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We describe the energy and momentum flux in the case of an aberrated optical imaging system with a high numerical aperture (NA). The
approach is based on the extended Nijboer-Zernike diffraction theory, that, in its high-NA version, yields an accurate analytic representation
of the electromagnetic field vectors in the focal region of imaging systems that suffer from aberrations and/or transmission defects[1]. In an
earlier publication, we have derived the electromagnetic energy density from the field vectors. In this paper, we expand our analysis to the
energy flow (Poynting vector) and to the quantities related to the linear and angular momentum of the radiation. Several examples of the
energy and momentum flow are presented. In particular, we show how the linear and angular momentum distribution in the focal region
depend on the initial polarisation state and on the parameters describing the wavefront shape of the converging beam. For the angular
momentum flow, we show how the separation between spin and orbital momentum is modified when going from the paraxial case to a
high-NA focused beam. [DOI: 10.2971/jeos.2007.07032]
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1 INTRODUCTION, EM-FIELD
COMPONENTS AND CONSERVATION
LAWS

The electromagnetic field in focus has been studied for imag-
ing systems with a high numerical aperture[2, 3]. The source
was pointlike, located at a large distance and supposed to emit
a virtually planar wave towards the entrance pupil of the sys-
tem; the state of polarisation was linear in these papers. Fur-
ther research has focused on the effects of aberrations and on
more general states of polarisation [4]-[11]. The expressions
for the field in focus comprise integrals that have to be eval-
uated numerically. In the above mentioned previous publica-
tion [1], well-converging analytic series expansions from the
extended Nijboer-Zernike theory [12, 13] were used to obtain
the energy density in the focal region of an aberrated optical
system. The energy density is the relevant quantity when me-
dia like photoresist in lithography or Si-based CCD-detectors
are used for recording the image information. In this paper,
we will concentrate on other electromagnetic quantities that
may carry information in an imaging system. To this goal we
will study the energy flow (Poynting vector) and the quan-
tities that relate to the linear and angular momentum of a
(focused) light beam. The basic quantities that one needs to
produce the energy and momentum distribution in the focal
region of a high-NA imaging system are the electric and mag-
netic field vectors. Once the vector components of the elec-
tric and magnetic field vectors have been obtained, the energy

flux, momentum density and corresponding flux components
can be derived. In this section we will first briefly recall the
expressions for the electric and magnetic field vectors in the
focal region, for a general state of polarisation and for arbi-
trary aberration. In Section 2, the analytic expressions for the
energy flow components, the Poynting vector, are derived. We
use the Gkl-functions [14], |k|, |l| ≤ 2, that, in the case of a
system with arbitrary aberration, replace the I0-, I1- and I2-
integrals that were developed in the paper by Richards and
Wolf [3] for the aberration-free case. Section 3 focuses on the
linear and angular momentum densities and the correspond-
ing flow components. Here too, we will use the Gkl-functions
to present our analytic results. Finally, in Section 4, we present
some numerical examples that illustrate flow patterns in high-
numerical-aperture beams for some typical states of polarisa-
tion and types of aberration. Section 5 presents the conclu-
sions of our work.

1.1 The electr ic and magnetic f ield
components

Expressions have been given for the Cartesian electric field
components in the focal region of a high-NA system in the
presence of a linear state of polarisation in the entrance pupil,
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either along the x- or y-direction, Ex and Ey, respectively [1].
The coordinate systems and imaging geometry that are used
in this paper are sketched in Figure 1. A general elliptical

FIG. 1 The propagation of the incident wave from the entrance pupil S0 through the

optical system towards the exit pupil S1 and the focal region at the image plane PI .

The incident wave has a planar wave front. The unit propagation vector has been

denoted by s0, the meridional and tangential field components are directed along,

respectively, the unit vectors e0 and g0. After propagation through the optical system,

the field components in the exit pupil are projected onto the unit vectors e1 and g1,

that form an orthogonal basis with the local propagation vector s1. The position on

the exit pupil sphere is defined by means of the cylindrical coordinates (ρ, θ) with

the radial coordinate ρ normalised to unity; the position in the image plane region

is defined by the (normalised) cylindrical coordinate system (r, φ, f ). The maximum

aperture (NA) of the imaging pencil is represented by s0 = sin αmax .

state of polarisation in the entrance pupil can be described
by multiplying the x- and y-components in the entrance pupil
with complex numbers a and b, respectively, and summing
the vector components in the high-NA focal region with these
weighting factors. A lengthy but straightforward calculation
yields the following result result for the electric vector

E(r, φ, f ) = −iγs2
0 exp

[
−i f
u0

]
∑
n,m

imβm
n exp [imφ]×

aVm
n,0 + s2

0
2

{
(a − ib)Vm

n,2 exp [2iφ]

+(a + ib)Vm
n,−2 exp [−2iφ]

}
bVm

n,0 − i s2
0
2

{
(a − ib)Vm

n,2 exp [2iφ]

−(a + ib)Vm
n,−2 exp [−2iφ]

}
−is0

{
(a − ib)Vm

n,1 exp [iφ]− (a + ib)Vm
n,−1 exp [−iφ]

}


(1)

Here, we have used the normalised cylindrical coordinates
r, φ, f in the image space. They have been derived from the
real-space Cartesian coordinates (x′, y′, z′) according to

r =
s0

λ

√
(x′)2 + (y′)2, (2a)

f = −2πzu0/λ, (2b)

u0 = 1−
√

1− s2
0 = 1− cos α, (2c)

with s0 = sin α the geometrical aperture of the focusing beam.
The defocus parameter f is orientated in the opposite sense
as compared to the real-space coordinate z′ and equals zero in

the geometrical focus of the beam. The reason for the sign dif-
ference between f and z′ is the difference in phase advance be-
tween an obliquely propagating plane wave component and
an axial plane wave if the phase reference point is shifted in
the positive z′-direction; this phase difference becomes nega-
tive in the case of a positive z′-increment. The factor γ, a pro-
portionality constant, is given by γ = πR

λ . The βm
n -coefficients

are related to the complex transmission function (pupil func-
tion) of the imaging system according to

Px(ρ, θ) = Ax(ρ, θ) exp [i2πW(ρ, θ)]

= a ∑
n,m

βm
n R|m|

n (ρ) exp{imθ}, (3)

Py(ρ, θ) = Ay(ρ, θ) exp [i2πW(ρ, θ)]

= b ∑
n,m

βm
n R|m|

n (ρ) exp{imθ}, (4)

where a and b are normalised complex factors with |a|2 +
|b|2 = 1 that determine the incident state of polarisation and
R|m|

n (ρ) is a radial Zernike polynomial of radial degree n and
azimuthal order m.

The functions Vm
n,j that depend on the normalised radial co-

ordinate r and the defocus parameter f are given by (j =
−2,−1, 0, 1, 2)

Vm
n,j(r, f ) =

∫ 1

0
ρ|j|

(
1 +

√
1− s2

0ρ2
)−|j|+1

(1− s2
0ρ2)1/4

× exp
[

i f
u0

(
1−

√
1− s2

0ρ2
)]

R|m|
n (ρ)Jm+j(2πrρ)ρdρ .

(5)

Expressions with series expansions are available to obtain
quick and accurate values of the integral in Eq.(5), see [1, 15].

The magnetic induction components B are obtained from the
electric components according to

B = nr
s × E

c
, (6)

where s is the unit vector from a point in the exit pupil to the
focal plane and c/nr is the speed of propagation of the light.
The expressions for E and B are good approximations for
weakly aberrated systems where the direction of the Poynting
vector deviates only slightly from that in a perfect imaging
system. Using Eq.(1) the components of the magnetic induc-
tion vector are written as

B(r, φ, f ) = −
inrγs2

0
c

exp
[
−i f
u0

]
∑
n,m

imβm
n exp [imφ]×

−bVm
n,0 − i s2

0
2

{
(a − ib)Vm

n,2 exp [2iφ]

−(a + ib)Vm
n,−2 exp [−2iφ]

}
aVm

n,0 −
s2

0
2

{
(a − ib)Vm

n,2 exp [2iφ]

+(a + ib)Vm
n,−2 exp [−2iφ]

}
−s0

{
(a − ib)Vm

n,1 exp [iφ] + (a + ib)Vm
n,−1 exp [−iφ]

}


(7)
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1.2 The energy and momentum density and
their respective f low components

In this subsection, we briefly recall the definition of the energy
and momentum density and the energy and momentum flow
components in an isotropic and homogeneous medium. The
electromagnetic energy density wem is the sum of the electric
and magnetic energy densities we and wm, respectively. The
flow of electromagnetic energy is given by the components
of the Poynting vector ~S. In differential form, conservation of
energy is described by

∂wem

∂t
+∇ · ~S = 0. (8)

The linear momentum density of the electromagnetic field is
a vector ~m. The flow of momentum is given by the Maxwell
stress tensor T whose entries Tij with i, j = (x, y, z) have the
dimension of pressure. The value of Tij yields the transport of
the i-component of the linear momentum vector in the direc-
tion j. The diagonal elements of the stress tensor are called
the normal pressure components, the off-diagonal elements
the shear pressure components. The conservation of a linear
momentum component i is given by

∂mi
∂t

+
∂Tix
∂x′

+
∂Tiy

∂y′
+

∂Tiz
∂z′

= 0, (9)

where we have used real-space Cartesian coordinates
(x′, y′, z′). In our normalised system of coordinates the
conservation law reads

∂mi
∂t

+
s0

λ

[
∂Tix
∂x

+
∂Tiy

∂y

]
−

2π
[
1−

√
1− s2

0

]
λ

∂Ti f

∂ f
= 0 , (10)

where the quantities have now been expressed using the nor-
malised coordinates (x, y, f ).

In a comparable way, we define the angular momentum den-
sity ~j and the corresponding tensor M with the flow compo-
nents Mij. The conservation of angular momentum is then ex-
pressed as

∂ji
∂t

+
s0

λ

[
∂Mix

∂x
+

∂Miy

∂y

]
−

2π
[
1−

√
1− s2

0

]
λ

∂Mi f

∂ f
= 0 .

(11)
In what follows, we will successively produce expressions for
the Poynting vector and the flow density components of linear
and angular momentum. With the aid of the general expres-
sions for the electric and magnetic field vectors in the focal
region of an aberrated optical system, it is possible to develop
semi-analytic expressions for the energy and momentum den-
sity and their flow components.

2 ANALYTIC REPRESENTATION OF THE
POYNTING VECTOR COMPONENTS

To examine the energy flow through the focal region, the time
averaged value of the Cartesian components of the Poynting
vector S has to be found. The expression for the time averaged
Poynting vector is given by

〈S〉 =
ε0c2

2
< {E × B∗} . (12)

We introduce the vector p = [c/(nrγ2s4
0](E × B∗) and, using

Eqs.(1) and (7) for the electromagnetic field vectors, we obtain,
after some lengthy manipulation, the following expressions
for the components px, py and pz,

px =s0

{
− 2ia∗b[=(G0,1) +=(G0,−1)]

+ i
{
|a|2 [G1,0 − G−1,0]− |b|2 [G0,1 − G0,−1]

} }

− s3
0

[ {
−2=(ab∗) + |a|2 + |b|2

}
=(G2,1)

−
{

2=(ab∗) + |a|2 + |b|2
}
=(G−2,−1)

+ 2i<(ab∗)=(G1,−2 − G2,−1)

+ i(|a|2 − |b|2)<(G1,−2 − G2,−1)

]
, (13)

py =s0

{
2iab∗<[G0,1 − G0,−1]

+ |a|2 [G0,1 + G0,−1] + |b|2 [G1,0 + G−1,0]

}

+ s3
0

[ {
−2=(ab∗) + |a|2 + |b|2

}
<(G2,1)

+
{

2=(ab∗) + |a|2 + |b|2
}
<(G−2,−1)

+ 2i<(ab∗)<(G1,−2 − G2,−1)

− i(|a|2 − |b|2)=(G1,−2 − G2,−1)

]
, (14)

pz =(|a|2 + |b|2)G0,0

− s2
0

[
i(|a|2 − |b|2)=(G0,2) + 2i<(ab∗)<(G0,2)

+ i(|a|2 − |b|2)=(G0,−2)− 2i<(ab∗)<(G0,−2)

]

−
s4

0
2

[ {
|a|2 + |b|2 − 2=(ab∗)

}
G2,2

+
{
|a|2 + |b|2 + 2=(ab∗)

}
G−2,−2

]
. (15)

Here we have used the functions Gk,l that, in complete nota-
tion, are given by

Gkl(β) = ∑
n,m

im exp [imφ] βm
n Vm

n,k(r, f ) exp [ikφ]

× ∑
n′ ,m′

i−m′
exp [−im′φ]βm

′ ∗
n′ Vm

′ ∗
n′ ,l (r, f ) exp [−ilφ]

= ∑
n,m,n′ ,m′

exp [i(m − m′)π/2] exp [i(m − m′ + k − l)φ]

×βm
n βm

′ ∗
n′ Vm

n,k(r, f )Vm
′ ∗

n′ ,l (r, f ). (16)

The total number of Gk,l-functions is twenty-five and their
general properties, Gk,l = G∗

l,k , Gk,k is real, have been used
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in the derivations above. Fifteen independent G-functions oc-
cur in the general case with arbitrary pupil function. In the
aberration-free case, the extra relationship G−k,−k = Gk,k ap-
plies, reducing the number of independent G-functions to
thirteen.

To find the time-averaged energy flow and to eliminate the re-
active part of the Poynting vector, the real parts of the above
expressions for px, py and pz should be inserted into the gen-
eral expression of Eq.(12), leading to

Sx =
ε0cnrγ2s5

0
2

{
− 2=(ab∗)= (G0,1 + G0,−1)

+ (|a|2 + |b|2)= (G0,1 − G0,−1)

+ s2
0

[
2=(ab∗)= (G2,1 + G−2,−1)

− (|a|2 + |b|2)= (G2,1 − G−2,−1)
]}

, (17)

Sy =
ε0cnrγ2s5

0
2

{
− 2=(ab∗)< (G0,1 − G0,−1)

+ (|a|2 + |b2)< (G0,1 + G0,−1)

+ s2
0

[
− 2=(ab∗)< (G2,1 − G−2,−1)

+ (|a|2 + |b|2)< (G2,1 + G−2,−1)
]}

, (18)

Sz =
ε0cnrγ2s4

0
2

{
(|a|2 + |b|2)

[
G0,0 −

s4
0
2

(G2,2 − G−2,−2)

]

+ s4
0 =(ab∗) (G2,2 − G−2,−2)

}
. (19)

2.1 The aberrat ion-free system as a special
case

It is interesting to reduce the general expressions for the
Poynting vector components to its simpler form in the case
of an aberration-free imaging system. In that case, all βm

n are
zero except β0

0 which equals 1. The G-functions reduce to

Gkl(β) = exp {i(k − l)φ}V0
0,k(r, f )V0∗

0,l (r, f ), (20)

After some manipulation, the Cartesian Poynting vector com-
ponents are found to be

Sx =ε0cnrγ2s5
0

{[
2=(ab∗)<{ V0

0,0(r, f )V0∗
0,1(r, f )} sin φ

+ (|a|2 + |b|2)={V0
0,0(r, f )V0∗

0,1(r, f )} cos φ

]
+ s2

0

[
2=(ab∗)<{V0

0,2(r, f )V0∗
0,1(r, f )} sin φ

− (|a|2 + |b|2)={V0
0,2(r, f )V0∗

0,1(r, f )} cos φ

]}
, (21)

Sy =ε0cnrγ2s5
0

{[
− 2=(ab∗)<{V0

0,0(r, f )V0∗
0,1(r, f )} cos φ

+ (|a|2 + |b|2)={V0
0,0(r, f )V0∗

0,1(r, f )} sin φ

]
− s2

0

[
2=(ab∗)<{V0

0,2(r, f )V0∗
0,1(r, f )} cos φ

+ (|a|2 + |b|2)={V0
0,2(r, f )V0∗

0,1(r, f )} sin φ

]}
, (22)

Sz =
ε0cnrγ2s4

0
2

(|a|2 + |b|2)
{∣∣∣V0

0,0(r, f )
∣∣∣2
− s4

0

∣∣∣V0
0,2(r, f )

∣∣∣2
}

.

(23)
Because of the basic circular symmetry of many diffraction
problems, it is appropriate to use the cylindrical components
of the Poynting vector with Sr = Sx cos φ + Sy sin φ and Sφ =
−Sx sin φ + Sy cos φ; this yields

Sr =ε0cnrγ2s5
0(|a|2 + |b|2)

×=
[
V0

0,0(r, f )V0∗
0,1(r, f )− s2

0V0
0,2(r, f )V0∗

0,1(r, f )
]

, (24)

Sφ =− 2ε0cnrγ2s5
0

=(ab∗)<
[
V0

0,0(r, f )V0∗
0,1(r, f ) + s2

0V0
0,2(r, f )V0∗

0,1(r, f )
]

,

(25)

Sz =
ε0cnrγ2s4

0
2

(|a|2 + |b|2)
{∣∣∣V0

0,0(r, f )
∣∣∣2
− s4

0

∣∣∣V0
0,2(r, f )

∣∣∣2
}

.

(26)

Some conclusions can be drawn from the above ex-
pressions. Using the property V0

0,k(r,− f )V0∗
0,l (r,− f ) =

V0∗
0,k(r, f )V0

0,l(r, f ), we can state that

• On-axis (r = 0), the power flow is also directed along the
axis of the beam.

• The radial component changes sign through focus.

• The radial and the z-component do not depend on the
state of polarisation of the incident beam.

• The azimuthal component is only present if the incident
radiation is not linearly polarised (arg(a) 6= arg(b) ). This
corresponds to the presence of angular momentum in the
focused beam.

• The azimuthal component is maximum in the case of cir-
cularly polarised light.

• The azimuthal component maintains its sign on both
sides of the optimum focus.

• For large s0, all components can locally change sign with
respect to their average values if the (r, f )-dependent
function becomes zero. This can give rise to regions
where the energy flow is in the negative z-direction and
also to the appearance of vortices in the energy flow pat-
tern.
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• In the low-aperture case, the z-component is the only
nonzero one.

As it was mentioned, for instance, for the case of circular po-
larisation, an azimuthal flow component is present in the focal
plane. On the optical axis, the azimuthal component is zero.
In the direct vicinity of the axis, the energy flow shows a left-
handed component in the case of RC-polarised light suggest-
ing that the focused beam of light possesses a certain amount
of angular momentum. With the positive z-direction as the
viewing direction, we observe that the rotation sense of the
electric field vector is left-handed for RC-polarised light and
this rotation sense is in accordance with the sign of the angu-
lar momentum of the electric field distribution in the focal re-
gion. In the following, we will further analyse the momentum
transport in a focused aberrated beam by deriving expressions
for the transport of linear and angular momentum; this is the
subject of the next section.

3 LINEAR AND ANGULAR MOMENTUM
FLUX IN A FOCUSED LIGHT BEAM

The linear and angular momentum density and their flux
counterparts in a beam of light are related to the impulse and
spin of the photons (linear and spin momentum) and to the
geometrical structure of the beam (orbital angular momen-
tum). In this section we present these quantities for a high-
numerical-aperture beam and we discuss the representation
and interpretation of the angular momentum distribution in
such a beam.

3.1 Linear momentum flow

The expressions for the linear momentum density and its flux
components are given by ε0E × B∗ and T, respectively, where
we now limit ourselves to the vacuum case with nr = 1. The
time-averaged elements Tij of the Maxwell stress tensor are
given by

1
2

(
ε0|E|2 + 1

µ0
|B|2

)
−ε0|Ex|2 − 1

µ0
|Bx|2

−ε0ExE∗y − 1
µ0

BxB∗y

−ε0EyE∗x − 1
µ0

ByB∗x
1
2

(
ε0|E|2 + 1

µ0
|B|2

)
−ε0|Ey|2 − 1

µ0
|By|2

−ε0EzE∗x − 1
µ0

BzB∗x −ε0EzE∗y − 1
µ0

BzB∗y

−ε0ExE∗z − 1
µ0

BxB∗z
−ε0EyE∗z − 1

µ0
ByB∗z

1
2

(
ε0|E|2 + 1

µ0
|B|2

)
−ε0|Ez|2 − 1

µ0
|Bz|2

 .

(27)
The physical interpretation of the Maxwell stress tensor and
its symmetry properties are discussed in various textbooks,
see [16]. We now give the expressions for the transport of x,
y and z-linear momentum in the three orthogonal directions
for a focused beam with arbitrary aperture by evaluating the
stress tensor element Tij. Taking the time-averaged real parts

of the elements of expression (27) we obtain

Txx = ε0γ2s6
0

{
(|a|2 + |b|2) [G1,1 + G−1,−1 −<(G2,0 + G−2,0)]

−2=(ab∗) [(G1,1 − G−1,−1)−<(G2,0 − G−2,0)]} , (28)

Txy = ε0γ2s6
0

{
−(|a|2 + |b|2)=(G2,0 − G−2,0)

+2=(ab∗)=(G2,0 + G−2,0)} , (29)

Txz = ε0γ2s5
0

{
−(|a|2 + |b|2)

=
[

G1,0 − G−1,0 + s2
0(G1,2 − G−1,−2)

]
+2=(ab∗)=

[
(G1,0 + G−1,0) + s2

0(G1,2 + G−1,−2)
]}

,

(30)

Tyx = Txy, (31)

Tyy = ε0γ2s6
0

{
(|a|2 + |b|2) [G1,1 + G−1,−1 +<(G2,0 + G−2,0)]

−2=(ab∗) [(G1,1 − G−1,−1) +<(G2,0 − G−2,0)]} , (32)

Tyz = ε0γ2s5
0

{
(|a|2 + |b|2)<

[
G1,0 + G−1,0 − s2

0(G1,2 + G−1,−2)
]

−2=(ab∗)<
[
(G1,0 − G−1,0)− s2

0(G1,2 − G−1,−2)
]}

,

(33)

Tzx = Txz, (34)

Tzy = Tyz, (35)

Tzz = ε0γ2s4
0

{
(|a|2 + |b|2)

[
G0,0 − s2

0(G1,1 + G−1,−1)

+
s4

0
2

(G2,2 + G−2,−2)

]
+ 2=(ab∗)

×
[

s2
0(G1,1 − G−1,−1)−

s4
0
2

(G2,2 − G−2,−2)

]}
. (36)

For the aberration-free case, the generally dominating Tzj flow
components are given by

Tzx = −2ε0γ2s5
0

{
(|a|2 + |b|2)=

[
V0

0,1(V0
0,0 + s2

0V0
0,2)

∗
]

cos φ

−2=(ab∗)<
[
V0

0,1(V0
0,0 + s2

0V0
0,2)

∗
]

sin φ
}

, (37)

Tzy = −2ε0γ2s5
0

{
(|a|2 + |b|2)=

[
V0

0,1(V0
0,0 − s2

0V0
0,2)

∗
]

sin φ

+2=(ab∗)<
[
V0

0,1(V0
0,0 − s2

0V0
0,2)

∗
]

cos φ
}

, (38)

Tzz = ε0γ2s4
0 (|a|2 + |b|2)

{∣∣∣V0
0,0

∣∣∣2
− 2s2

0

∣∣∣V0
0,1

∣∣∣2
+ s4

0

∣∣∣V0
0,2

∣∣∣2
}

.

(39)

3.2 Angular momentum flow

Angular momentum in a focused beam stems from intrinsic or
spin momentum of the photons in the beam or from a special
geometrical structure of the beam. The latter contribution is,
for instance, known from paraxial Gauss-Laguerre laser beam
modes; the expression for the phase of the mode contains a
factor exp(ilφ) with l the azimuthal index of the mode. With
the exp {i(kz − ωt)} convention for a wave propagating in the
positive z-direction, the shape of the ‘wavefront corresponds
to a left-handed screw for a positive value of l. More compli-
cated phase structures are possible and can be described by
means of a superposition of Gauss-Laguerre beams of vari-
ous orders. A more general phase structure, including the dis-
continuity, can equally well be described by means of Zernike
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polynomials although the discontinuity will in general ask for
a large number of terms to assure reasonable convergence.
The angular momentum density with vector components ji is
directly obtained from the Poynting vector

j = ε0r × (E × B∗). (40)

The momentum flux density tensor elements Mij bear a direct
relationship to the Maxwell stress tensor elements Tij, accord-
ing to

M = r × T , (41)

in which the elements of M are evaluated using Mij =
∑mn εimnrmTnj with εimn the Levi-Civita symbol and where, as
before, Tnj are the time-averaged values of the Maxwell stress-
tensor elements.
As an example we calculate the component Mzz(r, f , φ), the
axial angular momentum flux density through a surface per-
pendicular to the z-axis. The resulting expression is

Mzz =
λr
s0

[
Tyz cos φ − Txz sin φ

]
, (42)

where we have used the relation r = r′s0/λ between the real-
space coordinate r′ and the dimensionless coordinate r (note,
λ = 2πc/ω). The substitution of the tensor elements yields,
after some rearrangement,

Mzz = ε0γ2s4
0λr

[
(|a|2 + |b|2) {< [G1,0 + G−1,0

−s2
0(G1,2 + G−1,−2)

]
cos φ

+=
[
(G1,0 − G−1,0) + s2

0(G1,2 − G−1,−2)
]

sin φ
}

−2=(ab∗)
{
<

[
G1,0 − G−1,0 − s2

0(G1,2 − G−1,−2)
]

cos φ

+=
[
(G1,0 + G−1,0) + s2

0(G1,2 + G−1,−2)
]

sin φ
}]

.

(43)

In the nominal focal plane (all functions Vm
n,k are real) and in

the absence of aberrations (β0
0 = 1, all other βm

n = 0), this
expression reduces to

Mzz = −4ε0γ2s4
0λ r =(ab∗)

[
V0

0,1(V0
0,0 − s2

0V0
0,2)

]
. (44)

The contribution to Mzz stems from the spin momentum of
the beam because it is proportional to =(ab∗).

Another way to impart angular momentum to a beam is the
introduction of a helical phase structure, e.g. by using the low-
est order Zernike polynomial ρ exp{+iθ}, yielding so-called
orbital angular momentum. In this case we approximate the
exit pupil function by taking β1

1 ≡ 1 and equating all other β-
coefficients to zero and, again in the nominal focal plane, we
obtain the expression

Mzz =ε0γ2s4
0λ

{
(|a|2 + |b|2)

[
(V1

1,1 + V1
1,−1)V1

1,0

−s2
0(V1

1,1V1
1,2 + V1

1,−1V1
1,−2)

]
−2=(ab∗)

[
(V1

1,1 −V1
1,−1)V1

1,0

−s2
0(V1

1,1V1
1,2 −V1

1,−1V1
1,−2)

]}
. (45)

Although we would expect the orbital angular momentum as-
sociated with beam structure to be proportional to the power
of the beam (∝ (|a|2 + |b|2)), we observe a second term that
is nonzero for elliptically polarised incident light beams. This
relatively small term can be considered as a cross-term be-
tween spin and orbital angular momentum.

3.3 Alternative representation of the axial
angular momentum flux

The flux component Mzz has also been written in a differ-
ent way [17] to make a distinction between the angular mo-
mentum contribution from the spin momentum and from the
orbital momentum. This alternative notation for the integral∫

Mzzdxdy of the flux component Mzz over a plane perpen-
dicular to the z-axis is given by

∫
Mzzdxdy =

∫
ε0c2

2ω
<

{
−i

[
(ExB∗x + EyB∗y)

+
1
2

(
−B∗x

∂

∂φ
Ey + Ey

∂

∂φ
B∗x − Ex

∂

∂φ
B∗y + B∗y

∂

∂φ
Ex

) ]}
dxdy,

(46)

where ω is again the angular frequency of the monochromatic
radiation. In the paraxial approximation, the contribution on
the first line of Eq.(46) can be attributed to the spin momen-
tum of the light while terms on the second line are caused by,
for instance, a helical wavefront shape of the beam. The same
separation between spin and orbital momentum remains pos-
sible for a non-paraxial beam with a fixed phase dependence
exp(imφ), as shown in [17].

3.3.1 Spin-induced angular momentum for an aberration-free
system

The spin-induced angular momentum component that has to
be integrated can be directly obtained from Eq.(46) using the
expressions from Eqs.(1) and (7). After a somewhat lengthy
derivation, the substitution of the electric and magnetic field
expressions yields the result

Ms
zz =

ε0cγ2s4
0

2ω

{
−=(ab∗)

[
2G0,0 + s4

0 (G2,2 + G−2,−2)
]

+
s4

0
2

(|a|2 + |b|2) (G2,2 − G−2,−2)

}
. (47)

The term on the second line of Eq.(47) is independent of the
state of polarisation of the incident light beam. In that sense, it
can not be directly associated to the photon spin. It should be
noted that it equals zero for an aberration-free beam. The term
with the factor (G2,2 − G−2,−2) becomes nonzero when heli-
cal phase terms are present in the wavefront, that break the
symmetry (or anti-symmetry) between the aberration coeffi-
cients with positive and negative upper index m. We conclude
that the splitting in spin and orbital momentum that was sug-
gested in Ref.[17], see also Eq.(46), remains applicable in the
integral sense but can not be locally applied to the high-NA
case in the presence of a general beam structure.
In the case of RC-polarised light (=(ab∗) = 1) and for an
aberration-free imaging system (β0

0 = 1, all other β ≡ 0), we
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obtain

Ms
zz = −

ε0cγ2s4
0

ω

{
|V0

0,0|2 + s4
0|V0

0,2|2
}

, (48)

a negative value by convention. However, the expression is
not in accordance with Eq.(44). The basic difference is the
nonzero value on the optical axis. For values of s0 << 1, the
expressions (44) and (48) can be analytically integrated over
the nominal focal plane ( f = 0). The resulting expressions are
identical and this confirms the identity of (44) and (48) in the
integral sense for the paraxial situation.

3.3.2 Orbital angular momentum

Continuing to adopt the separation between spin and orbital
angular momentum according to Eq.(46), we need to evaluate
the azimuthal derivatives of the electric field and magnetic in-
duction vectors. In view of this, we introduce G(1,2)

kl -functions
according to

G(1)
kl = i exp{i(k − l)φ} ∑

n,m,n′ ,m′
(m + k) exp [i(m − m′)π/2]

× exp [i(m − m′)φ]βm
n βm

′ ∗
n′ Vm

n,k(r, f )Vm
′ ∗

n′ ,l (r, f ), (49)

G(2)
kl = −i exp{i(k − l)φ} ∑

n,m,n′ ,m′
(m

′
+ l) exp [i(m − m′)π/2]

× exp [i(m − m′)φ]βm
n βm

′ ∗
n′ Vm

n,k(r, f )Vm
′ ∗

n′ ,l (r, f ), (50)

with, for instance, Ex ∂B∗y /∂φ using G(1)
kl and ∂Ex/∂φ B∗y the

second function G(2)
kl . From the definitions of G(1,2)

kl one readily
derives the property

G(2)
kl = G(1)∗

lk , (51)

that will be used to retain only the G(1)
kl -function in the final

expression for M0
zz.

Starting with the expression on the second line of Eq.(46), we
obtain after a somewhat lengthy manipulation

Mo
zz =

ε0cγ2s4
0

4ω

[
2(|a|2 + |b|2)=(G(1)

0,0 )

− s4
0

{
(|a|2 + |b|2)=(G(1)

2,2 + G(1)
−2,−2)

−2=(ab∗)=(G(1)
2,2 − G(1)

−2,−2)
} ]

=
ε0cγ2s4

0
4ω

[
(|a|2 + |b|2)=

{
2G(1)

0,0 − s4
0(G(1)

2,2 + G(1)
−2,−2)

}
+2s4

0 =(ab∗)=
{

G(1)
2,2 − G(1)

−2,−2

}]
. (52)

Note that the expression for the orbital angular momentum
contains a term, on the second line of Eq.(52), that is only
nonzero if the incident light is elliptically polarised.
Two special cases need a further analysis.

3.3.3 Aberration-free case

We first consider the aberration-free case with β0
0 ≡ 1 and

all other β-coefficients equal to zero. In this particular case,

G(1)
kk = ik

∣∣∣V0
0,k(r, f )

∣∣∣2
is purely imaginary and we obtain

Mo
zz =

2ε0cγ2s8
0

ω
=(ab∗)|V0

0,2|2 . (53)

We conclude from the above expression that at high numerical
aperture a term is present in the orbital angular momentum
function that is connected to the spin momentum. Although
relatively small (proportional to s4

0), this term should be qual-
ified as a cross-term between spin and orbital momentum.

3.3.4 Helical wavefront

Again representing the orbital beam structure by means of
the substitution β1

1 = 1, all other βm
n = 0, we obtain G(1)

k,k =
i(k + 1)|V1

1,k|
2 and the orbital angular momentum expression

according to

Mo
zz =

ε0cγ2s4
0

4ω

[
(|a|2 + |b|2)

{
2|V1

1,0|2

−s4
0

(
3|V1

1,2|2 − |V1
1,−2|2

)}
+ 2s4

0=(ab∗)
(

3|V1
1,2|2 + |V1

1,−2|2
) ]

.

(54)

In the paraxial regime the expression reduces to

Mo
zz =

ε0cγ2s4
0

2ω
(|a|2 + |b|2) |V1

1,0|2 . (55)

The flux of the z-oriented angular momentum does not show
an azimuthal dependence over the beam cross-section and is
only dependent on the radial coordinate. The angular momen-
tum strength is independent of the state of polarisation of the
beam; it only depends on (|a|2 + |b|2), the total power present
in the two orthogonal states of polarisation. We emphasise
that all considerations on separation between spin and orbital
momentum are only valid in the integral sense, viz. after an
integration over φ and over the complete range of r from 0 to
∞.

3.3.5 Assignment of angular momentum to spin and orbital
origin in a high-NA focused beam

Based on the analysis of the angular momentum representa-
tion of Eq.(46), we propose a subdivision between spin and
orbital momentum for high-NA beams that is an extension of
the paraxial case. Knowing that spin momentum, see Eq.(47),
originates from ellipticity in the incident beam (=(ab∗) 6= 0),
we basically attribute the angular momentum terms that de-
pend on this factor to spin momentum. However, in Eq.(47),
we also observe a term that is proportional to the beam power
(|a|2 + |b|2) only and that has a relative weight of s4

0. This
nonparaxial term is zero in the aberration-free case but, for
instance with a helical beam structure, it constitutes a cross-
term between spin and orbital momentum. Likewise, inspect-
ing Eq.(52) for the orbital angular momentum, we observe a
main term that is proportional to the beam power and only
nonzero in the case of a helical phase aberration. On the last
line of Eq.(52), a term is present that is proportional to =(ab∗)
and is nonzero for a beam with orbital structure via the G(1)

2,2 -

and G(1)
−2,−2-functions. This term again represents a cross-term

between spin and orbital momentum.

4 NUMERICAL EXAMPLES

In this section, we present several examples of energy den-
sity and energy flux in the focal region. We also analyse the
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flux of linear and, more specifically, angular momentum, both
as a function of the incident state of polarisation, the numer-
ical aperture and the aberrations of the focused beam. Some
unexpected phenomena will be highlighted. In order to have
a hierarchy in strength of the focal field components, we have
taken a fixed entrance pupil diameter, typical for a microscope
objective, with a diameter 2a=4 mm. The power incident on
the entrance pupil surface is 1 mW. The focal distance of the
objective is related to the chosen numerical aperture of the
focusing ’device’ according to s0 = a/ f . This allows us to
give absolute values of the electric and magnetic fields, of the
magnitude of the Poynting vector and of the momentum den-
sity and flow components in the focal region. Because of the
widely varying lateral scale and axial scale in the focal region
as a function of the s0-value, we have normalised the lateral
and axial coordinates according to the prescription just below
Eq.(1). All numerical results have been obtained using both
the through-focus calculation of the electric and magnetic field
components and the composite Gkl-quantities based on the ex-
tended Nijboer-Zernike diffraction theory.

4.1 Energy density and energy f lux

We first present the energy density distribution and the Poynt-
ing vector components in the aberration-free case, both in fo-
cus ( f = 0), two focal depths in front of the nominal fo-
cal plane ( f = −π) and two focal depths beyond this plane
( f = π). In Figure 2, upper row, we have plotted by means of
arrows the (x, y)-components of the Poynting vector; the en-
ergy density has been represented by means of colour shad-
ing. In the lower row, the z-component of the Poynting vec-
tor has been plotted. The state of polarisation of the incident
light is linear along the x-direction. The electric energy density
shows the well-known elongated shape [3] due to the pres-
ence of an appreciable z-component of the electric field. A plot
of the total electromagnetic energy density in vacuum would
show circular symmetry because of the complementary dis-
tribution of the magnetic energy density. The z-component
of the Poynting vector presents a circularly symmetric pat-
tern, as predicted in the absence of aberrations by Eq.(26). This
circular symmetry in the aberration-free case stems from the
product operation of electric and magnetic field vectors that
cancels the lack of circular symmetry in the individual vec-
tor components of E and B. In certain annular regions of the
central figure ( f = 0), the z-component of the Poynting vec-
tor is slightly negative. This indicates the presence of strongly
curved streamlines and, in the extreme case, vortices in the
energy flow pattern.

The presence of angular momentum in the focused beam
becomes apparent once the incident state of polarisation is
changed to circular. In Figure 3 the state of polarisation is
left-circular (a, b) = (1, i)/

√
2. The transverse flow pattern

of the Poynting vector is right-handed as seen in the right-
handed xyz-coordinate system used in this paper. This is in
accordance with the common sign convention in defining the
screw sense of a general elliptical state of polarisation. The
corresponding figure for right-circular light is identical apart
from the opposite screw sense.

In Figure 4 we have plotted some energy flux lines in the

FIG. 2 Cross-sections of the energy density (upper row, colour-shading, units Jm−3) in

three image plane settings (two focal depths in front of the nominal focal plane

( f = π), in focus ( f = 0), and two focal depths beyond the nominal focal

plane( f = −π). In the same graphs, the (x, y)-components of the Poynting vector

have been represented by arrows. The length of the arrows has been normalised to

the largest transverse component in the picture. In the lower row, the z-component of

the Poynting vector has been represented by means of colour shading (unitsWm−2).

The incident state of polarisation is linear (x-direction), the numerical aperture of the

focused beam is 0.95, no aberration.

FIG. 3 Same legend as Figure 2, but the incident state of polarisation is now left-circular

(a, b) = (1, i)/
√

2.

neighbourhood close to the zeros of the z-component of the
Poynting vector. The flow pattern of the Poynting vector
shows symmetry with respect to the optical axis (vertical in
the figure) and there is a particular flow pattern around sin-
gular points, two of which have been represented in the fig-
ure, a vortex at (r, f ) = (0.55, 0) and a saddle point structure
at (r, f ) = (0.68, 0). In Figure 5 the state of polarisation is lin-
early x-polarised, (a, b) = (1, 0), and the beam is affected by
astigmatism with a set of Zernike aberration coefficients βm

n
that correspond to an aberration Φ = ∑ αm

n Rm
n (ρ) exp(imθ) in

the phase part of the pupil function exp{iΦ(ρ, θ)} with coef-
ficients α2

2 = α−2
2 = π/4 and all others equal to zero. The

resulting β-coefficients were obtained using a third-order de-
velopment of the exponential function according to exp(iΦ) =
1 + iΦ − Φ2/2 − iΦ3/6. For certain low-order Zernike wave-
front aberrations, it is also possible to obtain analytic expres-
sions for the β-coefficients, see [18, 19]. In focus, the electric en-
ergy density function has adopted the characteristic cross-like
shape, while out-of-focus the characteristic focal lines become
visible. The polarisation influence causes a disparity between
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FIG. 4 Flow lines of the Poynting vector close to the first zeros in the nominal focal

plane. The state of polarisation is arbitrary. The average propagation direction of the

flow through focus is downward in the figure. Particular patterns in the energy flow

pattern can be found, for instance, at lateral positions r = 0.55 (vortex) and r = 0.68

(saddle) in the nominal focal plane ( f = 0.0).

the two focal lines. The transverse energy flow pattern shows
the inward and outward direction in the out-of-focus planes;
in focus, the flow pattern corresponding to a saddle-point is
observed. The z-component of the Poynting vector shows the
4φ-dependence in focus, out-of-focus the 2φ-dependence is
dominating.

FIG. 5 Same legend as Figure 2, but now in the presence of a certain amount of

astigmatic aberration.

4.2 Linear and angular momentum flux

In the following figures, we examine the particular behaviour
of linear and angular momentum flux components in the fo-
cal region of a high-NA imaging system. A first analysis ap-
plies to a linearly polarised beam with the field vector in the
entrance pupil oriented along the x-axis, (a, b) = (1, 0). In
this first example, we keep the numerical aperture very low
(s0=0.01) to establish the link with paraxial theory. The start-
ing point of the analysis is given by the three components
of the linear momentum density; in vacuum, they can be ob-
tained from the Poynting vector by multiplication with a fac-
tor of 1/c2. The stress tensor elements are represented in Fig-
ure 6, rows one to three, where a dominating Tzz flux com-

ponent is visible. All other flux elements are small, especially
Txx, Txy, Tyx and Tyy, and their patterns remain invisible with
the applied colour shading. Given the continuity relation of
Eq.(10) for our static case, the partial T-derivatives have to be
such that, for instance, ∂Txx

∂x + ∂Txy
∂y = 0. A numerical check

of the data represented in Figure 6 shows a tendency that
corresponds to this general identity. Using Eq.(41) in general
and Eq.(43) for the Mzz-component, we also produce a map
of the angular momentum flux components in the nominal
focal plane (rows four to six). The only appreciable compo-
nents are Mxz and Myz and, in combination, they give rise to a
tangentially oriented flux component that varies with the ra-
dial coordinate r. Of course, the integration of the flux compo-
nents of angular momentum over the entire focal plane yields
zero. However, by local selection, we could extract a prefer-
ential radial momentum component, for instance, positive x-
momentum flowing in the z-direction by selecting the half-
plane y > 0.

FIG. 6 The linear momentum flux components Tij (unit Nm−2) have been represented

in rows one to three, the angular momentum flux components Mij (unit Nm−1) in

rows four to six. The numerical aperture of the focusing beam is kept in the paraxial

range (s0=0.01).

The transition from low numerical aperture to high NA
(s0=0.95) gives rise to a lack of circular symmetry in the
separate electric or magnetic energy density. Electromagnetic
cross-terms like the Poynting vector ~S and the linear and
angular momentum densities, ~m and~j, maintain their circular
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symmetry; the flux components T and M do not have this
property. When comparing the T-components in Figure 7
with its low-NA counterparts in Figure 6, it becomes apparent
that especially the elements Txx, Txy = Tyx and Tyy have in-
creased in relative value with respect to Tzz. The effect on the
M-components at high NA is the appearance of substantial
z-flux components in the x- and y-direction. The net result is
an in-plane tangential flow pattern of z-angular momentum,
but the z-flow component of the z-angular momentum stays
rigorously zero, neither is there net transport of z-angular
momentum through a plane z=constant.

FIG. 7 Graphs of the linear momentum flux components Tij (rows one to three) and

Mij (rows four to six). The numerical aperture s0 of the focusing beam amounts to

0.95, linear polarisation along the x-axis, (a, b) = (1, 0).

We now switch to left-handed circular polarisation with
(a, b) = (1, i)/

√
2, see Figure 8. Regarding the T- flux

components, the main difference with the linearly polarised
incident beam is found in the nonzero Tzx-, Tzy-, Txz- and Tyz-
components. This is equivalent to a tangential flow pattern
of z- linear momentum, on top of the main flow component
Tzz. The main difference with linear incident polarisation for
the M-components is the appearance of an Mzz-component,
created by the nonzero linear momentum components Txz
and Tyz. This is the result of the spin momentum in the
incident beam.

The next example in Figure 9 is a linearly polarised incident
beam, (a, b) = (1, 0), suffering from astigmatic aberration.

FIG. 8 Row one to three: graphs of the linear momentum flux components Tij in the

nominal focal plane; row four to six: the Mij-flux components in the same plane.

The numerical aperture s0 of the focusing beam amounts to 0.95, left-handed circular

polarisation, (a, b) = (1, i)/
√

2.

The Zernike coefficients defining the aberration phase Φ are
α2

2 = α−2
2 = π/4. This applies to astigmatism with the main

axes of the astigmatic wavefront deformation along the x- and
y-axis. The corresponding β-coefficients defining the pupil
function are calculated using again a third order Taylor se-
ries expansion of the pupil phase function exp(iΦ). The defo-
cused image plane settings have been chosen such that they
correspond to the focal line positions as predicted by geomet-
rical optics aberration theory. Figure 9 shows the moduli of
the electric field components (rows one to three, for defocus
values f = +π, 0 − π, respectively) and their phases (rows
four to six).

The T flux components (Figure 10, first three rows) show a cor-
responding effect, for instance regarding the components Tzx
and Tzy. An interesting effect of an astigmatic focused beam is
found when inspecting the Mzz-component. Although the to-
tal integrated z-angular momentum flux is zero over the focal
plane, it is possible to spatially select diagonal portions of the
beam that carry specific z-angular momentum. The splitting
in plus and minus z-angular momentum in the focal plane be-
comes more important when the astigmatic aberration is in-
creased. In this way, it is possible to create selective angular
momentum that propagates in the z-direction; the disadvan-
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FIG. 9 The moduli (upper three rows) of the electric field components and their phases

(lower three rows) in three image plane settings ( f = +π, 0,−π) for a linearly

polarised beam, (a, b) = (1, 0), with astigmatic wavefront aberration characterised

by the Zernike phase aberration coefficients α2
2 = α−2

2 = iπ/4, NA-value s0=0.95.

tage is the loss-in-resolution that is accompanied by the in-
crease in wavefront aberration.

The final example applies to a helical phase beam. Normally,
these beams are described by Gauss-Laguerre modes as solu-
tions of the paraxial wave equation. Here, we use the Zernike
wavefront aberration representation in complex form and
achieve a helical wavefront shape by putting β1

1=1, β0
0 =

β−1
1 =0. The substitution in Eq.(4) yields a pupil function pro-

portional to ρ exp(iθ) that fits on a circular pupil with a sharp
edge. In this sense, it is a more realistic pupil function realisa-
tion than an infinitely extending Gauss-Laguerre mode. Fig-
ure 11 clearly shows the doughnut-cross-section and the spiral
phase of the x-component of the electric field. The component
Ez out-of-focus, normally composed of two lobes along the x-
axis in phase opposition, is now transformed into an S-shaped
profile with a maximum on the axis. This is due to the fact
that the cancellation of the z-field component by geometrically
opposite vector contributions is now turned into a construc-
tive superposition because of the helical phase function. The
absence of lateral components and the sole presence of a z-
oriented electric field component in the beam centre explains
the doughnut-like flow pattern of the axial component of the

FIG. 10 Row one to three: graphs of the linear momentum flux components Tij in the

nominal focal plane. Row four to six: the Mij-flux components in the same plane.

Same value of numerical aperture and astigmatic aberration as in Figure 9.

Poynting vector (see Figure 12, top row). In the same figure,
row two to four, we show the T-flux components, that have
a close resemblance with the T-components in Figure 8, both
introducing a helical flow pattern of momentum in the beam.
The main difference is found in the Tzz-component that has a
doughnut-shape in the case of the helical phase aberration. In-
spection of the M-flux components for both cases (left-handed
circular polarisation, see Figure 8, and helical phase according
to an exp(+iθ)-function, Figure 12, row five to seven), shows
a very close resemblance; it can also be concluded that the sign
of the angular momentum is identical in both cases.

5 CONCLUSION

The energy and momentum flow in the focal region of a
high-numerical-aperture beam has been described using the
extended Nijboer-Zernike diffraction theory. The analytic G-
functions with indices kl, |k|, |l| ≤ 2, characteristic for the
through-focus intensity distribution in the presence of aber-
rations and defined in an earlier publication to represent the
electric energy density, were used here to describe the Poynt-
ing vector, the momentum densities and the corresponding
momentum flow components.
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FIG. 11 The moduli (row one to three) of the electric field components (unit Vm−1)

and their phases (row four to six) in three image plane settings ( f = −π, 0, +π)

for a helical phase linearly polarised beam, (a, b) = (1, 0), with the single Zernike

coefficient β1
1=1, NA-value s0=0.95.

Special attention has been paid to the angular momentum
representation because its description at high numerical aper-
ture is the subject of a discussion on what would be the op-
timum representation of angular momentum, going from the
paraxial to the high-aperture case. Using the expression for
the Mzz-component of the angular momentum that directly
follows from the Maxwell stress tensor of linear momentum,
we find an expression with a subdivision in angular momen-
tum of both spin and orbital origin. The way in which the
momentum of spin and orbital origin are added in the focal
region depends on the position in the diffraction image ac-
cording to Eq.(43). This is due to the fact that the point-spread
functions belonging to a beam with only spin momentum or
only orbital momentum are fundamentally different. A mix-
ture of both sources of momentum in a focused beam gives
rise to the nonlinear addition of momentum within the result-
ing point-spread function including cross-terms. We also have
to conclude that the angular momentum component Mzz does
not show a fundamentally different behaviour for low- or
high-numerical-aperture focused beams. The effect of a high
numerical-aperture is to introduce a correction term with a
relative value given by the aperture squared. Another way
of splitting angular momentum in a spin contribution and an

FIG. 12 First row: the components of the Poynting vector in the nominal focal plane.

Row two to four: graphs of the linear momentum flux components Tij in the nominal

focal plane and the Mij-flux components in the same plane (row five to seven).

Same numerical aperture, state of polarisation and value of helical phase term as in

Figure 11.

orbital contribution has been proposed by Barnett, Eqs.(47)
and (52), and his model leads to extra high numerical aper-
ture terms that have a relative importance given by the aper-
ture value to the fourth power. Cross terms with this relative
weight arise between the spin and orbital contributions. Fi-
nally, we have presented some numerical examples that illus-
trate the intricate behaviour of the momentum flow compo-
nents in a high-NA focused beam. It was particularly inter-
esting to observe the close resemblance in angular momen-
tum flow between a focused beam with spin momentum and
a beam with orbital angular momentum.
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