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The Rayleigh Wood anomalies refer to an unexpected repartition of the electromagnetic energy between the several interference orders of
the light emerging from a grating. Since Hessel and Oliner (Appl. Opt. 4, 1275-1297 (1965)), several studies have been dedicated to this
problem, focusing mainly on the case of metallic gratings. In this paper, we derive explicit expressions of the reflection coefficients in the
case of dielectric gratings using a perturbative approach. This is done in a multimodal description of the field combined with the use of
the admittance matrix, analog to the so-called electromagnetic impedance. Comparisons with direct numerical calculations show a good
agreement with our analytical prediction.
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1 INTRODUCTION

Wood’s anomalies are concerned with the reflection spectrum
of a light source on a periodic metallic grating. Wood noticed
that around certain frequencies, the reflectance experienced
sudden and intense variations even for small grating grooves.
These sudden variations are unexpected if one refers to the
reflectance of the flat metallic surface, for which the grooves
can be considered as small perturbations. If the main features
of the two anomalies have been captured in the paper of Hes-
sel and Oliner [1] (see also [2]–[4]), quantitative predictions
of the reflection spectrum, even approximate, are still lack-
ing. As pointed out in a review by Maystre [5], this is because
one needs the electromagnetic impedance Y on a straight line
located above the grating grooves to be determined. In fact,
it is possible in general to calculate Y by solving the associ-
ated Riccati equation [6, 7]. Alternatively, in [8], the problem is
solved by determining the complex poles of the scattering ma-
trix. Although accurate, these approaches do not provide sim-
ple analytical expressions of the reflection coefficients. This is
the aim of the present study to provide such expressions. To
do that, we derive the impedance matrix perturbatively with
respect to a reference, and close, situation where the anoma-
lies do not occur and where the impedance matrix is known.
For simplicity, we consider here the case of a dielectric grat-
ing as sketched in Figure 1. The scatterers in the periodic row
are assumed weak, so that the reference situation is the free
space (zero reflection), and the reference impedance is known.
Then, the impedance of the grating is determined by solving

the linearized version of the Riccati equation and by inverting
the system proposed in Hessel and Oliner. Although more in-
volved, the case of a metallic grating can be treated in a similar
way: the reference would be the flat interface metal/air, and
the perturbation the small grooves.

Our configuration is sketched in Figure 1: a plane wave im-
pinging at normal incidence on an infinite periodic row of
scatterers with permittivity ε > 1 and permeability µ = 1; the
host medium is the free space. The wave equation for trans-
verse electric (TE, or s-polarized light) is

∇ ⋅ (∇E(r)) + ε(r)k2 E(r) = 0, (1)

with E the electric field, k2 the wavenumber in free space,
and ε(r) stands for ε in the scatterer and for unity in the host
medium. This case will be considered in details since it is the
polarization for which anomalies are found (contrary to the
case of metallic grating). For transverse magnetic waves (TM,
or p-polarized), it is

∇ ⋅ (
1

ε(r)
∇H(r)) + k2 H(r) = 0, (2)

with H the magnetic field, and it is shown in Appendix A that
no anomaly occurs, for weak scattering strength.
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FIG. 1 Geometry and notation of the scattering problem.

2 POSITION OF THE PROBLEM

In this section, the derivation of the coupled mode equations
is briefly presented, and the Riccati equation governing the
impedance is derived. Then, the system used by Hessel and
Oliner [1] to analyze the scattering problem is considered. This
system originally uses the electromagnetic impedance Y and it
is rewritten here in terms of z, a quantity related to y = Y−Y(0),
the deviation in the impedance with respect to the impedance
in the absence of scatterers, Y(0). The system (15) together
with the resolution of the Riccati equation (13) is the key point
of the presented study.

2.1 The Riccati equation on the impedance
matrix for TE waves

Because of the symmetry of our configuration (Figure 1),
the problem is equivalent to a single scatterer centered in a
waveguide with Neumann boundary conditions on the walls
y = 0, h. The electric field E(x, y) is expanded as

E(x, y) =
N−1
∑
m=0

Em(x)ϕm(y), (3)

with {ϕm} the natural basis of transverse even functions of the
Neumann waveguide

ϕm(y) ≡

√
2− δm0

h
cos(2mπ

y
h
) . (4)

We also define

k2
m ≡ k2

− (
2mπ

h
)

2
. (5)

The odd transverse functions are omitted because of the sym-
metry but, to be consistent with the usual convention, we call
mode 0, 2, . . . the even modes defined here for m = 0, 1, . . .
Following [9, 10], the wave Eq. (1) is written in a weak formu-
lation

∫
Ω

dr [∇E ⋅ ∇Ẽ − k2EẼ] − k2
(ε − 1)∫

Ω0
dr EẼ = 0, (6)

where Ẽ(r) = Ẽ(x)ϕn(y) is a test function compactly sup-
ported, Ω and Ω0 denote respectively the whole space of the

waveguide and the space occupied by the penetrable scatter-
ers, and it is easy to deduce

E′′n + k2
nEn + k2

(ε − 1)CnmEm = 0, (7)

where the Einstein summation convention is used and prime
denotes the derivative with respect to x. The matrix C has ele-
ments Cnm, with

Cnm(x) ≡ ∫

(h+hs)/2

(h−hs)/2
dy ϕn(y)ϕm(y) (8)

for all x where there is a scatterer, and Cnm = 0 otherwise.

Defining the quantity Fn ≡ E′n, the above equation can be writ-
ten as a set of first-order coupled equations governing the
modal components E ≡ (Em) and F ≡ (Fm):

(
E
F

)

′

= (
0 I

K2
+M 0

)(
E
F

) (9)

where I is the identity matrix, K is a diagonal matrix with
Kn = ikn and the matrix M is defined by

M(x) ≡ −k2
(ε − 1)C(x). (10)

Note that the above system can be obtained by projecting di-
rectly the wave equation (1) onto the ϕn functions. However,
in the case of TM waves (see Appendix A), the weak formula-
tion allows to naturally take into account the exact boundary
condition at the scatterer boundaries.

Now, we define the admittance matrix, that links the vec-
tor F to E: F = YE (it is close to the usual electromagnetic
impedance). Using (9), the admittance matrix satisfies a Ric-
cati equation,

Y
′
= −Y

2
+K

2
+M, (11)

that has to be integrated from the output (x = L) to the input
(x = 0) of the region of interest, given an initial condition Y(L).
Since the region x > L is such that only right-going waves can
propagate (the medium is uniform and contains no source),
M(x > L) = 0 and thus, from Eq. (9), E′ = F and F′ = K2E. It
follows that Y(L) = K. The resolution of Y is a key point of our
method, but rather than Y, the problem is written in terms of
another (and related) quantity z. We first define the impedance
matrix in the absence of grating: here, it is simply Y(0) = K for
all x-value. Then, the Ricatti equation (11) is rewritten in terms
of the quantity z

y ≡ Y −K, and 2z ≡ K
−1
y (12)

where y represents the deviation in the impedance with re-
spect to the empty guide. We get

z
′
= −2zKz−Kz− zK+K

−1
M/2, (13)

and a linearized version of this equation will be used in the
following.

2.2 Matrix system on the ref lect ion
coeff ic ients

Now, we want to analyze the reflected wave field in
the region x ≤ 0. In this region, the field is written
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E = Er
+ Einc, the sum of the incident and reflected wave, we

have ∂xEn = ikn(Einc
n − Er

n), and by definition ∂xEn = YnmEm.
The system can be written

[K+Y]Er
= [K−Y]Einc, (14)

which is equivalent to the one used in [1] for the total field
[K+Y]E = 2KEinc. In our case, Einc

n = δn0 since the incident
wave is a plane wave, and the components Er

n are simply the
reflection coefficients, denoted Rn in the following. The system
in Eq. (14) can be written as a function of z: (I+ z)Er

= −zEinc,
explicitly

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1+ z00 z01 ⋯ z0N
z10 1+ z11 ⋮

⋮ ⋱

zN0 ⋯ 1+ zNN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

R0
R1
⋮

RN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−z00
−z10
⋮

−zN0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (15)

and in the system above, znm stands for znm(0).

At this point, it is clear that the resolution of Eq. (13) and (15)
would give the exact solution for the reflected field; it is actu-
ally a possible way to derive the reflection matrix in numer-
ical modal methods [10]. Nevertheless, the resolution of the
system is not possible analytically in general, and not in our
particular case. We present in the following section a way to
derive an approximate solution in the weak scattering approx-
imation.

3 APPROXIMATE SOLUTIONS IN THE
WEAK SCATTERING APPROXIMATION

We will use mainly two approximations, both being related to
the hypothesis of weak scattering. The weak scattering is mea-
sured by a small parameter Z ≪ 1, and Z will be defined later,
Eq. (18). Firstly, the Riccati equation (13) is linearized for small
z = O (Z), which allows to get an approximation of the matrix
z, Eqs. (17). When this is done, the reflection coefficients can be
obtained by inverting numerically the system (15) truncated at
some order N. We refer to these coefficients as the exact solu-
tion of the linearized problem, R(2)n . Alternatively, and to get
explicit expressions of R, the system (15) is inverted at dom-
inant order in Z and we use a sort of trick to do that. This
gives an estimate of the reflection coefficient, referred as R

(1)
n .

To anticipate, it will be shown that R(1)n ≃ R
(2)
n , which means

that the main error is due to the linearization of the Riccati
equation (13).

3.1 Linearizat ion of the Riccati equation

The linearization of Eq. (13) simply consists in neglecting the
non linear term zKz, from which the resulting system is nicely
decoupled, and each znm satisfies (here the Einstein summa-
tion convention does not apply)

z
′

nm = −i(kn + km)znm +
Mnm

2ikn
. (16)

Since znm(L) = 0, the solution is, at dominant order
znm(0) = −MnmL/(2ikn), and using Cnm ≃ hs ϕn(h/2)ϕm(h/2)
in Eq. (8), we get at dominant order (for small scatterer size)

znm ≃ −iαnm
k

kn
Z, (17)

where we have defined

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

αnm ≡
(−1)(n+m)

2

√
2− δn0

√
2− δm0,

Z ≡ (ε − 1)kL
hs

h
,

(18)

and where the small parameter Z appears to be a balance be-
tween weak contrast, low frequency regime and small size
scatterer. If the convergence of the series (that is large m and
n values) is regarded, a shape factor has to be considered, that
results from an exact calculation of Cnm and exact integration
of the linearized Riccati equation, namely

znm = −iαnm(k/kn)ZSnm (19)

with

Snm ≡[sinc
(n −m)πhs

h
+ sinc

(n +m)πhs

h
]

×
ei(kn+km)L − 1
2i(kn + km)L

, (20)

where we defined sincx ≡ sin x/x.

3.2 Approximate inversion of system (15)

As previously said, once z is known, the system (15) can be
inverted numerically for any N values. This can be done us-
ing Eq. (17) for moderate N-values, typically kN L, Nhs/h ≪ 1
or by explicitly taking into account the shape factors. Alterna-
tively, one can look for an expression for Rn at dominant order
in Z. To do that, we use a trick: indeed, because we are looking
for sudden variations of Rn, we want to avoid the trivial esti-
mate Rn = −zn0. Rather, we want to determine under which
condition one observes a deviation with respect to this sim-
ple behavior. To do that, we first determine the determinant
∆ ≡ det(I + z) of the matrix to be inverted, at dominant order,
linear in Z

∆ = 1+∑
j
zjj. (21)

The system is then solved by looking for a solution of the form

Rn =
rn

∆
, (22)

and here, we expect rn = O (Z). It follows that the system to
be solved is

rn +∑
j
znjrj = −(1+∑

j
zjj)zn0, (23)

from which we deduce at dominant order rn = −zn0, and thus,

Rn ≃ −
zn0

1+∑
j
zjj

. (24)

Incidentally, note that the convergence of the series ∑j zjj can
be addressed. We have zjj = −iαjjZ(k/k j) Sjj and for large j,
Sjj ∝ 1/k j from Eq. (20); it follows that zjj ∝ 1/k2

j ∼ 1/j2, and
the series indeed converges.

There are two situations where Rn may deviate from the
behavior O(Z) and these situations correspond to Wood’s
anomalies. Near km = 0, both zm0 and zmm become larger than
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1, because they areO(Z) /km. Thus the first anomaly, referred
as Rayleigh Wood anomaly, corresponds to

(i) km = 0,

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Rn≠m ≃ −
zn0

zmm
→ 0,

Rm ≃ −
zm0

zmm
→ O(1) .

(25)

Now, because zmm ∝ 1/km increases, it is susceptible to pro-
duce 1 + zmm = 0 if zmm is real negative. This is possible from
Eq. (17) if the mode m is evanescent (in this case, the quantities
ik/km, αmm and Z are real positive, producing zmm real nega-
tive). Thus, the second Wood anomaly appears below the cut
off frequency of the mode m and leads to

(ii) 1+ zmm = 0, ikm < 0, Rn ≃ −
zn0

∑
j≠m

zjj
→ O(1) . (26)

This confirms qualitatively that our expressions Eqs. (24) are
able to predict the occurrence of anomalies.

3.3 More quantitat ive estimate of the
solution at the anomalies

Near km = 0 and 1 + zmm = 0, at least one of the terms in z

deviate from a O(Z); this makes our estimate of R in Eq. (24)
a priori suspicious. Let us come back to the exact system (15),
that is re-written as

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[1+
1
z00

]R0 +∑
j≠0

z0j

z00
Rj = −1,

R0 +
1
zn0

Rn +∑
j≠0

znj

zn0
Rj = −1, for n ≠ 0

(27)

As previously said, solving exactly the above system is pos-
sible owing to the expression of z for any truncation N. Now,
if we assume that the truncation N is small enough, so that
all the shape factor roughly equal unity (kL, kN L ≪ 1), a huge
simplification occurs. Indeed, in that case, we have for j ≠ 0

z0j

z00
=

znj

zn0
=
√

2(−1)j. (28)

It follows that the sum S1 ≡ ∑j≠0(znj/zn0)Rj does not depend
on n. Thus, we get from the Eqs. (27)

Rn =
zn0

z00
R0, (29)

afterwards any of the Eqs. (27) gives

⎡
⎢
⎢
⎢
⎢
⎣

1+∑
j

zj0z0j

z00

⎤
⎥
⎥
⎥
⎥
⎦

R0 = −z00. (30)

Eq. (28) for n = j gives zj0z0j/z00 = zjj. Thus, ironically, the
above expression of Rn valid for a sum truncated to small N
(and owing to the property (28)) coincides with the expression
Eq. (24), valid for small z, but where the sum can be extended
to an infinite number of terms (when accounted for the factors
of shape).

This tells us that we can be more confident in inspecting the
behavior of the Rn at the anomalies using explicitly

Rn ≃
iZ/2

√
2− δn0(−1)nk/kn

1− iZ/2
⎡
⎢
⎢
⎢
⎢
⎣

1+ 2∑
j≠0

k/k j

⎤
⎥
⎥
⎥
⎥
⎦

. (31)

(i) In the vicinity of km = 0. In this case, the denominator is
−iZk/km at dominant order since km can be much smaller than
Z, from which we deduce

Rn ≃ 0, for n ≠ m, and Rm ≃
(−1)m−1

√
2

. (32)

(ii) In the vicinity of 1 + zmm = 0, the wavenumber is
k/km≃1/(iZ), thus k is close to mπ/h, and

Rn ≃ −
√

2− δn0(−1)n k/kn

1+ 2 ∑
j≠0,m

k/k j
. (33)

In the following Section, this is confirmed quantitatively by
comparison with direct numerical calculations. In the case of
TM waves, no anomalies are obtained (the calculations are col-
lected in Appendix A).

4 RESULTS

Results presented in this Section concern TE waves (s-
polarized). We performed direct numerical calculations using
a multimodal method [10], similar to the RCWA [11]. The
scatterers are square (hs = L) with hs/h = 0.1; the frequency
range is such that the non dimensional frequency kh/2π

varies between 0 and 3.3, thus passing through 3 cutoff
frequencies at integer values of kh/2π. The scatterers have
permittivity ε = 4. This produces a scattering strength Z in
Eq. (18) increasing with frequency, from 0 to about 0.6. Fig-
ures 2 show the wave fields at the two anomalies just below
(kh/2π = 0.9821) and at the first cut off frequency (kh/2π = 1).
At the first anomaly, only the mode 0 is propagating; from
the direct numerics, we get a reflection coefficient R0 ≃ −1
(the transmission coefficient has an amplitude 10−4); the
plane wave is totally reflected while the mode 2, excited with
high amplitude, is dominant in the near field. At the cut of

-6 -4 -2 0 2 4 6
x/h

0
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4
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h

-15

0

15

(a) kh/2π = 0.9821
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x/h
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3
4
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y

h

-2

0

2

(b) kh/2π = 1

FIG. 2 Wavefield E (imaginary part) around the row of square scatterers (at x = 0) at

the two anomalies below and at the first cutoff frequency kh/2π = 1. The scatterer

size is hs = L = h/10 and ε = 4.
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| k2
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√
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R2|
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0.8

1

FIG. 3 Amplitude of the reflection coefficient R0 and, for comparison, ∣(k1/k
√

2)R1∣

and ∣(k2/k
√

2)R2∣ (see Eq. (29)). The three coefficients Rn have been calculated

using full wave simulations.

frequency, the mode 0 has ∣R0∣ ≃ 0.0032 while ∣R1∣ ≃ 0.7070,
very close to 1/

√
2, as predicted in Eq. (32). By energy

conservation, the transmission coefficient has an amplitude
unity. The pattern is simply the superposition of the incident
wave e2iπx/h and the field due to the excitation of the mode 2
with amplitude 1, namely cos 2πy/h.

In Figure 3, we inspect the validity of the property (29). With
zn0/z00 ≃

√
2(−1)nk/kn, we report the reflection coefficient R0

as a function of the non dimensional frequency kh/2π and
compare it to (kn/k

√
2)Rn, n = 1, 2. The property is reason-

ably satisfied, in fact unexpectedly well above the second cut
off frequency where the two assumptions of weak scattering
and small scatterer size are questionable. The reflection coef-
ficients of the mode 1 and 2 are represented in the evanescent
regime, below their cut-off frequencies.

Finally, we report in Figure 4 the reflection coefficients of the
mode 0 (n = 0) and 2 (n = 1) as a function of kh/2π. The values
obtained numerically (blue circles) are compared with 3 esti-
mations. To simplify the discussion, we used for the three esti-
mations the exact solutions z in Eqs. (19) of the linearized Ric-
cati equation (16). Then, these estimates are based on the res-
olution of the system Eq. (15) and can be sorted by increasing
complexity: R(0)n ≡ −zn0 (green dotted curves) is the most sim-
ple linearization, R(1)n (red curves) the linearization of both the
numerator and denominator of the solution, Eq. (24), and R

(2)
n

(black dashed curves) the numerical inversion of Eq. (15). In
the two last cases, we used N = 20, for which the solutions are
converged. R(0)n is as one expects: able to describe the smooth
and small variations but missing the rapid ones. The most re-
markable fact is the similarity between R

(1)
n and R

(2)
n . This tells

us that the main error in our prediction is attributable to the li-
nearization of the Riccati equation (the unique source of error
in R

(2)
n , exact solution of (15), is the value of z). This has been

confirmed by integrating numerically the full Riccati equation
(13) to get z, and by using then these z values to get the re-
flection coefficients from our approximate expression Eq. (24).
The resulting error when compared to the reflection coeffi-
cients issued from full numerics (error calculated for the 3 first
modes) is lower than 5% in the whole frequency range. The re-
sults for the first two modes are shown in Figure 5. To repeat

|Rn|

|R(0)
n |

|R(2)
n |

|R(1)
n |

0
0

kh/2π

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

(a) n = 0

0
0

kh/2π

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

(b) n = 1

FIG. 4 Reflection coefficients (a) ∣R0∣ and (b) ∣R1∣ as function of the frequency, calcu-

lated with full wave numerics (blue circles), and comparison with the rough estimate

R(0)n = −zn0 (green dotted curve), R(1)n obtained from Eq. (24) using Eq. (19) (red

curve), and R(2)n obtained by numerical inversion of (15) using Eq. (19). The maximum

value of ∣R1∣ is 5.2 at kh/2π ≃ 0.9818.

our main conclusion, the difference in agreement between the
blue curves in Figure 5 and in Figure 4 is the resolution of z,
including or neglecting respectively the non linear term in the
Riccati equation.

5 CONCLUSION

The scattering of light by an array of small dielectric scatter-
ers has been studied. For s-polarized waves, anomalies in the
behavior of the reflection coefficients are observed, similar to
Wood’s anomalies for metallic gratings. We develop an anal-
ysis based on a modal formulation and the use of the admit-
tance matrix, governed by a non linear differential equation
(the Riccati equation). The reflection coefficients can be deter-
mined by inversion of a matrix system involving the admit-
tance. An estimate of the reflection coefficients is proposed us-
ing two approximations: (i) the resolution of the Riccati equa-
tion after linearization, (ii) the explicit inversion of the matrix
system on the reflection coefficients in the weak scattering ap-
proximation. Comparison with direct numerical calculations
shows that the main source of error in our expression of R is
the linearization of the Riccati equation. Works are in progress
to propose more accurate solutions of the non linear Riccati
equation.
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(a) n = 0
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(b) n = 1

FIG. 5 Same representation as in Figure 4: here the red curve shows the reflection

coefficient given by Eq. (23) using z calculated numerically by integrating the full

Riccati equation (13).
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APPENDIX

A THE CASE OF TM WAVES

We show in this appendix that the solution of the scattering
problem at dominant order does not exhibit any anomaly for
TM waves. Here, the weak representation, Eq. (2), is

∫
Ω

dr [∇H ⋅ ∇H̃ − k2HH̃] +∫
Ω0

dr (
1
ε
− 1)∇H ⋅ ∇H̃ = 0, (34)

where H̃(r) = H̃(x)ϕn(y) is a test function compactly
supported. After expansion H(x, y) = ∑Hm(x)ϕm(y), we
get

∂x [H′

n + (
1
ε
− 1)Cnm H′

m] + k2
n Hn − (

1
ε
− 1)Dnm Hm = 0, (35)

with

Dnm(x) ≡ ∫
(h+hs)/2

(h−hs)/2
dy ϕ′n(y)ϕ′m(y), (36)

0
0

kh/2π

|R0|
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FIG. 6 Reflection coefficient ∣R0∣ in the same configuration as in Section 4, but for

p-polarized waves.

We now define the quantity Gn ≡ H′

n + (1/ε − 1)Cnm H′

m and

(
H
G

)

′

= (
0 N−1

K2
+M 0

)(
H
G

) (37)

with
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

N(x) ≡ I+ (1/ε − 1)C(x),

M(x) ≡ (1/ε − 1)D(x).
(38)

and the admittance matrix, defined as G = YH, satisfies

Y
′
= −YN

−1
Y +K

2
+M. (39)

If weak scattering is assumed, the - small - change in
the admittance z ≡ K−1

(Y − K)/2 satisfies the differential
equation

z
′

nm = − i(kn + km)znm + (1/ε − 1)

× [Dnm − knkmCnm] /(2ikn). (40)

where we have used N−1
≃ I − (1/ε − 1)C for N close to the

identity matrix. We get, for small scatterer size,

znm = iαnm
kn

k
Z, (41)

with αnm defined in Eq. (18) and with the scattering strength
is now Z ≡ (1/ε − 1)kLhs/h. Obviously, z is now always O(Z)

from which we deduce that no anomalies occurs in this case.

Figure 6 shows the reflection coefficient R0 in the same config-
uration as in Section 4, but for p-polarized waves. It is visible
that the anomalies are much smoother except at the third cut
off frequency at kh = 6π. At this high frequency, the estimate
of z in Eq. (41) is inaccurate and a complete calculation for
kL ∼ 1 would be necessary.
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