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We address precision of estimation of the degree of polarization (DOP) from the orthogonal state contrast image (OSCI) in the presence of
both signal-dependent Poisson noise due to useful signal, and additive Poisson noise due to dark current and / or background light. We de-
termine the Cramer Rao Lower Bound and deduce from it figures of merit for DOP estimation. In particular, we show that the additive Poisson
noise has larger influence on DOP estimation than on intensity estimation when light is highly polarized. [DOI: 10.2971/jeos.2008.08002]
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1 INTRODUCTION

Polarimetric imaging is an important tool for characterizing
materials and observing contrasts that are not detectable in
conventional intensity images. It has applications in remote
sensing [1, 2], biomedical imaging [3, 4], optical coherence
tomography [5], etc. A simple but efficient active polarimet-
ric imaging mode consists in measuring the orthogonal state
contrast image (OSCI) from two intensity measurements. The
OSCI is an estimate of the degree of polarization (DOP) if the
observed material is purely depolarizing, which is a reason-
able assumption for natural materials observed in monostatic
configuration [6]. We will make this assumption in the fol-
lowing of this paper. However, these intensity measurements
are perturbed with noise, and its influence on DOP estima-
tion must be studied. Such analyses have recently been done
for Gamma noise [7], combined Poisson and speckle noise [8],
and Gaussian noise [9].

We address in this paper the case where the two active inten-
sity images used to build up the OSCI image are perturbed by
the signal-dependent Poisson noise due to the useful signal
and an additive Poisson noise that is independent of the use-
ful signal. This latter can be due to background light, dark cur-
rent or surrounding light which is reflected or backscattered
by the scene and is considered as a passive contribution. This
model has not yet been studied in the literature, whereas it
can be relevant for example in infra-red imaging, where back-
ground noise is an important issue, in low flux images where
dark current noise may not be negligible compared to use-
ful signal, or in every active imaging system where a passive
contribution due to other light sources will be encountered.

The obtained results are thus useful for analyzing the impact
of noise on DOP measurement by quantum detectors such as
CCD.

This article is organized as follows. In Section 2, we describe
the data model and discuss practical situations where it is
relevant. In Section 3, we determine the Cramer-Rao Lower
Bounds (CRLB) on estimation of the intensity and the DOP
of a homogeneous sample in a OSCI and discuss their ex-
pressions relatively to previously published results. In Sec-
tion 4, we analyze the physical meaning of these expressions
of CRLB. We show that the additive Poisson noise has larger
influence on DOP estimation than on intensity estimation
when light is highly polarized, and propose figure of merits
to visualize this phenomenon.

2 DATA AND NOISE MODEL

In the imaging system we consider, the scene is illuminated
with totally polarized light. A first image Xi, i ∈ [1, N] is
formed with the fraction of light backscattered by the scene
which is in the same polarization state as the incident light
(please note that for the sake of simplicity, one-dimensional
notation is used for images). A second image Yi is formed
with the fraction of light polarized orthogonally to the inci-
dent light. At each pixel i, the values Xi (Yi) are expressed in
terms of number of photoelectrons measured by the detector.
In the following, we will assume that the images Xi (Yi) are
homogeneous, that is, the average number of photoelectrons
is equal to mX (mY) for all pixels i. If the imaged scene is com-
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plex, this model can thus represent a region where the val-
ues of mX (mY) is approximately constant. This hypothesis is
classical and necessary to study the estimation precision. The
mean numbers of photoelectrons can also be written as

mX =
I
2
(1 + P) and mY =

I
2
(1− P). (1)

The variable I = mX + mY denotes the total intensity of the
signal, and the variable P represents its DOP.

The photoelectrons generated by the backscattered fraction of
illumination light will be called the useful signal. In addition to
this signal, we assume that an average number of gX (gY) elec-
trons are also measured by the detector in the channel Xi(Yi).
These electrons correspond to the sum of all possible sources
of additive noise. Let us consider some possible sources of
such additive noise. A first one is dark current, which is due
to the generation of electrons in the detector in the absence of
illumination. This noise depends mainly on temperature and
exposure time, and is known to follow a Poisson distribution
[10]. For such a noise, the parameters gX (gY) represent the
average number of dark electrons measured in each channel.
Since images Xi and Yi are measured by identical sensors in
similar conditions, one has naturally the same average num-
ber of dark current electrons on both parallel and orthogonal
channels, that is, gX = gY = g.

A second type of noise is always encountered in active im-
agery systems, where the useful signal is due to the fraction
of the polarized illumination which is backscattered by the
scene. In general, there are also ambient light sources such as
sun or lamps whose light is scattered by the scene and pro-
duce a signal whose quantum fluctuations can be considered
as noise. Generally speaking, such light sources are unpolar-
ized. Moreover, we consider that the materials that compose
the scene can be considered totally depolarizing with good
approximation [6]. Such materials have a diagonal Mueller
matrix and thus have no polarizance [11]: if unpolarized light
impinges on such materials, it remains unpolarized. One thus
observes gX = gY = g. To check this fact, we used an active
imaging setup with a Basler A312f camera, and measured the
contribution signals gX and gY without active illumination in
the two channels for different type of materials in the scene.
It is seen in Table 1 that the difference between gX and gY
does not exceed 4%. This small difference can be due to ori-
entation of the materials that may slightly polarize the light.
In this setup, it can thus be assumed that gX = gY = g. In
infra-red imaging, another source of additive noise is thermal
light emitted by the scene. If this light is unpolarized, it will
generate an average number of photoelectrons g identical on
both channels.

In this paper, we will limit ourselves to the case gX = gY = g,
since it contains most of the essential physical results. How-
ever, all the results obtained below can be easily generalized
to the case gX 6= gY with a slight increase of complexity of the
expressions. Finally, it is reasonably sound to assume that all
the above mentioned sources of noise are independent. Since
they all have Poisson statistics, their contributions are addi-
tive and the final value of g is the sum of the average number
of photoelectrons related to each of these sources of noise.

Material gX gY
(gX−gY)

(gX+gY)/2

white paper 395 409 3.5%
white teflon 1063 1069 0.5%

grey painting 1095 1140 4.0%
bare metal 1072 1062 0.9%

TABLE 1 Backscattered light (in Digital Unit) by different materials with unpolarized

white ambient light. One has represented gX , gY , and
(gX−gY )

(gX+gY )/2 which represents

the relative difference between gX and gY .

Taking into account the photoelectrons from the useful signal
and the additive noise, the average number of electrons mea-
sured by the detector in channel Xi (Yi) is mX + g (mY + g).
Associated with these average values are fluctuations, which
are given by the Poisson statistics. The actual number of elec-
trons n measured in channel Ui is thus a random variable dis-
tributed with the following probability law:

PUi (n) = exp [−(mU + g)]
(mU + g)n

n!
, (2)

with U = X or Y. According to this model, the fluctuations in
channels Xi and Yi are statistically independent.

3 PRECISION OF ESTIMATION OF
INTENSITY AND DOP

Our objective is to determine the precision of estimation of
the parameters I and P in the presence of the above defined
fluctuations. For that purpose, we will determine the Cramer-
Rao Lower Bound (CRLB), which is a lower bound on the
variance that can be reached by unbiased estimators of these
parameters, assuming that the parameter g is known. Deter-
mination of the CRLB first requires the expression of the log-
likelihood [12]. According to the above defined statistical data
model (see Eq. 2) and Eq. 1, the expression of the loglikelihood
is:

`(I, P) =
N

∑
i=1

log PXi (Xi) +
N

∑
i=1

log PYi (Yi) (3)

= −N(I + 2g) + SX log
[

I
2

(1 + P) + g
]

+SY log
[

I
2

(1− P) + g
]

+ A, (4)

where A does not depend on I nor on P, SX = ∑N
i=1 Xi and

SY = ∑N
i=1 Yi. Using this expression, the Fisher matrix defined

as F =
[
−

〈
∂2`/(∂θi∂θj)

〉]
1≤i≤2,1≤j≤2 where θ1 = I and θ2 =

P, has the following expression:

F =
N
Q

[
I(1− P2) + 2g(1 + P2) 2gIP

2gIP I2(I + 2g)

]
, (5)

where Q = (I + 2g)2 − (IP)2. Taking the inverse of this ma-
trix, one obtains:

J = F−1 =
1
N

[
I + 2g −2gP/I
−2gP/I (1− P2)/I + 2g(1 + P2)/I2

]
.

(6)
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The parameters I and P can be gathered in a parameter vector
aT = (I, P). Let us consider an estimator â of the parame-
ter vector a, and assume that it is unbiased, that is, 〈â〉 = a0,
where a0 is the true value of the parameters. The precision of
this estimator can be characterized by its covariance matrix
Γ =

〈
(a− a0)(a− a0)T〉

. This covariance matrix is not easy to
determine. The Cramer-Rao theorem provides a lower bound
on the elements of this matrix in the following way [12]:
∀v ∈ R2, vTΓv ≥ vT Jv. In particular, if v is such that vi = 1
and ∀j 6= i, vj = 0, one obtains : Γii ≥ Jii. Remembering that
the diagonal element Γii of the covariance matrix is equal to
the variance of the component âi of the estimator, the matrix
element Jii represents a lower bound on the variance of unbi-
ased estimation of parameter ai, which is called Cramer-Rao
Lower Bound (CRLB) [12].

Consequently, from the expression of J in Eq. 6, the CRLB κI
and κP of I and P have the following expression:

κI(g) = κsd
I + κa

I

with κsd
I =

I
N

and κa
I =

2g
N

, (7)

κP(g) = κsd
P + κa

P

with κsd
P =

(1− P2)
NI

and κa
P =

2g(1 + P2)
NI2 . (8)

These expressions constitute the basic result of the present
work. It is seen that for both estimations of I and P, the CRLB
in the sum of the classical signal-dependent Poisson CRLB
(κsd

I , κsd
P ) and of a contribution due to the additive noise (κa

I ,
κa

P). Indeed, when the additive contribution to noise is zero,
that is, g = 0, one has κI(0) = κsd

I = I/N, which is the
well known value of the estimation variance of I in the pres-
ence of signal-dependent Poisson noise only. One also has
κP(0) = κsd

P = (1 − P2)/(NI), which has been shown in [8]
to be the CRLB of DOP estimation in the presence of Pois-
son noise. The contribution of additive noise to intensity es-
timation is κa

I = 2g/N, which is simply the CRLB in the
presence of the sum of two independent noises of variance
g (one from the parallel channel and one from the orthogo-
nal channel). The additive contribution to DOP estimation is
κa

P = 2g(1 + P2)/(NI2). In [9], the CRLB in the presence of
an additive Gaussian noise of variance σ2 has been shown to
be 2σ2(1 + P2)/(NI2). We can see a great similarity with κa

P,
since the variance of the Poisson additive noise is g.

One can also note that the CRLB of I is independent of the
actual DOP, P, whereas the CRLB of P depends on P. More
precisely, κsd

P decreases with P and is null for totally polarized
light. This is understandable since in this case, the average in-
tensity in the orthogonal channel mY is 0 and thus the noise
has also a zero variance in this channel. On the other hand, the
additive contribution κa

P increases with P, and never reaches
0. Indeed, since the noise is independent of the intensity of the
useful signal, it is always present even if the signal is zero.

4 COMPARISON OF ADDITIVE AND
SIGNAL-DEPENDENT POISSON NOISES

It is of interest to analyze the influence of an increasing level of
additive Poisson noises on the global estimation uncertainty.

Let us first consider estimation of I. It is clear from Eq. 8 that
the estimation variance increases with g. We have plotted in
Figure 1 the ratio

ρI(g) =
κI(g)
κI(0)

= 1 + 2
g
I

, (9)

which represents the ratio between the CRLB for a given value
of g and the CRLB without additive noise, that is, g = 0. It in-
creases linearly with the ratio g/I, which can be considered as
a signal to noise ratio associated with the additive contribu-
tion to noise. Let us now consider estimation of the DOP. We
have plotted on Figure 1 the ratio:

ρP(g) =
κP(g)
κP(0)

= 1 + 2
(

1 + P2

1− P2

)
g
I

. (10)

This ratio also depends linearly on g/I, but the slope depends
on the value of the DOP P. This slope tends to infinity as P
tends to 1, that is, when light becomes highly polarized. It thus
clearly appears that the influence of a given level of additive
noise is higher on DOP estimation than on intensity estima-
tion when light is highly polarized.

As another way of characterizing this effect, one can fix the pa-
rameter g and define ”crossover” values of I that correspond
to the situation where the CRLB corresponding to the signal-
dependent and additive contributions are equal. This corre-
sponds in Figure 1 to the intersections of the lines representing
ρI and ρP and the horizontal line of equation ρ = 2. For inten-

0 0.2 0.4 0.6 0.8 1
0

0.5

1
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2.5

3

g/I

ρ

P=0.8 P=0.5 P=0.2

ρ
I

ρ
P

FIG. 1 Ratio ρI(g) and ρP(g) as a function of g/I for different values of P.

sity estimation, κsd
I = κa

I is obtained when intensity is equal
to:

I I
c = 2g,

that is, when the average intensity of the useful signal is twice
that of the additive contribution. This value does not depend
on the degree of polarization. When I < I I

c , additive noise is
dominant, whereas signal-dependent noise is dominant when
I > I I

c . Let us now consider estimation of P. The crossover
happens when κsd

P = κa
P, that is, when intensity is equal to:

IP
c = 2g

1 + P2

1− P2 .
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Contrary to the case of intensity estimation, this value de-
pends on P. We have plotted in Figure 2 the ratio of the in-
tensity and DOP crossover values IP

c /I I
c as a function of P.

For totally depolarized light, one has IP
c = I I

c . On the other

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

I cP
 /

 I
cI

P

FIG. 2 Ratio IP
c /I I

c as a function of P.

hand, when P tends to 1, the ratio tends to infinity. For highly
polarized light, IP

c can thus be quite larger than I I
c . For exam-

ple, when P = 0.9, IP
c = 9.5 I I

c . This means that to be lim-
ited by signal-dependent Poisson noise, one needs a number
of photons which is 9 times larger than for intensity estima-
tion. In other words, when light is highly polarized, additive
noise must be taken into account for estimating the DOP even
if it is negligible for intensity estimation.

To visualize the relative influence of the two sources of noise,
it is useful to plot figures of merit. We have chosen to plot
the noise variance as a function of the intensity of the useful
signal with a log-log scale. For intensity estimation, one has:

log10[κI ] = log10

[
κsd

I + κa
I

]
. Below the crossover (I < I I

c ), the
approximation is:

log10[κI ] ' log10 [κa
I ] = − log10[2g]− log10[N], (11)

that is, a constant. Above the crossover, the approximation is:

log10[κI ] ' log10

[
κsd

I

]
= log10[I]− log10[N], (12)

that is, an increasing line of slope equal to 1. This is the well
known figure of merit for intensity estimation [10]. It is plot-
ted in Figure 3 for N = 1. Increasing N only shifts the curve
downwards of a value − log10[N].

Let us now consider DOP estimation. One has log10(κP) =

log10

[
κsd

P + κa
P

]
. Below the crossover, (I < IP

c ), an approxi-
mation is:

log10[κP] ' log10 [κa
P] =− 2 log10[I]− log10[1 + P2]

− log10[2g]− log10[N], (13)

that is, a decreasing line with slope 2. Above the crossover, an
approximation is:

log10[κP] ' log10

[
κsd

P

]
= − log10[I]− log10[1−P2]− log10[N],

(14)
that is, an decreasing line with slope 1. We have plotted this
curve in Figure 4 for N = 1 and different values of P. It is
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FIG. 3 Estimation precision of I as a function of the actual value of I, g = 10 photons,

bold line : κI , dotted lines : κa
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seen that higher values of P lead to a significant shift of the
crossover value.

The main result of this work is that the influence of additive
Poisson noise on DOP estimation depends on the actual value
of the DOP. When P is large, the additive Poisson noise re-
mains dominant for much higher values of the mean pho-
ton flux. This result is important for processing of polarimet-
ric images (estimation, target detection . . . ). Indeed, the algo-
rithms used for extracting information from polarimetric im-
ages must be adapted to the dominant type of noise.

5 CONCLUSION

We have studied precision of DOP estimation when the
observed materials are purely depolarizing and the mea-
surements are perturbed with both signal-dependent and
additive Poisson noises. This precision depends on the value
of the DOP and, when light is highly polarized, the crossover
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between additive and signal-dependent noise-dominant
regimes occurs for significantly higher signal levels than for
intensity estimation. This fact must be taken into account
when designing algorithms for extracting information from
DOP images. The present study is based on CRLB, which
represents a potential estimation precision. An interesting
perspective is to determine and analyze the performance of
actual DOP estimators adapted to this noise model.
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