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Review Article

Abstract
Radiotherapy is the feasible treatment approach for many malignant diseases and cancers. New radiotherapy techniques such as
ion therapy, stereotactic radiosurgery and intensity modulated radiation therapy deliver higher low dose radiation to large
volume of normal tissues and are in debating as more secondary cancers inducers. A secondary cancer after radiotherapy is an
important issue that reduces treatment efficiency and should be decreased. Radioprotective compounds are of importance in
clinical radiation therapy for saving normal tissues. In the present study, we are so interest to introduce, suggest and review the
application of biological radioprotectors in radiotherapy. We propose probiotics, prebiotics, gas, vitamin and nanoparticle pro-
ducing microorganisms as new biological systems based radioprotectors to protect normal tissues. Also, we reviewed the main
biological pathways, molecules and also radioadaptive response that act as radioprotectors. In this review we tried to address the
secondary cancer induction by radiotherapy and also main biological radiation protection approaches, although there is a
wealth of data in this subject.
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Introduction
Radiotherapy is the feasible treatment approach for many
malignant diseases and cancer. Statistics show the global rate
of cancer incidences was 12.7 million cancer cases in 2008 1

and a total of 1,660,290 new cancer cases occur in the United
States in 2013 2. Also According to cancer statistics 2015,
published by American Cancer Society, “a total of 1,658,370
new cancer cases and 589,430 cancer deaths are projected to
occur in the United States in 2015”.3 Since about half of can-
cer patients receive radiotherapy as a part of their treatment
in curative or palliative modes.4, 5 In this era, finding the best
radiotherapy treatment planning, dose delivery techniques,
adaptive radiotherapy tricks, radiation modification and op-
timization approaches are main concerns as to reduce normal
tissues toxicities and increasing tumor control.6-9

Many technological attempts have been made and many
decisions have been achieved. Physical methods such as ion
therapy, stereotactic radiosurgery and intensity modulated
radiation therapy (IMRT) opened a new horizon of high
dose/quality radiotherapy techniques and achieving more
tumor control probability.10-15

But, in some methods such as IMRT due to more fields and
more monitor units a bigger volume of normal tissue is ex-
posed to lower radiation doses and therefore increases the
incidence of secondary cancers in long-term survivors 6, 7 In
the other side, exposure due to secondary neutrons as un-
wanted byproduct in ion therapy could cause a significant
risk for developing a secondary cancer later in the patient
lifetime.16-18

Radiation induced secondary cancer
A secondary cancer after new and old radiotherapy tech-
niques as an important issue that reduces treatment efficien-
cy is discussed in many literatures.14, 16, 19-21 Secondary can-
cers are histologically distinct cancers that develop after the
first cancer. In United States, secondary cancers are the
fourth or fifth most common cancer and account for
6%-10% of all cancer diagnoses.22

Radiation induced secondary cancers (RISC) is dependent to
many factors including dose level and dose heterogeneity, as
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well as gender and type of tissue irradiated. So, children have
a much larger risk to develop RISC. Also, the risk of RISC
has formulated and different models with variable parame-
ters such as age of diagnosis and irradiation, radiosensitivity,
dose distribution and risk parameters.23, 24 These models have
many uncertainties in their equations and describing the
cancer induction by radiation.

The mechanisms of RISC are very complex and different
cellular and molecular processes have been proposed. Ac-
cording to literatures, carcinogenesis has three stages in-
cluding initiation, promotion and progression.25 In these
processes, loss and gain of function of vital biological path-
ways such as P53 protein activation or inactivation plays the
final role.26 Speaking generally, when high energy tracks of
radiation passes from biological matters, deposited energy
may induces direct and indirect effects such as reactive oxy-
gen species (ROS) production and so activation of oxidative
stress pathways, DNA damage responses, triggering extra and
intracellular mediators and many other responses that causes
genomic instability, mutagenesis and carcinogenesis finally.27

In recent years, the phenomenon so called “radia-
tion-induced bystander effect” has created a challenging
issue among radiation oncologists as a new pathway for
RISC. Bystander effect is a non-targeted effect of radiation
that refers to “effects detected in cells that were not directly
‘hit’ by an ionizing radiation track”.28 In this new debating
model of RISC, the chance of carcinogenesis is higher than
other classic models, when normal tissues are as bystander
organs. So, minimizing the bystander effect in normal tissues
has important implications for current and future radiother-
apy strategy and procedures. The main proposed mechanisms
of bystander effect are: secreted soluble factors, oxidative
metabolism, gap-junction intercellular communication, and
DNA repair.29, 30

Radioprotectors
Finding, testing and applying agents for radiation protection
have a historical aspect. There are many different radiation
protection/mitigation/modification approaches that based on
their nature and mechanisms of action are categorized. Nair
and colleagues classified radioprotecting agents into three
groups including radioprotectors, adaptogens and absorbents.
Radioprotectors are common antioxidants, adaptogens act as
stimulators of radioresistance and absorbants protect organ-
isms from internal radiation and chemicals. They also, in a
table showed the main mechanisms of radioprotectors are
including: free radical scavenging, hydrogen atom donation,
immunomodulation/stimulation, electron transfer, detoxifi-
cation of excess metallic elements, DNA repair and induction
and activation of vital mediators such as cytokines and mel-
atonin.31

Although, the beneficial effects of radioprotectors are deter-
mined in many animal and experimental studies, but their
acute toxicities and difficulties in their targeting to normal
tissues have caused to a failure in clinical use of these com-
pounds.31

In the present study, we are so interest to introduce and
suggest the application of biological radioprotectors in radi-
otherapy. One of the most interesting parts of this study is
introducing the microorganisms as radiation protec-
tion/mitigation agents their genetically manipulation and
targeting them to get the high efficiency.

Biological Radioprotectors
Biological Radioprotectors (BRPs) can be defined as “any
living biological systems and processes that can modify the
radiation responses of biological tissues”. This definition is
based on the biological basis of these agents/pathways and
their mechanisms of action that is highly dependent to their
characteristics, products and any beneficial changes in their
structures.

In this review we divided the BRPs in two different catego-
ries including: biological systems (BSBRPs) and biological
pathways (BPBRPs). Biological systems are microorganisms
including probiotics, gas producing, vitamin producing and
those produce nanoparticles. Biological pathways are biolog-
ical molecules, biochemical processes and ionization radia-
tion induced radiation protection. In microorganism studies,
there are no distinct differences between probiotics, gas,
vitamin and nanoparticles producing microorganisms and
here, we did this categorization to simplify the work. For
example a probiotic can be a gas or a vitamin producing mi-
croorganism.

Biological systems

Probiotics
Probiotics are the first BRPs.32 According to the Food and
Agriculture Organization of the United Nations (FAO) and
the World Health Organization (WHO), probiotics are “live
microorganisms which, when administered in adequate
amounts, confer a health benefit on the host”.33 The benefi-
cial effects of probiotic as radioprotectors have obtained from
studies that used probiotic to preserve gastrointestinal tract
in different radiotherapy patients.34, 35 Probiotics, also have
different abilities such as antioxidant property, toxin neu-
tralization, antagonistic activity, synergistic activity, and
stimulation of the immune system 36 (Kanmani et al., 2013).
The main mechanisms of radiation protection using probiot-
ics are induction of NF-κB, the expression of TNF-α and
other prion flammatory cytokines, and production of anti-
oxidant enzymes (e.g. superoxide dismutase and catalase)
and, therefore, free-radical scavenging.37 Combination of
probiotic with prebiotics is also has shown promising re-
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sults.38 A prebiotic is “a selectively fermented ingredient that
allows specific changes, both in the composition and/or ac-
tivity in the gastrointestinal microflora that confers benefits
upon host well-being and health”, whereas synergistic com-
binations of pro- and prebiotics are called synbiotics.39

Gas producing microorganisms
Gas producing microorganisms can be used as second cate-
gory of BRPs.40, 41 Some evidences showed that some gases
have beneficial effects such as antioxidant properties, radical
scavenging, anti-inflammatory, anti-apoptotic and decrease
radiosensitivity. These gases are including hydrogen (H2),
hydrogen sulphide (H2S), nitric oxide (NO) and carbon
monoxide (CO).42, 43 Several reports have indicated that many
microorganisms can produce a wide range of biological gases.
Hydrogen producing bacteria are well known for biofuel and
safe source of energy.44 With regard to life saving roles of
hydrogen in radiation sciences such as free radicals scaveng-
ing and increase in antioxidant enzymes (such as catalase,
superoxide dismutase or heme oxygenase-1), hydrogen pro-
ducing bacteria can be feasible as BRPs in radiotherapy. The
other microorganisms that produce H2, H2S, NO and CO can
be used as radioprotectors in radiotherapy. The main inter-
esting part of this study is to use these microorganisms as
modifying bystander responses in radiotherapy. It was indi-
cated in different studies that a low concentration of carbon
monoxide (CO) can protect cells against death, oxidative
injury, inflammation, tolerance of organ transplantation and
interestingly, CO attenuates the production of many factors
involved in bystander signaling pathways such as reactive
oxygen species (ROS) and Nitric oxide (NO).45 So, application
of CO producing bacteria can save normal tissues from by-
stander signals and subsequent radiobiological damages.

Vitamin producing microorganisms
Vitamin producing microorganisms are very interesting.
There are well established papers that indicated several mi-
croorganisms such as bacteria can produce different kinds of
vitamins including C, E, K and B-complex.46-48 Vitamins are
essential nutrients as precursors of various enzymes that are
necessary for vital biochemical reactions in all living cells.
Also vitamins can act as antioxidant agents.

Scientific evidences implicate the involvement of reactive
oxygen species (ROS) in cancer development by inducing
DNA mutations, genomic instability, and activation of bio-
chemical pathways that stimulate proliferation and neo-
plastic transformation.49 ROS are highly reactive molecules
that are produced by normal cellular metabolism and envi-
ronmental factors such as radiation, and can damage DNA
and proteins. “Oxidative stress” is a shift in the balance be-
tween oxidants and antioxidants materials. According to
relation between oxidative stress and cancer, consumption of
antioxidants such as vitamins E and C is useful in preventing
carcinogenesis and inflammation related carcinogenesis.

Humans are incapable of synthesizing most vitamins and
they have to be obtained from exogenous sources. One the
most interesting part of these exogenous agents is microor-
ganisms. Microorganisms such as bacteria are well known as
source of vitamin production. So, they can be used as radio-
protectors in radiotherapy for secondary cancer prevention.
The use of vitamin-producing microorganisms may represent
a more natural and patient-friendly alternative to radiopro-
tection using chemically synthesized radioprotectors, and
would allow the production of radioprotectors with elevated
concentrations of vitamins that are less likely to cause unde-
sirable side-effects.

Nanoparticle producing microorganisms
Nanotechnology is a multidisciplinary field that involves the
design and engineering of objects <100 nanometers in size.
In recent years many nanoparticles have been used to reduce
radiation damages in biological systems.50-53 The role of na-
noparticles as radioprotectors is a cutting-edge development
addressing decades of scientific interest regarding the protec-
tion of normal cells and tissues from radiation. Experiments
in living cells and in vivo have demonstrated the efficiency
of the nanoparticles in radiation protection. A new genera-
tion of free radical scavengers is nanoparticles. The most
significant nanoparticles used for radiation protection are
silver (Ag) 54, 56 and cerium oxide (CeO2) 50, 51. The therapeu-
tic values of nanoparticles are due to their free radical scav-
enging properties. Also nanoparticles as scavenging enzymes
are many times more efficient than radical scavenging en-
zymes, which may be due to the large surface area to volume
ratio.56, 57

There are many physical, chemical, biological and hybrid
methods to produce different types of nanoparticles.58-60 De-
velopment of nontoxic and biocompatible nanoparticles is of
utmost importance to expand their biomedical applications.
One of the options to achieve this goal is to use microorgan-
isms to synthesize nanoparticles.61 Many microorganisms and
plants can produce nanoparticles by intracellular or extra-
cellular routes. For silver nanoparticle production, different
microbes reduce the Ag+ ions to form spherical silver nano-
particles. For example, bacterium Pseudomonas stutzeri
AG259, present at silver mine, when placed in a concentrat-
ed aqueous solution of silver nitrate, played a major role in
the reduction of the Ag+ ions and the formation of silver
nanoparticles of well-defined size and distinct topography
within the periplasmic space of the bacteria.62 The most im-
portant requirement for an organism to produce silver na-
noparticle is to be resistant against silver ions. Also, organ-
isms which synthesize silver nanoparticles are also vulnera-
ble to higher concentrations of silver ions.63

With regard to microorganisms’ BSBRPs it is important to be
ensuring that they have been administrated in safe dose and
the rules of administration, targeting and patient involved
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have been well determined. In this approach, the important
issues are: 1) preparing the BSBRPs in safe modes, 2) finding
the main microorganisms that have high efficiencies as
BSBRPs, 3) administrations and targeting them and 4) bio-
technological manipulation of them to have the highest effi-
ciency.

TABLE 1: Shows various species of microorganisms synthesizing
silver nanoparticles.

Organism Type Reference
Pseudomonas stutzeri AG259 Bacteria (62)
Lactobacillus Strains Bacteria (64)
Bacillus megaterium Bacteria (65)
Bacillus licheniformis Bacteria (66)
Brevibacterium casei Bacteria (67)
Staphylococcus aureus Bacteria (68)
Geobacter sulfurreducens Bacteria (69)
Aspergillus clavatus Fungi (70)
Fusarium solani Fungi (71)
Fusarium oxysporum Fungi (72)
Aspergillus flavus Fungi (73)
Trichoderma viride Fungi (74)
Cladosporium cladosporioides Fungi (75)
Phanerochaete chrysosporium Fungi (76)
Azadirachta indica Plant (77)
Cinnamomum camphora leaf Plant (78)
Phyllanthus amarus Plant (79)
Carica papaya Plant (80)
Coriandrum sativum leaf extract Plant (81)
Jatropha curcas Plant (82)
Glycine max (soybean) leaf extract Plant (83)

There are different methods to preparing BSBRPs in enough
amounts. For example Yin and colleague’s showed that in
comparison with the conventional pretreatment methods,
such as heat-shock, acid, base, aeration and chloroform,
gamma irradiation was more powerful pretreatment method
for enriching hydrogen-producing bacteria.84 In the case of
probiotics and prebiotics, they are available commercially in
many forms, including foods, dietary supplements, and clin-
ical therapeutics with oral or non-oral delivery. A feasible
BSBRPs must retain its properties during preparation and
remain viable and stable during storage and use. In the other
hand, it should be noted that there are some challenging
interactions between BRPs and drugs. Because BSBRPs con-
tain live microorganisms, concurrent administration of some
drugs such as antibiotics could kill a large number of the
organisms, and the efficacy of this radioprotectors may be
reduced.

The main advantages of BSBRPs in comparison to other ra-
dioprotectors is their biotechnologically manipulation. As
their genetic materials, it is established approach to change
microorganisms to become safer and produce more radiation
protection agents. In addition, by genetic manipulations, we
can deliver BRPs to normal tissues specifically. In this light,
by removing genes-encoding proteins which are involved in
the pathogenesis, the safety of BRPs can be obtained.

Biological pathways

Biological molecules and Biochemical processes
Radiation interaction with biological matters triggers differ-
ent molecules, pathways and biochemical processes that lead
to cells death and repair. The main aim of those triggered
systems is to maintain and keep hemostasis well. In this situ-
ation, these systems can be used as biological radioprotect-
ants. Here, we review and introduce some of which are pre-
sent or have been applied invivo or invitro to reduce radia-
tion damages.

Interterleukins (ILs) are naturally occurring proteins that
mediate communication between cells. Interleukins regulate
cell growth, differentiation, and motility. They are particu-
larly important in stimulating immune responses, such as
inflammation. Different studies show various types of ILs has
radioprotective properties. Schwarz et al. showed IL-12 pro-
tect cells from apoptosis induced by DNA-damaging radia-
tion by inducing DNA repair, and that nucleotide-excision
repair can be manipulated by cytokines 85 Also, Xiong et al.
study showed recombinant human like interleukin 12
(rhIL-12) can promote the bone marrow hematopoietic
stem/progenitor cell colony formation in vitro and protect
lethally-irradiated monkeys.86

Studies showed that interleukin 1 (IL 1), a potent in vivo
stimulator of hemopoiesis which acts as a differentiation-and
maturation-inducing agent for a variety of cells can serve as
a signal that initiates radioprotective events in vivo and then
protects mice in a dose-dependent manner from lethal ef-
fects of ionizing radiation.87 There is a report that showed
pretreatment of small intestinal clonogenic stem cells with
Interleukin 11 can moderate radiation induced damages and
increased survival.88

There are some different cytokines that have been produced
in response to radiation and bind to the same receptors and
have pleiotropic effects on a variety of cell types. Tumor
necrosis factor (TNF) and lymphotoxin (LT) are these cyto-
kines which can induce the synthesis of protective proteins
such as mitochondrial manganese superoxide dismutase
(MnSOD), protects animals from radiation.89 Metallothi-
oneins (MTs) are intracellular and low molecular weight
cysteine-rich proteins. They have unique structural charac-
teristics to give potent metal-binding and redox capabilities.
A striking resistance to lethal damage from radiation has
been found in mice which had received various pretreat-
ments to induce metallothionein synthesis in the liver prior
to irradiation.90

Melatonin (N-acetyl-5-methoxytryptamine), an endogenous
compound synthesized by the pineal gland in the human
brain plays a vital role in the regulation of a number of
physiological and pathological processes.91 Melatonin is a
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free radical scavenger and stimulates antioxidant activities of
antioxidant enzymes such as glutathione peroxidase
(GSH-Px), glutathione reductase (GR), superoxide dismutase
(SOD), and catalase (CAT). Several studies in various organs
and cells have showed that melatonin can reduce irradia-
tion-induced injuries.92-94

In signaling pathways, inhibition of CD47 signaling, protect
normal tissues after irradiation and increases the radiosensi-
tivity of tumors.95 Also, transcription factor NF-κB has a
radioprotection role against radiation-induced apoptosis in
the intestinal epithelium.

Ionization radiation induced radiation protection
Although radiation is a physical modality, but here we re-
member it as a biological radioprotector, because it protects
cells by enhancing the main biological pathways of radiation
protection. There is a wealth of data showing a low level of
radiation can induce so called “radioadaptive response” that
during which biological systems which received a low dose
of radiation become more resistant against any challenge
dose of harmful agents (such as radiation). The main mecha-
nism of radioadaptive response is unknown, but different
experimental invivo/invitro studies by various endpoints
have showed transcription of many genes and activation of
numerous signaling pathways that trigger cell defenses more
efficient detoxification of free radicals, DNA repair systems,
induction of new proteins, enhanced antioxidant production,
alteration in expression of genes associated with cell cycle
regulation, DNA repair, signal transduction, apoptosis induc-
tion/tumorigenesis and damage response/ maintenance of
genetic stability (P53-related functions), activation of protein
kinase C through p38 MAP kinase resulting in P53, ERK,
JNK kinases and WIP phosphatase activation and Ribose
Polymerase-1 (PARP) activation 96.

Abdollahi in interesting paper suggested that “cellular auto-
fluorescence following ionization radiation can activate some
synthetic drugs called photoactivated agents that are injected
in human body after radiation exposures scenarios. Photo
activated agents can activate biological pathways such as
DNA repair and immune stimulation pathways, bystander
signals blocking, and so survive cells and tissues”. This ap-
proach based on the fact many different human and murine
cell types respond to ionizing radiation with a striking rise in
autofluorescence that is dependent on dose and time. In this
situation, light emitted from cellular response to irradiation
can act as a natural factor to activate some special drugs to
enhance radioprotective mechanisms.97

In relation to radioadaptive response, it should be mentioned
that no radiation (any level if low) should be used. The main
of this radiation protection approach is to enhance radiopro-
tective mechanisms that have been activated by radiation.

Conclusion
Radioprotective compounds are of importance in clinical
radiation therapy. In this study we introduced, suggested and
reviewed biological radioprotectors as new agents for saving
normal tissues in radiotherapy and so reducing the risk of
secondary cancers after treatment. Probiotics, prebiotics gas
and vitamin producing microorganisms introduced as new
biological radioprotectors. Applications of these agents need
more clinical trials, but by genomics, proteomics and new
biotechnological advances we can find the highest outcomes.

These radioprotectors can act as antioxidants, an-
ti-inflammation, anti-apoptosis, anti-aging agents and they
also can decrease radiosensitivity and bystander cell death
signals. In the other hand, genetically manipulation and tar-
geting of biological radioprotectors can resulted to the high-
est efficiency. To improve the efficacy and safety of BSBRPs,
a further understanding of microorganisms between with
immune system are required. Genomics, proteomics and new
biotechnological advances may help to highest outcomes be
achieved. Also, biological pathways of radiation protection
should be enhanced or amplified by many biocompatible
agents.
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