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Eigenvalue calibration methods for polarimetry
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Complex polarisation sensitive systems such as imaging Mueller matrix polarimeters are commonly calibrated using the eigenvalue calibra-
tion method. In this paper we present an extensive review of the method and an existing variant. We also introduce two more variants
of the method to calibrate imaging polarimeters that use high numerical aperture optics. The calibration methods are tested using a
Mueller matrix confocal microscope of high numerical aperture, and the effect of the pinhole size on the polarisation is also assessed
experimentally. [DOI: http://dx.doi.org/10.2971/jeos.2012.12004]
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1 INTRODUCTION AND OVERVIEW

Several calibration methods have been developed for po-
larimetry [5, 6, 8, 7], all with the drawback of requiring a priori
information such as the polarisation states produced or the an-
gular orientation of the polarisation optics in the system. This
drawback was overcome with the introduction of the eigen-
value calibration method (ECM) [1, 4]. The ECM has shown
recently an increase in popularity and it is expected to become
the preferred method to calibrate polarimeters; however, due
to the development of more complex experimental layouts, it
has been necessary to modify the ECM. A variant of the ECM
was introduced [9] to calibrate systems configured in double–
pass, yet restricted to low numerical aperture (NA) imaging
systems because of the assumption it requires – it assumes re-
flection from a perfect mirror at normal incidence; assumption
that can only be meet using low NA optics and by removing
the objective lens of the imaging system. In high NA imaging
systems and particularly in confocal microscopes, the longi-
tudinal component of the light contributes significantly to the
imaging process, and this contribution is disregarded when
removing the objective lens. Two more variants are thus intro-
duced in this paper to calibrate systems using high NA optics.
These optical systems are routinely used in high–resolution
microcopy and imaging, which provides the motivation for
our work. One of the variants is based in a two–step pro-
cedure, whilst the other is on a three–step procedure. The
double–pass, two–step, and three–step variants are explained
next after reintroducing the ECM.

1.1 Eigenvalue cal ibrat ion method

The ECM [1] is an ingenious method based in control the-
ory and uses linear algebra extensively. The objective of the
method is to find the matrices W, T and Mi in the linear sys-
tem depicted in Figure 1 when only D is known. To achieve
this, Mi is changed until the system is overdetermined and the
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FIG. 1 Block diagram of a Mueller matrix polarimeter.

solution becomes unique. When the linear system is a Mueller
matrix polarimeter as in this case, Mi represents a polarisation
element such as a polariser or a waveplate and is referred to
as calibration sample. To reach a solution in this kind of sys-
tems, three assumptions are necessary: the noise in the system
is negligible, the calibration samples have a given Mueller ma-
trices, and any polarisers used as calibration samples must be
perfect polarisers.

To explain the method in more detail, consider the mathemat-
ical expression of the Mueller matrix polarimeter depicted in
Figure 1 to be given by

Di = TMiW, (1)

where Mi is the Mueller matrix of the ith polarisation element
used as calibration sample, Di is in general a q× n matrix with
irradiance readings as entries, T is the q× 4 matrix known as
instrument matrix (polarisation state analyser: PSA), and W
is a 4× n matrix formed by n generated Stokes vectors (po-
larisation state generator: PSG); however, for simplicity and
without the loss of generality, assume that q = 4 and n = 4.

If Eq. (1) is left multiplied by the inverse of the measurement
of air, i.e.

D−1
air = (TMiW)−1 = (TW)−1, (2)

one obtains
Ci = D−1

air Di = W−1MiW, (3)
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where Ci and Mi are similar matrices. This means that Ci and
Mi have the same characteristic polynomial, and hence the
same eigenvalues [12]. Given that Mi can be written in gen-
eral as [10]

Mi = R(θ)


1 ai 0 0
−ai 1 0 0

0 0 bi ci
0 0 −ci bi

 R(−θ), (4)

where ai = − cos 2Ψi, bi = sin 2Ψi cos ∆i, ci = sin 2Ψi sin ∆i,
Ψi and ∆i are the ellipsometric parameters [10], and that the
eigenvalues of Mi are

µ1 = 2τ sin2(Ψi), µ2 = 2τ cos2(Ψi),

µ3 = τ sin(2Ψi) exp(i∆i), µ4 = τ sin(2Ψi) exp(−i∆i),

it is possible to partially reconstruct Mi from the eigenvalues
of Ci. The reconstruction is partial because the angular orien-
tation of the polarisation sample θ is found later by means of
an optimisation. Note that Eq. (2) is only valid if the Mueller
matrix of air is assumed to be the identity matrix; hence the
assumption of the noise being negligible. If the assumption is
correct, the problem is simplified to find W from Eq. (3), and
then use Eq. (2) to find T.

To find W, one needs to manipulate Eq. (3) and solve the re-
sulting equation. Multiplying Eq. (3) on both sides by W and
rearranging one obtains

MiW−WCi = 0, (5)

which is a special case of the Sylvester equation
(MW−WC + K = 0 with K = 0). The Sylvester equa-
tion is used in the fields of control theory [13], neuronal
networks [15], and for wavefront reconstruction in optics[16].
A more complete literature review of this equation can
be found in [14]. Common methods to solve Eq. (5) are
Schur decomposition with backward substitution [17],
diagonalisation[18], and column stacking [20]. The ECM uses
the last two methods in the following way.

In order to solve Eq. (5) using the diagonalisation and the col-
umn stacking method, it is necessary to first introduce the vec
operator [20]. This is an operator that stacks the columns of a
n×m matrix to form a 1× n ∗m vector. A matrix multiplica-
tion can be rewritten using this operator as

vec(JKF) = (FT ⊗ J)vec(K), (6)

where J, K, and F are arbitrary matrices, T represents trans-
pose, and ⊗ denotes Kronecker product[19, 21, 22]. It is then
possible to use Eq. (6) to rewrite Eq. (5) as[23]

(I⊗Mi − CT
i ⊗ I) vec(W) = 0 (7)

Hi vec(W) = 0, (8)

where I is the 4× 4 identity matrix and Hi is a 16× 16 matrix.
As shown in the Appendix, it follows that if Hi is Hermitian
W exists in the eigenspace of Hi; however, Hi is not Hermitian
in general. To eliminate this restriction Eq. (8) is multiplied on
both sides by HT

i yielding

HT
i Hi vec(W) = 0. (9)

At this point W can be located anywhere in the 16–
dimensional eigenspace of HT

i Hi. The null space method [24]
is used to reduce the number of solutions and find W. In this
method n measurements are taken with different polarisation
elements as calibration samples. An equivalent equation to
Eq. (9) is written for each measurement and then linearly
combined to form

L vec(W) = 0, (10)

where

L = HT
1 H1 + . . . + HT

nHn. (11)

As also shown in the Appendix, if the n calibration sam-
ples are chosen appropriately vec(W) is the eigenvector of
L corresponding to the null eigenvalue of L. The matrix L
however, must have only one null eigenvalue to ensure that
the solution is unique. If for example two eigenvalues of L
are zero, vec(W) lies in a 16−dimensional hyperplane de-
fined by the two eigenvectors corresponding to the null eigen-
values. If three eigenvalues are zero, vec(W) thus lies in a
16−dimensional hypervolume and so forth.

To ensure that W is the unique solution of Eq. (10), the n cal-
ibration samples are choosen such that the dimension of the
null space of L is reduced to one1. In theory a perfect polariser
and an ellipsometric surface can be used if the orientation of
the polariser is different from zero or π/2, and the ellipsomet-
ric parameters of the surface are such that Φ 6= 0 or π/4, and
∆ 6= 0 or π [1]. Once it is certain that only one eigenvalue of L
is zero, the angular position of the calibration samples θi can
be found by minimising

ε =

√
λ16

λ15
, (12)

which is the ratio of the smallest and second smallest eigen-
value. Note that the minimisation yields only the relative an-
gular orientation of the polarisation elements. Since the eigen-
values of a matrix are invariant to rotation, it is possible to
write M′i = R(θ′)MiR(−θ′) for the n calibration elements and
still obtain the same eigenvalues with a different W. An ab-
solute angular orientation can be obtained if the frame of ref-
erence is set such that it coincides to the reference axis of the
first polariser placed after the source. Once W is found, T can
finally be obtained from

T = DairW−1 = (TW)W−1. (13)

Note that Eq. (12) is a metric that quantifies the errors in the
calibration originated from imperfections in the polarisation
elements, laser noise, and electronic noise. A statistical com-
parison of different measurements of Dair can quantify the
contribution of the laser and electronic noise to ε.

The ECM described so far can be used to calibrate a system
set up in transmission. As explained in the Following section,
calibration of a system in reflection or in double-pass requires
the calibration to be complemented with more measurements.

1The number of solutions is given by the dimension of the null space of
the problem [24], see the Appendix.
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FIG. 2 Block diagram a confocal polarisation microscope.
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FIG. 3 Block diagram representing the path of the light in the confocal polarisation

microscope.

2 VARIANTS OF THE ECM

To introduce the variants of the ECM consider the experimen-
tal setup depicted by the block diagram shown in Figure 2. In
this figure the bold letters represent the Mueller matrix of each
unit: N represents a confocal microscope formed by imaging
optics F (including the pinhole) and a flat mirror E as sample;
B is the Mueller matrix of the beamsplitter, and Q represents
the setup excluding the PSA and the PSG. Three calibration
procedures are considered to calibrate such a system. These
are a two-step, a three-step, and the double pass calibration[9].
The two-step calibration process yields W, T, and Q. The dou-
ble pass procedure yields W, T, B, and F if E is assumed to be
a perfect mirror. The three-step procedure is a combination of
the two-step, the double pass calibration, and a fitting algo-
rithm. It yields W, T, B, and N, and also F and E if the latter
is assumed to be a perfect mirror. Regardless of the method
used, the position in the setup where the polarisation is ef-
fectively being measured is given by the location of the cali-
bration samples. The coloured arrows in Figure 2 denote such
positions for the different methods.

Note that for high NA imaging systems, the system must be
calibrated at the image plane. This is because the distribution
of the field at the pinhole depends on the spatial variations of
phase, amplitude, and polarisation occurring at the back focal
plane of the high NA lens [28]. At this plane the longitudinal
component of the scattered field is intermixed with the trans-
verse components. Calibrating at this plane thus disregards
the contribution of the longitudinal component to the forma-
tion of the image because the calibration samples can not dis-
criminate the transverse from longitudinal contributions. The
image plane is located at the pinhole and hence inaccessible in
practice, but if the pinhole is sufficiently small the calibration
samples can be placed between the imaging optics and the

beamsplitter (blue and green dot); this is because there is no
longer contribution from the longitudinal component at this
place [28].

2.1 Two-step cal ibrat ion

The two-step calibration yields W, T, and the products TQ
and QW from which Q can be easily found. This calibration
is suitable for setups in which Q shows only retardance, and
when one is interested in the relative polarisation properties of
the sample. As long as Q does not exhibit diattenuation, po-
larisance or depolarisation, the information present in the po-
larisation states measured is mapped, i.e. rotated around the
Poincare sphere, by the retardance in Q and thus conserved.
The appropriateness of this method should thus be assessed
by performing a Lu-Chipman decomposition [11] on Q after
calibration.

As its name suggests, this calibration is a two step process.
First W and the product TQ are obtained by calibrating with
the polarisation elements Mi placed between the PSG and the
beamsplitter. Note that at this stage it is not possible to ob-
tain T alone since Dair = TQW. In the second step the polar-
isation elements are placed between the PSA and the beam-
splitter. This step yields T and the product QW. The Mueller
matrix of the system Q can then be calculated from T−1TQ1
or Q2WW−1. In theory Q = Q1 = Q2 despite of the chosen
product. In practice however, the equality does not hold due
to electronic noise. The norm of the difference between Q1 and
Q2 can be used as a relative error estimator as seen next. It is
important to mention that the calibration sample that defines
the reference axis of the polarisation must be the same in both
steps.

The efficiency of the two–step calibration procedure was as-
sessed using a flat mirror as object to be imaged. A high NA
objective lens (NA = 0.95) was used, and the chosen polarisa-
tion elements for the calibration were[27] a polariser at = 0◦,
one at ≈ 90◦, and a quarter waveplate at ≈ 30◦. The pinhole
used was filtering 2/3 of the incident Airy disc. The mea-
sured Q showed a retardance of λ/24 (possibly introduced
by the beamsplitter alone), polarisance and diattenuation of
0.015, and 0.008 of depolarisation. The relative error in Q was
8.5×10−4, which corresponds to the order of magnitude of the
electronic noise.

2.2 Double pass cal ibrat ion

The double pass calibration is a variant of the ECM introduced
by Lara and Dainty [9] for systems where the light passes
twice through a portion of the setup. To use this variant of
the ECM it is necessary to assume that the light passing back
through the polarisation elements is reflected by a perfect mir-
ror at normal incidence, and that the behaviour of the polari-
sation elements is independent of the direction of propagation
of the light. The practical validity of these assumptions can be
assessed using an algebraic procedure explained at the end of
this section.

In systems such as the one depicted in Figure 2 light passes
twice through the same polarisation element Mi, and in con-
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sequence Eq. (1) has no longer same form. Adapting Figure 2
to Figure 3 following the direction of propagation, it can be
seen that Eq. (1) is replaced by

Di = T Bb Mb
i N M f

i B f W, (14)

where B f and Bb denote the Mueller matrices of the forward
and backward propagating path of the beamsplitter, respec-
tively. The equation equivalent to Eq. (3) is

Cdp
i = W−1(B f )−1KB f W, (15)

where K = N−1Mb
i NM f

i . Note from Eq. (15) that C and K
are similar matrices, however, K and Mb

i are not. The latter
means that the eigenvalues of K are no longer independent of
the angular orientation of Mi. Unless Mb

i and N commute, it is
not possible to find Mi and hence H can not be constructed. To
find W using Eq. (15) one needs to assume that N = E, where
E is the Mueller matrix of a perfect mirror at normal incidence.
One also needs to assume that the polarisation elements used
for calibration are independent of the propagation direction.
The latter means that the Mueller matrices of each polarisation
element can be written as

M f
i = R(θ)MiR(−θ), (16)

and
Mb

i = R(−θ)MiR(θ). (17)

Substituting Eqs. (16) and (17) into Eq. (15) yields

Cdp
i = W−1(B f )−1R(−θ)MiMiR(θ)B f W (18)

if E is chosen to commute to the left. If E is chosen to commute
to the right the substitution yields

Cdp′

i = W−1(B f )−1E−1R(θ)MiMiR(−θ)EB f W. (19)

In both cases it is possible to reconstruct H and solve the prob-
lem using the null space method described in section (1.1). The
choice of the direction of commutation depends on the angu-
lar orientation of the calibration samples input to the calibra-
tion algorithm. If the samples are placed at θ and the data is
processed with the angular orientation of the samples at θ, E
commutes to the left naturally. For E to commute to the right
the calibration samples are still placed at θ, but the data is pro-
cessed as if the element was placed at −θ. In the first case the
calibration yields B f W and TBb

i . In the second case the cali-
bration yields TBb

i E and B f W. If the assumptions were valid,
it follows that TBb

i E(E−1) = TBb
i .

Two scenarios were used to test the double pass calibration
method. One scenario consisted in the calibration of the sys-
tem using a flat mirror and removing both the pinhole and the
objective lens. In this case the assumptions mentioned above
were valid. The relative error between the matrices obtained
from the left and right commutation was 1.2× 10−4. The sec-
ond scenario consisted in calibrating the system with a flat
mirror and with the objective lens in place and using a pinhole
of 2/3 of the Airy disc. In this case the relative error was 0.03.
Even though the first scenario yielded satisfactory results, one
needs to guarantee that the path of the light is the same with
and without the pinhole and the objective lens. The results
from the second scenario were unsatisfactory, however, these
results can be improved with the three-step calibration pro-
cess as discussed next.

2.3 Three-step cal ibrat ion

The three-step calibration method can be used if the polarisa-
tion properties of the polarisation elements Mi depend on the
direction of propagation of the light or if the mirror is not per-
fect. This calibration method is a combination of the double
pass calibration, the two-step method and a fitting algorithm.
The aim is to find T, W, the polarisation elements M f

i and Mb
i

used as calibration samples, B f , Bb, and N.

The calibration procedure is as follows. First a set of measure-
ments are taken placing the n calibration samples in three dif-
ferent places of the setup: between the PSG and the beamsplit-
ter, between the beamsplitter and the PSA, and between the
beamsplitter and the pinhole. Since the first two places corre-
spond to the positions where the measurements of the two-
step calibration are taken, it is possible to obtain the Mueller
matrices of the calibration samples in both directions M f

i and
Mb

i , T, W, and Q. Note that Q = BbNB f and can be written
using Eq. (6) as

vec(Q) = B vec(N), (20)

where B = (B f )T ⊗ Bb. The measurements, taken between
the beamsplitter and the pinhole correspond to the the double
pass method, yield

Di = T Bb Mb
i N M f

i B f W. (21)

After multiplying by the inverse of T and W Eq. (21) can be
simplified to

Ji = T−1DiW−1 = Bb Mb
i N M f

i B f . (22)

Equation (6) is again used together with a property of the Kro-
necker product2 to write Eq. (22) as

vec(Ji) =
[
(B f )T ⊗ Bb

] [
(M f

i )
T ⊗Mb

i

]
vec(N). (23)

The linear combination of the n measurements can thus be
given by

H = B (I + . . . +Mi + . . . +Mn) vec(N), (24)

where Mi = (M f
i )

T ⊗Mb
i , and the 16 × 16 identity ma-

trix from the measurement of air is represented by I . Note
the similarity between Eqs. (20) and (24). The remaining ma-
trices B f , Bb, and N can be found from these two equations
using a Levenberg–Marquardt algorithm[26]. With this algo-
rithm it was possible to solve Eqs. (20) and (24) using 4 × 4
random matrices as entries with an accuracy comparable with
the electronic noise of the experiment.

The three-step calibration method was tested using four po-
larisation elements as calibration samples. These where a po-
lariser at = 0◦, one at ≈ 90◦, a quarter waveplate at ≈ 30◦,
and a λ/8 waveplate at ≈ 30◦. The relative error between the
measured Q and the retrieved product BbNB f was 6.5× 10−6.
It was found however that the result depends on the start-
ing points of the algorithm. Rough a priori information of B f

and Bb is thus essential. This information can be obtained by
performing Mueller matrix polarimetry on the beamsplitter

2AB⊗ CD = (A⊗ C)(B⊗D)
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FIG. 4 Parameters from the polar decomposition of the confocal signal produced by a

mirror for different pinhole diameters.

in reflection and transmission. Also note that the Mueller ma-
trix measured (N) comprises both the sample and the imag-
ing system. Disentanglement between these two should not be
sought unless a PSA capable of measuring the x, y, and z com-
ponents of the field and a 3D notation is used instead. This
is because the scanning confocal imaging system projects the
3D interaction of the polarisation into 2D, hence validating the
use of the 2D notation.

As an empirical validation of the three-step calibration, the
next section shows the dependance of the polarisation in the
system due to the size of the pinhole.

3 EFFECT OF THE PINHOLE SIZE ON THE
POLARISATION

The effect of the pinhole size on the polarisation was mea-
sured to corroborate the calibration of the system when using
the three-step method. With a flat mirror in the object plane of
the objective lens, the Mueller matrix N was measured for dif-
ferent sizes of the pinhole. Figure 4 shows the results from the
polar decomposition [11] of the different N measured. The top
left and right plots show the magnitude of the depolarisation
and polarisance, respectively. The bottom left and right plots
show the magnitude of the retardance and diattenuation, re-
spectively.

Apart from the depolarisation plot, the rest of the plots in Fig-
ure 4 show that the measurement tends towards a perfect mir-
ror as the pinhole is reduced. One would expect that a perfect
mirrors yields a diattenuation, depolarisation and polarisance
equal to zero, and a retardance equal to 180 degrees; however,
the measured polarisation properties are different from the ex-
pected due to the spatial variations of the polarisation intro-
duced by the high NA objective lens [3], which are minimised
by the pinhole [28, 2], and due to electronic noise. The trend
in the depolarisation plot is different from the rest due to a
decrease in the signal–to–noise ratio o

4 CONCLUSION

It was seen that the choice of the method depends on the po-
larisation properties of the system. The two-step method is
ideal for systems that only show retardance and if the user is
only interested on the relative polarisation properties of the
sample. This method can be used for systems configured in
reflection or in transmission. The double pass variant can be
used for systems where the light passes twice through the cal-
ibration samples Mi, i.e. systems in reflection configuration
at normal incidence. To use this variant, it is necessary to as-
sume that the light passing back through Mi was reflected by
a perfect mirror at normal incidence and that the beam path
remains unchanged with or without the objective lens. The
three-step calibration method can be used if the behaviour
of the polarisation elements Mi depends on the direction of
propagation of the light or if the mirror is not perfect. This cal-
ibration method is a combination of the double pass calibra-
tion, the two-step method and a Levenberg–Marquardt fitting
algorithm. It was also mentioned that, despite of the chosen
calibration method, it is imperative to calibrate the system af-
ter the pinhole when using high NA optics.

Lemma The matrix W written as a 1× 16 vector is the eigen-
vector that corresponds to the null eigenvalue of H[30].

Proof Let X = {xT
1 , ..., xT

m} be the eigenvectors of M with cor-
responding eigenvalues µ1, ..., µm, and Y = {yT

1 , ..., yT
m}

be the eigenvectors of C with corresponding eigenval-
ues κ1, ..., κm. Since H = M⊗ I− I⊗ CT, it then follows
that[22]

(M⊗ I− I⊗ CT)(x⊗ y) = (Mx⊗ y)− (x⊗ CTy)

= (µx⊗ y)− (x⊗ κy)

= (µ− κ)(x⊗ y).

Therefore the non trivial solution is given when (µ− κ)

is zero.

Lemma The matrix W can be written as (x⊗ y) if C is Hermi-
tian.

Proof Note that M and C are similar matrices and assume
that at least C is Hermitian. Let M = XΛX−1 and C =

YΛY−1 be the spectral decomposition of M and C, re-
spectively. The matrix Λ is diagonal and contains the
eigenvalues of M and C. Rewriting C = W−1MW as

YΛY−1 = W−1XΛX−1W (25)

follows that
W = XY−1. (26)

By then writing equation (26) in terms of Kronecker prod-
ucts as

vec(W) = (X⊗ Y−1T)vec(I),

and since the eigenvectors of a Hermitian matrix are or-
thogonal, i.e. Y−1 = YT, then

vec(W) = (X⊗ Y)vec(I),

= (x⊗ y).
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Lemma A linear system of equations denoted by L can be
constructed to contain W as the unique solution.

Proof Note that the 16 eigenvalues of H are given by the pos-
sible combinations of µ1..4 − κ1..4. The number of times
that µ− κ = 0 appears can thus be given by [1]

ℵ = ∑
i=1..4

α2,

where α is the multiplicity of each eigenvalue, and ℵ rep-
resents the dimension of the null space of H. Consider
now n different measurements denoted by

CMi = W−1MiW,

for i = 1, ..., n. It is then possible to produce n different
HMi and write

L = HT
M1

HM1 + ... + HT
Mn

HMn .

It then follows from equation (25) that W is now in the
eigensystem of L, and that the dimension of the null
space of L can be reduced to one as long as W and Mi
does not commute.
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