. A 22, 2569–2577 (2005).

[13] J. J. Wen, and M. Breazeale, "Gaussian beam functions as a base
function set for acoustical field calculations" in Proceedings to IEEE
Ultrasonics Symposium 1137–1140 (IEEE, Denver, 1987).

[14] J. J. Wen, and M. Breazeale, "A diffraction beam expressed as
the superposition of Gaussian beams," J. Acoust. Soc. Am. 83,
1752–1756 (1988).

[15] S. Coëtmellec, N. Verrier, M. Brunel, D. Lebrun, "General formula-
tion of digital in-line holography from correlation with a chirplet
function", J. Eur. Opt. Soc.-Rapid 5, 10027 (2010).

[16] F. Dubois, M. L. N. Requena, C. Minetti, O. Monnom, and E. Istasse,
"Partial spatial coherence effects in digital holographic microscopy
with a laser source," Appl. Opt. 43, 1131–1139 (2004).

[17] J. W. Goodman, Statistical Optics (Wiley Classics Library, New York,
2000).

[18] A. E. Siegman, Lasers (University Science Books, Mill Valley, 1986).

[19] X. Du, and D. Zhao, "Propagation of elliptical Gaussian beams in
apertured and misaligned optical systems," J. Opt. Soc. Am. A 23,
1946–1950 (2006).

[20] N. Verrier, S. Coëtmellec, M. Brunel, D. Lebrun, and A. J. E. M
Janssen, "Digital in-line holography with an elliptical, astigmatic
Gaussian beam: wide-angle reconstruction," J. Opt. Soc. Am. A 25,
1459–1466 (2008).

[21] F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, "Fo-
cus plane detection criteria in digital holography microscopy by
amplitude analysis," Opt. Express 14, 5895–5908 (2006).

[22] B. Ge, Q. Lu, and Y. Zhang, "Particle digital in-line holography with
spherical wave recording", Chin. Opt. Lett. 01, 517 (2003).

[23] R. B. Owen, and A. A. Zozulya, "In-line digital holographic sensor
for monitoring and characterizing marine particulates", Opt. Eng.
39, 2187 (2000).

[24] A. C. McBride, and F. H. Kerr, "On Namias’s fractional Fourier trans-
forms", IMA J. Appl. Math. 39, 159–175 (1987).

[25] V. Namias, "The fractional order Fourier transform and its applica-
tion to quantum mechanics", J. Inst. Maths Its Applics, 25, 241–265
(1980).

[26] A. W. Lohmann, "Image rotation, Wigner rotation, and the frac-
tional Fourier transform", J. Opt. Soc. Am. A 10, 2181–2186 (1993).

[27] M. Abramowitz, and I. A. Stegun, Handbook of Mathematical Func-
tions (Dover Publications, Inc., New York, 1970).

[28] J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, "Assessment of an
extended Nijboer-Zernike approach for the computation of optical
point-spread functions", J. Opt. Soc. Am. A 19, 858–870 (2002).

[29] A. J. E. M. Janssen, "Extended Nijboer-Zernike approach for the
computation of optical point-spread functions", J. Opt. Soc. Am. A
19, 849–857 (2002).

[30] A. J. E. M. Janssen, "New analytic results for the Zernike circle
polynomials from a basic result in the Nijboer-Zernike diffraction
theory", J. Europ. Opt. Soc. Rap. Public. 6, 11028 (2011).

[31] A. J. E. M. Janssen, J. J. M. Braat, and P. Dirksen, "On the com-
putation of the Nijboer-Zernike aberration integrals at arbitrary
defocus," J. Mod. Opt. 51, 687–703 (2004).

[32] W. J. Tango, "The circle polynomials of Zernike and their applica-
tion in optics", Appl. Phys. 13, 327–332 (1977).

11060- 12


	INTRODUCTION
	DIGITAL IN-LINE HOLOGRAPHY WITH A SPATIALLY PARTIALLY COHERENT SOURCE
	Expression for I1(x,y)
	Expression for I2(x,y) and I3(x,y)
	Expression for I4
	Particular case: A=B=0

	NUMERICAL EXPERIMENT AND EXPERIMENTALRESULT
	DIGITAL IN-LINE RECONSTRUCTION BY FRACTIONAL FOURIER TRANSFORMATION ANALYSIS
	Experimental results

	CONCLUSION
	APPENDIX
	Definition of the functions I(x,y)
	Expression for I1
	Expression for I2
	Expression for I4

	Comments about conditions Eq. (13) 
	Reconstruction of the image of the particle
	First case: circular filter, A=B
	Second case: elliptical filter, A=B

	ACKNOWLEDGEMENTS

