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Scientific Article

Pretreatment Volume of MRI-Determined White
Matter Injury Predicts Neurocognitive Decline
After Hippocampal Avoidant Whole-Brain
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Abstract
Purpose: NRG Oncology’s RTOG 0933 demonstrated benefits to memory preservation after
hippocampal avoidant whole-brain radiation therapy (HA-WBRT), the avoidance of radiation dose
to the hippocampus (using intensity modulated radiation planning and delivery techniques) during
WBRT, supporting the hypothesis of hippocampal radiosensitivity and associated memory
specificity. However, some patients demonstrated cognitive decline, suggesting mechanisms
outside hippocampal radiosensitivity play a role. White matter injury (WMI) has been implicated in
radiation therapyeinduced neurocognitive decline. This secondary analysis explored the
relationship between pretreatment WMI and memory after HA-WBRT.
Methods and Materials: Volumetric analysis of metastatic disease burden and disease-unrelated
WMI was conducted on the pretreatment magnetic resonance image. Correlational analyses were
performed examining the relationship between pretreatment WMI and Hopkins Verbal Learning
Test-Revised (HVLT-R) outcomes at baseline and 4 months after HA-WBRT.
Results: In the study, 113 patients received HA-WBRT. Of 113 patients, 33 underwent
pretreatment and 4-month posttreatment HVLT testing and pretreatment postcontrast volumetric
T1 and axial T2/fluid-attenuated inversion recovery magnetic resonance imaging. Correlation was
found between larger volumes of pretreatment WMI and decline in HVLT-R recognition
(r Z 0.54, P < .05), and a correlational trend was observed between larger volume of
pretreatment WMI and decline in HVLT-R delayed recall (r Z 0.31, P Z .08). Patients with
higher pretreatment disease burden experienced a greater magnitude of stability or positive shift
in HVLT-R recall and delayed recall after HA-WBRT (r Z e0.36 and r Z e0.36, P < .05),
compared to the magnitude of stability or positive shift in those with lesser disease burden.
Conclusions: In patients receiving HA-WBRT for brain metastases, extent of pretreatment WMI
predicts posttreatment memory decline, suggesting a mechanism for radiation therapyeinduced
neurocognitive toxicity independent of hippocampal stem cell radiosensitivity. Stability or
improvement in HVLT after HA-WBRT for patients with higher pretreatment intracranial
metastatic burden supports the importance of WBRT-induced intracranial control on
neurocognition.
Crown Copyright � 2019 Published by Elsevier Inc. on behalf of American Society for Radiation
Oncology. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Metastatic disease to the brain is the most commonly
diagnosed malignant brain tumor with an annual inci-
dence as high as 11 per 100,000 per year in the United
States alone.1 As systemic chemotherapy and targeted
therapies continue to enhance survival in cancer patients,
it is anticipated that more patients will present with brain
metastases. Therefore, there is considerable interest in
trying to mitigate the adverse effects of central nervous
system directed therapies, specifically the effect of whole
brain radiation therapy (WBRT). WBRT can lead to
neurocognitive decline in patients with low-volume

metastatic disease to the brain and may be associated
with a significant adverse impact on patient quality of
life.2,3

However, the mechanisms and predictive factors of
this cognitive decline have yet to be fully explored. It is
also unclear why some patients demonstrate significant
impairment after WBRT and others are spared. As such,
there is considerable clinical interest in predicting which
patients will develop cognitive decline after WBRT. This
would provide oncologists with a powerful tool to better
advise patients about their true risk and degree of neu-
rocognitive impairment, especially in patients that would
clearly benefit from WBRT.
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In our previously published work, we have shown that
white matter is particularly vulnerable to the effects of
WBRT. Symmetric, confluent, hyperintense signal on T2-
weighted magnetic resonance imaging (MRI) images is the
most common radiographic finding in patients who have
been treated with WBRT, particularly in the periventricular
deep white matter (Fig 1).4 Fluid-attenuated inversion re-
covery (FLAIR) is a MRI sequence that produce both a
strongly T2-weighted image and suppressed cerebrospinal
fluid (CSF) signal. To accomplish this goal, a conventional
spin echo (SE) sequence is prefaced by a 180� inversion
pulse. A relatively long inversion time is used to allow the
longitudinal magnetization of CSF to return to the null
point before SE imaging. Thus, the CSF signal is
completely suppressed for cortical or periventricular areas,
and lesions with typical T2 prolongation in the brain that
are adjacent to spinal fluid become much more conspicuous
compared with conventional T2 imaging.5 Significant
steady increases in MRI FLAIR white matter changes after
WBRT at multiple time points up to 1 year posttreatment
have been seen. This MRI FLAIR volume is thought to be
a surrogate, or biomarker, for presumed white matter injury
(WMI) in patients having received WBRT, and WMI
volume correlated with the age when treated and with the
volume of WMI that was present before the administration
of WBRT. This was the first volumetric study to demon-
strate a predictive effect of pretreatment WMI on the sub-
sequent development of increasing post treatment WMI.4

Based on these results, we hypothesized that patients
with pretreatment WMI were susceptible for additional
injury after WBRT given the vulnerability of white matter
to radiation. However, the relationship between WMI and
neurocognitive changes after WBRT remained unclear.
The presence and extent of WMI have been associated
with cognitive impairment in other clinical populations,
such as in healthy adult stroke patients and multiple
sclerosis, and it is reasonable to assume that WMI un-
derlies the neurocognitive sequela seen in patients treated
with WBRT.6-10 No studies to date have examined this
and it is unknown how much WMI a patient can sustain

before manifesting neurocognitive symptoms. As such,
we sought to explore whether the presence of pretreat-
ment WMI, as represented by MRI FLAIR volume, pre-
dicted subsequent neurocognitive decline in patients that
underwent WBRT for metastatic brain cancer.

Methods and Materials

As a way of trying to mitigate the neurocognitive ef-
fects of WBRT, NRG Oncology embarked on RTOG
0933: A Phase II Trial of Hippocampal Avoidance (HA)
During Whole Brain Radiation therapy for Brain Metas-
tases. The hypothesis of this trial was that through the
avoidance of radiation dose to the hippocampus (using
intensity modulated radiation planning and delivery
techniques) during WBRT, the risk of posttreatment
neurocognitive decline would be reduced. The primary
endpoint of RTOG 0933, a reduction in neurocognitive
decline at 4 months posttreatment, was met and reported,
and as such, a phase III trial is currently underway (NRG
Oncology CC001) to assess HA in a randomized
approach.11 Although HA in RTOG 0933 yielded a sig-
nificant reduction in neurocognitive decline at 4 months
posttreatment, there were still patients with some degree
of neurocognitive decline. We sought to determine
whether baseline WMI as represented by FLAIR abnor-
mality was a predictor for cognitive decline.

Inclusion criteria for RTOG 0933 were previously
published and, in brief, included brain metastases outside
a 5-mm margin around either hippocampus, a pathologic
diagnosis of nonhematopoetic malignancy other than
small-cell lung cancer or germ cell malignancy, RTOG
recursive partitioning analysis class I or II, and English
proficiency.12 Patients <18 years old and those with
leptomeningeal metastases, radiographic evidence of hy-
drocephalus, prior radiation to the brain, planned upfront
radiosurgery or surgical resection, contraindication to
MRI, serum creatinine 1.4 mg/dL 30 days before study
entry, or non-small cell lung cancereassociated brain
metastases with 2 organ sites of extracranial metastases
were excluded.11 All patients provided study-specific
consent and were enrolled by institutions with institu-
tional review board approval.

Clinical imaging

In the original trial, 113 patients were accrued from
March 2011 through November 2012, and of those, 42
patients were analyzable at 4 months. Baseline MRI
FLAIR and postcontrast T1 imaging submission was not
required in the RTOG 0933 trial. As a result, the 23
participating institutions were individually contacted to
request the baseline MRI FLAIR and postcontrast T1
images acquired before trial enrollment. The baseline
images for 39 of the 42 patients treated with HA-WBRT

Figure 1 Example of worsening periventricular white matter
injury from (A) baseline to (B) 4-month postewhole-brain ra-
diation therapy.
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were acquired. Of these, 6 image sets were deemed ine-
valuable because the image quality was poor as a result of
significant artifact. Therefore, 33 baseline image sets were
able to be evaluated. The images that were evaluated were
MRI FLAIR sequences acquired with 5 mm thick axial
slices and the T1 with contrast sequences with 1-mm-
thick axial slices.

Volumetric analysis

The image sets were standardized to account for inter-
scanner variability, which consisted of a 3-step process
including bias field correction, anisotropic diffusion noise
reduction, and signal intensity normalization. A volume
for the metastatic disease (METVol) was contoured
manually. The METVol was defined as the enhancing
lesion on the T1 with contrast scan plus any contiguous
MRI FLAIR signal associated with the contrast enhancing
lesion. Pretreatment MRI FLAIR white matter volumes
(WMVol) were automatically generated with an auto-
segmentation technique in MIM (MIM Software, Cleve-
land, OH, version 6.5.4). WMVol were created by
empirically thresholding the MRI FLAIR images at 1.5
standard deviation (SD) of the mean MRI FLAIR in-
tensity value for the entire brain (Fig 2). The volumes
were independently assessed by 2 nonpartisan observers
blinded to the cognitive data and were edited to remove
misclassified areas (eg, chorid plexus, septum pelluci-
dum). Total brain volume was calculated through an
autosegmentation tool in MIM. Both the METVol and
WMVol were divided by total brain volume in order to
create corrected volumes to account for variability in total
brain volumes and the volume of available brain to assess
for WMI.

Cognitive assessment

All patients underwent pretreatment and 4-month
post-WBRT memory testing using the Hopkins verbal

learning test-revised (HVLT-R). Alternate forms were
used between the 2 exams to reduce practice effects.
The test involves memorizing a list of 12 targets for 3
consecutive trials (total recall), identifying the 12 tar-
gets from a list of semantically related or unrelated
items (immediate recognition), and recalling the 12
targets after a 20-minute delay (delayed recall). The
timing of HVLT-R IR immediately after HVLT-R TR,
as opposed to after HVLT-R DR, represents a depar-
ture from HVLT-R used in more contemporary
studies, but it was in keeping with the method of
administration for the control cohort.13 This approach
has been used in prior phase III cooperative group
studies.14,15

Statistical analysis

All data analyses were performed using SAS/STAT
software (SAS, Cary, NC; version 9.4 of the SAS System
for Windows). The data was approximately normally
distributed so 2-tailed Pearson correlations were used to
examine the relationship between our clinical variables of
interest and memory performance before and 4 months
posttreatment. Change scores of cognitive assessments
were calculated by subtracting the 4-month follow-up raw
score from the baseline raw score (baselineefollow-up),
and positive change scores reflected greater decline
whereas negative change scores reflected improvement.
Corrected METVol and WMVol were treated as a
continuous variables in all analyses. A significance level
of 0.05 was used.

Results

Thirty-three patients were assessed with a median age
in years of 58 (range 28-81). Descriptive statistics for
WMVol and MetVol are provided in Table 1. Correla-
tions between pretreatment memory performance and

Figure 2 Representative example of brain volume, white matter volumes, and volume for the metastatic disease.
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METVol and WMVol can be found in Table 2. Pre-
treatment, there were no significant correlations between
either METVol or WMVol and HVLT-R total recall,
delayed recall, or immediate recognition memory per-
formance; however, there was a trend between WMVol
and HVLT total recall (r Z e0.30, P Z .09) with
greater white matter abnormality associated with lower
pretreatment learning ability. Age at time of treatment
was significantly correlated in the positive direction with
WMVol (r Z 0.38, P Z .03), suggesting later age at
time of treatment is associated with greater pretreatment
white matter abnormalities (Table 3).

Posttreatment, a significant positive correlation was
observed between WMVol and change in HVLT-R
immediate recognition memory performance at
4 months (r Z 0.54, P Z .001), suggesting greater
pretreatment white matter abnormality was associated
with greater declines in immediate recognition mem-
ory performance (Table 4; Fig 3). A trend was seen
between WMVol and change in HVLT-R delayed
recall performance at 4 months posttreatment
(r Z 0.31, P Z .08), indicating that greater amounts
of white matter abnormality before WBRT was asso-
ciated with greater declines in delayed recall perfor-
mance. No significant relationship was observed
between WMVol and HVLT-R total recall. MetVol
was significantly negatively correlated with HVLT-R
total recall (r Z e0.36, P Z .04) and delayed
recall (r Z e0.36, P Z .04), but no correlation was
noted with immediate recognition performance
(r Z e0.19, P Z .28), suggesting that greater dis-
ease volume before treatment was associated with a
greater magnitude of stability or positive shift in
HVLT-R total recall and delayed recall after HA-
WBRT compared with the magnitude of stability or
positive shift in those with lesser disease burden. Age
is also significantly associated with posttreatment
HVLT-R total recall (r Z e0.40, P Z .009;
Table 3).

Table 1 Magnetic resonance imaging FLAIR volume
characteristics

FLAIR volume (mL) (n Z 33)
Mean 13.53
SD 10.66
Median 9.31
Minimum to maximum 2.63-45.76
Q1-Q3 6.96-18.41

Met volume (mL) (n Z 33)
Mean 44.87
SD 77.03
Median 7.26
Minimum to maximum 0.00-319.24
Q1-Q3 0.88-38.33

Whole brain volume (mL) (n Z 33)
Mean 1415.88
SD 231.57
Median 1395.00
Minimum to maximum 920.00-2070.00
Q1-Q3 1274.00-1546.00

Corrected FLAIR volume (n Z 33)
Mean 0.0096
SD 0.0077
Median 0.0068
Minimum to maximum 0.0020-0.0377
Q1-Q3 0.0050-0.0127

Corrected FLAIR volume adjusted for
met volume

(n Z 33)

Mean 0.0099
SD 0.0078
Median 0.0068
Minimum to maximum 0.0020-0.0379
Q1-Q3 0.0053-0.0131

Corrected met volume (n Z 33)
Mean 0.0303
SD 0.0479
Median 0.0059
Minimum to maximum 0-0.1748
Q1-Q3 0.0006-0.0309

Abbreviations: FLAIR Z fluid-attenuated inversion;
Q1 Z first quartile; Q3 Z third quartile.

Table 2 Correlations with pretreatment HVLT-R recall score (n Z 33)

HVLT-R
total recall

HVLT-R
immediate recognition

HVLT-R
delayed recall

FLAIR volume r �0.33 �0.30 �0.33
P value .062 .091 .058

Met volume r �0.24 0.10 �0.20
P value .17 .57 .25

Corrected FLAIR volume r �0.30 �0.25 �0.27
P value .091 .16 .12

Corrected met volume r �0.19 0.11 �0.16
P value .30 .54 .37

Corrected FLAIR volume Adjusted for
met volume

r �0.301 �0.25 �0.29
P value .08 .16 .11

Abbreviations: FLAIR Z fluid-attenuated inversion; HVLT-R Z Hopkins Verbal Learning Test-Revised.
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Discussion

This secondary analysis is the first to examine MRI
FLAIR as a biomarker for white matter integrity and
demonstrates that volumetric extent of pretreatment MRI
FLAIR abnormality predicts for memory decline after
HA-WBRT. The hypothesis is that MRI FLAIR volume
acts as a surrogate for white matter tract injury. If a
patient presents with a large volume of pretreatment
MRI FLAIR abnormality, this could be an indicator that
their brains are susceptible to further microvascular
injury after WBRT. Age was also a factor that correlated
with pretreatment MRI FLAIR volumes: increased age
was associated with a greater volume of pretreatment
MRI FLAIR volume. This is consistent with the extant
literature showing that age increases risk for harboring
microvacular disease.16,17 Age in this analysis also is
moderately correlated, although statistically significant,
with post-WBRT neurocognitive declines in HVLT-R
total recall (Table 3). Clinically, the effects of radiation

therapy on an aging patient’s brain are important cor-
relations. As patients age, their brains are more suscep-
tible to the WMI effects of radiation therapy, which
subsequently has a negative impact upon neuro-
cognition. Owing to the limited sample size in this
analysis, the effect of WMI cannot be determined to be
independent of age or other confounders but will be
explored in subsequent, larger trials.

It was previously demonstrated that MRI FLAIR
volume significantly increases after WBRT and that the
presence of pretreatment MRI FLAIR abnormality is a
predictor of subsequent changes or injury to the white
matter after treatment.4 These data add to this literature
by showing that the pretreatment MRI FLAIR abnor-
mality also correlates with subsequent memory decline.
One limitation in the RTOG 0933 data used in this
analysis is the lack of imaging available at 4 months.
However, from previous work, it is reasonable to assume
that at 4 months, treatment-related changes to the white
matter are already developing and that the degree of
these changes may relate to the degree of memory
decline. We will be able to further assess this in the
currently open NRG Oncology-CC001: A Randomized
Phase III trial of Memantine and Whole-Brain Radiation
therapy With or Without Hippocampal Avoidance in
Patients with Brain Metastases, where a collection of
pretreatment MRI imaging in addition to 6 month post-
treatment imaging are enrollment requirements for the
trial. In addition, the sample size in this study was small,
which limited the statistical power in these analyses.
This current data will potentially be validated in a much
larger imaging and neurocognitive dataset with the NRG
Oncology-CC001 results. Pretreatment imaging sub-
mission was an enrollement requirement in NRG
Oncology-CC001. The NRG Oncology-CC001 second-
ary analysis will therefore benefit from improved sta-
tistical power compared with the present study.

It is important to note that all of these patients in this
analysis received HA-WBRT with intensity modulated

Table 3 Correlations of age with posttreatment HVLT-R
and pretreatment MRI FLAIR volume (n Z 33)

HVLT-R recall change
score

r �0.40
P value .0093

HVLT-R delayed recall
change score

r �0.29
P value .064

HVLT-R recognition
change score

r �0.01
P value .97

FLAIR volume r 0.36
P value .39

Corrected FLAIR volume r 0.38
P value .031

Corrected FLAIR volume
adjusted for met volume

r 0.37
P value .036

Abbreviations: FLAIR Z fluid-attenuated inversion; HVLT-
R Z Hopkins Verbal Learning Test-Revised; MRI Z magnetic
resonance imaging.

Table 4 Correlations with posttreatment HVLT-R change score at 4 months (n Z 33)

HVLT-R
total recall

HVLT-R
immediate recognition

HVLT-R
delayed recall

FLAIR volume r 0.08 0.49 0.26
P value .67 .0038 .15

Met volume r �0.34 �0.17 �0.37
P value .053 .34 .032

Corrected FLAIR volume r 0.08 0.54 0.31
P value .65 .0012 .078

Corrected met volume r �0.36 �0.19 �0.36
P value .042 .28 .039

Corrected FLAIR volume adjusted for
met volume

r 0.06 0.53 0.29
P value .73 .0016 .10

Abbreviations: FLAIR Z fluid-attenuated inversion; HVLT-R Z Hopkins Verbal Learning Test-Revised.
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radioation therapy (IMRT). It will be interesting to
determine whether the heterogeneous dose distribution
inherent to IMRT will have a subsequent impact on the
increased development of MRI FLAIR volume changes.
This will be further assessed in the NRG Oncology-
CC001 patient population, where patients are randomized
between standard WBRT (non-IMRT) and HA-WBRT
(IMRT). It will also be of interest to learn if the hippo-
campus is truly the target to be spared with WBRT to
prevent neurocognitive decline. Perhaps some patients
have a predilection for developing neurocognitive decline
just because their white matter is significantly more sus-
ceptible to any radiation therapy injury and therefore will
benefit least from hippocampal avoidance.

In addition, some patients with brain metastases have
cognitive disability before initiating WBRT because of
the burden of their intracranial disease. Patients with
higher pretreatment disease burden experienced a greater
magnitude of stability or positive shift in HVLT-R total
recall and delayed recall after HA-WBRT compared with
the magnitude of stability or positive shift in those with
lesser disease burden. It is underreported that patients can
actually stabilize or have a positive shift in cognitive
function after WBRT, as opposed to decline, because their
disease responds to therapy. These data help to support
this hypothesis and underscore the need for a balanced
approach to selecting patients for or withholding WBRT.

The present analysis is also limited by the cognitive
testing performed to evaluate patients in RTOG 0933. In
this trial, patients were administered the HVLT-R to
assess memory functioning. WBRT is known to affect
white matter and other neurocognitive domains. There-
fore, processing speed and executive functions are likely
at high risk for decline after radiation as these functions
have been shown to depend on white matter integ-
rity.18,19 It is suspected that including these neuro-
cognitive domains will increase the sensitivity in
detecting and perhaps predicting neurocognitive change

posttreatment. This data is included in the collection for
the NRG Oncology CC001 trial.

The ability to predict neurocognitive decline after
WBRT in the metastatic disease population would be a
powerful tool for oncologists. Our work has shown that
pretreatment MRI FLAIR volume maybe one means to
better assess this risk. This hypothesis is being evaluated
in the accruing NRG Oncology CC001 phase III study.
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