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In this publication, the modelisation of an air bubble as inclusion in a droplet is treated from scalar theory point of view (Fresnel’s theory).
The elaborated model is compared with Lorenz–Mie scattering theory and with an experimental results. Circle polynomials and scaled pupil
function are the background of this work to take into account the critical angle effect that arises at a transition from a higher index to a
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1 INTRODUCTION

Bubbles or air bubbling has considerable importance in liq-
uid/gas or solid/gas systems due to their impact on the en-
vironment. The knowledge of bubble dynamics is of key im-
portance in physical, biological, and medical processes, and in
industrial applications. Sometimes bubbles are used to seed
a fluid flow to study the hydrodynamics around emerging
systems such as the wind or hydrokinetic systems. The be-
havior of bubbles and the measurement of bubble sizes in
a gas-liquid flow is important. To study the bubble dynam-
ics, optical systems that can be used include high-speed pho-
tography, for example. But other well known techniques are
now used to measure simultaneously the velocity and size of
a bubble. Among these techniques, we can find holography
[1]–[3], the phase Doppler method [4], tomography, particle
image velocimetry (PIV), and, more recently, interferometric
out-of-focus imaging [5]. In particular, here we treat the use of
holography when the objects are air bubbles, for the following
reason: when we have a volume with an object of unknown
nature, opaque particles or gas bubbles, interferometric laser
imaging for droplet sizing (ILIDS) allows discriminating be-
tween these two types of objects, which is not the case with
holography. This has a very important consequence, in that
the resulting analysis of the distribution of the sizes of the nu-
clei or of the numbers of bubbles in a volume, i.e., the con-
centration, can be false. Probably, this impossibility is essen-

tially due to the chosen experimental configuration. Recently,
in the case of holography, we have proposed a modelisation
of a droplet in the air to calculate the hologram of such an
object [6]. In that study, the aperture, i.e., the ratio between
the index of the air and the index of the droplet, is no more
than unity. But in the case of an air bubble in water, the op-
tical direction cosines, linked to nd, of a propagating waves
can be larger than unity in the water medium. When the tan-
gential wavenumber component at the water-air interface is
larger than the wavenumber in air, total internal reflection oc-
curs and the angular spectrum of the diffracted wave spec-
trum is limited by this effect. Instead of a spectrum extending
over the full half space, the spectrum has a limited aperture
with a restriction factor given by nb/nd, the ratio of the indices
of the air bubble and the water environment. Consequently, it
is necessary to revise that model in order to propose a method
to calculate the hologram of a gas bubble. Therefore, in the
first part of this publication we recall the mathematical rela-
tion of the intensity distribution in the context of digital in-
line holography, and then present the necessary adaptation of
our model to take into account the possibility of the numerical
aperture’s being greater than unity, by introducing an opaque
ring. A reconstruction by the fractional Fourier transformation
(FRFT) is carried out to determine an important parameter:
the magnification of the optical system. This coefficient must
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FIG. 1 Digital in-line holography setup: source λ, matrix Mi , illuminated object, matrix

Mt and CCD sensor

be used to measure the real diameter of the bubble. These re-
sults have been compared with a general numerical standard
of holograms of fields of particles based on the rigorous near-
field Lorenz–Mie scattering theory. In the second part of this
publication, we present an experiment where nano-particles
of 50 nm diameter are used as inclusions to produce a cavita-
tion air bubble by means of a pulsed laser beam. Then via a
reconstruction by the FRFT, a metrology of the bubble diame-
ter is realized.

2 PRELIMINARIES

The optical systems for digital in-line holography are com-
posed of two parts. Each part is delimited by a source, the
object (in our case the object is a particle), and a CCD sen-
sor. An illustration is given in Figure 1. The two parts can be
fully described by two matrices, denoted Mi for the system
between the laser source and the particle, and denoted Mt be-
tween the particle and the CCD sensor. The matrices Mi and
Mt are defined by [7]–[9].

Mi :=
(

Ai Bi
Ci Di

)
, Mt :=

(
At Bt
Ct Dt

)
. (1)

The symplecticity of the matrix M is defined in [10], Eq. (5) on
p. 919. Here, the matrix Mi takes the form

Ai =

(
ai,1 0
0 ai,2

)
, Bi =

(
bi,1 0
0 bi,2

)
,

Ci =

(
ci,1 0
0 ci,2

)
, Di =

(
di,1 0
0 di,2

)
(2)

where ai,j, bi,j, ci,j and di,j are defined by the optical compo-
nents. The subscript i indicates the incident part and j corre-
sponds to the transverse coordinates perpendicular to the op-
tical axis. The subscripts 1 and 2 indicate the horizontal axis
and the vertical axis, respectively. The values of the diago-
nal elements correspond to the cases where the system is an
anamorphic or a circular optical system. In the same way, Mt
takes the form

At =

(
at,1 0
0 at,2

)
, Bt =

(
bt,1 0
0 bt,2

)
,

Ct =

(
ct,1 0
0 ct,2

)
, Dt =

(
dt,1 0
0 dt,2

)
, (3)

where at,j, bt,j, ct,j and dt,j are defined by the optical com-
ponents from the particle plane to the CCD sensor. From

Figure 1, the propagation of the beam through can be de-
scribed by two linear canonical transformations [11]. Each lin-
ear canonical transformation, denoted C, has the same integral
structure and for the first part, is given by

C [G0(ρ)] (r) =
exp (ikEi)

iλ
√

det(Bi)

∫
R2

G0(ρ)

· exp
[
i
π

λ

(
ρTB−1

i Aiρ− 2ρTB−1
i r + rTDiB

−1
i r
)]

dρ. (4)

with λ the wavelength and k = 2π/λ.

2.1 Intensity distr ibution of the hologram

The amplitude of the incident Gaussian beam, denoted Gi(r),
in the input plane of the inclusion, is given by [12]–[14]

Gi(ρ) =
π

iλ
exp (ikEi)√

det(BiQ
−1
0 − i π

λ Ai)
· exp

[
−π2

λ2 ρTQ−1
i ρ

]
(5)

with

Q−1
i = B−1T

i

(
Q−1

0 − i
π

λ
B−1

i Ai

)−1
B−1

i − i
λ

π
DiB

−1
i , (6)

and the position vector in the transverse plane ρT = (ξ η)

with |ρ| = ρ =
√

ξ2 + η2. The distance Ei depends on the
optical paths weighted by the index of the medium through
which the beam has traversed. To understand the calculation
process, the beam used in the holography illuminates succes-
sively the water medium of refractive index nd = 1.33, and
the air bubble of refractive index nb = 1 (with nd > nb). The
law of refraction indicates that when light is propagated from
an optically denser medium into one which is optically less
dense [15], a total reflexion takes place through the angle de-
noted by θl in Figure 2. Otherwise, when nd < nb, total reflex-
ion does not occur. This point has been developed in [6] in the
case of a transparent particle as inclusion. In the case of [6], a
general pupil function, denoted by p(s, θ), represented in the
form of a Zernike series:

p(s, θ) = [1− A(s, θ) · exp (iΦ(s, θ))]

= 1−∑
n,m

γm
n · Zm

n (s, θ),

0 ≤ s ≤ 1, 0 ≤ θ ≤ 2π, (7)

where s is the normalized radial coordinate and θ is the az-
imuthal component. The pupil function p is the transmittance
function between the entrance of the tangent planes and the
output of the spherical object. The summation over n in Eq. (7)
is performed from zero to infinity and the summation over m
is performed from−n to n with n− |m| even and positive. The
circle polynomials, denoted here by Zm

n in Eq. (7), are given by

Zm
n (s, θ) = R|m|n (s) · eimθ , 0 ≤ s ≤ 1, 0 ≤ θ ≤ 2π, (8)

and the Zernike coefficients γm
n are obtained by using the or-

thogonality of the Zernike circle polynomials Zm
n :

γm
n =

n + 1
π

·
∫ 1

0

∫ 2π

0
A(s, θ) · exp [iΦ(s, θ)] · Zm

n (s, θ) s ds dθ. (9)
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nd

θl 1-ε

(a) (b)

FIG. 2 Schematic representation of the numerical aperture reduced pupil function and

the link to the refractive indices with nd = 1.33, nb = 1, (a) side view, (b) front view.

The overline represents complex conjugation. Now, to define
the transmittance function of the air bubble, the total reflexion
has been considered as a blind area of the ring-shaped type
as illustrated in Figure 2. The normalized inner diameter, de-
noted ε, is related to the refractive indices by

ε =
1
c
= sin(θl), c =

nd
nb

. (10)

Consequently, the numerical aperture reduced pupil, denoted
pε, has the following expression

pε(s, θ) = 1−
{

A(s, θ) · exp [iΦ(s, θ)] , 0 ≤ s < ε,

0 ε < s ≤ 1.
(11)

Now, the scaled pupil function, defined by pε(s, θ), can be rep-
resented in the form of a Zernike expansion by

pε(s, θ) = 1−∑
n,m

Γm
n (ε) · Zm

n (s, θ),

0 ≤ s ≤ 1, 0 ≤ θ ≤ 2π. (12)

Eq. (8) and the relation [16, 17]

R|m|n (εs) = ∑
n′=|m|(2)n

[
Rn′

n (ε)− Rn′+2
n (ε)

]
· R|m|n′ (s) (13)

are combined to produce the expression of the Zernike coeffi-
cients Γm

n (ε) so that

Γm
n (ε) =

n + 1
π
· ε2 · ∑

n′=|m|(2)n

[
Rn′

n (ε)− Rn′+2
n (ε)

]
·
∫ 1

0

∫ 2π

0
A(εs, θ) · exp [iΦ(εs, θ)] · Zm

n′ (s, θ) s ds dθ, (14)

where the integral in Eq. (14) has the same structure as the
integral in Eq. (9) and if ε = 1, then Eqs. (14) and (9) are the
same. Then, the expansion coefficients γm

n are used to deter-
mine the expansion coefficients Γm

n (ε). The summation is over
n′ = |m|, |m|+ 2, · · · , n. This way of writing the scaled pupil
function allows us to use the previous developments in [6].
Consequently, the intensity distribution I(σ) recorded by the
CCD satisfies

I(σ) =
πD2

4λ2 K ·
∣∣∣G(σ)− G0

0(σ) + Gm
n (σ)

∣∣∣2 (15)

where the dimensionless variables σ and K are such that

σ =
D
2λ
·B−1

t · r, K =
∣∣∣det(Bt)det(BiQ

−1
0 − i

π

λ
Ai)

∣∣∣−1
(16)

with |r| = r =
√

x2 + y2. From Eq. (22) in [6], the three func-
tions of the intensity in Eq. (15) are defined by,

G(σ) =
iπ√

det(Lt)
· exp

[
−iπ2σTL−1

t σ
]

, (17)

with

Lt =
πD2

4λ
B−1

t At + i
(

πD
2λ

)2
Qi. (18)

By noting that σ = σ exp(iϕ), a semi-analytical expression for
Gm

n is then (see Appendix B)

Gm
n (σ, ϕ)

= 2πε2 ∑
D

Qp,q
n,m,t(δ, ε) ·Vm+2q

t (2πεσ, ε2χ) · ei(m+2q)ϕ, (19)

with D the summation ranges for {n, m, p, q, t} and

Qp,q
n,m,t(δ, ε) = (−i)m+q · Am,2q,m+2q

n,|2q|+2p,t · β
|2q|
|2q|+2p(ε

2δ) · Γm
n (ε). (20)

The parameter χ in Eq. (19) is the trace of the matrix Lt, so
that χ = 1

2 · Tr(Lt). The δ-parameter is linked to the elliptic-
ity of the system, i.e., the optical components and the droplet.
It is defined by δ = 1

2 (Lt(1,1) − Lt(2,2)) where Lt(i,j) are the
diagonal elements of Lt. In the particular case where the op-

tical setup is circular, we have δ = 0 and β
|2q|
|2q|+2p(0) = 1 if

q = p = 0, and 0 otherwise. The coefficients β can be ex-
pressed explicitly in terms of the hypergeometric functions 2F3
as in [29], Eqs. (A-11)–(A-13). The As in Eq. (20) are given by
[19]

Am1,m2,m3
n1,n2,n3 =

∣∣∣∣C n1
2 , n2

2 , n3
2

m1
2 , m2

2 , m3
2

∣∣∣∣2 , (21)

where the Cs are the Clebsch–Gordan coefficients. In the case
of a symmetrical system, and in the case where the object is a
spherical bubble, then m = 0, and the function Gm

n is defined
by

G0
n(σ, ϕ) = 2πε2 ∑

n=0(2)∞
Γ0

n(ε) ·V0
n (2πεσ, ε2χ), (22)

where a(2)b denotes a, a + 2, . . . , b. The Zernike coefficients
Γ0

n(ε) are defined by Eq. (14) for m = 0. By means of Eq. (19),
the G0

0 function over the full disk, ie ε = 1, takes the following
expression

G0
0(σ, ϕ) = 2πV0

0 (2πσ, χ). (23)

The V functions have the series expression [19]

Vm
n (r, f ) = εm exp

(
i
1
2

f
)
·

∞

∑
k=0

(2k + 1) ik jk

(
1
2

f
)

·∑
h
(−1)

m−h
2 · A0,m,m

2k,n,h
Jh+1(r)

r
. (24)

The indices m and h have the same parity as h ≥ |m| and the jk
are the spherical Bessel functions. The summation range over
h is h = max[|m|, |n− 2k|](1)[n + 2k]. In Eq. (24), we have to
choose εm = −1 for odd m < 0 and εm = 1 otherwise.

2.2 Holograms of an air bubble

In this section, we compare our developments with a rigor-
ous near-field Lorenz–Mie scattering theory (LMT) [20]. The
comparison is based on a bubble of diameter D and refractive
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CCDλ ζ - axis
ξ

ψ

z

nb=1,D 

bubble

medium nd=1.33

FIG. 3 Configuration under study with nd the refractive index of the medium and nb

the refractive index of the bubble.

index nb which is equal to 1 but it is possible to choose an an-
other refractive index, depending on the gas in the bubble. The
index of the surrounding medium is denoted nd and equal to
1.33. In the context of the LMT, the incident beam on the par-
ticle must be a plane wave, something which modifies here
only the ABCD matrices. The configuration under study is il-
lustrated in Figure 3. In this paragraph, two cases have been
considered: in the first case, the air bubble is approximated as
a thin lens, ie, a quadratic phase approximation, and the sec-
ond case, the air bubble is approximated as a quasi-spherical
phase approximation. To elaborate the new expressions of the
Zernike coefficients of the two cited cases, the Zernike coeffi-
cients in [6] for a transparent particle are used.

2.2.1 Case of the quadratic phase approximation

In the case of a quadratic phase approximation, we know that
for a transparent particle, the pupil function over the aperture
D can be described by

p(s, θ) = 1− exp
(
−iπκs2

)
= 1−

∞

∑
n=0

n even

γ0
n(κ) · Z0

n(s, θ), (25)

where n = 0, 2, ..., κ = D2/(4λ f ) and f = nb ·D
4(nb−nd)

the effec-
tive focal length of the ball-shaped lens. The Zernike coeffi-
cients γ0

n(κ) are given by

γ0
n(κ) = (n + 1) exp

(
−iκ

π

2

)
(−i)

n
2 · j n

2

(
κ

π

2

)
. (26)

But in the case of an air bubble considered as an inclusion in
the water, due to the total reflexion, i.e., nb < nd, the definition
of the scaled pupil function pε(s, θ) is obtained by combining
Eqs. (26) and (14) to produce

pε(s, θ) = 1−
∞

∑
n=0

n even

Γ0
n(ε) · Z0

n(s, θ), (27)

where the Zernike series Z0
n is defined on the full disc and the

Zernike coefficients are such that

Γ0
n(ε) = ε2 · ∑

n′=0(2)n

[
Rn′

n (ε)− Rn′+2
n (ε)

]
· γ0

n′

(
κε2
)

. (28)

The Zernike coefficients γ0
n′ in Eq. (28) are defined by Eq. (26).

2.2.2 Case of the quasi-spherical approximation

Now, if the quasi-spherical approximation is employed [6, 21]
to describe the pupil function p of the air bubble, recall that

in the case of [6] for a transparent particle, the pupil function
p(s, θ) is defined by

p(s, θ) = 1− exp
(

iπκnb

√
1− c2 · s2

)
= 1−

∞

∑
n=0

n even

γ0
n(−πκnb · uc) · Z0

n(s, θ),

κnb = 2(nb − nd)D/λ, (29)

where c < 1 and with the Zernike coefficients

γ0
n(x) = (n + 1) ·

[
x
2
· j n

2−1 · h
(2)
n
2
− x

2vc
j n

2
· h(2)

n
2 +1

]
,

vc =
1−
√

1− c2

1 +
√

1− c2
, uc = 1−

√
1− c2. (30)

The functions jn are the spherical Bessel functions of the first

kind and h(2)
n are the spherical Hankel functions of the second

kind. Each spherical Bessel function has argument x/2 and
each spherical Hankel function has argument x/(2vc). Then,
the definition of the scaled pupil function pε(s, θ) for the air
bubble, ie, c > 1 or ε < 1 is given by

pε(s, θ) = 1−
∞

∑
n=0

n even

Γ0
n(ε) · Z0

n(s, θ), (31)

where the Zernike coefficients in Eq. (31) are expressed in
terms of the Zernike coefficients in Eq. (30) and given by

Γ0
n(ε) = ε2 · ∑

n′=0(2)n

[
Rn′

n (ε)− Rn′+2
n (ε)

]
· γ0

n′ (−πκnb) (32)

with uc = vc = 1 since ε · c = 1. Figure 4 illustrates the results
of the quasi-spherical approximation in comparison to the
LMT simulation and Figure 5 the profiles. As one can see here,
the three optical signals agree quite well. The quadratic and
quasi-spherical phase approximations of a bubble with the
black ring thickness ε = 0.750 give us a good approximation,
close to the numerical standard with a high 2D-correlation co-
efficient, greater than 0.9.

3 RECONSTRUCTION BY FRACTIONAL
FOURIER TRANSFORMATION

The fractional Fourier transformation (FRFT) is used to recon-
struct the image of an object [22]. The FRFT of order α ∈ C of
a function f (r) is defined as [23]–[25]

Fα[ f (r)](ρ) = 2πC(α) · exp
[

i
π

s2
ρ2

tan(α)

]
·
∫ +∞

0
f (r) exp

[
i
π

s2
r2

tan(α)

]
J0

(
2π

rρ

s2 sin(α)

)
rdr, (33)

where s2 = N · δ2, and

C(α) =
exp[−i(π

2 sign(sin α)− α)]

s2 sin α
. (34)

Now from the point of view of digital holography reconstruc-
tion, to reconstruct the image of the air bubble in the droplet,
the fractional Fourier transformation of the intensity distribu-
tion is defined so that

Fα[I(σ)](ρ).
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FIG. 4 Simulated intensity distribution in the plane of the CCD sensor with λ = 642 nm, nd = 1.333, nb = 1, D = 20 µm, z = 4 mm, (a) LMT, (b) Quasi-spherical approximation.

FIG. 5 Profiles of the simulated intensity distribution in the plane of the CCD sensor with λ = 642 nm, nd = 1.333, nb = 1, D = 20 µm, z = 2 mm in the cases of the LMT, quadratic

and quasi-spherical approximation.

From Eq. (15), the explicit expression for the intensity distri-
bution I is given by

I(σ) =
πD2

4λ2 K
[
|G|2 + |G0

0 |2 + |G0
n|2
]

− πD2

2λ2 K
[
<
(

GG0
0

)
+<

(
GG0

n

)]
− πD2

2λ2 K
[
<
(

G0
0 G0

n

)]
, (35)

where I is partially described by a real-valued chirp functions
and the interferences are expressed by these real-valued chirp
functions in the second term of Eq. (35). The reconstruction of
the image of the air bubble is possible if we can demonstrate
that the fractional Fourier transformation of the second term
of Eq. (35) exhibits an aperture equal to the diameter of the air
bubble object. The calculation of the fractional Fourier trans-
form of I(σ) to reconstruct the image of the bubble can be
summarized as the calculation of the fractional Fourier trans-
form of GG0

n because the interference functions depend on the
same chirped Bessel functions. Then, the calculation of GG0

n

gives us

G G0
n = κ exp (iχ/2) ·∑

D

Q0,0
n,0,t(0, ε)

Jh+1(2πεσ)

εσ

· exp
[

i
π2D2

8λ2 Tr
(

B−1T

t L−1
t ·B

−1
t

)
· r2
]

(36)

with the constant κ = iπ/
√

det(Lt) and the radial coordi-

nate σ = D
4λ Tr

(
B−1

t

)
r. In the process of the reconstruction of

the image of the air bubble, the quadratic phase contained in
Eq. (36) must be eliminated by means of the quadratic phase
of the fractional Fourier transformation. This is realized when
the following conditions are satisfied:

tan αo = ±
8λ2

πs2D2 ·
1

Tr
(

B−1T

t L−1
t ·B

−1
t

) . (37)

Note here that the fractional order αo is a complex fractional
order and the choice of its sign ± does not affect the recon-
struction because the reconstruction is realized from real func-
tions. Under this condition, to estimate the fractional Fourier
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FIG. 6 Reconstruction by FRFT with axo = ayo = 0.7037-i0.73322·10−7 in the cases of (a) the LMT, (b) the quadratic phase approximation and (c) the quasi-spherical phase

approximation

transforms of Eq. (36) for the previous optimal order, we must
estimate the transform

Fαo

[
Jh+1(2πεσ)

σ

]
∝
∫ +∞

0
Jh+1

(
πDε

2λ
Tr
(

B−1
t

)
r
)

J0

(
2πrρ

s2 sin(αo)

)
dr (38)

with sin(αo) ∈ C. Let us write αo = αor + iαoi, where αor is
the real part of αo and αoi is its imaginary part. Their expres-
sion can be deduced from Eq. (37). In practical experiments,
we assume that we have the approximation αor � αoi with
αor ∈ [0, π/2] and αoi � π/2, then sin(αo) ≈ <{sin(αo)}.
From [17], Eq. (7), we obtain an estimation of the integral in
Eq. (38) so that

Fαo

[
Jh+1(2πσ)

σ

]
∝

2λ(−1)
h
2

πDε Tr
(

B−1
t

) · R0
h (vρ) ,

0 < vρ < 1, (39)

with
v =

4λ

Dε s2 <(sin αo) Tr
(

B−1
t

) . (40)

To realize a metrology of the diameter of the bubble, the scale
parameter in Eq. (40) can be used to retrieve the real diameter.
This means that the parameter ε must be equal to unity. The
diameter D of the bubble can be expressed from the estimated
diameter, denoted Dest, in the reconstructed image, with ε = 1,
by

D = G · Dest, G =
2λ

s2 <(sin αo)Tr
(

B−1
t

) , (41)

where G is the scale factor of the optical system. Figure 6
illustrates the digital reconstructions by means of the frac-
tional Fourier transformation from the holograms in Fig-
ures 4 and 5 of an air bubble in water and illuminated by
a plane wave. The optimal fractional orders from Eqs. (37)
are axo = ayo = 0.7037− i0.73322 · 10−7, where the imaginary
part of the optimal fractional order is very small compared to
the real part.

In the case of the previous reconstruction, the estimated diam-
eter Dest is approximately equal to 9.15 µm and with Eq. (41)
of the scale factor, equal to 2.207, the theoretical diameter D
is equal to 20.2 µm, which is in line with the original diame-
ter. Note that in the reconstructed images, we have a spot of

light at the center of the bubble as in the case of the droplet
in the air. This is particularly important for the subsequent
study, because the spot of light inside the bubble allows us to
determine that the object is really a bubble and not an opaque
particle.

3.1 Hologram of an air bubble as inclusion
in a pure water droplet

The experimental setup is represented in Figure 7. It consists
of two experimental sub-setups: a digital in-line holography
setup and a laser-induced nucleation setup. For the second
experimental sub-setup, a single pulse of the beam of the
Nd:YAG at 532 nm is focused in front of a pure water droplet
(H2O) seeded with randomly positioned SiO2 nanoparticles.
Their diameters are approximately equal to 50 nm. The loca-
tion of the focal point is chosen to avoid evaporation of the
pure water droplet. A heating point is created in the droplet
and a layer of vapor appears around the nano-particle inclu-
sions. During cooling, the vapor grows into a cavitation air
bubble. The size of the cavitation air bubble reaches a suit-
able diameter of several micrometers. This magnification al-
lows us to apply the digital in-line holography technique. The
mean power of the Nd:YAG is chosen to be around 0.5 W per
pulse. The first experimental sub-setup is presented in Fig-
ure 7. The digital in-line holography is composed of two parts.
The first part is delimited by the source, denoted ω0 and the
input-plane of inclusion in the water droplet and the second is
between the output-plane of the inclusion and the CCD sen-
sor. The two parts can be fully described by the matrices Mi
and Mt as previously. An illustration of an air bubble holo-
gram created by pulses of the Nd:YAG is given in Figure 8(a)
and compared to the simulated hologram in Figure 8(b). In
this illustration, the diameter of the bubble inclusion is ap-
proximately D = 12.5 µm and its position in the droplet is ap-
proximately δ = 2.2 mm. The radii of curvature of the droplet
are 2.7 mm along the x-axis and y-axis and from the experi-
mental optical setup, the numerical distances are e0 = 56 mm,
e1 = 242 mm, e2 = 10.65 mm, e3 = 5.75 mm, and z = 39.3 mm.
In Figure 9, the simulated and experimental intensity profiles
along the x-axis and y-axis are given. These profiles are ob-
tained after normalization.

As one can see, the simulation and experiment are in very
close agreement, with a 2D correlation coefficient equal to
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FIG. 7 Experimental setup for digital in-line holography with λ = 642.8 nm, ω0 = 2.5 µm, f0 = 56 mm, f1 = 5 mm.

FIG. 8 Hologram of an air bubble in a droplet obtained from (a) experimental results and (b) theoretical development (quasi-shperical approximation)
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FIG. 9 Intensity profiles of the hologram of an air bubble in a droplet.
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FIG. 10 Hologram of an air bubble in a droplet obtained from (a) experimental results and (b) theoretical development.
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FIG. 11 Profiles of the reconstruction of the image of the air bubble: comparison between experiment and theory.

0.95 for the quasi-spherical approximation and the quadratic
approximation. The quasi-spherical approximation is slightly
above the quadratic approximation. This is the reason why
only the quasi-spherical approximation is presented here. The
reconstructed bubble inclusion images by means of the FRFT
from the simulated diffraction pattern in Figure 8(b) and from
the experimental diffraction pattern in Figure 8(a) are shown
in Figures 10(a) and 10(b). The optimal fractional orders ob-
tained from Eqs. (37) are axo = ayo = 0.49471−i3.0459 · 10−7

and with Eq. (41), the magnification factor G is equal to -0.185.
To conclude, the profile of the reconstructions shown in Fig-
ure 11 to compare experiment and theory, allows us to say that
the quasi-spherical approximation with a numerical aperture
reduced pupil is a good approximation.

4 CONCLUSION

In this paper, we have proposed a mathematical model of the
intensity distribution for a bubble in a liquid medium. The ap-
proximation of an opaque ring controlled by the critical angle
of the total reflexion combined with the quasi-spherical ap-

proximation provides a good estimation as has been demon-
strated by comparison with the near-field Lorenz–Mie scat-
tering theory. The scaled formula of the Zernike polynomials
allows us to conserve the previous theoretical development
presented in the case of a droplet inclusion in the air. Now, the
studies are required to evaluate the experimental contexts to
obtain a spot of light at the center of a bubble or of a liquid
droplet.

5 ACKNOWLEDGEMENTS

This work was partially supported by the French Na-
tional Agency under grant ANR-2011-NANO-008
“NANOMORPH.” The authors acknowledge the partial
financial support of the French Agence Nationale de la
Recherche (ANR), through the program Investissements
d’Avenir (ANR-10-LABEX-09-01). This work was partially
supported by the LABEX EMC3 (Energy Materials and Clean
Combustion Center) of the Université de Rouen, within the
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A MATRICES Mi AND Mt

Here the incidence matrix is defined by means of the exper-
imental values given in Figure 7. Then, along the x-axis, the
incidence matrix is defined by

Mi =

(
1 δ

nb
0 1

)(
1 0

na−nd
d/2 1

)(
1 e2

na
0 1

)(
1 0
− 1

f1
1

)

·
(

1 e1
na

0 1

)(
1 0
− 1

f0
1

)(
1 e0

na
0 1

)
(42)

and along the y-axis, the incidence matrix is the same when
the optical setup is symmetric. Now, for the transmittance ma-
trix, we have

Mt =

(
1 z

na
0 1

)(
1 0
− 1

f1
1

)(
1 e3

na
0 1

)

·
(

1 0
nd−na
−d/2 1

)(
1 dr−δ

nd
0 1

)
, (43)

with dr the diameter of the droplet.

B THEORETICAL DEVELOPMENT OF Gmn
The integral Gm

n (σ, ϕ) is given by

Gm
n (σ) =

∫ 1

0

∫ 2π

0
qε(s, θ) exp

[
i
1
2

s2(Lt(1,1) + Lt(2,2))

]
· exp

[
i
1
2

s2(Lt(1,1) −Lt(2,2)) cos(2θ)

]
· exp [−i2πrs cos (θ, ϕ)] sdsdθ (44)

where the function qε(s, θ) = A(s, θ) · exp [iΦ(s, θ)] with
0 ≤ s < ε in Eq. (11). Consequently,

Gm
n (σ) =

∫ ε

0

∫ 2π

0
A(s, θ) · exp [iΦ(s, θ)]

· exp
[

i
1
2

s2(Lt(1,1) + Lt(2,2))

]
· exp

[
i
1
2

s2(Lt(1,1) −Lt(2,2)) cos(2θ)

]
· exp [−i2πrs cos (θ, ϕ)] sdsdθ. (45)

By noting that s′ = s/ε, the integral Gm
n (σ, ϕ) is

Gm
n (σ) =ε2

∫ 1

0

∫ 2π

0
A(εs′, θ) · exp

[
iΦ(εs′, θ)

]
· exp

[
i
1
2

ε2s′2(Lt(1,1) + Lt(2,2))

]
· exp

[
i
1
2

ε2s′2(Lt(1,1) −Lt(2,2)) cos(2θ)

]
· exp

[
−i2πεrs′ cos (θ, ϕ)

]
s′ds′dθ. (46)

Next, from [6], the transparent particle is expressed in terms
of Zernike polynomials as

A(s, θ) · exp [iΦ(s, θ)] = ∑
n,m

γm
n · Zm

n (s, θ), (47)

with the Zernike coefficients γm
n . But now, the air bubble can

be represented in form of Zernike series as

A(εs′, θ) · exp
[
iΦ(εs′, θ)

]
= ∑

n,m
Γm

n (ε) · Zm
n (s′, θ), (48)

where the Γm
n (ε) is expressed in terms of γm

n from Eq. (13). To
get a semi-analytical computation method for the remaining
integral in Eq. (46), the approach is as follows. Firstly, expand,
using β-coefficients as before,

exp
[

i
1
2

ε2s2(Lt(1,1) −Lt(2,2)) cos(2θ)

]
=

+∞

∑
q=−∞

∞

∑
p=0

iq · β|2q|
|2q|+2p(ε

2δ) · Z2q
|2q|+2p(s, θ) (49)

with δ = 1
2 (Lt(1,1) − Lt(2,2)) and where the expansion coeffi-

cients β
|2q|
|2q|+2p are expressed explicitly in terms of the hyper-

geometric functions 2F3, cf. [29], as

β
|2q|
|2q|+2p(δ) = d0

0 (−1)r(2|2q|+ 4r + 1)
(

1
2

δ

)|2q|+2r

· 2F3

(
r + 1

2 |2q|+ r + 1
2

1
2 |2q|+ 2r + 3

2 |2q|+ 2r + 1
;−1

4
δ2
)

(50)

in the case where 2r− p = 0 and

β
|2q|
|2q|+2p(δ) = d1

0 (−1)r(2|2q|+ 4r− 1)
(

1
2

δ

)|2q|+2r

· 2F3

(
r + 1

2 |2q|+ r + 1
2

3
2 |2q|+ 2r + 1 |2q|+ 2r + 1

2
;−1

4
δ2
)

(51)

in the case where 2r− p = 1. In Eqs. (50) and (51), the coeffi-
cients d0

0 and d1
0 are defined as follows:

d0
0 =

(2r)!(2|2q|+ 2r)!
r!(|2q|+ r)!(2|2q|+ 4r + 1)!

,

d1
0 =

(2r)!(2|2q|+ 2r)!
r!(|2q|+ r)!(2|2q|+ 4r)!

. (52)

When Eq. (49) is introduced into Eq. (46), we see that there
arises the product of two circle polynomials,

Zm
n (s, θ) · Z2q

|2q|+2p (s, θ) . (53)

In [26], Eqs. (40)–(44) these products are linearized:

Zm
n (s, θ) · Z2q

|2q|+2p (s, θ) = ∑
t

Am,2q,m+2q
n,|2q|+2p,t · Z

m+2q
t (s, θ) . (54)

The summation range over t is

t = max (|m + 2q|, |m− |2q| − 2p|) (2)(n + |2q|+ 2p) (55)

where a(2)b denotes a, a + 2, . . . , b when b− a is non-negative
and even. Then, A can be given in terms of Wigner or
Clebsch–Gordan coefficients [27, 28]:

Ai,k,m
j,l,n =

∣∣∣∣C j
2 , l

2 , n
2

i
2 , k

2 , m
2

∣∣∣∣2 . (56)

The integral in Eq. (46) is now∫ 1

0

∫ 2π

0
exp

[
iε2χs2

]
Zm+2q

t (s, θ)

· exp [−i2πεσs cos(ϕ− θ)] s ds dθ, (57)

with χ = 1
2 · Tr(Lt). This latter integral can be expressed in

term of V functions from the extended Nijboer–Zernike theory
[29, 30]. Indeed, we have∫ 1

0

∫ 2π

0
eiε2χs2 · Zm+2q

t (s, θ) · e−i2πεσs cos(ϕ−θ)s ds dθ

= 2π(i)m+2q ·V|m+2q|
t (2πεσ, ε2χ) · ei(m+2q)ϕ, (58)
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and the power-Bessel series for V is given by Eq. (24). This
yields the final result of the semi-analytical formula for the
integral Gm

n that we were looking for:

Gm
n (σ′, ϑ) = 2πε2 ∑

D

(−i)m+q Am,2q,m+2q
n,|2q|+2p,t

· β|2q|
|2q|+2p(ε

2δ)Γm
n (ε) ·V

|m+2q|
t (2πεσ, ε2χ) · ei(m+2q)ϕ. (59)

with D the summation ranges for {n, m, p, q, t}.
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