Baptist Health South Florida Scholarly Commons @ Baptist Health South Florida

All Publications

12-5-2018

Impact of a urinary tract infection treatment pathway on antimicrobial prescribing within a community hospital

Alyssa Donadio Baptist Hospital of Miami, AlyssaD@baptisthealth.net

Heidi Clarke Baptist Hospital of Miami, heidic@baptisthealth.net

Erika Dittmar Baptist Hospital of Miami, erikaco@baptisthealth.net

Follow this and additional works at: https://scholarlycommons.baptisthealth.net/se-all-publications Part of the <u>Bacterial Infections and Mycoses Commons</u>, <u>Chemical Actions and Uses Commons</u>, and the <u>Pharmacy and Pharmaceutical Sciences Commons</u>

Citation

Donadio, Alyssa; Clarke, Heidi; and Dittmar, Erika, "Impact of a urinary tract infection treatment pathway on antimicrobial prescribing within a community hospital" (2018). *All Publications*. 3102. https://scholarlycommons.baptisthealth.net/se-all-publications/3102

This Conference Poster -- Open Access is brought to you for free and open access by Scholarly Commons @ Baptist Health South Florida. It has been accepted for inclusion in All Publications by an authorized administrator of Scholarly Commons @ Baptist Health South Florida. For more information, please contact Carrief@baptisthealth.net.

BAPTIST HEALTH SOUTH FLORIDA

Alyssa Donadio, Pharm.D., BCPS; Heidi Clarke, Pharm.D., BCCCP; Erika Dittmar, Pharm.D., BCPS Baptist Hospital of Miami, Department of Pharmacy; Miami, FL

Background

Treatment algorithms and clinical practice guidelines a often implemented within healthcare institutions measures to reduce healthcare costs while improvir patient outcomes. As antibiotic resistance rates continue rise and therapeutic options remain limited, urinary tra infections (UTIs) represent a growing public health concer

Based on the institutional formulary, clinical experienc local resistance patterns, and consensus guidelines, t P&T Committee at Baptist Health South Florida agree upon an evidence-based treatment pathway for UTIs to used as guidance for empiric antibiotic treatment. The go of this study was to assess whether this pathway is effective antibiotic stewardship effort to promo appropriate antibiotic use.

Purpose

To evaluate appropriateness of antibiotic selection a duration of treatment for urinary tract infections (UT before and after implementation of a treatment pathwa within Baptist Hospital of Miami.

Methods

- Si-phasic, IRB approved study conducted on adu patients admitted to Baptist Hospital of Miami
- Phase I was a retrospective chart review of 50 random selected patients admitted with a UTI betwee November 2016 and October 2017
- Phase II was a prospective review of 50 patients with positive urine culture between January 2018 and Marc 2018, after implementation of the UTI treatment pathway
- **Exclusion** criteria:
 - Febrile neutropenia
 - Acute bacterial prostatitis
 - Coexisting infections
- Primary outcome: Percent of patients who received optimal empiric antibiotic treatment and duration therapy before and after implementation of the pathwa
- Secondary outcome: length of stay before and after pathway
- Appropriateness of antibiotic therapy was defined the P&T approved treatment algorithm

Impact of a urinary tract infection treatment pathway on antimicrobial prescribing within a community hospital

Demographics

oro					
as					
ng					
to		Patient characteristics			
act	ct Average age, years				
rn.		Gender—female, n (%)			
ce,		Average baseline WBC count x10 ⁹ /L			
ne ed		UTI category			
be		Asymptomatic bacteriuria, n (%)			
bal		Acute uncomplicated cystitis, n (%)			
an		Severe and/or complicated LITL n (%)			
ote					
		ID Consult, n (%)			
		Outcom			
nd Tc)					
vav					
		Primary Outcome			
	I	Optimal antibiotic & duration, n (%)			
		Optimal empiric antibiotic, n (%)			
		Optimal antibiotic duration, n (%)			
uit		Secondary Outcome			
nly		Average length of stay, days			
en		Overall Outcomes			
		Average duration of therapy, days			
i a rch		Total days of antibiotic therapy			
ent		Opportunity for earlier IV to PO conversion, n			
		Appropriateness of Antibiotic by UTI Category			
od		Asymptomatic bacteriuria, n (%)			
of		Uncomplicated cystitis, n (%)			
ay ter		Uncomplicated pyelonephritis, n (%)			
		Severe and/or complicated UTI, n (%)			
υy					

Phase I (n=50)	Phase II (n=50)	p value
76	73	0.14
37 (74%)	32 (64%)	0.28
10.3	11.2	0.30
2 (4)	2 (4)	1.00
12 (24)	13 (26)	0.82
14 (28)	12 (24)	0.65
22 (44)	23 (46)	0.84
20 (40)	24 (48)	

es

	Phase I (n=50)	Phase II (n=50)	p value
	15 (30)	29 (58)	0.005
	27 (54)	38 (76)	0.02
	27 (54)	37 (74)	0.038
	7.8	6.4	0.66
(%)	8	6.7	0.03
	392	331	-
	19 (38)	9 (18)	0.03

Phase I (n=50)	Phase II (n=50)	p value
0/2 (0%)	1/2 (50%)	0.32
9/12 (75%)	13/13 (100%)	0.06
12/14 (86%)	12/12 (100%)	0.19
6/22 (27%)	12/23 (52%)	0.09

- There were no significant differences in baseline characteristic between the two groups
- The majority of patients were female and had a diagnosis of severe and/or complicated UTI
- For the primary outcome of optimal antibiotic selection and duration of therapy, 15 (30%) of the patients in phase I prior to pathway implementation were treated appropriately according to the algorithm, while 29 (58%) of patients were treated appropriately in phase II after pathway implementation (p=0.05)
- For the secondary outcome, average length of stay was reduced from 7.8 days in phase I to 6.7 days in phase II, although this difference was not found to be statistically significant (p=0.66)
- Average duration of therapy was reduced from 8 days during phase I to 6.7 days in phase II, which was statistically significant (p=0.03)

Implementation of a UTI treatment pathway improved appropriate empiric antimicrobial use, reduced average length of stay, and reduced average duration of antimicrobial therapy, thus favoring patient outcomes and healthcare costs.

- SJ.

All authors of this presentation have nothing to disclose concerning possible financial or personal relationships with commercial entities that may have direct or indirect interest in the subject matter of this presentation.

Results

Conclusion

References

1. Lopez ID, LeClaire AC, Martin CA, et al. Influence of a UTI empiric treatment pathway on physician prescribing in an academic medical center. Formulary JournalClinical Pharmacology. 2006;41:74-81.

2. Flores-Mireles AL, Walker JN, Caparon M. & Hultgren Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015; 13(5): 269-284.

Disclosure