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Numerical study on uncertainty of two-color method
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The two-color method is one of the commonly used approaches for converting a length measured in air to a length in vacuum to eliminate
the influence of the refractive index of air. However, the error of the technique is not well known. We investigate this uncertainty based on a
generalized expression of the two-color method proposed in this paper and using numerical simulations. Numerical calculations reveal the
change of the error with temperature, air pressure, and wavelengths. These characteristics can be used to optimize the two-color method.
[DOI: http://dx.doi.org/10.2971/jeos.2015.15051]

Keywords: Two-color method, length measurement, refractive index of air, uncertainty, optimization

1 INTRODUCTION

The values of lengths in vacuum are comparable with each
other. Because the speed of light in vacuum is constant, the
distance of the object from the observation point increases
with length. Usually, the length is measured in air is affected
by the length in vacuum and the refractive index of air. A
larger length measured in air indicates a larger length in vac-
uum or a smaller refractive index of air. Therefore, we cannot
simply compare two lengths in air. Two approaches are used
for length conversion to obtain the corresponding lengths in
vacuum: one approach is based on precisely measuring the re-
fractive index and the other is based on the application of the
two-color method [1] The former utilizes the relationship be-
tween the length in vacuum, the length in air, and the refrac-
tive index of air. The latter utilizes the relationship between
the refractive indices of two different colors. The advantage
of the two-color method is that the fluctuations caused by
changes of the refractive index can be successfully avoided by
using the measured length difference between the two colors.

During length conversion, the uncertainty of the refractive in-
dex measurement or the two-color method results in an un-
certainty in the estimated value of the length in vacuum. The
uncertainty of the calculated refractive index using the em-
pirical formula [2]–[4] is well known. For example, the uncer-
tainty of the Edlén empirical equations [2, 3] is on the order
of 30–50 nm/m [5]. Although the two-color method has been
studied by a number of researchers [6]–[12], the uncertainty
of the length in vacuum obtained with this technique is not
known. We do not know how the order of the uncertainty
varies with the measurement environment. The difficulty in
the associated uncertainty analysis lies in the fact that two re-
fractive indices used in the two-color method are correlated.

By performing the length measurement using numerical sim-
ulations, one can evaluate the error of the two-color method
without considering the correlation of two refractive indices.
In the present study, we propose a generalized expression of
the two-color method and estimate its error using numerical
simulations.

2 METHODS

In 2009, the national standard of length in Japan changed to
a femtosecond optical frequency comb (FOFC). Detailed in-
formation about the FOFC can be found in Ref. [13]. The spec-
trum of an FOFC in the frequency domain can be modeled as a
comb function. The comb function is composed of many (gen-
erally, more than one million) single-frequency components
arranged at intervals equal to the pulse repetition frequency
frep. The entire FOFC is shifted from zero frequency by an off-
set frequency fCEO. A frequency component of an FOFC can
be expressed as follows:

fP = (P + Q)× frep = P× frep + fCEO, (1)

where the integral part P, which is the number of comb lines,
is on the order of 106, and the fractional part Q is 0 ≤ Q < 1.

In general, an FOFC device is synchronized with the coordi-
nated universal time to stabilize its frequency. As can be seen
from Eq. (1), if the frequencies of an FOFC are stabilized, the
repetition and offset frequencies are also stabilized. According
to the definition of the meter, which is based on the fact that
the speed of light in vacuum cvac is constant, the measurement
unit γvac (namely, the wavelength λvac and the adjacent pulse
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repetition interval length (APRIL) δvac) can be used to realize
the meter as follows [14]:

γvac = cvac
/

fP. (2)

Here, fP is the frequency parameter (the frequency f of the
wavelength and the pulse repetition frequency frep of the
APRIL). In this part, the subscripts “vac” and “air” denote the
values in vacuum and air, respectively.

The geometric distance G is the true distance between two
points in a vacuum. The distances measured using two dif-
ferent wavelengths (λair 1 and λair 2) or APRILs (δair 1 and
δair 2) in air are the optical distances Lγair 1 = G/n1 and
Lγair 2 = G/n2. n represents the phase refractive index of air
np at the examined wavelength or the group refractive index
of air ng of the APRIL. The estimate Lest of this geometric dis-
tance using the two-color method can be obtained as follows:

Lest = Lγair 2 − Aγ × (Lγair 2 − Lγair 1), (3)

where γ denotes the measurement unit and Aγ is the so-called
A-factor defined as follows:

Aγ =[n(γvac 2, T, P, H)− 1]

/[n(γvac 2, T, P, H)− n(γvac 1, T, P, H)]. (4)

Here, T, P, and H are the temperature, barometric pressure,
and humidity, respectively.

By applying the law of propagation of uncertainty [15, 16] to
Eq. (3), we have

u(Lest)
2 = u(Lγair 2)

2 + u[Aγ × (Lγair 2 − Lγair 1)]
2. (5)

Here, u(x) denotes the uncertainty of variable x. The uncer-
tainty of the first term of the right-hand side of Eq. (5) is

[u(Lγair 2)/Lγair 2]
2 = [u(n2)/n2]

2 . (6)

The uncertainty of the second term of the right-hand side of
Eq. (5) is

{u[Aγ × (Lγair 2 − Lγair 1)]

/[Aγ × (Lγair 2 − Lγair 1)]}2

=[u(Aγ)/Aγ]
2 + [u(Lγair 2 − Lγair 1)

/(Lγair 2 − Lγair 1)]
2 . (7)

Based on Eq. (4), the uncertainty of the first term of the right-
hand side of Eq. (7) is

[u(Aγ)/Aγ]
2

={u[n(γvac 2, T, P, H)− 1]
n(γvac 2, T, P, H)− 1

}2

+ {u[n(γvac 2, T, P, H)− n(γvac 1, T, P, H)]

n(γvac 2, T, P, H)− n(γvac 1, T, P, H)
}2

+
u[n(γvac 2, T, P, H)]

[n(γvac 2, T, P, H)− 1]

× {u[n(γvac 2, T, P, H)]− u[n(γvac 1, T, P, H)]}
[n(γvac 2, T, P, H)− n(γvac 1, T, P, H)]

. (8)

The uncertainty of the first term of the right-hand side of
Eq. (8) is

{u[n(γvac 2, T, P, H)− 1]}2 = u[n(γvac 2, T, P, H)]2. (9)

The uncertainty of the second term of the right-hand side of
Eq. (8) is

{u[n(γvac 2, T, P, H)− n(γvac 1, T, P, H)]}2

=u[n(γvac 2, T, P, H)]2 + u[n(γvac 1, T, P, H)]2

+ 2× u[n(γvac 2, T, P, H)]× u[n(γvac 1, T, P, H)]

× α(γvac 1, γvac 2, T, P, H). (10)

In Eq. (10), α(γvac 1, γvac 2, T, P, H) is the correlation co-
efficient used to characterize the degree of correlation
between u[n(γvac 2, T, P, H)] and u[n(γvac 1, T, P, H)].
α(γvac 1, γvac 2, T, P, H) is defined as follows:

α(γvac 1, γvac 2, T, P, H)

=
u[n(γvac 1, T, P, H)× n(γvac 2, T, P, H)]

u[n(γvac 2, T, P, H)]× u[n(γvac 1, T, P, H)]
. (11)

The uncertainty of the second term of the right-hand side
of Eq. (7) is also the function of u[n(γvac 2, T, P, H)] and
u[n(γvac 1, T, P, H)]. That means its uncertainty is affected by
the correlation coefficient α(γvac 1, γvac 2, T, P, H). The estima-
tion of the correlation coefficient α(γvac 1, γvac 2, T, P, H) is
difficult. In addition, as seen above, it is complicated to es-
timate the uncertainty of the two-color method based on the
law of propagation of uncertainty. To solve this problem, by
performing the numerical simulations, we evaluate the error
of the two-color method without considering the correlation
coefficient α(γvac 1, γvac 2, T, P, H).

The calculation is performed as follows. First, we set a geo-
metric length Gset. Then, we specify the environmental param-
eters (T, P, H). Based on Eq. (3) and (4), we calculate a value
Lest, which is estimated using the two-color method. Finally,
we treat Lest − Gset as the error of the two-color method.

Before discussing the numerical simulations, we note the dif-
ference between the above expressions and the previously
proposed two-color methods [1], [6]–[12]. The latter are re-
lated to either the wavelength or the APRIL. The former are
generalized expressions that can be used for length conver-
sion in which not only the wavelength but also the APRIL can
be used as a scale.

3 RESULTS AND DISCUSSION

We abbreviate all instances of “wavelengths” or “center wave-
lengths of the APRILs” with “WLs” or “CWAs,” respectively.

The WLs and CWAs used in the calculations were 1560 nm
and 780 nm, respectively. The value of Gset was 1 m. The cal-
culations were performed under standard environmental con-
ditions (temperature of 20 °C, pressure of 101.325 kPa, and 0%
humidity). The 0% humidity was selected based on previous
studies [7]–[9], [17]–[21] that showed that the length Lest can
be determined with optimum precision when the humidity is
0%. To calculate np, we used the Edlén empirical equations,
given in Ref. [5]. The calculation procedures for ng are de-
scribed in Ref. [14]. The lengths obtained using different colors
in a specific environment were calculated using Gset/n. Based
on Eq. (3), using the calculated Lγair 1, Lγair 2, and Aγ under
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FIG. 1 Error of the two-color method u2color as a function of temperature for the phase

refractive index of air np (triangle and solid line) and group refractive index of air ng

(plus sign and dotted line).

FIG. 2 Error of the two-color method u2color as a function of air pressure for the phase

refractive index of air np (triangle and solid line) and the group refractive index of air

ng (plus sign and dotted line).

standard environment, we estimated the length in vacuum
and considered the difference between the estimated length
Lest and the set length Gset to be the error of two-color method
u2color.

Figures 1 and 2 show the variation in u2color when the
environmental parameters change within realistic ranges
(T ∈ [10, 30] °C, P = 101.325 kPa, H = 0%). and (T = ◦C,
P ∈ [80, 120] kPa, H = 0%). As shown in Figure 1, u2color
is reduced with the increase of the temperature; however,
it increases with the increase of air pressure, as shown in
Figure 2.

Tables 1 and 2 display u2color for both refractive indices
under realistic environmental conditions (T ∈ [10, 30] °C,
P ∈ [80, 120] kPa, H = 0% ). The tables show that the
minimum and maximum u2color values are obtained for
a temperature of 30°C and a pressure of 80 kPa, and a
temperature of 10°C and a pressure of 120 kPa, respectively.

Pressure [kPa] Temperature [°C]
10 20 30

80.000 -48.5 -45.3 -42.3
101.325 -77.8 -72.6 -67.9
120.000 -109.2 -101.8 -95.2

TABLE 1 Error of the two-color method u2color calculated using the phase refractive

index of air np for different environmental conditions.

Pressure [kPa] Temperature [°C]
10 20 30

80.000 -49.7 -46.3 -43.3
101.325 -79.7 -73.4 -69.5
120.000 -111.8 104.2 -97.5

TABLE 2 Error of the two-color method u2color calculated using the group refractive

index of air ng for different environmental conditions.

Figure 3 shows the variation of u2color due to a shift in Gset un-
der standard environmental conditions. u2color is directly pro-
portional to Gset. The slopes of the lines are -72.6 nm/m for np
and -73.4 nm/m for ng.

Note that u2color is affected by the WLs or CWAs used. Hence,
we examined the changes in u2colorby varying the WL or
CWA. The range of WLs or CWAs used in the numerical sim-
ulations corresponds to the currently provided length stan-
dard in Japan, which is in the range of 500–1684 nm. Gener-
ally, the relationship between the WLs or CWAs in the two-
color method is associated with a fundamental wave ˘ and its
second harmonic λ/2. The WLs or CWAs of the fundamen-
tal wave were found to be in the range of 1000–1684 nm and
those of the second harmonic wave were in the range of 500–
842 nm. Figure 4 shows u2color as a function of WL or CWA
of the fundamental wave in vacuum. When the WL or CWA
increased, u2color decreased.

As can be seen in Figure 4, under standard environmental con-
ditions, the minimum achievable u2color corresponds to the 842
nm and 1684 nm pair. From Table 1, the minimum u2color is ob-
tained for 30 °C and 80 kPa. In these conditions, u2color of the
842 nm and 1684 nm pair was calculated as -42.2 nm/m using
np and -43.1 nm/m using ng.

As can be seen in Figure 4, under standard environmental con-
ditions, the maximum u2color was obtained for the 500 nm and
1000 nm pair. According to Table 2, the maximum u2color is ob-
tained for 10 °C and 120 kPa. In these conditions, u2color was
calculated as -111.1 nm/m for np and -117.6 nm/m for ng.

We can conclude that by using WLs or CWAs within the
500–1684 nm range under realistic environmental condi-
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FIG. 3 Error of the two-color method u2color as a function of the length to be measured

Gset.

FIG. 4 Error of the two-color method u2color as a function of WL or CWA in vacuum.

tions, the achievable u2color is in the range of -42.2 nm/m to
-111.1 nm/m for np and -43.1 nm/m to -117.6 nm/m for ng.

We also compare the two-color method and the techniques
based on the Edlén empirical equations. The method using the
empirical equations is a passive approach, because measuring
environmental parameters is a passive activity. The two-color
method can be used to make an interferometer less sensitive to
environmental conditions by using two WLs or CWAs. Here,
we show the change of u2color due to a change in environmen-
tal parameters. The results show the possibility of obtaining
a smaller u2color by controlling the environmental parameters
in laboratory conditions or selecting preferred conditions in
open-air fields. Hence, the two-color method can be used as an
active approach to compensate the influence of the refractive
index of air. With further optimization, the two-color method

can be used to obtain measurements with a smaller error than
that of the empirical equations.

4 CONCLUSION

We proposed a generalized expression of the two-color
method for length conversion, in which not only the wave-
length but also the APRIL can be used as a scale. Using
numerical simulations in a realistic environmental parameter
range (T ∈ [10, 30] °C, P ∈ [80, 120] kPa, H = 0% ), we
found out for the first time that the achievable errors are
in the range of -42.2 nm/m to -111.1 nm/m for the np and
-43.1 nm/m to -117.6 nm/m for the ng calculations. We
also showed the change of the error with temperature, air
pressure, and wavelength, which is useful to obtain the
smallest error from an active point of view. The findings of
this study provide a better insight into the two-color method,
which will increase the opportunity to apply this method in
various length-measurement applications.
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