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Using dispersion-induced group delay to solve the
integer ambiguity problem: a theoretical analysis
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This paper describes a novel approach for solving the integer ambiguity problem when the adjacent pulse repetition interval length (APRIL)
from a femtosecond optical frequency comb (FOFC) is used as a length scale. This approach is inspired by the two-color method, which
indicates that there is a one-to-one relationship between the integer part of the APRIL and the group delay distance between the two
different wavelengths. Accordingly, we numerically investigate the possibility of using dispersion-induced group delay to solve the integer
ambiguity problem. The results of theoretical analyses and numerical investigations demonstrate the feasibility of the proposed method.
Our results should contribute toward the further development of APRIL-based length measurement methods.
[DOI: http://dx.doi.org/10.2971/jeos.2015.15035]

Keywords: Dispersion, pulse repetition interval length, interferometry, integer ambiguity, metrology

1 INTRODUCTION

Currently, the standard SI unit of length, the meter, is defined
in terms of the speed of light in a vacuum (c). Under this def-
inition, three methods have been recommended for realizing
the meter, one of which used the wavelength of light. Ow-
ing to its frequency ( f ) stability, the wavelength in a vacuum
(λ = c/ f ) of an iodine-stabilized helium-neon (He-Ne) laser
is used to physically realize the meter. Recently, methods us-
ing the femtosecond optical frequency comb (FOFC) to real-
ize the meter have been studied, along with its traceability.
By stabilizing the carrier-envelope-offset frequency, fCEO, and
the repetition frequency, frep, the frequencies of an FOFC can
be stabilized. Unlike a He-Ne laser, not only the wavelength
but also the adjacent pulse repetition interval length (APRIL,
Λ = c/ frep) of the FOFC can be used to physically realize the
meter [1]. An arbitrary and absolute length can be expressed
in units of an APRIL as the sum of its integer part and its frac-
tional part. Obviously, both parts are required for length in-
formation.

First, we consider the measurement of the fractional part. In a
(balanced or unbalanced) Michelson interferometer, the pulse
trains are reflected by the reference mirror and the object mir-
ror, respectively. Only when they overlap with each other at
the beam splitter is it possible to observe the peak of the enve-
lope of the interference fringes. Thus, the position of the peak
of the envelope indicates a point where the fractional part is
zero [2]. For measuring an arbitrary fractional part, in an ear-
lier report we proposed a multiple pulse train interference-
based interferometer [3]. When the interference fringes can be
temporally [4]–[6] or spatially [7]–[10] separated, it is possible

to determine the fractional part from the distance between the
peaks of the envelopes of the interference fringes.

In this article, we consider the measurement of the integer
part. In an earlier report, we reported that the integer am-
biguity problem exists in APRIL-based distance determina-
tions [11]. In a white-light based Michelson interferometer, be-
cause the white light only interferes with itself, by observing
the peak position of the envelope of the interference fringes
we can confirm that the reference mirror and the object mir-
ror are located at the same distance from the beam splitter.
In an FOFC-based (balanced or unbalanced) Michelson inter-
ferometer, because different pairs of pulse trains can interfere
with each other, there is no one-to-one relationship between
the position of the peak of the envelope and the relative po-
sitions between the reference mirror and the object mirror;
this is not the case in a white-light interferometer. This phe-
nomenon constitutes the integer ambiguity problem.

Therefore, in order to determine the integer part, two different
scenarios have been proposed. One proceeds by shifting the
repetition frequency frep [2, 12]. There is a trade-off relation-
ship between frequency variability and its stability; theoreti-
cally, we cannot expect to simultaneously achieve both long-
term stability and short-term variability at the same time. To
obtain short-term variability, the resonator of the light source
must be able to be scanned at high speeds. On the other hand,
in order to achieve long-term stability, the cavity of the laser
must remain unchanged. These two facts conflict with each
other. The other scenario involves the determination of the in-
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teger part by combining an interferometer with other optical
methods, such as the time-of-flight method [13]. In this case,
the disadvantages consist of the additional high-cost measure-
ment devices that are required. As will be seen below, the pro-
posed method requires only a pair of low-cost band-pass fil-
ters.

We attempt to address this task of determining the integer
part based on the similarity between continuous wave (CW)
white light and the FOFC source. First, we must explain
what this similarity consists in. CW white light and FOFC
lasers both have broad spectra, and both of them are classi-
fied as white light sources. The CW white light source has
a continuous spectrum, whereas the FOFC laser, which is a
stabilized-pulsed white light, has a discrete spectrum. For ex-
ample, we assume that the center wavelength is 1560.0000 nm,
which corresponds to 192174652.5641 MHz. A 70.616 MHz
repetition frequency means that its adjacent frequency is
192174723.1801 MHz. Wavelength corresponding to the fre-
quency is 1559.9994 nm. Thus, there is a ∼ 6 × 10−4 nm comb
mode spacing between the two adjacent wavelengths. Cur-
rently, this mode spacing cannot be directly detected by opti-
cal measuring equipment, such as a photodetector and an op-
tical spectrum analyzer. This fact means that both light sources
can be used as a broad-band light source. Therefore, tech-
niques based on CW white light can also be performed using
an FOFC as a light source. It should be noted that comb-tooth
resolving methods do exist and have been used for absolute
distance measurement [14].

The purpose of this study is to make an estimation of the in-
teger part. More specifically, we measure the group delay dis-
tance between the two color-band frequencies to achieve this
purpose. Our supposition is that there is a one-to-one rela-
tionship between the integer part and the group delay dis-
tance. This idea was inspired by the two-color method [15]–
[18], which is an accurate length-correction method that does
not require the precise measurement of the environmental pa-
rameters. The two-color method can be understood as follows.
When a displacement is caused by a change in the refractive
index of air, this displacement can be corrected. The corrected
length obtained by subtracting a value, which is a multiplica-
tion of an A factor and a measured two-color length difference

from a length obtained by one color. The length measured in
air is proportional to the length in a vacuum, and the A factor
is only a function of the two colors used. This means that the
measured two-color length difference is also proportional to
the length in a vacuum. Accordingly, this is the primary rea-
son why we suppose that there is a one-to-one relationship be-
tween the integer part and the group delay distance (namely,
the two-color length difference). In the two-color method, the
two-color length difference is used for correction. On the other
hand, in the proposed method, the two-color length difference
is used to obtain an estimation of the integer part. Since group
delay is used in our method, our method only functions where
dispersion exists.

This paper is organized as follows. Section 2 briefly reviews
the length measurement based on the APRIL of an FOFC
before describing the proposed method. Section 3 presents
the numerical experiments. Finally, Section 4 summarizes the
main conclusions.

2 MATERIALS AND METHODS

In this paper, we apply the fringe contour shift method [19, 20]
to the FOFC-based method. First, we briefly introduce the
fringe contour shift method. Pseudo-monochromatic (color-
band) light sources were created by using a suitable band-
pass filter with a white light source. As shown in Figure 1(a),
the experiment [19, 20] was performed based on a Michelson
interferometer in which the sample under test (e.g., a dielec-
tric mirror, which introduced the frequency-dependent delay)
was inserted in the object arm. By moving the reference mir-
ror, one looks for a delay distance corresponding to the peak
of the envelope of the interference signals appearing on the
oscilloscope through a photodetector. By changing the central
optical frequency of the band-pass filter, it is possible to con-
tinue to plot the delay distance, and one can obtain the group
delay distance spectrum.

Based on the above-mentioned similarity, we apply the idea of
the fringe contour shift method to a modified Michelson inter-
ferometer, which was proposed in Ref. [21]. As shown in Fig-
ure 1(b), the air in the unbalanced part of the interferometer
introduces dispersion.

FIG. 1 Schematic of (a) the fringe contour shift method and (b) the proposed method.
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FIG. 2 Relative positional relationship between pulse trains when interference fringes

can be observed. D represents the dispersion-induced group delay distance between

the two different frequencies.

For convenience, we start with a brief introduction of the
FOFC; more details can be found in Ref. [22]. In the frequency
domain, an FOFC laser can be modeled by a comb function,
which is a combination of one million delta functions (namely,
single frequency) arranged at equal intervals with the pulse
repetition frequency frep. In the time domain, an FOFC emits
a pulse train in which adjacent pulses are arranged at the
time interval TR = 1/ frep, which corresponds to the APRIL,
Λ = c/ frep, in the spatial domain. In air, the APRIL is a func-
tion of wavelength.

The wavelength in air, λair, is a function of the wavelength in
a vacuum, λvac, and the phase refractive index of air, np(λvac),
according to the equation λair = λvac/np(λvac). In the same
way, an absolute length L measured in air using APRIL with
a center wavelength of λi can be expressed as:

Li = L/ng(λi, T, P, H) = (p + q)× Λ/ng(λi, T, P, H). (1)

Here, p and q are the integer and fractional part, respectively,
obtained when L is measured in units of Λ. T, P, and H are the
temperature, barometric pressure, and humidity, respectively.
ng(λ) is the group refractive index, which can be calculated as
[23]:

ng(λi, T, P, H) =np(λi, T, P, H)

− λi
[
d(np(λ, T, P, H))/dλ

]
λi

. (2)

Here, np(λ) is the phase refractive index. In this report, val-
ues of np(λ) are calculated using the Edln equation [24]. The
equations for calculation can be found in Ref. [24].

Next, we consider how to obtain the dispersion-induced
group delay distance between the two different frequencies.
Let us consider the formation of interference fringes in the
interferometer in Figure 2. Because ng(λ1) and ng(λ2) are
different, we can assume that ng(λ1) < ng(λ2); consequently,
L1 > L2. First, the band-pass filter is set to λ1. Incoming

pulses are split into two identical parts at the beam splitter.
When the relative distance between the reference mirror and
the object mirror is equal to p × Λ/ng(λ1) (round trip), the
ith pulse reflected from the object mirror and the (i + p)th
pulse reflected from the reference mirror will overlap and
interfere with each other. As shown in Figure 2, the envelope
of the interference fringes reaches its peak in this overlapped
range. Next, the band-pass filter is set to λ2. When the relative
distance between the reference mirror and the object mirror is
equal to p × Λ/ng(λ2), the jth pulse reflected from the object
mirror and the (j + p)th pulse reflected from the reference
mirror will overlap and interfere with each other. As shown
in Figure 2, the envelope of the interference fringes reaches
its peak in this overlapped range. Because the interference
fringes are formed by different frequency slices, which are
filtered out from the same FOFC source, the order of p does
not affect the formation of interference fringes. In order to
observe the interference fringes, we need to scan the reference
mirror. If the reference mirror is scanned far away from the
beam splitter, as shown in Figure 2, we record the fringes
of λ1 first, then the fringes of λ2 second. If we scan the
reference mirror to the beam splitter, the order we observe
the interference fringes in becomes reversed, which results
in the observation of the fringes of λ2 first, followed by the
observation of the fringes of λ1 second. An explanation of the
formation of fringes and the detection of the envelope peak
can be found in Refs. [3, 7].

The length difference between the two above-mentioned
peaks of the two envelopes D/2 is given by:

D = p × Λ/ng(λ1)− p × Λ/ng(λ2) = p × Λ × B

B =
[
ng(λ2)− ng(λ1)

]
/
(
ng(λ1)× ng(λ2)

)
(3)

Obviously, the length difference between the two dif-
ferent frequencies is directly proportional to the integer
part. That is because we assume that ng(λ1) < ng(λ2),
p × Λ/ng(λ1) > p × Λ/ng(λ2), and therefore, D > 0. We
assume that reference mirror is scanned in the direction away
from the beam splitter. The interference fringes of λ1 are
closer to the start scanning position than those of λ2. If we
assume that ng(λ1) > ng(λ2), p×Λ/ng(λ1) > p×Λ/ng(λ2),
then we have D > 0. In this case, the interference fringes of λ2
are closer to the start scanning position than those of the λ1.

In the simulation described in the next section, we confirm the
distinguishability between (p + 1) × Λ × B, p × Λ × B, and
(p − 1)× Λ × B under different situations.

A perfect beam splitter does not exist. Therefore, the pulses
are never identical. Accordingly, imperfections of the beam
splitter affect the signal-to-noise ratio. Minor vibrations in a
scanning Michelson interferometer may affect the accuracy of
the measurement. For simplicity, we explain the principle by
using interference in the time domain. Interference systems in
the frequency domain are also possible. However, it should
be stressed that these sources of error (vibrations in an inter-
ferometer, scanning error of the reference mirror, etc.) are not
related to the proposed method itself. An uncertainty budget
will be provided in a separated paper.
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FIG. 3 Calculated group delay distance under standard environmental conditions.

3 NUMERICAL SIMULATIONS

We used the following parameters for the simulations. The
APRIL was set to 4.245 m for an FOFC with a 70.616 MHz
repetition frequency. The two wavelengths were 1550 nm and
1570 nm. These two wavelengths were selected based on the
commercial availability of the band pass filters. The variable
range of these two wavelengths was limited by the bandwidth
of the FOFC source. Generally speaking, the difference be-
tween two separated wavelengths increases; the distance be-
tween the two peaks of the interference fringes also increases.
This means that the required resolution of the measurement
decreases. On the other hand, the travel range of the scanning
mechanism increases. We used the same procedure [25] to cal-
culate the group refractive index for these two wavelengths.
Based on Eq. (3), we obtain the group delay distance between
the two colors for the different values of p. We note that, ow-
ing to the nonlinearity of dispersion, the theoretical result can
be slightly affected by the bandwidth and shape of each wave-
length [26].

The first calculation was performed under standard envi-
ronmental conditions (a temperature of 20◦C, a pressure of
101.325 kPa, and 50% humidity). The calculated value of the
group delay distance (square points) and the first-order lin-
ear approximation curve (dotted line, based on Eq. (3)) are
shown in Figure 3. The group delay distance varies propor-
tionally with the value of the integer part p. This result is con-
sistent with Eq. (3). In short, the higher the value of p becomes,
the wider the group delay distance becomes. We can conclude
that under a well-controlled, well-measured environment, by
measuring the group delay distance, we can find the value of
p.

In cases where the distances are quite long, or in open-air con-
ditions for which the environmental parameters must be mea-
sured with a certain amount of error, the variation of ng(λ)

along the path may cause error. As shown in Figure 4, the
calculated group delay distance is plotted against the tem-
perature change (a temperature of 15-25◦C, a pressure of
101.325 kPa, and 50% humidity) for different values of p. For

FIG. 4 (a) Calculated group delay distance versus temperature. (b) Enlarged part of (a)

when the value of P ranges from 30 to 34 (dotted lines are guides for the eye).

values of p that are less than 30, the ranges of the calculated
group delay distances do not overlap. When the value of p is
set at 31, the calculated group delay distance becomes 6453
nm at 15◦C. When the value of p is set at 32, the calculated
group delay distance becomes 6449 nm at 25◦C. That means
when the value of the integer part p is larger than 30, there is
no one-to-one relation between the value of p and the possible
range of the group delay distance. We note that high-precision
fringe peak detection methods [27, 28] can also be applied for
the required peak evaluation accuracy.

For example, in the following case, we cannot determine the
value of p. The calculated group delay distance is 6851 nm
and we know that the average temperature lies between 15◦C
and 25◦C. Therefore, there are two possible solutions. One is
that the value of p is 31, and the average temperature is about
15◦C. The other is that the value of p is 32, and the average
temperature is about 25◦C.

The same calculations were performed for variations in pres-
sure (a temperature of 20◦C, a pressure of 100.5-102 kPa, and
50% humidity) and variations in humidity (a temperature of
20◦C, a pressure of 101.325 kPa, and a humidity of 40-90%).
Figures 5 and 6 show the results. We can confirm that even
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FIG. 5 (a) Calculated group delay distance versus pressure. (b) Enlarged part of (a)

when the value of p ranges from 29 to 31.

FIG. 6 Calculated group delay distance versus humidity.

when the value of p is 30, the ranges of the calculated group
delay distances were sufficiently separated.

Next, we calculated all combinations for the variation range
of temperature (15-25◦C), pressure (100.5-102 kPa), and hu-
midity (40-90%). The largest values of p (which guaranteed
that the range of group delay distance for (p + 1) × Λ × B,

p × Λ × B, and (p − 1)× Λ × B are separated) for all combi-
nations are listed in Tables 1–3. Because the minimum of the
separable value of the integer part p is 30, the longest measur-
able range by the proposed method is 4.24 × 30 m ≈ 127 m
(round trip). Note that this longest measurable range is af-
fected by the center wavelengths, the measurement accuracy
of environmental parameters, and the size of the APRIL.

Pressure
100.5 [kPa] 102 [kPa]

Humidity
40 [%] 30 30
90 [%] 32 32

TABLE 1 Largest value of p under temperature variation.

Temperature
15 [◦C] 25 [◦C]

Humidity
40 [%] 67 67
90 [%] 67 67

TABLE 2 Largest value of p under pressure variation.

Temperature
15 [◦C] 25 [◦C]

Pressure
100.5 [kPa] 442 238
102 [kPa] 451 242

TABLE 3 Largest value of p under humidity variation.

4 CONCLUSION

We examined the possibility of using dispersion-induced
group delay to solve the integer ambiguity problem for
measuring length by an APRIL for an FOFC. Through a
numerical simulation, we confirmed that there was a propor-
tional relationship between the group delay distance and the
value of the integer part. In a well-controlled laboratory or
open-air conditions (i.e., a temperature of 15-25◦C, a pressure
of 100.5-102 kPa, and 40-90% humidity), we can obtain the
value of integer parts smaller than 30 by obtaining the group
delay distance. By improving the measurement accuracy of
the environmental parameters, we may expect an expansion
of the measurement range. The estimation procedure of the
integer part that was proposed here will aid in FOFC-based
high-precision length measurements.
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