Reproductive solution for grade-two fluid model in two dimensions

L. Friz*
F. Guillén-GonzÁlez**
M. A. Rojas-MEDAR***

Abstract

We treat the existence of reproductive solution (weak periodic solution) of a second-grade fluid system in two dimensions, by using the Galerkin approximation method and compactness arguments.

1. Introduction

For a general incompressible fluid of grade 2 , the Cauchy stress tensor is given by

$$
\mathbf{T}=-p \mathbf{I}+\mu \mathbf{A}_{1}+\alpha_{1} \mathbf{A}_{2}+\alpha_{2} \mathbf{A}_{1}^{2},
$$

where $\mu \geq 0$ is the viscosity, α_{1}, α_{2} are material coefficients, namely normal stress moduli, p is the pressure and $\mathbf{A}_{1}, \mathbf{A}_{2}$ are the first two Rivlin-Ericksen (see [8] or [9]) tensors defined by

$$
\begin{aligned}
& \mathbf{A}_{1}=\nabla \mathbf{u}+(\nabla \mathbf{u})^{T} \\
& \mathbf{A}_{2}=\frac{d}{d t} \mathbf{A}_{1}+\mathbf{A}_{1} \nabla \mathbf{u}+(\nabla \mathbf{v})^{T} \mathbf{A}_{1}
\end{aligned}
$$

Keywords: Reproductive solution, two-grade fluid, Galerkin method. MSC2000: 35Q35, 76D03.

* Grupo de Matemáticas Aplicadas, Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile. Casilla 447. e-mail: lfriz@roble.fdo-may.ubiobio.cl
** Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Sevilla, 41012, España. e-mail: guillen@us.es
${ }^{* * *}$ Grupo de Matemáticas Aplicadas, Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chillán,Casilla 447. e-mail: marko@ueubiobio.cl

From the thermodynamical principles we have that $\alpha_{1}+\alpha_{2}$, and the requirement that the free energy be a minimum in equilibrium implies that $\alpha_{1} \geq 0$. With all these conditions the equations of motion for an incompressible fluid of grade two are given by

$$
\left\{\begin{align*}
\frac{\partial}{\partial t}(\mathbf{u}-\alpha \Delta \mathbf{u})-\nu \Delta \mathbf{u}+\operatorname{curl}(\mathbf{u}-\alpha \Delta \mathbf{u}) \times \mathbf{u}+\nabla p=\mathbf{f} & \text { in } \Omega \times] 0, T[\tag{1}\\
\operatorname{div} \mathbf{u}=0 & \text { in } \Omega \times] 0, T[
\end{align*}\right.
$$

with homogeneous Dirichlet boundary conditions

$$
\mathbf{u}=0, \text { on } \partial \Omega,
$$

and initial condition

$$
\mathbf{u}(0)=\mathbf{u}_{0}, \text { in } \Omega
$$

Here, $\nu>0$ represents the Kinematic viscosity and \mathbf{f} the external forces.
The study of this kind of fluids was initiated by Dunn and Fosdick in [4] and by Fosdick and Rajapogal in [5]. The first successful mathematical analysis of (1) was done by Cioranescu and El Hacène in [1]. Another interesting work is due to Galdi and Sequeira [6], where the authors obtain some existence results.

Later Cioranescu and Girault in [2] establish existence, uniqueness and regularity of a global weak solution of (1) with small data \mathbf{f} and $\mathbf{u}(0)$ and the same result on some interval for arbitrary data. The existence is obtained by applying Galerkin's method with a special basis.
In this paper we seek reproductive solutions of the two-grade fluid system, i.e. solutions of the following system:

$$
\left\{\begin{align*}
\frac{\partial}{\partial t}(\mathbf{u}-\alpha \Delta \mathbf{u})-\nu \Delta \mathbf{u}+\operatorname{curl}(\mathbf{u}-\alpha \Delta \mathbf{u}) \times \mathbf{u}+\nabla q & =\mathbf{f} & & \text { in } \Omega \times] 0, T[\tag{2}\\
\operatorname{div} \mathbf{u} & =0 & & \text { in } \Omega \times] 0, T[\\
\mathbf{u} & =\mathbf{0} & & \text { on } \partial \Omega \times] 0, T[\\
\mathbf{u}(0) & =\mathbf{u}(T), & &
\end{align*}\right.
$$

by supposing that \mathbf{f} depends on the time t (notice that if \mathbf{f} does not depend on t, the solution of the associated steady-state system of the second- grade fluid is actually a reproductive solution). As the reader can see, the usual initial condition has been changed by a time periodic condition.

The next theorem is the main result of this paper.
Theorem 1.1. For any $\mathbf{f} \in L^{2}(0, T ; H(\operatorname{curl} ; \Omega)) \cap L^{\infty}\left(0, T ; \mathbf{L}^{2}(\Omega)\right)$, there exists a weak solution of the two-grade fluid system (2).

2. Preliminaries

Let Ω be a bounded domain of \mathbb{R}^{2} of the class $\mathcal{C}^{2,1}$. To solve a grade 2 fluid system means to find a vector valued function $\mathbf{u}=\left(u_{1}, u_{2}\right)$ and a scalar function p defined on $\Omega \times] 0, T[$ satisfying (2).

Since we are in two dimensions (see [7]), the curl operator is defined by

$$
\operatorname{curl} \mathbf{u}=\frac{\partial u_{2}}{\partial x_{1}}-\frac{\partial u_{1}}{\partial x_{2}}
$$

and if z is a scalar function, we define

$$
z \times \mathbf{u}=\left(-z u_{2}, z u_{1}\right)
$$

In what follows, the spaces in bold face represent spaces of bi-dimensional vector functions. We define the Hilbert spaces \mathbf{H} and \mathbf{V} in the following manner:

$$
\begin{aligned}
\mathbf{H} & =\left\{\Psi \in \mathbf{L}^{2}(\Omega): \operatorname{div} \Psi=0, \Psi \cdot \mathbf{n}=0 \text { on } \partial \Omega\right\} \\
\mathbf{V} & =\left\{\mathbf{v} \in \mathbf{H}^{1}(\Omega): \operatorname{div} \mathbf{v}=0, \mathbf{v}=\mathbf{0}, \text { on } \partial \Omega\right\} \\
H(\operatorname{curl} ; \Omega) & =\left\{\mathbf{v} \in \mathbf{L}^{2}(\Omega): \operatorname{curl} \mathbf{v} \in \mathbf{L}^{2}(\Omega)\right\}
\end{aligned}
$$

For $\alpha \in \mathbb{R}^{+}$, we introduce the space (see [1] and [2])

$$
\begin{equation*}
\mathbf{V}_{2}=\left\{\mathbf{v} \in \mathbf{V}: \operatorname{curl}(\mathbf{v}-\alpha \Delta \mathbf{v}) \in \mathbf{L}^{2}(\Omega)\right\} \tag{3}
\end{equation*}
$$

equipped with the scalar product

$$
\begin{equation*}
(\mathbf{u}, \mathbf{v})_{V_{2}}=(\mathbf{u}, \mathbf{v})+\alpha(\nabla \mathbf{u}, \nabla \mathbf{v})+(\operatorname{curl}(\mathbf{u}-\alpha \Delta \mathbf{u}), \operatorname{curl}(\mathbf{v}-\alpha \Delta \mathbf{v})) \tag{4}
\end{equation*}
$$

and associated norm and semi-norm

$$
\begin{equation*}
\|\mathbf{v}\|_{V_{2}}=(\mathbf{v}, \mathbf{v})_{V_{2}}^{1 / 2}, \quad|\mathbf{v}|_{V_{2}}=\|\operatorname{curl}(\mathbf{v}-\alpha \Delta \mathbf{v})\|_{\mathrm{L}^{2}(\Omega)} \tag{5}
\end{equation*}
$$

In the following lemma it is proved that the semi-norm $|\cdot| \mathbf{v}_{2}$ is a norm in \mathbf{H}^{3}.
Lemma 2.1 ([1] p 182). Let Ω be a bounded, simply-connected open set of \mathbb{R}^{2} of the class $\mathcal{C}^{2,1}$. Then every $\mathbf{v} \in \mathbf{V}_{2}$ belongs to $\mathbf{H}^{3}(\Omega)$. Moreover, there exists $C>0$ such that

$$
\|\mathbf{v}\|_{\mathbf{H}^{3}(\Omega)} \leq C\|\operatorname{curl}(\mathbf{v}-\alpha \Delta \mathbf{v})\|_{L^{2}(\Omega)}
$$

An easy but tedious computation gives us the following equality:

$$
\int_{\Omega} \operatorname{curl}(\mathbf{u}-\alpha \Delta \mathbf{u}) \times \mathbf{u} \cdot \mathbf{v} d x=b(\mathbf{u} ; \mathbf{u}, \mathbf{v})-\alpha b(\mathbf{u} ; \Delta \mathbf{u}, \mathbf{v})+\alpha b(\mathbf{v} ; \Delta \mathbf{u}, \mathbf{u})
$$

Vol. 27, No. 1, 2009]
here $b(\mathbf{u} ; \mathbf{v}, \mathbf{w})=\sum_{i, j=1}^{3} \int_{\Omega} \mathbf{u}_{i} \frac{\partial \mathbf{v}_{j}}{\partial x_{i}} \mathbf{w}_{j} d x$. From this, the variational formulation of the problem (1) is the following: Given $\mathbf{f} \in L^{2}\left(0, T ; H(\operatorname{curl} ; \Omega) \cap L^{\infty}\left(0, T ; \mathbf{L}^{2}(\Omega)\right)\right.$ and $\mathbf{u}_{0} \in \mathbf{V}_{2}$, find $\mathbf{u} \in L^{\infty}\left(0, T ; \mathbf{V}_{2}\right)$ such that

$$
\begin{align*}
\left(\mathbf{u}^{\prime}, \mathbf{v}\right)+\alpha(\nabla \mathbf{u}, \nabla \mathbf{v})+\nu(\nabla \mathbf{u}, \nabla \mathbf{v}) & +b(\mathbf{u} ; \mathbf{u}, \mathbf{v}) \\
& -\alpha b(\mathbf{u} ; \Delta \mathbf{u}, \mathbf{v})+\alpha b(\mathbf{v}, \Delta \mathbf{u}, \mathbf{u})=(\mathbf{f}, \mathbf{v}), \forall \mathbf{v} \in \mathbf{V} \tag{6}
\end{align*}
$$

3. A priori estimates of the Galerkin solutions

By following the ideas given in [1] and [2] we consider the basis $\left\{\mathbf{w}_{j}\right\}_{j \in \mathbb{N}}$, the eigenfunctions of the problem: For $j \in \mathbb{N}, \mathbf{w}_{j} \in \mathbf{V}_{2}$ is the solution of

$$
\begin{equation*}
\left(\mathbf{w}_{j}, \mathbf{v}\right)_{\mathbf{v}_{2}}=\lambda_{j}\left\{\left(\mathbf{w}_{j}, \mathbf{v}\right)+\alpha\left(\nabla \mathbf{w}_{j}, \nabla \mathbf{v}\right)\right\}, \forall \mathbf{v} \in \mathbf{V}_{2} \tag{7}
\end{equation*}
$$

where $(\cdot, \cdot)_{\mathbf{V}_{2}}$ is the scalar product in \mathbf{V}_{2}. Since the imbedding of \mathbf{V}_{2} into \mathbf{V} is compact, there exists a sequence of eigenvalues $\left(\lambda_{j}\right)_{j \geq 1}$ and a sequence of eigenfunctions $\left(\mathbf{w}_{j}\right)_{j \geq 1}$ that constitutes a basis of \mathbf{V}_{2}.

Lemma 3.1 ([2] p 326). Let Ω be a bounded simply-connected open set of \mathbb{R}^{3} with a boundary Γ of class $\mathcal{C}^{3,1}$. Then the eigenfunctions of the problem (7) belong to $\mathbf{H}^{4}(\Omega)$.

For every $m \in \mathbb{N}$, we define \mathbf{V}_{2}^{m} the vector space spanned by the first m eigenfunctions $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right\}$, and by P_{m} the orthogonal projection on \mathbf{V}_{2}^{m} for the scalar product in \mathbf{V}_{2}. In order to construct a periodic solution of the problem (2) we will use Galerkin's discretization. Indeed, for $j \in\{1,2, \ldots, m\}$ we find

$$
\mathbf{u}_{m}(t)=\sum_{j=1}^{m} c_{j}^{m}(t) \mathbf{w}_{j}
$$

solution of

$$
\begin{gather*}
\left(\mathbf{u}_{m}^{\prime}(t), \mathbf{w}_{j}\right)+\alpha\left(\nabla \mathbf{u}_{m}^{\prime}(t), \nabla \mathbf{w}_{j}\right)+\nu\left(\nabla \mathbf{u}_{m}(t), \nabla \mathbf{w}_{j}\right)+b\left(\mathbf{u}_{m}(t) ; \mathbf{u}_{m}(t), \mathbf{w}_{j}\right) \\
-\alpha b\left(\mathbf{u}_{m}(t) ; \Delta \mathbf{u}_{m}(t), \mathbf{w}_{j}\right)+\alpha b\left(\mathbf{w}_{j}, \Delta \mathbf{u}_{m}(t), \mathbf{u}_{m}(t)\right)=\left(\mathbf{f}(t), \mathbf{w}_{j}\right) \tag{8}\\
\mathbf{u}_{m}(0)=P_{m}\left(\mathbf{u}_{0}\right) \tag{9}
\end{gather*}
$$

By multiplying both sides of (8) by $c_{j}^{m}(t)$ and summing with respect to j, from the anti-symmetry of b we obtain the equality

$$
\frac{1}{2} \frac{d}{d t}\left(\left\|\mathbf{u}_{m}(t)\right\|_{\mathbf{L}^{2}(\Omega)}^{2}+\alpha\left|\mathbf{u}_{m}\right|_{\mathbf{H}^{1}(\Omega)}^{2}\right)+\nu\left|\mathbf{u}_{m}\right|_{\mathbf{H}^{1}(\Omega)}^{2}=\left(\mathbf{f}(t), \mathbf{u}_{m}(t)\right)
$$

Therefore, by integrating in time for $t \in[0, T]$ the above equality we obtain the following lemma.

Lemma 3.2 ([2] p 327). The solution $\mathbf{u}_{m}(t)$ of the problem (8)-(9) satisfies the following differential inequality for each $t \in[0, T]$:

$$
\begin{aligned}
& \left\|\mathbf{u}_{m}(t)\right\|_{\mathbf{L}^{2}(\Omega)}^{2}+\alpha\left\|\nabla \mathbf{u}_{m}(t)\right\|_{\mathbf{L}^{2}(\Omega)}^{2} \\
& \quad \leq e^{-\nu K t}\left(\left\|\mathbf{u}_{m}(0)\right\|_{\mathbf{L}^{2}(\Omega)}^{2}+\alpha\left\|\nabla \mathbf{u}_{m}(0)\right\|_{\mathbf{L}^{2}(\Omega)}^{2}\right)+\frac{\mathcal{P}^{2}}{\nu} \int_{0}^{t} e^{-\nu K(t-s)}\|\mathbf{f}(s)\|_{\mathbf{L}^{2}(\Omega)}^{2} d s
\end{aligned}
$$

where $\mathcal{P}>0$ is the Poincaré constant and $K=\left(\mathcal{P}^{2}+\alpha\right)^{-1}$.

In order to obtain an estimation for the norm $\left\|\mathbf{u}_{m}\right\|_{\mathbf{V}_{2}}$, we adapt the proof of Theorem 4.4 in [2] and the proof of the differential inequality given in [1] p 189.

At first, we define the vector-valued function $\mathbf{F}\left(\mathbf{u}_{m}, \mathbf{u}_{m}\right)$ by

$$
\begin{align*}
\left(\mathbf{F}\left(\mathbf{u}_{m}(t), \mathbf{u}_{m}(t)\right), \mathbf{v}\right)= & \nu\left(\nabla \mathbf{u}_{m}(t), \nabla \mathbf{v}\right)+b\left(\mathbf{u}_{m}(t) ; \mathbf{u}_{m}(t), \mathbf{v}\right) \\
& -\alpha b\left(\mathbf{u}_{m}(t) ; \Delta \mathbf{u}_{m}(t), \mathbf{v}\right)+\alpha b\left(\mathbf{v} ; \Delta \mathbf{u}_{m}(t), \mathbf{u}_{m}(t)\right) \tag{10}
\end{align*}
$$

for every $\mathbf{v} \in \mathbf{H}_{0}^{1}(\Omega)$. For $1 \leq m \leq m$, by construction of $\mathbf{F}\left(\mathbf{u}_{m}, \mathbf{u}_{m}\right)$,

$$
\begin{equation*}
\left(\mathbf{u}_{m}^{\prime}(t), \mathbf{w}_{j}\right)+\alpha\left(\nabla \mathbf{u}_{m}^{\prime}(t), \nabla \mathbf{w}_{j}\right)+\left(\mathbf{F}\left(\mathbf{u}_{m}(t), \mathbf{u}_{m}(t)\right), \mathbf{w}_{j}\right)-\left(\mathbf{f}(t), \mathbf{w}_{j}\right)=0 \tag{11}
\end{equation*}
$$

From Lemma 3.1, $\mathbf{F}\left(\mathbf{u}_{m}(t), \mathbf{u}_{m}(t)\right) \in \mathbf{H}^{1}(\Omega)$.
Next for each t, let $\mathbf{v}_{m}(t) \in \mathbf{V}$ be solution of the Stokes equation

$$
\begin{equation*}
\mathbf{v}_{m}(t)-\alpha \Delta \mathbf{v}_{m}(t)+\nabla q_{m}(t)=\mathbf{F}\left(\mathbf{u}_{m}(t), \mathbf{u}_{m}(t)\right)-\mathbf{f}(t) \tag{12}
\end{equation*}
$$

By classical regularity results, $\mathbf{v}_{m}(t) \in \mathbf{H}^{3}(\Omega)$ and then, $\operatorname{curl}\left(\mathbf{v}_{m}(t)-\alpha \Delta \mathbf{v}_{m}(t)\right)$ belongs to $\mathbf{L}^{2}(\Omega)$. Therefore, $\mathbf{v}_{m} \in \mathbf{V}_{2}$.

By multiplying (12) by \mathbf{w}_{j}, we obtain

$$
\left(\mathbf{v}_{m}(t), \mathbf{w}_{j}\right)+\alpha\left(\nabla \mathbf{v}_{m}(t), \nabla \mathbf{w}_{j}\right)=\left(\mathbf{F}\left(\mathbf{u}_{m}(t), \mathbf{u}_{m}(t)\right)-\mathbf{f}(t), \mathbf{w}_{j}\right)
$$

thus (11) can be written

$$
\begin{equation*}
\left(\mathbf{u}_{m}^{\prime}(t), \mathbf{w}_{j}\right)+\alpha\left(\nabla \mathbf{u}_{m}^{\prime}(t), \nabla \mathbf{w}_{j}\right)+\left(\mathbf{v}_{m}(t), \mathbf{w}_{j}\right)+\alpha\left(\nabla \mathbf{v}_{m}(t), \nabla \mathbf{w}_{j}\right)=0 \tag{13}
\end{equation*}
$$

Multiplying equation (13) by $\lambda_{j} c_{j}^{m}(t)$ and adding for $j=1, \ldots, m$, we get

$$
\left(\mathbf{u}_{m}^{\prime}, \mathbf{u}_{m}\right) \mathbf{v}_{2}+\left(\mathbf{v}_{m}, \mathbf{u}_{m}\right) \mathbf{V}_{2}=0
$$

Vol. 27, No. 1, 2009]
in other words,
$\left(\operatorname{curl}\left(\mathbf{u}_{m}^{\prime}-\alpha \Delta \mathbf{u}_{m}^{\prime}\right), \operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)\right)+\left(\operatorname{curl}\left(\mathbf{v}_{m}-\alpha \Delta \mathbf{v}_{m}\right), \operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)\right)=0$.
By taking curl in (12),

$$
\operatorname{curl}\left(\mathbf{v}_{m}-\alpha \Delta \mathbf{v}_{m}\right)=\operatorname{curl}\left(\mathbf{F}\left(\mathbf{u}_{m}, \mathbf{u}_{m}\right)-\mathbf{f}\right),
$$

and thus
$\left(\operatorname{curl}\left(\mathbf{u}_{m}^{\prime}-\alpha \Delta \mathbf{u}_{m}^{\prime}\right), \operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)\right)+\left(\operatorname{curl}\left(\mathbf{F}\left(\mathbf{u}_{m}, \mathbf{u}_{m}\right)-\mathbf{f}\right), \operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)\right)=0$.
Using definition (10) we find

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}\left\|\operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)\right\|_{\mathbf{L}^{2}(\Omega)}^{2} & +\left(\operatorname{curlF}\left(\mathbf{u}_{m}, \mathbf{u}_{m}\right), \operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)\right) \tag{14}\\
& =\left(\mathbf{f}, \mathbf{u}_{m}\right)+\left(\operatorname{curlf}, \operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)\right)
\end{align*}
$$

Now, we will estimate the term:

$$
T=\left(\operatorname{curl} \mathbf{F}\left(\mathbf{u}_{m}, \mathbf{u}_{m}\right), \operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)\right) .
$$

Since div $\mathbf{u}_{m}=0$ and $\Omega \subseteq \mathbb{R}^{2}$, it is not so difficult to prove that

$$
\operatorname{curl}\left(\operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right) \times \mathbf{u}_{m}\right)=\mathbf{u}_{m} \cdot \nabla\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)
$$

and

$$
\left(\mathbf{u}_{m} \cdot \nabla\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right), \operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)\right)=0
$$

and thus

$$
\begin{aligned}
T & =\left(-\nu \Delta \operatorname{curl} \mathbf{u}_{m}, \operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)\right)+\left(\mathbf{u}_{m} \cdot \nabla\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right), \operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)\right) \\
& =\frac{\nu}{\alpha}\left\|\operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)\right\|_{\mathbf{L}^{2}(\Omega)}^{2}-\frac{\nu}{\alpha}\left(\operatorname{curl} \mathbf{u}_{m}, \operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)\right) .
\end{aligned}
$$

Therefore, the equation (14) can be written

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\left\|\operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)\right\|_{\mathbf{L}^{2}}^{2} & +\frac{\nu}{\alpha}\left\|\operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)\right\|_{\mathbf{L}^{2}(\Omega)}^{2} \\
& =\left(\operatorname{curlf}, \operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)\right)+\frac{\nu}{\alpha}\left(\operatorname{curl} \mathbf{u}_{m}, \operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)\right)
\end{aligned}
$$

Then, we get the following inequality:

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left\|\operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)\right\|_{\mathbf{L}^{2}}^{2}+\frac{\nu}{\alpha}\left\|\operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)\right\|_{\mathbf{L}^{2}(\Omega)}^{2} \\
& \left.\leq\|\operatorname{curlf}\|_{\mathbf{L}^{2}(\Omega)} \| \operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)\right)\left\|_{\mathbf{L}^{2}(\Omega)}+\frac{\nu}{\alpha}\right\| \operatorname{curl} \mathbf{u}_{m}\left\|_{\mathbf{L}^{2}(\Omega)}\right\| \operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right) \|_{\mathbf{L}^{2}(\Omega)} \\
& \left.\leq \frac{1}{2}\left(\lambda\|\operatorname{curlf}\|_{\mathbf{L}^{2}(\Omega)}^{2}+\frac{1}{\lambda} \| \operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)\right) \|_{\mathbf{L}^{2}(\Omega)}^{2}\right) \\
& \left.\quad+\frac{\nu}{2 \alpha}\left(\varepsilon\left\|\operatorname{curl} \mathbf{u}_{m}\right\|_{\mathbf{L}^{2}(\Omega)}^{2}+\frac{1}{\varepsilon} \| \operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)\right) \|_{\mathbf{L}^{2}(\Omega)}^{2}\right)
\end{aligned}
$$

If we take $\varepsilon=2$ and $\lambda=\frac{2 \alpha}{\nu}$ we have that

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left\|\operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)\right\|_{\mathbf{L}^{2}}^{2}+\frac{\nu}{\alpha}\left\|\operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)\right\|_{\mathbf{L}^{2}(\Omega)}^{2} \\
& \leq \frac{2 \nu}{\alpha}\left\|\operatorname{curl} \mathbf{u}_{m}\right\|_{\mathbf{L}^{2}(\Omega)}^{2}+\frac{2 \alpha}{\nu}\|\operatorname{curlf}\|_{\mathbf{L}^{2}(\Omega)}^{2} .
\end{aligned}
$$

But $\left\|\operatorname{curl}_{\mathbf{u}_{m}}\right\|_{\mathbf{L}^{2}(\Omega)}^{2} \leq 2\left\|\nabla \mathbf{u}_{m}\right\|_{\mathbf{L}^{2}(\Omega)}^{2}$, thus

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left\|\operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)\right\|_{\mathbf{L}^{2}}^{2}+\frac{\nu}{\alpha}\left\|\operatorname{curl}\left(\mathbf{u}_{m}-\alpha \Delta \mathbf{u}_{m}\right)\right\|_{\mathbf{L}^{2}(\Omega)}^{2} \\
& \leq \frac{4 \nu}{\alpha}\left\|\nabla \mathbf{u}_{m}\right\|_{\mathbf{L}^{2}(\Omega)}^{2}+\frac{2 \alpha}{\nu}\|\operatorname{curlf}\|_{\mathbf{L}^{2}(\Omega)}^{2}
\end{aligned}
$$

From Lemma 3.2

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left\|\operatorname{curl}\left(\mathbf{u}_{m}(t)-\alpha \Delta \mathbf{u}_{m}(t)\right)\right\|_{\mathbf{L}^{2}}^{2}+\frac{\nu}{\alpha}\left\|\operatorname{curl}\left(\mathbf{u}_{m}(t)-\alpha \Delta \mathbf{u}_{m}(t)\right)\right\|_{\mathbf{L}^{2}(\Omega)}^{2} \\
\leq & \frac{4 \nu}{\alpha^{2}}\left(\left\|\mathbf{u}_{m}(0)\right\|_{\mathbf{L}^{2}(\Omega)}^{2}+\alpha\left\|\nabla \mathbf{u}_{m}(0)\right\|_{\mathbf{L}^{2}(\Omega)}^{2}\right)+\frac{4 \mathcal{P}^{2}}{\alpha \nu K}\|\mathbf{f}\|_{\mathbf{L}^{\infty}\left(0, T ; \mathbf{L}^{2}(\Omega)\right)}+\frac{2 \nu}{\alpha}\|\operatorname{curlf}(t)\|_{\mathbf{L}^{2}(\Omega)}^{2}
\end{aligned}
$$

From all this considerations, we have proved the following lemma.
Lemma 3.3. The solution \mathbf{u}_{m} of the problems (8) and (9) satisfies the a priori estimate for all $t \in[0, T]$:

$$
\begin{aligned}
& \left\|\operatorname{curl}\left(\mathbf{u}_{m}(t)-\alpha \Delta \mathbf{u}_{m}(t)\right)\right\|_{\mathbf{L}^{2}(\Omega)}^{2} \leq e^{-\frac{\nu t}{\alpha}}\left\|\operatorname{curl}\left(\mathbf{u}_{m}(0)-\alpha \Delta \mathbf{u}_{m}(0)\right)\right\|_{\mathbf{L}^{2}(\Omega)}^{2} \\
+ & \frac{2}{\alpha}\left(\left\|\mathbf{u}_{m}(0)\right\|_{\mathbf{L}^{2}(\Omega)}^{2}+\alpha\left\|\nabla \mathbf{u}_{m}(0)\right\|_{\mathbf{L}^{2}(\Omega)}^{2}\right)+\frac{2 \mathcal{P}^{2}}{\nu^{2} K}\|\mathbf{f}\|_{\mathbf{L}^{\infty}\left(0, T ; \mathbf{L}^{2}(\Omega)\right)}+\frac{2 \alpha}{\nu}\|\mathbf{f}\|_{\mathbf{L}^{2}(0, T ; H(\operatorname{curl} ; \Omega))} .
\end{aligned}
$$

4. Proof of the Theorem 1.1

In this section, we prove the Theorem 1.1. To this end, at first we prove the existence of a sequence of Reproductive Galerkin solutions, by following the ideas given in [3], which converges to the reproductive solution of the grade two system fluid.

We define the operator $L^{m}(t):[0, T] \rightarrow \mathbb{R}^{m}$ as

$$
\begin{equation*}
L^{m}(t)=\left(c_{1}^{m}(t), c_{2}^{m}(t), \ldots, c_{m}^{m}(t)\right) \tag{15}
\end{equation*}
$$

where $c_{j}^{m}(t)$ are the coefficients of the expansion of \mathbf{u}_{m}.
For every $\left(\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right) \in \mathbb{R}^{m}$, we define the following equivalent norms:

$$
\begin{aligned}
\left\|\left(\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right)\right\|_{a, \mathbb{R}^{m}}^{2} & :=\|\mathbf{u}\|_{\mathbf{L}^{2}(\Omega)}^{2}+\alpha\|\nabla \mathbf{u}\|_{\mathbf{L}^{2}(\Omega)}^{2} \\
\left\|\left(\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right)\right\|_{b, \mathbb{R}^{m}}^{2} & :=\|\operatorname{curl}(\mathbf{u}-\alpha \Delta \mathbf{u})\|_{\mathbf{L}^{2}(\Omega)}^{2}
\end{aligned}
$$

where $\mathbf{u}=\xi_{1} \mathbf{w}_{1}+\xi_{2} \mathbf{w}_{2}+\cdots+\xi_{m} \mathbf{w}_{m}$.
We define the operator $\Phi^{m}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ in the following manner: Given $L_{0}^{m} \in \mathbb{R}^{m}$, we define $\Phi^{m}\left(L_{0}^{m}\right)=L^{m}(T)$, where $L^{m}(t)$ is defined in (15). It is clear that Φ^{m} is continuous and we want to prove that it has a fixed point. In order to prove this result, we will use the Leray-Schauder Theorem. Indeed, it suffices to show that for all $\lambda \in[0,1]$, the possible solution $L_{0}^{m}(\lambda)$ of the equation

$$
\begin{equation*}
L_{0}^{m}(\lambda)=\lambda \Phi^{m}\left(L_{0}^{m}(\lambda)\right) \tag{16}
\end{equation*}
$$

are bounded independently of λ.
Since $L_{0}^{m}(0)=0$, we will consider $\lambda \in(0,1]$. In this case, (16) can be written as

$$
\Phi^{m}\left(L_{0}^{m}(\lambda)\right)=\frac{1}{\lambda} L_{0}^{m}(\lambda)
$$

Thus, by definition of Φ^{m} and Lemma 3.2, we obtain

$$
\left\|\frac{1}{\lambda} L_{0}^{m}(\lambda)\right\|_{a, \mathbb{R}^{m}}^{2} \leq e^{-\nu K T}\left\|L_{0}^{m}(\lambda)\right\|_{a, \mathbb{R}^{m}}^{2}+\frac{\mathcal{P}^{2}}{\nu} \int_{0}^{T} e^{\nu K s}\|\mathbf{f}(s)\|_{L^{2}(\Omega)}^{2} d s
$$

which implies that

$$
\left\|L_{0}^{m}(\lambda)\right\|_{a, \mathbb{R}^{m}}^{2} \leq \frac{\frac{\mathcal{P}^{2}}{\nu} \int_{0}^{t} e^{\nu K s}\|\mathbf{f}(s)\|_{L^{2}(\Omega)}^{2} d s}{1-e^{-\nu K T}}=M_{0}
$$

Now, from Lemma 3.3 and definition of Φ^{m}, we have that

$$
\begin{aligned}
\left\|\frac{1}{\lambda} L_{0}^{m}(\lambda)\right\|_{b, \mathbb{R}^{m}}^{2} \leq & e^{-\frac{\nu T}{\alpha}}\left\|L_{0}^{m}(\lambda)\right\|_{b, \mathbb{R}^{m}}^{2}+\frac{2}{\alpha}\left\|L_{0}^{m}(\lambda)\right\|_{a, \mathbb{R}^{m}}^{2} \\
& +\frac{2 \mathcal{P}^{2}}{\nu^{2} K}\|\mathbf{f}\|_{\mathbf{L}^{\infty}\left(0, T ; \mathbf{L}^{2}(\Omega)\right)}+\frac{2 \alpha}{\nu}\|\mathbf{f}\|_{\mathbf{L}^{2}(0, T ; H(\operatorname{curl} ; \Omega))}
\end{aligned}
$$

then, we deduce that

$$
\left\|L_{0}^{m}(\lambda)\right\|_{b, \mathbb{R}^{m}}^{2} \leq \frac{\frac{2 M_{0}}{\alpha}+\frac{2 \mathcal{P}^{2}}{\nu^{2} K}\|\mathbf{f}\|_{\mathbf{L}^{\infty}\left(0, T ; \mathbf{L}^{2}(\Omega)\right)}+\frac{2 \alpha}{\nu}\|\mathbf{f}\|_{\mathbf{L}^{2}(0, T ; H(\operatorname{cur} ; \Omega))}}{1-e^{-\frac{\nu T}{\alpha}}}=M_{1},
$$

for each $\lambda \in(0,1]$. This last estimate is independent of $\lambda \in[0,1]$ and $m \in \mathcal{N}$. Consequently, Leray-Shauder Theorem implies the existence of al least one fixed point of Φ^{m}, and then the existence of reproductive Galerkin solution \mathbf{u}_{m}. Moreover, since the previous estimates do not depend on $m \in \mathcal{N}$ and by Lemma 3.3, there exists $M \in \mathbb{R}$ independent of m such that

$$
\begin{equation*}
\left\|\mathbf{u}_{m}(t)\right\|_{\mathbf{v}_{2}} \leq M \tag{17}
\end{equation*}
$$

for each $t \in[0, T]$, it means that $\left(\mathbf{u}_{m}\right)_{m \geq 1}$ is bounded in $L^{\infty}\left(0, T ; \mathbf{V}_{2}\right)$. By Lemma 2.1, we can write $\left\|\mathbf{u}_{m}(t)\right\|_{\mathbf{H}^{3}(\Omega)} \leq M$, for each $t \in[0, T]$.

It remains to pass to the limit with respect to m. This is a standard argument and we have only to prove that $\left(\mathbf{u}_{m}^{\prime}\right)_{m \geq 1}$ is bounded in $L^{\infty}\left(0, T ; \mathbf{V}_{2}^{\prime}\right)$. In order to prove this bound, we use the arguments given in [1], p 190.

At first, we note that

$$
\left|b\left(\mathbf{u}_{m}(t), \mathbf{u}_{m}(t), \mathbf{v}\right)\right| \leq C\left\|\nabla \mathbf{u}_{m}\right\|_{\mathbf{L}^{2}(\Omega)}^{2}\|\mathbf{v}\|_{\mathbf{v}_{2}},
$$

which implies that there exists $\left.T_{m}^{1}(t) \in \mathbf{V}_{2}^{\prime}\right)$ such that

$$
b\left(\mathbf{u}_{m}(t), \mathbf{u}_{m}(t), \mathbf{v}\right)=\left\langle T_{m}^{1}(t), \mathbf{v}\right\rangle, \forall \mathbf{v} \in \mathbf{V}_{2},
$$

and by estimate (17), we have that $\left(T_{m}^{1}\right)_{m \geq 1}$ is bounded in $L^{\infty}\left(0, T ; \mathbf{V}_{2}^{\prime}\right)$. In the same manner, there exists a bounded sequence $\left(T_{m}^{2}\right)_{m \geq 1}$ in $L^{\infty}\left(0, T ; \mathbf{V}_{2}^{\prime}\right)$ such that

$$
b\left(\mathbf{u}_{m}(t), \Delta \mathbf{u}_{m}(t), \mathbf{v}\right)=\left\langle T_{m}^{2}(t), \mathbf{v}\right\rangle, \quad \forall \mathbf{v} \in \mathbf{V}_{2} .
$$

Finally, from equation (8), we can conclude that $\mathbf{u}_{m}^{\prime}=T_{m} P_{m}$, where $\left(T_{m}\right)_{m \geq 1}$ is a bounded sequence of $L^{\infty}\left(0, T ; \mathbf{V}_{2}^{\prime}\right)$ and P_{m} is the projection of \mathbf{V}_{2} on \mathbf{V}_{2}^{m}. This completes the proof.

Acknowledgments

L. Friz was supported by Fondecyt (Chile) grant 1090510. F. Guillén-González and M. A. Rojas-Medar were supported by DGI-MEC (Spain) Grant MTM2006-07932 and Fondecyt (Chile) Grant 1080628.

References

[1] Cioranescu D. and El Hacène O. "Existence and uniqueness for fluids of second grade", Nonlinear Partial Differential Equations and Their Applications, 109 (1984), 178-197. Collège de France Seminar, Pitman.
[2] Cioranescu D. and Girault V. "Weak and classical solutions of a family of second grade fluids", Int. J. Non-Linear Mechanics, 32 (1997), 317-335.
[3] Climent-Ezquerra B., Guillén-González and Rojas-Medar M. "A review on reproductivity and time periodicity for incompressible fluids", Bol. Soc. Esp. Mat. Apl. 41 (2007), 101-116.
[4] Dunn J. E. and Fosdick R. L. "Thermodynamics, stability and boundedness of fluids of complexity two and fluids of second grade", Arch. Rat. Mech. Anal. 56 (1974), 191-252.
[5] Fosdick R. L. and Rajapogal K. R. "Anomalous features in the model of second grade fluids", Arch. Rat. Mech. Anal. 70 (1978), 145-152.
[6] Galdi G. P. and Sequeira A. "Further existence results for classical solutions of the equations of second-grade fluid", Arch. Rat. Mech. Anal. 128 (1994), 297-312.
[7] Girault V. and Saadouni M. "On a time-dependent grade-two fluid in two dimensions", Computers and Mathematics with Applications. 53 (2007), 347-360.
[8] Rivlin R. S. and Ericksen J. L. "Stress-deformation relations for isotropic materials", J. Rational Mech. Anal. 4 (1955), 323-425.
[9] Truesdell C. and Noll W. "The Nonlinear Field Theories of Mechanics", Handbuch der Physik, III/3, Springer-Verlag, Heidelberg (1965).
(Received 10 October 2009; accepted 15 November 2009)

