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A variational procedure is given for finding the pulses for which the initial temporal rms width and the rate of increase of this width are
jointly minimized for propagation in non-absorbing media with arbitrary dispersive properties. We show that, while in linearly dispersive
media the optimal pulses are Gaussian, in other situations such as a hollow metallic waveguide or for purely cubic dispersion departures
from Gaussian behavior become evident. An interpretation of the results in terms of suitable phase-space representations is also given.
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1 INTRODUCTION

Continuous-wave laser beams are traditionally characterized
by the so-called M2 parameter, which is a phase-space qual-
ity factor related to the product of the root-mean-square (rms)
beam waist width and the rms width of the far-field diffrac-
tion angle [1]. For one-dimensional fields, the square of the
transverse rms intensity width obeys in paraxial free-space
propagation a quadratic (parabolic) law as a function of dis-
tance z from the waist [2]. The parameter M2, however, is pre-
served under paraxial free propagation and also in first-order
(ABCD) optical systems [3]. Since a Gaussian function attains
the minimum product of the widths, it is used to normalize
this quality factor, so that M2 = 1 is attained only for Gaus-
sian beams and M2 ≥ 1 in general [4, 5]. Apertured fields,
nonparaxial propagation, and material media lead to further
refinements of the optimal phase-space theory. For long pulses
a time-dependent M2 factor can be used. However, for ultra-
short pulses in the few-cycle range the spectrum influences
M2 and the optimum beam in terms of high directionality and
small spot size no longer has a Gaussian profile [6].

A well-known space–time analogy exists between spatial
paraxial propagation of stationary optical fields and temporal
evolution of plane-wave pulses in linearly dispersive homo-
geneous media [7]. The analogy is manifested by the fact that
in slowly-varying approximations, the underlying dynamics
in both cases are governed by similar, Schrödinger-type
equations [8, 9]. Hence, a pulse quality factor M2

τ ≥ 1 can
be introduced as a time–bandwidth product in terms of the
second moments of intensity and spectral density [10]. In
first-order temporal ABCD systems M2

τ remains constant

and assumes its minimum value for Gaussian pulses. The
temporal evolution of general (non-Gaussian) pulses in
such dispersive elements is fully analogous with the spatial
counterpart [3, 10]. Experiments with short pulses down to
the femtosecond regime have confirmed the validity of the
pulse quality factor description for plane-wave pulses in
linearly dispersive media [11].

In this work we consider the one-dimensional propagation of
pulses (such as plane waves or guided modes) in homoge-
neous transparent media of arbitrary dispersive properties.
Rather than focusing on a product of the pulse length and
spectral width in some input location, as in the pulse qual-
ity factor, we look for pulses that minimize the product of the
pulse durations in the initial plane and after propagating over
a long distance. The optimal pulses depend on the disper-
sive characteristics of the medium and are not, in general, of
Gaussian spectrum. We employ a general variational method
based on Lagrange multipliers for finding the optimal pulse
profiles in any non-absorbing medium and analyze, as exam-
ples, media with specific dispersion relations. The results are
illustrated in terms of modified Wigner functions that describe
pulse propagation in transparent media with any dispersive
properties exactly as phase-space shearing [12].

2 PULSE PROPAGATION IN DISPERSIVE
MEDIA

The forward-propagating solutions to the wave equation in a
one-dimensional dispersive medium can be written as super-
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positions of monochromatic components

U(z, t) =
1√
2π

∫
A(ω) exp{i[k(ω)z−ωt]}dω, (1)

where A(ω) is the field’s spectral amplitude and
k(ω) = ωn(ω)/c is the wavenumber corresponding to
the frequency ω, with n being the frequency-dependent
refractive index and c the speed of light in vacuum. Let us
assume for now that the medium’s absorption is negligible,
so that k is real. The range of integration in Eq. (1) then is
a window of frequencies in which this assumption is valid.
(Some comments on the effects of absorption in the results
obtained here are given in the concluding remarks.) For sim-
plicity, we use the analytic signal representation of the field,
meaning that the integral involves only positive frequencies,
and U is a complex function whose real part represents the
true physical pulse.

The total power contained in the pulse is proportional to the
following quantity

φ =
∫
|U(z, t)|2 dt =

∫
|A(ω)|2 dω, (2)

where the integral in the first equality is taken over all time.
Similarly, the temporal moments as functions of distance can
be defined as

tm(z) =
1
φ

∫
|U(z, t)|2tm dt. (3)

Let us define the shorthand notation

κlmn =
(−i)l

φ

∫
[k(m)(ω)]n A∗(ω)A(l)(ω)dω, (4)

where a superindex (j) denotes the jth derivative. The first
and second moments can then be found through the substitu-
tion of Eq. (1) into Eq. (3) to be given by

t(z) = κ100 + z κ011, (5)

t2(z) = κ200 + z (2κ111 − iκ021) + z2 κ012

= κ200 + z 2<(κ111) + z2 κ012. (6)

Note that all κlmn in the above equations are real, with the ex-
ception of κ111. However, it can be shown through integration
by parts that 2=(κ111) = κ021. This relation was used in the
last step in Eq. (6).

The pulse’s temporal width as a function of distance can be
characterized by its root-mean-square (rms) width, which is
given by

∆t(z) =
√

t2(z)− t2
(z)

=
√

κ200 − κ2
100+z 2[<(κ111)−κ100κ011]+z2(κ012 − κ2

011). (7)

The temporal width of the pulse at the initial position (z = 0)
then is given by

∆t0 = ∆t(0) =
√

κ200 − κ2
100. (8)

On the other hand, the rate at which the temporal width in-
creases after propagating long distances is given by

∆s∞ = lim
z→∞

∆t(z)
z

=
√

κ012 − κ2
011. (9)

Notice that ∆s∞ has units of inverse velocity.

These two measures are analogous to the initial transverse
spatial width and the far-field directional spread of a station-
ary beam.

3 OPTIMAL PULSES

We now search for the fundamental lower bounds for the mea-
sures ∆t0 and ∆s∞. For this purpose, we employ a variational
approach in order to find the pulses that jointly minimize both
measures. Mathematically, this is achieved by requiring that
a positive linear combination of these measures (or, equiva-
lently, their squares) be stationary under infinitesimal varia-
tions of the spectral amplitude. Note that the spectral ampli-
tude and its complex conjugate can be treated as independent
degrees of freedom. The condition for stationarity then takes
the form

δ∆t2
0

δA∗
+ µ2 δ∆s2

∞
δA∗

= 0, (10)

where µ2 is a positive quantity (a Lagrange multiplier). For
computational purposes it is convenient to parameterize the
solution not in terms of ∆t0 or ∆s∞ but in terms of µ, so that
both ∆t0 and ∆s∞ for the optimal pulses depend on this pa-
rameter. In other words, in a plane whose axes are ∆t0 and
∆s∞, the widths obtained through this variational procedure
describe a curve (where each point is calculated with a differ-
ent value of µ). This curve corresponds to the boundary be-
tween the allowed and forbidden pairs of these width mea-
sures for any pulse.

By using the fact that

δκlmn
δA∗

=
(−i)l [k(m)(ω)]n A(l)(ω)− κlmn A(ω)

φ
, (11)

(where the last term results from the functional derivative of
φ in the denominator) the substitution of Eqs. (8) and (9) into
Eq. (10) and the use of the chain rule lead to the following
equation:

A′′(ω)− 2iκ100 A′(ω) +
[
(κ200 − 2κ2

100) + µ2

×{κ012 − κ2
011 − [k′(ω)− κ011]

2}
]

A(ω) = 0. (12)

(The correctness of this equation can be verified by multi-
plying it by A∗ and integrating over all frequencies.) This
equation can be simplified by factoring out a linear phase as
A(ω) = Ā(ω) exp(iκ100ω), leading to

Ā′′(ω) +
(

∆t2
0 + µ2{∆s2

∞ − [k′(ω)− κ011]
2}
)

Ā(ω) = 0. (13)

To solve this equation, we can write it as an eigenvalue sys-
tem,

−Ā′′(ω) + µ2[k′(ω)− κ011]
2 Ā(ω) = ΛĀ(ω). (14)

where the eigenvalue Λ equals ∆t2
0 + µ2∆s2

∞. Notice that
this equation is mathematically analogous to a one-
dimensional time-independent Schrödinger equation, in
which µ2[k′(ω)− κ011]

2 plays the role of the potential, and Λ
corresponds to the energy.
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The procedure to find the lower bounds for the spread mea-
sures is as follows: First, one chooses the constant κ011 to co-
incide with k′(ω0), so that the “potential” µ2[k′(ω) − κ011]

2

has a minimum at ω0, which then is approximately the cen-
tral frequency of the resulting optimal pulse. The next step is
to solve the eigenvalue problem for a given value of µ and se-
lect the “ground state” solution, corresponding to the small-
est Λ. Given the dip-like shape of the potential around ω0,
this ground-state solution can be expected to be bound, i.e. to
decay away from ω0. Finally, by using the resulting spectral
amplitude, one calculates ∆t0 and ∆s∞, which for the optimal
pulses are functions of µ, and are denoted by a superindex
“opt”. [The correctness of the results can be verified by check-

ing that Λ = ∆topt
0

2
(µ) + µ2∆sopt

∞
2
(µ) is satisfied.] This proce-

dure must be carried out for each value of µ2.

4 PHASE-SPACE INTERPRETATION

It is well known that the Wigner function gives an illustra-
tive representation of paraxial diffraction, as well as of the
propagation of pulses in the case of linear dispersion [13, 14].
A modified version of the Wigner function was proposed
recently that describes the propagation of a pulse through
a transparent medium with arbitrary dispersion exactly in
terms of a distribution Bv(z, t, v) that resembles a statistical
mechanical distribution of particles traveling at different ve-
locities v [12]. The two key properties of this distribution are:
i) The intensity is given by its integral over velocity:∫

Bv(z, t, v)dv = |U(z, t)|2, (15)

and ii) this distribution is constant along trajectories of con-
stant velocity:

Bv(z, t, v) = Bv

(
0, t− z

v
, v
)

. (16)

The definition of Bv(z, t, v) depends on the dispersion relation,
according to a geometric prescription given in Ref. [12]. In this
work, it is more useful to write this representation in terms of
the inverse of the velocity, s = 1/v, so that the phase space
distribution is

Bs(z, t, s) = s2Bv(z, t, s−1), (17)

and the properties above become∫
Bs(z, t, s)ds = |U(z, t)|2, (18)

Bs(z, t, s) = Bs(0, t− sz, s). (19)

In terms of this definition, the two spreads defined earlier are
given by

∆t2
0 =

∫ ∫
t2Bs(0, t, s)dsdt∫ ∫
Bs(0, t, s)dsdt

, (20)

∆s2
∞ =

∫ ∫
s2Bs(0, t, s)dsdt∫ ∫
Bs(0, t, s)dsdt

. (21)

Hence, the two measures are the rms widths of this distribu-
tion for z = 0 in the t, s phase space. For the case of linear
dispersion, this distribution reduces to the standard Wigner

function, and for a Gaussian pulse, this representation reduces
to a Gaussian in the two phase-space variables t, s for z = 0,
which is the most jointly localized Wigner distribution possi-
ble. For more complicated dispersion relations, Bs is no longer
a Gaussian for Gaussian pulses, and in fact, no pulse exists in
general that makes this distribution Gaussian. However, the
optimal pulses described here make these distributions as lo-
calized in phase space as possible.

5 EXAMPLES

The ground-state solutions to Eq. (14) are known analytically
only for a few cases. In general, it is necessary to apply a nu-
merical method (such as the one described in Appendix A).

5.1 Linear dispersion

The simplest example results from assuming that the disper-
sion is linear over the spectral extent of the pulse, that is, the
wavenumber is given by

k(ω) = β0 + β1(ω−ω0) + β2
(ω−ω0)

2

2
, (22)

where ω0 is the central frequency of the pulse. Of course, in
reality, this is an approximation, valid only for pulses with
sufficiently narrow spectral widths. However, this case is im-
portant because it leads to a full mathematical analogy with
the problem of paraxial free-space diffraction [3, 9]. Therefore,
the results of this method should lead to optimal pulses with
Gaussian spectrum [10]. By choosing κ011 = β1, Eq. (14) re-
duces to

−Ā′′(ω) + µ2β2
2(ω−ω0)

2 Ā(ω) = ΛĀ(ω). (23)

The ground-state solution of this equation is, as predicted, a
Gaussian:

Ā(ω) = A0 exp
[
−µ|β2|

(ω−ω0)
2

2

]
, (24)

with eigenvalue Λ = µ|β2|. The corresponding widths are
given by the expressions

∆topt
0 (µ) =

√
µ|β2|

2
, ∆sopt

∞ (µ) =

√
|β2|
2µ

. (25)

Notice that in this case

∆topt
0 (µ)∆sopt

∞ (µ) =
|β2|

2
, (26)

i.e., the product of the two spreads equals a constant.

5.2 Waveguide dispersion

As a second example we consider the propagation of a pulse
mode in a cylindrical metallic waveguide filled with vacuum.
The dispersion relation is given by [15]

k(ω) =

√
ω2 −ω2

co
c

, (27)

where ωco is the waveguide’s cutoff frequency. For example,
for the TM0,1 mode of a waveguide with circular cross-section,

11035- 3



Journal of the European Optical Society - Rapid Publications 6, 11035 (2011) M. A. Alonso, et al.

0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

∆s
∞
 [ns/m]

∆
t 0

 [
p
s
]

(a) optimal

Gaussian

0.5 1 1.5
0.4

0.5

0.6

∆ω [0.01ω
0
]

∆
t 0

∆
s

∞
 [

|β
2
|]

(b) optimal

Gaussian

0.95 1 1.05
0

0.2

0.4

0.6

0.8

1

ω [ω
0
]

N
o
rm

a
liz

e
d
 s

p
e
c
tr

a
 a

n
d
 p

o
te

n
ti
a
l

(c) optimal

Gaussian

potential

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

t [ps]

N
o
rm

a
liz

e
d
 |
U

(0
,t

)|
2
, 

|U
∞
(s

)|
2

(d)

|U(0,t)|
2

6 7 8 9 10

s [ns/m]

|U
∞
(s)|

2

FIG. 1 Behavior of a light pulse under waveguide dispersion. (a) ∆t0 against ∆s∞,

(b) ∆t0∆s∞ as function of the spectral width, (c) the normalized optimal spectrum,

the closest Gaussian spectrum and the “potential” (solid black line). In (a)–(c) the

blue dashed lines and the red dotted lines correspond, respectively, to the optimal

pulse and the closest Gaussian pulse. In (a) and (b) µ ranges from 7 × 10−3 m to

7 × 10−5 m (marked with dots). In (d) the green dashed line and the purple dotted

line illustrate, respectively, the normalized pulse intensities at the input, |U(0, t)|2,

and at infinity, |U∞(s)|2. The spectra in (c) and the lines in (d) correspond to the dots

in (a) and (b). The movie shows how the various quantities evolve when µ decreases

within the shown interval.

ωco = ρ0,1c/r, where ρ0,1, c and r are, respectively, the first
root of the zero-order Bessel function J0(x), the speed of light
in vacuum, and the cylinder’s radius. We choose r = 1 µm
leading to ωco = 7.21× 1014 1/s, for which the wavelength
is 2.61 µm. Furthermore, we set the pulse’s central frequency
close to the cutoff frequency, i.e., ω0 = 1.1 ωco with the wave-
length 2.38 µm.

Figure 1 illustrates the behavior of a light pulse under waveg-
uide dispersion. In Figure 1(a) the blue dashed line, corre-
sponding to ∆topt

0 vs. ∆sopt
∞ , constitutes the boundary between

the achievable and forbidden values for the two spreads of a
pulse. The red dotted line corresponds to Gaussian pulses of
varying width. The similarity of the curves suggests that in
this case the optimal pulses are close to Gaussian. Figure 1(b)
shows the product ∆t0∆s∞ for both the optimal (blue dashed
line) and Gaussian (red dotted line) pulses in terms of their
spectral width [calculated from Eq. (36)]. Notice that for the
optimal pulses, this product falls increasingly below |β2|/2 as
the spectrum widens.

Figure 1(c) shows the normalized optimal spectrum (blue
dashed line), its best-fit Gaussian spectrum with the same
peak frequency (red dotted line), and the “potential” given in
Eq. (35) (black solid line), for µ = 7× 10−5 m corresponding to
the dots in Figures 1(a) and (b). Notice that the spectral peaks
do not coincide exactly with the potential minimum at ω0, and
that due to the asymmetric potential, the optimal pulse devi-
ates slightly from Gaussian especially at the tails of the spec-
trum. The temporal shape of the optimal pulse at the input
[|U(0, t)|2 from Eq. (38)], and after propagation over a long
distance [|U∞(s)|2 from Eq. (39)] are plotted in Figure 1(d) as

FIG. 2 Distribution of Bs(0, t, s) for waveguide dispersion in t, s space for (a) the

optimal pulse, and (b) the closest Gaussian pulse.

a green dashed line and a purple dotted line, respectively, for
the same µ as in Figure 1(c).

Figures 2(a) and (b) illustrate the modified Wigner function
Bs(0, t, s) for waveguide dispersion [Eq. (26) of Ref. [12] with
the change of variables in Eq. (17)] in the t, s space for the opti-
mal pulse and the closest Gaussian pulse, respectively. Notice
that the distribution is more compact and symmetric for the
optimal pulse.

5.3 Pure cubic dispersion

As a third example, we consider the case when the linear
part of the dispersion vanishes at a prescribed ω0 (the so-
called zero-dispersion frequency). In practice, this is usually
achieved through local cancelation of material and waveguide
dispersion. The dispersion relation is then approximately

k(ω) ≈ β0 + β1(ω−ω0) + β3
(ω−ω0)

3

6
, (28)

i.e., there is no quadratic term. For fused silica, which has
a zero-dispersion frequency in bulk form at ω0 = 1.27 µm,
the dispersion coefficients can be found from Sellmeier’s
equation [16] to be approximately β0 = 7.16 × 106 1/m,
β1 = 4.88× 10−9 s/m, and β3 = 7.34× 10−41 s3/m. Within
the interval [0.4 ω0, 1.6 ω0], this truncation at the cubic term
only introduces a relative error in k(ω) less than 0.5%.

Figure 3 illustrates the behavior of a pulse in fused silica
whose spectrum is centered at the zero-dispersion frequency.
The quantities in each figure are as in Figures 1(a)–(c), but
with µ varying from 10−3 m to 10−5 m (marked with the dots)
in (a) and (b). The intensity profile (not shown) becomes in-
creasingly oscillatory on propagation. Notice that unlike in
Figure 1(b), the product of the spreads in Figure 3(b) varies
strongly with the spectral width. Figure 3(c) shows the spec-
trum of the optimal pulse and its best-fit Gaussian spectrum
for the case labeled by the dots in (a) and (b). Notice the spec-
trum is broader than the Gaussian at the center and decays
faster at the tails. This is due to the fact that the potential is
quartic.

6 CONCLUDING REMARKS

In this work a procedure was presented for finding the shape
of a pulse of given central frequency and spectral width whose
temporal spread increases as slowly as possible on propaga-
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FIG. 3 Behavior of a light pulse in fused silica with the spectrum centered at the zero-

dispersion frequency. The quantities in the figure are the same as in Figures 1(a)–(c),

but with µ running from 10−3 m to 10−5 m (marked with the dot) in (a) and (b). The

spectra in (c) are for the minimum value of µ. The movie shows how these quantities

change as µ decreases.

tion in a transparent medium of arbitrary dispersion prop-
erties. This procedure was shown to reproduce the known
results for the simple case of linear dispersion. It was also
applied to propagation in a hollow metallic waveguide and
in fused silica at the zero-dispersion frequency. For the pa-
rameters used in these examples the optimal pulses do not
differ significantly from Gaussian. However, other cases will

show more significant differences, for example if the central
frequency is closer to the cutoff frequency of a waveguide.
The optimal spectra can be generated, for example, by pulse
transformations using dispersive optical elements [17]. One
application of these optimal pulses could be the introduction
of a pulse quality factor for propagation in specific dispersive
media; such factor can be defined as the product ∆t0∆s∞ for
the pulse in question, normalized by the corresponding prod-
uct for the optimal pulse with the same central frequency and
spectral width.

A fundamental assumption in this work was complete ab-
sence of absorption. It is known from the Kramers–Kronig
relations that absorption is inherent in dispersion. Very of-
ten, absorption is negligible over the spectral regions of inter-
est, such as in telecommunication channels. However, in cases
where absorption effects must be accounted for, the procedure
here could be modified accordingly: the limit z → ∞ can no
longer be used, but the temporal spreads at the input and at
a specified finite propagation distance could be jointly mini-
mized. Another possible generalization of the results relates
to pulse trains that are temporally partially coherent.
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APPENDIX A: SOLUTION OF THE
EIGENVALUE PROBLEM

Equation (14) can be solved numerically by using a Hermite-
Gaussian expansion

Ā(ω) =
∞

∑
n=0

cn√
(π/a)(1/2)2nn!

Hn(
√

aω̄) exp
(
−a

ω̄2

2

)
, (29)

where cn and a > 0 are constants, Hn(x) denotes the Hermite
polynomial of order n, and ω̄ = ω −ω0. Substituting Eq. (29)
into Eq. (14), and using the integral relations [18]∫ ∞

−∞
Hn(
√

ax)Hm(
√

ax) exp (−ax2)dx =

√
π

a
2nn!δn,m, (30)∫ ∞

−∞
ax2Hn(

√
ax)Hm(

√
ax) exp (−ax2)dx

=

√
π

a

[
2n−1(2n + 1)n!δn,m

+2n(n + 2)!δn+2,m + 2n−2n!δn−2,m

]
, (31)

as well as the recurrence relations of the Hermite polynomials,
we find that Eq. (14) can be written as a discrete eigenvalue
problem

∞

∑
n=0

Hm,ncn = Λcm, (32)

where

Hm,n =
a
2
(2n + 1)δn,m −

a
2

√
(n + 1)(n + 2)δn+2,m

− a
2

√
n(n− 1)δn−2,m + V̄n,m, (33)
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with

V̄n,m =
1√

2(n+m)πn!m!

×
∫ ∞

−∞
V
(

x√
a
+ ω0

)
Hn(x)Hm(x) exp (−x2)dx, (34)

and
V(ω) = µ2[k′(ω)− κ011]

2. (35)

We see that the matrix Hm,n is symmetric. In the example
of waveguide dispersion, the value a = µ|β2(ω0)| is used
for the width of Gaussian functions, as suggested by the an-
alytical solution in the case of linear dispersion, Eq. (24).
For the zero-dispersion case, we use instead the expression
a = 70[µ|β3(ω0)|]2/3, since β2 = 0 at the zero-dispersion fre-
quency.

Once Ā(ω) is found, the spectral amplitude is given by
A(ω) = Ā(ω) exp(iκ100ω). The spectral width can be esti-
mated as

∆ω =

√(
ω2
)
−
(

ω1
)2

, (36)

where

(
ωm
)
=

∫
ωm|A(ω)|2dω∫
|A(ω)|2dω

, m = (1, 2), (37)

and the integration extends over the range in which the spec-
trum is nonzero.

The initial pulse in the time domain is obtained by setting
z = 0 in Eq. (1), and then (inverse) Fourier transforming the
spectrum, given by Eq. (29). The result is

U(0, t) = exp[iω0(κ100 − t)]

×
∞

∑
n=0

(−i)ncn√
(aπ)1/22nn!

Hn

(
κ100 − t√

a

)
× exp[−(κ100 − t)2/2a]. (38)

Since only the pulse envelope is of interest, we set κ100 = 0
leading to |U(0, t)| centered at t = 0.

The pulse at an infinite distance in terms of s is obtained from
Eq. (1) by inserting t = sz, taking the limit z → ∞, and carry-
ing out the integration using the method of stationary phase.
Doing so, one finds that

U∞(s) = lim
z→∞

U(z, sz),

=
A(ωs)√

z|Ω′′(ωs)|
exp [izΩ(ωs)]

× exp {iπsign[Ω′′(ωs)]/4}, (39)

where ωs is determined by k′(ωs) = s, Ω(ω) = k(ω) − ωs,
and sign(x) equals 1 for x > 0 and -1 for x < 0.
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