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We study radiation-matter interaction in a system of ultracold atoms trapped in an optical lattice in a Mott insulator phase. We develop a
fully general quantum model, and we perform calculations for a one-dimensional geometry at normal incidence. Both two- and three-level
Λ atomic configurations are studied. The polariton dispersion and the reflectivity spectra are characterized in the different regimes, for both
semi-infinite and finite-size geometries. We apply this model to propose a photon energy lifter experiment: a device which is able to shift
the carrier frequency of a slowly travelling wavepacket without affecting the pulse shape nor its coherence. [DOI: 10.2971/jeos.2008.08005]
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1 INTRODUCTION

It is a general fact of electrodynamics in continuous media that
matter acts as a sort of potential for light: the dielectric con-
stant in Maxwell equations plays in fact a role mathematically
equivalent to the external potential in the Schrödinger equa-
tion [1]. In particular, remarkable features appear for light
propagation through a system with a periodic modulation of
the dielectric properties on the scale of the radiation wave-
length [2, 3]: in analogy with electron propagation in crys-
talline solids, these structures are then called photonic crystals
(PCs). According to the Floquet-Bloch theorem, the discrete
translational symmetry garantees in fact the conservation of
the Bloch wave vector in the first Brillouin zone, the spatial
periodicity of the eigenfunctions in the elementary cell, and
the separation of the energy spectrum in bands and forbidden
gaps [4, 5]. Depending on the frequency dependence of the
dieletric response of the material, PCs are generally classified
into two broad categories: passive, if the underlying media are
dispersionless, and resonant [6, 7].

An interesting example of resonant PC can be realized using
ultracold alkali atoms trapped in the periodic potential of an
optical lattice [8, 9]. In particular, a mile-stone in this field has
consisted of the achievement of a Mott Insulator (MI) phase
[10, 11], in which an integer and constant number of atoms are
trapped at each site of the periodic optical potential formed by
the interference pattern of several laser beams. If temperature
is low enough, atoms are frozen in the lowest vibrational level
of each well and the system periodicity is extremely regular:
almost no impurities are in fact present (i.e. missing or extra
atoms), and there are no phonons. Thanks to the simple level
structure of alkali atoms, one can selectively address specific
transitions, so to realize e.g. two or three-level models. From
this point of view, the MI can be seen as an extremely resonant
PC, where the Bragg scattering processes due to the periodic

arrangement of atoms have a strong interplay with the atomic
optical resonances. The cleanness of the system, and the weak-
ness of spurious non-radiative effects guarantees that coher-
ence can be preserved for very long times during radiation-
matter interaction. This is crucial to manipulate the photon
propagation without losing its coherence.

In this paper, we develop a general and fully quantum the-
ory to describe the radiation-matter interaction in these sys-
tems. Although the model is perfectly general, we specialize
our analysis to the 1D case with normally incident light. Both
a two-level and a three-level Λ configurations are considered.
The band dispersion is characterized as a function of the rela-
tive position of the atomic resonance and the Bragg frequency
corresponding to the lattice periodicity. Two main regimes are
identified depending on whether the two frequency scales are
close or well separated. The band dispersion is then used in a
calculation of the reflection spectra for both semi-infinite and
finite systems. These results are the starting point to propose
a photon energy lifter experiment [12], where the carrier fre-
quency of a slowly travelling wavepacket can be continuously
tuned while fully preserving its pulse shape and its coherence.

The paper is organized as follows. In Sec. 2, we review the
Hopfield approach to radiation-matter interaction and its ap-
plication to the case of a lattice of two-level atoms. In Sec. 3,
the Hopfield formalism is applied to get predictions for the
dispersion of the elementary excitations of the system, the so-
called polaritons. Reflection spectra for semi-infinite and finite
1D systems are presented. In Sec. 4 we extend the model to the
case of three-level atoms in a Λ level configuration: we imple-
ment the dressed atom approach into the Hopfield Hamilto-
nian and we obtain predictions for the polariton dispersion
and reflection spectra. In Sec. 5, the application of three-level
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atomic systems as photon energy lifter is discussed for real-
istic parameters of Rb systems. The main experimental issues
are discussed in Sec. 6. Conclusions are drawn in Sec. 7.

2 HOPFIELD APPROACH

We consider the interaction between light and a collection of
two-level atoms trapped in the periodic potential of an optical
lattice [8, 9]. The atoms are assumed to be in a perfect Mott In-
sulator state where one and only one atom is present at each
lattice site [10, 11]. With a suitable choice of the lattice laser
frequency and polarization, the minima of the optical poten-
tial felt by the different atomic states can be made to coincide
and to form a cubic lattice of spacing l. Provided trapping at
each site is tight enough, the atomic center-of-mass motion re-
sults frozen in the motional ground state around the potential
minimum (Lamb-Dicke regime) and no atomic tunneling is al-
lowed between adjacent sites. The energies of the ground |g〉
and excited |e〉 states of the atom have therefore to include the
light shift due to the optical potential as well as the zero-point
kinetic energy: the resulting energy separation is indicated by
h̄ω̄0.

Single-atom excitations on the ith atom are respectively de-
stroyed and created by the operators b̂i = |g〉i 〈e|i and b̂†

i =
|e〉i〈g|i. In a solid-state terminology, these localized excitations
can be seen as an extreme kind of Frenkel excitons where the
electronic excitation is confined to a single atom or molecule
of the crystal. This, in contrast to weakly bound Wannier exci-
tons whose electron and hole can be spatially separated by a
distance much larger than the lattice spacing [4].

In addition to the coupling to the transverse e.m. field that we
shall discuss at length in what follows, excitons are coupled to
the longitudinal e.m. field. This Coulomb interaction between
the dipoles of distinct atoms allows for the transfer of excita-
tion from one site to another according to Hamiltonian terms
of the form b̂†

i b̂j [14] . To take the most advantage of the trans-
lational symmetry of the lattice, one can construct creation op-
erators for delocalized excitations with a well-defined Bloch
wave vector k:

ĉ†
k =

√
1
N ∑

i
b̂†

i eikli . (1)

An integration box of size L is assumed with periodic bound-
ary conditions. N = (L/l)3 is the total number of atoms in the
lattice (which is assumed to fill the whole integration box).
The ĉk, ĉ†

k exciton operators satisfy the following approximate
Bosonic commutation rules[

ĉk, ĉ†
k′

]
= δk,k′ + O

(
M
N

)
, (2)

where M is the number of excitations present in the system.
Excitons therefore behave as bosons, at least in the “linear op-
tics” limit M � N in which the probability of a double exci-
tation of the same atom is negligible. Throughout the whole
paper, we shall stick to this limit.

Thanks to the translational invariance of the system, the
Hamiltonian describing the internal atomic dynamics is diag-

onal in the ĉk operators:

Hat = ∑
k

h̄ω0(k) ĉ†
k ĉk. (3)

The k dependence of the exciton band ω0(k) is a consequence
of the Coulomb dipole-dipole interaction and describes the
exciton propagation [21]. As this dependence is quite weak
in the present system, we will for simplicity neglect it in the
following and take a constant value ω0 throughout the whole
first Brillouin zone (fBz) of the reciprocal lattice. In physical
terms, the difference between ω̄0 and ω0 corresponds to the
Clausius-Mossotti local field correction [14].

The quantized transverse electromagnetic field is represented
by the e.m. vector potential operator [13]

Â(x) = ∑
k,g,λ

ελ

√
h̄

2ε0L3ωk+g

(
âk+g,λeikx + â†

k+g,λe−ikx
)

, (4)

where âk+g,λ and â†
k+g,λ are the photon annihilation and cre-

ation operators for the different modes, labelled by their po-
larization state ελ=1,2 and their wave vector. This latter sum
is split into the sum over Bloch wave vectors k spanning over
the fBz of the reciprocal lattice, and vectors g belonging to the
reciprocal lattice. In the cubic lattice geometry under consid-
eration here, the reciprocal lattice is itself cubic, with a lattice
constant equal to 2π/l [4]. The free-field Hamiltonian has the
usual form

H f ield = ∑
k,g

h̄ωk+g â†
k+g âk+g (5)

with the vacuum frequency of the photon ωk+g = c |k + g|.
c is here the speed of light and ε0 the dielectric constant of
vacuum. Throughout the whole paper SI units are in use.

In addition to the terms describing the internal atomic dynam-
ics Hat and the non-interacting field H f ield, the total Hamilto-
nian has to include terms Hint that couple the matter to the
transverse e.m. field. This is most simply done by means of the
standard minimal coupling replacement [13]. As we are con-
sidering optical fields with wavelengths much bigger than the
atomic size, a dipolar approximation can be performed within
Hint. Atoms are represented as electric dipoles of dipole mo-
ment µ. For the sake of simplicity, we restrict to a single po-
larization state parallel to the dipole moment of the atoms. In
this way, we can drop the polarization index λ and write Hint
in the final, compact form:

Hint = ∑
k,g

[
im

√
ωk+g

(
ĉk â†

k+g + ĉ−k âk+g

)
+ h.c.

]
+

+ ∑
k,g,g′

m′
√

ωk+gωk+g′
(â†

k+g âk+g′ + â†
k+g â†

−k+g′ + h.c.). (6)

We can easily recognize the different interacting terms: the
former is the usual dipole exciton-photon coupling, with
strength proportional to

m = µω0

√
h̄

2 ε0 l3 , (7)

and the latter is a “diamagnetic” photon-photon coupling in-
duced by the presence of atoms, with a coupling strength pro-
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portional to

m′ =
m2

h̄ω0
. (8)

For typical values of the system parameters, the coupling coef-
ficient m is generally small, i.e. m/

√
ω0 � h̄ω0, which implies

m′/ω0 � m/
√

ω0.

Thanks to the discrete translational symmetry of the lattice,
Bloch momentum is conserved by all terms in Eq. (6). This
means that only states with the same Bloch wave vector are
mixed by the light-matter interaction. As this set is discrete,
radiative decay (i.e. spontaneous emission) is forbidden and
energy coherently oscillates between the photonic and the ex-
citonic degrees of freedom [14]. This observation is crucial in
simplifying the physical analysis of the system.

The normal modes of the system, the so-called polaritons are
therefore superposition of the original photonic and excitonic
modes; they are classified by their Bloch momentum k, and
by a band index n. Thanks to the quadratic structure of the
Hamiltonian, the polaritonic operators can be obtained by
means of a Hopfield-Bogoliubov transformation in the gen-
eral form [14]:

α̂k,n = xk,n ĉk + zk,n ĉ†
−k + ∑

g

(
wk,g,n âk+g + yk,g,n â†

−k+g

)
. (9)

Provided the correct normalization |xk,n|2 − |zk,n|2 +
∑g

(
|wk,g,n|2 − |yk,g,k|2

)
= 1 is chosen, the polaritonic

operators satisfy bosonic commutation rules[
α̂k,n, α̂†

k′ ,n′

]
= δk,k′δn,n′ . (10)

The coefficients x, y, w, z are determined by solving the eigen-
value problem associated with the commutator[

α̂k,n, Ĥ
]

= h̄Ωk,nα̂k,n, (11)

where h̄Ωk,n is the polariton energy. The solution of this sys-
tem is equivalent to the diagonalization of the following Bo-
goliubov matrix

Lk =
(
Kk Mk
−M†

k −KT
k

)
(12)

with the Hermitian matrix

Kk =



h̄ω0
im√
ωk+g

im√
ωk+g′

...

−im√
ωk+g

h̄ωk+g + 2m′
ωk+g

2m′√
ωk+gωk+g′

...

−im√
ωk+g′

2m′√
ωk+gωk+g′

h̄ωk+g′ + 2m′
ωk+g′

...

· · · · · · · · ·
. . .


,

(13)
and the symmetric matrix

Mk =



0 −im√
ωk+g

−im√
ωk+g′

...

−im√
ωk+g

−2m′
ωk+g

−2m′√
ωk+gωk+g′

...

−im√
ωk+g′

−2m′√
ωk+gωk+g′

−2m′
ωk+g′

...

· · · · · · · · ·
. . .


. (14)

The first row and column correspond to the matter excitation.
For notational simplicity, only two photonic modes of wave
vectors k + g and k + g′ have been explicitely shown here,
but the matrices are intended to contain rows and columns
for each reciprocal lattice vector g.

While the diagonal blocks Kk of Lk are hermitian, the non-
diagonal Mk ones break the hermiticity of the matrix in the
usual sense: the matrix Lk is in fact Θ-hermitian, in the sense
that ΘLkΘ = L†

k, where Θ = diag(1, 1, 1,−1,−1,−1) defines
the Bogoliubov metric. Physically, this property is related to
the fact that the M blocks correspond to the anti-resonant
terms in the Hamiltonian Eq. (6), which do not conserve the
number of excitations [15]-[19]. Thanks to the small value of
the light-matter interaction coefficients m and m′ in the atomic
systems under consideration here, most of the physics un-
der investigation here can be obtained by neglecting the anti-
resonant terms Mk and truncating the Kk matrix to a small
number of photonic modes [20, 21].

3 1D LATTICE OF TWO-LEVEL ATOMS

3.1 Band structure

To get a simple physical understanding of the system, it is use-
ful to concentrate our discussion on the simplest case of a 1D
geometry: most effects related to resonant light-matter inter-
action are in fact indipendent from the dimensionality of the
system under consideration [6, 20, 22]. Interesting discussions
of the optical properties of different kinds of 1D resonant PCs
can be found in [7, 23]-[27].

Two frequency scales are to be considered: the atomic reso-
nance frequency ω0, and the Bragg frequency ωBr = cπ/l
of the lattice which carries information on the periodicity
of the lattice and derives from the famous Bragg condition
for diffraction spectroscopy in a reflection geometry [4]. The
width of the frequency region in which states are effectively
mixed and their splittings are determined by the interact-
ing Hamiltonian Eq. (6). At leading order, this is propor-
tional to m/

√
ω. Starting from this consideration, two differ-

ent regimes can be distinguished according to the ratio be-
tween the difference h̄(ω0 − ωBr) and the characteristic mix-
ing m/√ω(0,Br).

The first regime, let’s call it purely excitonic regime corresponds
to the case when the resonance frequency ω0 and the Bragg
frequency ωBr are well separated h̄ |ωBr −ω0| � m/√ω(0,Br).
An example of polaritonic dispersion for this regime is shown
in Figure 1a for ω0 < ωBr. For the sake of clarity, a somehow
exaggerated value of m has been used in the figure.

On one hand, the exciton and a single photonic mode inter-
sect in the interior of the fBz; their mixing results in an anti-
crossing of the polariton modes with a Rabi splitting equal to
h̄∆ω = 2m/

√
ω0. Far from this region, the polaritonic modes

tend to almost purely photon and exciton modes. On the other
hand, pair of photon modes intersect at the edge of the fBz at
frequencies multiple of ωBr; their mixing is due to Bragg scat-
tering processes on the atomic lattice.
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FIG. 1 Polariton dispersion in a 1D lattice of two-level atoms. Panel (a): Purely exci-

tonic regime, exciton-photon coupling (m/
√

ω0) ≈ 8× 10−2 h̄ω0, distance between

resonance and Bragg frequencies ωBr − ω0 ≈ 3ω0. Panel (b): Mixed exciton-Bragg

regime, exciton-photon coupling (m/
√

ω0) ≈ 10−2 h̄ω0, distance between resonance

and Bragg frequencies ωBr −ω0 ≈ 1.4× 10−2ω0. The gray regions correspond to the

gaps. For the sake of clarity, the dipole moment has been exaggerated with respect

to actual values of atomic systems.

Gaps open at the edges of the fBz: the lower one (around ω0)
is the usual polaritonic gap of resonant dielectrics [28], while
the upper one (just above ωBr) is due to Bragg scattering pro-
cesses. Differently from the bulk case, the former gap extends
on both sides of ω0 because of the limited size of the fBz. The
latter one is instead located strictly above ωBr. Its lower edge
is exactly at ωBr and corresponds to a purely photonic state,
unaffected by the presence of the atoms which are located at
the electric field nodes. As usual, the polaritonic density of
states vanishes inside the gaps, and radiative propagation at
these frequencies is forbidden.

From a formal point of view, the lower gap mainly originates
from the exciton-photon coupling, while the upper one con-
tains a contribution from the direct photon-photon coupling
as well. As m2/(h̄ωBr) ≈ m′, all these terms are of the same
order. This picture is preserved in 2D and 3D, as all other pho-
tonic modes that may participate are far away in energy.

The other regime, let’s call it mixed exciton-Bragg regime, is
characterized by the condition h̄(ωBr − ω0) . m/√ω(0,Br).
In this case three modes are simultaneously mixed, namely
two photon branches (the incoming one at k and the first
Bragg diffracted at k − 2π/l) and the excitonic state. Differ-
ently from the previous case, the splittings (again of the order
of m/√ω(0,Br)) are now located close to the edges of the fBz.
As one can see in Figure 1b, this results in much wider for-
bidden gaps of the order of the splitting. In addition to this,
the “central” band between ω0 and ωBr results squeezed and
shows a very flat dispersion over most of the fBz.

In the mixing region around the band edge, the upper and
lower polaritons are mixture of exciton and photons with al-
most equal weights, while the central polariton band at ωBr is
mostly photonic. This effect is easily explained in terms of the
electric field showing nodes at the atomic locations, as in the
previous regime.

3.2 Reflect ivity spectra

The band dispersion introduced in the previous section is a
complete description of the photon propagation inside the lat-
tice. Most spectroscopic experiments, however, involve light
beams which are incident onto finite systems and therefore
require a description of the interfaces between regions of dif-
ferent optical properties, namely the external vacuum and the
atomic lattice. This allows to calculate crucial properties of the
system, such as its reflectivity [7, 23]-[26].

This can be done by imposing suitable boundary conditions
on the electromagnetic fields: Maxwell theory imposes in fact
the continuity of both the electric field and its spatial deriva-
tive. In the following, we shall restrict to the most relevant
case of a coherent, monochromatic excitation at ω. Outside the
lattice, we have purely photonic, coherent plane waves with
wave vectors such that |k| = ω/c. Inside the lattice, the field
propagates as coherent polaritonic states of modes such that
Ωk,n = ω.

The electric field is the expectation value of the electric field
operator

Ê(x) = i

√
h̄

2ε0L3 ∑
q

√
ωq

(
âqeiqx − â†

qe−iqx
)

. (15)

Outside the lattice, the electric field associated with a photonic
coherent state of wave vector k is given by

E(x, t) = 〈coh : ak(t)| Ê(x) |coh : ak(t)〉

= i

√
h̄ωk

2ε0L3 ak ei(kx−ωkt) + h.c.. (16)

Inside the lattice, one is to consider a polaritonic coherent state
with Bloch wave vector k in the n band satisfying

α̂k,n |coh : αk,n(t)〉 = αk,n(t) |coh : αk,n(t)〉; (17)

time evolution of such a state under the system Hamiltonian
corresponds to

αk,n(t) = αk,n e−iΩk,nt = αk,n e−iωt. (18)

The electric field of such a state is then:

E(x, t) =
〈
coh : αk,n(t)

∣∣ Ê(x)
∣∣coh : αk,n(t)

〉
=

=

∑
g

i

√
h̄ ωk+g

2ε0L3 αk,n (w∗k,g,n + y∗k,−g,n) ei((k+g)x−Ωk,nt) + h.c.

 .

(19)

The amplitudes ak and αk,n are then determined by matching
the fields Eqs. (16) and (19) at the interfaces for the given ge-
ometry under consideration.

The plots in Figure 2 and Figure 3 show the reflectivity spec-
tra in respectively the purely excitonic and the mixed exciton-
Bragg regimes. Two geometries will be considered: a semi-
infinite [panels (a)], and a finite one [panels (b)]. Note that
these predictions exactly coincide with the ones of semi-
classical calculations where matter is described in terms of a
dielectric polarizability [6, 7, 22, 24]-[27].
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FIG. 2 Reflectivity spectra in the purely excitonic regime for (a) a semi-infinite lattice,

(b) a finite one containing M = 100 cells. Parameters as in Figure 1. The gray regions

correspond to the gaps.
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FIG. 3 Reflectivity spectra in the mixed exciton-Bragg regime for (a) a semi-infinite

lattice, (b) a finite one containing M = 100 cells. Parameters as in Figure 1. The gray

regions correspond to the gaps.

3.2.1 Semi-infinite geometry

In the first case, Figure 2a and Figure 3a, there is a single inter-
face, dividing the space in two semi-infinite regions: vacuum
and lattice.

We first consider the input problem with an incoming and a
reflected plane wave in the vacuum and a single transmitted
polariton Bloch mode in the lattice: the Bloch momentum k
in the fBz and the band index n of this latter are chosen in
order to satisfy energy conservation ω = Ωk,n. The reflection
amplitude rin is then expressed in terms of the electric field of
the polariton and its spatial derivative as

rin = e2i(ω/c)(l/2) E(l/2) + i(c/ω)E′(l/2)
E(l/2)− i(c/ω)E′(l/2)

. (20)

The point x = l/2 lies on the edge of the elementary cell, i.e.
midway between neighbouring atoms 1.

The mismatch between the photonic components of the po-
lariton state and the incoming wave determines the reflectiv-
ity Rin = |rin|2 shown in the figures: this is significant around
the gaps where the incoming wave is strongly mixed with ei-
ther an exciton [around the lower gap in Figure 2a], a pho-
ton [around the upper gap in Figure 2a], or both [around both
gaps of Figure 3a]. In the mixed exciton-Bragg regime, note
that the reflectivity remains quite large in between the two
gaps: the flatter the middle-polariton branch, the higher the

1Actual numerical calculations are performed by truncating the full ma-
trix (12) to a finite number of modes; in order to obtain a smooth conver-
gence, a gaussian cut-off has also been added on higher photonic modes.
This cut-off physically mimicks finite size atoms. Because of the singularity
in the field at the atomic position x = 0, evaluating the fields at x = l/2
rather than at x = 0 ensures faster convergence.

corresponding reflectivity. In the present semi-infinite geom-
etry, reflectivity is complete inside the gaps where the wave
vector becomes imaginary and the field inside the lattice con-
sists of an evanescent wave.

The output problem corresponds to two counterpropagating
Bloch modes with the same energy inside the lattice and a sin-
gle transmitted plane wave in the external vacuum. In this sit-
uation, the reflectivity is given by Rout = |rout|2 with

rout = −
E+(l/2) + i(c/ω)E′+(l/2)
E−(l/2) + i(c/ω)E′−(l/2)

, (21)

where the + and − signs refer to the propagation versa of the
polaritons.

The system being invariant under time reversal and spatial
parity, it is easy to prove that the coefficients wg and yg en-
tering in the formula Eq. (19) for polariton field share the
same phase and can be chosen to be all real. The electric fields
of counterpropagating polaritons are therefore complex con-
jugates of each other E−(x) = E+(x)∗. Plugging this into
Eq. (21) and comparing the result with Eq. (20), it is imme-
diate to see that Rin = Rout.

3.2.2 Finite slab

Reflectivity spectra are shown in Figures 2b and 3b for a fi-
nite system containing a quite large number M of elemen-
tary cells. Note that the present approach is not able to cal-
culate the reflectivity inside the gaps where the field consists
of an evanescent wave. The main difference with respect to
the semi-infinite case is the presence of fast oscillations on top
of the reflectivity spectrum around the main gaps. This can be
explained as follows.

Two interfaces at respectively x f r = −((M − 1) + 1/2)l and
xback = l/2 now separate three regions of space: the vacuum
with the incident and reflected photons, the finite-size lattice
with counterpropagating polaritons, and again vacuum with
now only a transmitted photon. The field in the last cell (x ∈
[−l/2, l/2]) is determined by the output problem to be

Est(x) = E+(x) + routE−(x). (22)

As both E±(x) are Bloch states, the field in the first cell (taking
x ∈ [−((M− 1) + 1/2)l,−((M− 1)− 1/2)l]) has the simple
form

Ẽst(x) = E+(x + (M− 1)l) e−ikl(M−1)

+ routE−(x + (M− 1)l) eikl(M−1). (23)

By solving the continuity conditions at the front interface at
x = x f r, we get

rslab = e2i(ω/c)x f r
Ẽst(x f r) + i(c/ω)Ẽ′st(x f r)
Ẽst(x f r)− i(c/ω)Ẽ′st(x f r)

. (24)

Because of the phase factors in Eq. (23), fast oscillations occur
in the reflectivity Eq. (24) due to the Fabry-Perot-like interfer-
ence of Bloch waves which undergo multiple reflections at the
lattice boundaries. The period ∆ω of these oscillations is fixed
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by the group velocity vgr
k,n = dΩk,n/dk and the total length of

the system L = Ml,

∆ω =
π

L
vgr

k,n : (25)

the slower vgr
k,n, the closer the peaks.

To compare the envelope of this oscillations with the spec-
trum in the semi-infinite geometry, we can consider a simpli-
fied model where the lattice is replaced by a bulk medium of
refractive index n. In this case, the reflectivity for a single in-
terface separating vacuum and medium is

Rint =
(

1− n
1 + n

)2
. (26)

For a slab of thickness L, the reflectivity is [29]

Rslab =
(n− 1/n)2 sin2(ωnL/c)

4 cos2(ωnL/c) + (n + 1/n)2 sin2(ωnL/c)
(27)

Fabry-Perot oscillations are apparent, with a maximum reflec-
tivity at the peaks equal to

Rmax
slab =

(
1− n2

1 + n2

)2

. (28)

In the limit n → 1, the ratio (Rmax
slab /Rint) → 4: this is due

to the presence of two counterpropagating Bloch modes in
the slab as compared to the single propagating mode in the
semi-infinite case. This factor 4 provides a good approxima-
tion in the lattice case as well, as one can easily see in the low-
reflectivity tails of the spectra of Figures 2 and 3.

The peak at Bragg frequency, which is more related to the pho-
tonic components, is generally smaller than the resonant one.
This difference is dramatically enhanced in the purely exci-
tonic regime as you can see in Figure 2b.

4 1D latt ice of three-level atoms

Systems of three-level atoms are of great relevance for both
quantum and non-linear optics. A most remarkable phe-
nomenon in this respect is the so called Electromagnetically In-
duced Transparency (EIT) [30] which, among other properties,
can lead to ultra-slow light propagation [31]-[33] in spectral
regions where absorption and reflectivity are also very low.
This fact makes three-level systems extremely interesting sys-
tems to study and manipulate light in new regimes.

We consider the three-level Λ configuration shown in Fig-
ure 4: in addition to the previously considered two-level
scheme, there is a metastable state |m〉which is coupled to the
excited state by a classical (laser) field. The |m〉 ⇔ |g〉 transi-
tion is optically forbidden.

The coupling beam dresses the metastable state, so to give a
new mixed excitation formed by the atom promoted to the
metastable state and an extra photon correspondingly emit-
ted into the dressing beam: this new state has an energy
h̄ω̃m = h̄(ωm + ωc), where ωm and ωc are the frequencies
of respectively the bare metastable state (with respect to the

Ω
c

|e〉

|g〉
|m〉X

FIG. 4 Sketch of the three-level Λ configuration.

ground state |g〉) and the dressing laser light [13]. Its detuning
from the excited state is then δc = (ω̃m − ω0). The Hamilto-
nian describing the dressing is

Hc =
h̄Ωc

2 ∑
i

(
b̂†

i d̂i + b̂i d̂†
i

)
, (29)

where Ωc is the Rabi frequency of the dressing beam and the
operators d̂i, d̂†

i destroy and create the dressed metastable ex-
citation for the atom i.

As above, the introduction of the radiation-matter interac-
tion is performed by means of the minimal coupling replace-
ment [19]:

b̂i → b̂i − i
µ

h̄
Â(li). (30)

The d̂ operators remain instead unchanged as the metastable
state is not directly coupled to the quantized field. After the
minimal coupling replacement, the dressing Hamiltonian has
the form:

Hc =
h̄Ωc

2 ∑
i

(
b̂†

i d̂i + b̂i d̂†
i + i

µ

h̄
Â(li)d̂i − i

µ

h̄
Â(li)d̂†

i

)
. (31)

Note the appearance of terms directly coupling the dressed
metastable state to the light field. These terms are however of
the order of mc/

√
ω0 (with mc = mΩc/2ω0), and therefore

much smaller than all the other coupling strengths in the sys-
tem.

By following the same procedure as above, new excitonic de-
localized operators can be constructed for the dressed state,
and then included in the Bogoliubov matrix: the resulting po-
laritonic bands and the corresponding reflectivity spectra are
shown in Figures 5a,b in the purely excitonic regime and for
a resonant dressing δc = 0. Note that only the region around
the atomic resonance is shown in the figure.

For the sake of simplicity, we concentrate our attention onto
a purely excitonic case ω0 � ωBr where the lattice spacing is
much smaller than the resonance optical wavelength. The sig-
nature of the three-level scheme is the presence of a flat EIT
mini-band corresponding to the “central” polariton. The most
interesting region is around the Raman resonance ωk = ω̃m
between the quantized radiation and the dressed state. This
spectral region can be simply explored in terms of the reduced
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FIG. 5 Polariton properties in a 1D lattice of three-level atoms. Dispersion (a,d), reflectivity (b,e), group velocity (c,f) in the region around resonance. Red, solid line is lower

polariton; blue, dot-dashed line is central polariton; green, dotted line is upper polariton; black, dashed line is photon dispersion in vacuum. Parameters for a l = 100 nm lattice

of Rb atoms in the purely excitonic regime: ωBr − ω0 ≈ 3ω0, exciton-photon coupling m/
√

ω0 ≈ 4× 10−4 h̄ω0, dressing amplitude Ωc/ω0 = 2× 10−7. Panels (a,b,c):

ω ≈ ω̃m = ω0, δc = 0 (initial state of the photon lifter). Panels (d,e,f): δc/ω0 = 1.2× 10−5 (final state of the lifter). In the different panels, the blue circles indicate the

position of the wavepacket to be “lifted”.

3× 3 Bogoliubov matrix h̄δk im/
√

ω0 0
−im/

√
ω0 −h̄δc h̄Ωc/2

0 h̄Ωc/2 0

 , (32)

where only the incident photon (1st row) mode, the excited
state (2nd row), and the dressed metastable state (3rd row)
are considered. δk = ck − ω̃m is the detuning of the photon
mode from atomic resonance. As we are considering a small
region δk � ω0, we have replaced ωk with ω0 in the light-
matter coupling terms. We have also neglected the m′ and mc
coupling terms as they are much smaller than the other terms.

A noticeable property of Eq. (32) exactly at Raman resonance
δk = 0 is that for any value of different parameters there exists
an eigenvalue λ = 0 corresponding to the central polariton.
Its eigenvector has a vanishing exciton component and a pho-
tonic weight

Wph =
Ω2

c

Ω2
c + (4m2/h̄2ω0)

, (33)

so that the group velocity is

vgr = c
Ω2

c

Ω2
c + (4m2/h̄2ω0)

: (34)

a significant reduction of the polariton group velocity is then
observed as soon as a weak dressing amplitude is used h̄Ωc �
m/
√

ω0 (see Figure 5c). Furthermore, reflection at the lattice
interfaces is vanishing in the central region of the central po-
lariton band, which allows for easy injection of polaritons in
the system (as shown in Figure 5b).

A simple model to quantify the width of the region where re-
flection is low can be developed as follows. Defining an effec-
tive index for the lattice as ne f f = ck/Ωk = (ck0 + δk)/(ck0 +
δkvgr/c), and applying classical reflection result Eq. (28), the
reflectivity envelope for a semi-infinite system turns out to be
approximately given by:

Rint ≈
(ω−ω0)2

4 ω2
0

c2

v2
gr

. (35)

This approximation is accurate at the center of the dip where
the reflectivity is small. Comparing the two main results (34)
and (35) of the present section, a trade-off is apparent: the
slower the light, the narrower the reflectivity dip [32].

5 Applicat ion: photon energy l i f ter

Obtaining a coherent and widely tunable frequency conver-
sion of an optical signal is a central task in optical telecommu-
nications [34]. Several techniques have been developed during
the years to perform this operation, but most of them suffer
from significant limitations in their application range, or are
disturbed by spurious effects.

A recent proposal is based on the so-called dynamic photonic
structures (for a review see e.g. [35]), whose optical proper-
ties are varied in real time while the optical wavepacket is
propagating inside them. The basic idea of the photon lifter
consists in the adiabatic shift of the photonic band on which
the photon is located. This was orginally proposed for solid-
state photonic structures [12], but it is interesting to explore
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the potential of cold atom systems to this purpose: the very
long coherence times in a Mott insulator state and the easy
tunability by external electric or magnetic fields makes them
very promising for this kind of applications.

As a specific example, we shall consider in what follows a sys-
tem of 87Rb atoms, trapped in a cubic optical lattice of spacing
l = 100nm. The optical properties are varied by means of an
external magnetic field (taken as parallel to the z axis) which
shifts the atomic levels via the Zeeman effect [36].

In the following, we concentrate on the D2 transition at a fre-
quency ω0/2π = 384 THz [37]. As we are interested in sub-
stantial shifts, we can concentrate our attention in the high
field regime (B > 5× 103 G) where the atomic nucleus is de-
coupled from the electronic degrees of freedom, and the en-
ergy shift mostly comes from the electronic total angular mo-
mentum only: ∆E = µBgJ JzBz, where µB is the Bohr magne-
ton, gJ is the Landé factor of the considered level and Jz is the
z component of the total angular momentum of the electron.
We use the |J = 1/2, Jz = ∓1/2〉 sublevels of the 52S1/2 elec-
tronic ground state as respectively ground |g〉 and metastable
|m〉 states, and the |J = 3/2, Jz = 1/2〉 sublevel of the 52P3/2
electronic excited state as excited |e〉 state. The corresponding
Landé factors are gJ=1/2 = 2 and gJ=3/2 = 4/3. The nucleus
is not affected by the optical process and maintains the same
polarization it had in the initial state: in the absolute atomic
ground state, the nuclear spin is e.g. polarized antiparallel to
the electron spin of the |J = 1/2, Jz = −1/2〉 state.

A z polarization is used for the dressing light beam that cou-
ples the |m〉 and the |e〉 states, and a σ+ one is used to probe
the polariton dispersion on the |g〉 → |e〉 transition. Using tab-
ulated values for the electric dipole moment of the D2 transi-
tion, the exciton-photon coupling Eq. (7) for the system under
consideration is of the order of m/

√
ω0 ≈ 10−4h̄ω0.

To maximize the available time to perform the lifter operation,
it is useful to have a very slow group velocity, which in turns
requires a small dressing amplitude. In the following, we shall
choose Ωc/ω0 = 2× 10−7. This value ΩC/2π ≈ 76 MHz cor-
responds to 10 times the radiative linewidth of the D line of
Rb atoms.

The dressing frequency is chosen in a way to have δc = 0
at the initial value Bin of the magnetic field: the correspond-
ing polariton dispersion is the one shown in Figure 5a. The
light pulse is injected into the system in proximity of the reso-
nant point δk = 0, where the interface reflectivity goes to zero,
and injection is most effective (see the circle in Figure 5a): the
width of this dip results from Eq. (35) to be of the order of
2× 10−8ω0 and the group velocity Eq. (34) is vgr/c ≈ 7× 10−8,
i.e. vgr ≈ 20 m/s.

The magnetic field variation is performed while the light
pulse to be shifted is completely contained in the lattice and is
propagating through an effectively bulk system. As the mag-
netic field is varied in a spatially homogeneous way, the Bloch
wave vector is conserved during the process. If the field vari-
ation is slow enough as compared to the frequency difference
of neighbouring bands, the polaritons will adiabatically fol-

low the band and their frequency at the end of the process
will be accordingly shifted (see the circle in Figure 5d).

As an example, we propose to tune the magnetic field from
1 up to 2 T: this results in the metastable and excited states
being shifted by respectively (δm − δg)/ω0 = 7.3× 10−5 and
(δe − δg)/ω0 = 6.1× 10−5 with respect to the ground state.
For light initially injected in proximity of ω0 = ω̃m, the shift
of the photon frequency results approximately equal to δm,
which amounts to the quite sizeable value 14 GHz/T. As the
lifter operation is based on an adiabatic shift of the polariton
dispersion, it completely preserves the pulse shape and the
coherence properties of the incident wavepacket, both at clas-
sical and at quantum level.

6 Experimental issues

To verify the actual feasibility of such a promising experiment,
it is important to mention the main practical difficulties that
may arise in an actual experiment, and discuss how these can
be overcome.

1. We have verified that the transmittivity of the lattice in-
terfaces is close to 1 for both the injection and the extrac-
tion process (Figures 5b,e). The pulse is injected into the
lattice at a frequency corresponding to the EIT reflectivity
dip around Raman resonance. The extraction takes place
in close proximity of the Raman resonance where reflec-
tivity is again very low. This, in spite of the fact we are
very close to a gap: thanks to the now significant detun-
ing δc, the metastable state is in fact weakly coupled to
light, and the corresponding crossing point is displaced
slightly away from the light line.

2. In order to have a reasonably long time to vary the mag-
netic field, we have verified that the group velocity of the
polariton states involved in the lifter operation is slow.
Light initially propagates on the EIT slow light branch,
which is deformed during the lifter operation. At the end,
the wavepacket is found on the very flat region below the
gap where the group velocity is low.

3. The wavepacket has to be shorter than the lattice length,
still its frequency spectrum has to fit in the reflectivity dip
at both injection and extraction. A lattice of M = 1000
cells is able to accomodate pulses with at most ∆k &
1/(lM) = kBr/(πM). From panel (a), this corresponds
to a lower bound on the frequency width of the incom-
ing wavepacket ∆ωin = ∆k vgr

in > 5× 10−10 ω0. One can
easily see in panel (b) that this frequency spread still fits
within the injection window where reflectivity is low. The
same can be verified on panels (d-e) for the extraction
process.

4. In order for the pulse shape not to be affected, dispersion
of the group velocity should be small for the wavevec-
tor window ∆k under examination. Initially, this is not a
problem, as we are working close to the center of the EIT
branch where the group velocity has a weak dispersion.
The situation can be more critical on extraction, because
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of the strong squeezing of the polariton band in the re-
gion just below the gap. The importance of this effect can
be reduced by choosing pulses initially tuned just above
the Raman resonance.

One major constraint that still exists on the experimental
parameters concerns the speed at which the magnetic field
has to be actually varied. As this has to be done while the
wavepacket is inside the lattice, a very slow group velocity
and a long lattice are required. Using values for state-of-the-
art MIs. namely L = M l = 100 µm, and vgr = 20 m/s, one
obtains that one disposes of a time of approximately 5 µs to
perform the magnetic field variation. This means that a varia-
tion of ∆B = 1 T requires a very large rate of 2 kG/µs.

As this can pose serious difficulties in an actual experiment, it
is worth briefly exploring alternative strategies. An interesting
possibility is to further reduce the dressing amplitude Ωc. As
the polariton group velocity is proportional to the square of
the dressing amplitude, the value Ωc = 2× 10−8ω0 used in a
recent slow light experiment [33] already leads to a group ve-
locity of the order of 20 cm/s which corresponds to an avail-
able time of 500 µs. In the high-field regime considered here, a
photon frequency shift of 1 GHz then requires a magnetic field
variation of 500 G in 500 µs, a rate routinely used in cold atom
experiments.

It is important to note that the reduction of the dressing am-
plitude implies a squeezing of the reflectivity dip at injection
and an enhancement of the dispersion at extraction. These, ap-
parently serious problems are overcome thanks to the fact that
a reduction in the group velocity implies a spatial shortening
of the pulse in the lattice, and therefore a reduced frequency
spread for a given length.

7 Conclusions

In conclusion, we have developed a fully quantum descrip-
tion of radiation-matter interaction in a gas of ultracold atoms
trapped in the Mott insulator phase of an optical lattice. The
coherent interaction between photons and atomic excitations
gives rise to new, mixed polaritonic excitations.

In the case of two-level atoms, two different regimes are iden-
tified. In the purely excitonic regime, where the atomic reso-
nance is far from the Bragg frequency of the lattice, two gaps
appear in the energy spectrum. In the mixed exciton-Bragg
regime, the interplay of the atomic resonance and the lattice
periodicity enhances the gap amplitudes and gives rise to a
flat band between them. The consequences of the polariton
dispersion on the reflection properties of finite lattices have
been investigated.

The theory is then extended to a system of three-level atoms in
a Λ configuration. The slow-light band which joins weak re-
flection to ultra-slow group velocity turns out to be the most
promising in view of applications as a photon lifter, i.e. a de-
vice able to shift the carrier frequency of an optical pulse with-
out affecting its shape nor spoiling its coherence properties.

Advantages and disadvantages of using atomic gases as pho-
ton lifters are discussed.

Future work will address the application of slow as well as
stopped polaritons as non-destructive probes of the micro-
scopic properties of ultracold gases, e.g. the behaviour of mat-
ter wave coherence across the superfluid to Mott insulator
transition.
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