
Music domain ontology applications for intelligent

web searching

Maŕıa Clara Vallés y Pablo R. Fillottrani

Departamento de Ciencias e Ingenieŕıa de la Computación
Universidad Nacional del Sur

Baha Blanca, Argentina
mcvalles@gmail.com
prf@cs.uns.edu.ar

Abstract

The Semantic Web is an extension of the current Web that at-
tempts to reach a state in the future where everything on the Web will
no longer be only machine-readable, but also machine-understandable.
Three important technologies for developing the Semantic Web are al-
ready in place: Extensible Markup Language (XML), the Resource
Description Framework (RDF), and Web Ontology Language (OWL).
An ontology language is a formal language used to encode ontologies.
An ontology is an explicit specification of a conceptualization. Many
disciplines now develop standardized ontologies that domain experts
can use to share and annotate information in their fields, and which
can be used for reasoning about the objects within a particular do-
main. It includes machine-interpretable definitions of basic concepts
in the domain and relations among them. In this work, we develop an
ontology of Argentinean music. Despite being highly specific, we illus-
trate how such an ontology can be expanded and used in applications
that carry out complex music related searches. These applications can
be embedded later on in electronic devices with some form of wireless
networking capability, such as mobile phones, enriching their current
functionality.

1 Introduction

Since its beginning, the World Wide Web has played an important role in
our everyday life, transforming the world towards a knowledge society. As
a result, the way computers are used has diversified, gaining popularity
and users. Currently, one of their main utilities is related to information
processing. Some few examples being applications such as text processing,
data bases, and games. At present, the view of computers as an efficient

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portal de Publicaciones Periodicas UP (Universidad de Palermo)

https://core.ac.uk/display/230165537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

way to access information on practically any subject, has gained special
attention.

Most of today’s Web content is presented in a way that makes it suitable
only for human consumption. In other words, information is expected to be
consumed by individuals, not software programs. Typical uses of the Web
involve people searching, sharing and making use of information, communi-
cating with other people, shopping online, creating personal spaces, among
others. These activities are human oriented and are thus, not well supported
by software tools.

Apart from hypertext links, which allow the possibility of linking a doc-
ument to any other document, keyword-based search engines have turned
into an essential tool for information management on today’s web. It has
become almost natural to use these search engines to look up information
for almost every possible topic, and society in general has come to rely on
them. However, the use of these tools in this fashion has some disadvantages,
given the fact that it is the person who must browse documents, extract the
information he or she is looking for, and discard the rest. The next step
to take in order to solve this problem, would be the automatization of this
process.

Unfortunately, there is a mayor inconvenience we must solve before we
can achieve this task, which has to do with the fact that Web content must
allow a computer program to sort out the meaning (semantics) of the in-
formation it browses. In other words, it is easy for a person to distinguish
the information that is meaningful, because humans can “understand” the
meaning of the Web content they read. However, in order for a software tool
to interpret sentences and extract useful information for users, Web content
should be represented in a form that is more machine-processable and which
allows intelligent techniques to take advantage of these representations. We
refer to this future Web plan, as the Semantic Web. Therefore, the Semantic
Web attempts to reach a state in the future where everything on the Web
will not longer be only machine-readable, but also machine-understandable.

It is important to understand that the Semantic Web is not a separate
Web but an extension of the current one, in which information is given
well-defined meaning, enabling computers and people to work in closer co-
operation. The first steps towards incorporating the Semantic Web into the
structure of the existing Web are already under way. In the near future,
these developments will cause the dawning of significant new functionality
as machines become much better able to process and “understand”the data
that they merely display at present.

The second section of this presentation focuses on the main topics that
must be addressed in order for the semantic web to function. The third
and fourth section centers in three important technologies for developing
the Semantic Web: Extensible Markup Language (XML), the Resource De-
scription Framework (RDF), and Web Ontology Language (OWL). Sections

2

five through seven present an ontology example, an application that benefits
from it and several representative use cases. The last section corresponds to
the final conclusion.

2 Knowledge Representation

For the semantic web to function, computers must have access to struc-
tured collections of information and sets of inference rules that they can
use to conduct automated reasoning. Artificial-intelligence researchers have
studied such systems since long before the Web was developed. Traditional
knowledge-representation systems typically have been centralized, requiring
everyone to share exactly the same definition of common concepts such as
“parent” or “vehicle”. But central control is stifling, and increasing the size
and scope of such a system rapidly becomes unmanageable. Moreover, these
systems usually carefully limit the questions that can be asked so that the
computer can answer reliably, or answer at all. To avoid such problems,
traditional knowledge-representation systems generally each had their own
narrow and idiosyncratic set of rules for making inferences about their data.
However, even if the data could be transferred from one system to another,
the rules, existing in a completely different form, usually could not [2].

Semantic Web researches, on the other hand, accept that unanswerable
questions represent a small price to pay to achieve versatility. This can be
compared to the initial observation detractors gave about the conventional
Web, where the lack of a central database and tree structure makes it im-
possible to assure everything one seeks will actually be found. However, the
expressive power of the system makes vast amounts of information available,
and search engines now produce remarkably accurate results and offer a lot
of material.

The task of adding logic to the Web encompasses a series of complex
decisions, given the fact that the logic must be strong enough to describe
object properties, but not to powerful so as to avoid agents tricking them-
selves into considering paradoxes.

3 Technologies for developing the Semantic Web

Two important technologies for developing the Semantic Web are already in
place: Extensible Markup Language (XML) and the Resource Description
Framework (RDF).

3.1 Extensible Markup Language (XML)

One of the fundamental contributions towards the Semantic Web to date
has been the development of XML itself. Liberating data from opaque, in-

3

extensible formats as it does, XML provides an interoperable syntactical
foundation upon which solutions to the larger issues of representing rela-
tionships and meaning can be built. It is an important center of agreement
among individual developers and corporations [3].

XML, the Extensible Markup Language, is a W3C-endorsed standard
for document markup.1 XML owns its name to the fact that it allows users
yo mark up data that can later be displayed on the web, with simple human-
readable tags. Users can create their own tags, such as “address” or “career”,
that annotate Web pages or sections of text on a page. Scripts, or programs,
can make use of these tags in sophisticated ways, but the script writer has
to know what the page writer uses each tag for. Therefore, XML is purely
syntactical, allowing users to add arbitrary structure to their documents but
saying nothing about what the structures mean, i.e. its semantics [4].

3.1.1 The Benefits of XML

Data is included in XML documents as strings of text. The data is sur-
rounded by text markup that describes the data. XML’s basic unit of data
and markup is called an element. The XML specification defines the exact
syntax this markup must follow: how elements are delimited by tags, what a
tag looks like, what names are acceptable for elements, where attributes are
placed, and so forth. Superficially, the markup in an XML document looks
a lot like the markup in an HTML document, but there are some crucial
differences [4].

1. XML allows developers and writers to define the elements they need
as they need them. Although XML is quite flexible in the elements
it allows to be defined, it is quite strict in many other respects. It
provides a grammar for XML documents that says where tags may
be placed, what they must look like, which element names are legal,
how attributes are attached to elements, and so forth. This grammar
is specific enough to allow the development of XML parsers that can
read any XML document. Documents that satisfy this grammar are
said to be well-formed. Documents that are not well-formed are not
allowed, thus XML processors will reject documents that contain well-
formedness errors.

2. In well-designed XML applications, the markup says nothing about
how the document should be displayed. That is, it does not say that
an element is bold or italicized or a list item. Thus, XML is not a
presentation language.

1The World Wide Web Consortium (W3C) develops interoperable technologies (spec-
ifications, guidelines, software, and tools) to lead the Web to its full potential. W3C is
a forum for information, commerce, communication, and collective understanding. For
more information, visit www.w3.org .

4

3. The markup permitted in a particular XML application can be docu-
mented in a schema. Particular document instances can be compared
to the schema. Documents that match the schema are said to be
valid. Documents that do not match are invalid. Validity depends on
the schema. That is, whether a document is valid or invalid depends
on which schema you compare it to. Not all documents need to be
valid. For many purposes it is enough that the document merely be
well-formed.

There are many different XML schema languages, with different levels
of expressivity. The most broadly supported schema language and the
only one defined by the XML 1.0 specification itself is the document
type definition (DTD). A DTD lists all the legal markup and specifies
where and how it may be included in a document. DTDs are optional
in XML. On the other hand, DTDs may not always be enough. The
DTD syntax is quite limited and does not allow you to make many
useful statements such as “This element contains a number” or “This
string of text is a date between 1974 and 2032”. The W3C XML
Schema Language (which sometimes goes by the misleadingly generic
label schemas) does allow you to express constraints of this nature.

3.1.2 What XML Is Not

First of all, XML is not a programming language. There is no such thing
as an XML compiler that reads XML files and produces executable code.
XML can be used as a format for instructions to programs that do make
things happen, but in all cases it’s the program taking action, not the XML
document itself. An XML document by itself does not do anything [4].

XML is not a database. You’re not going to replace an Oracle or MySQL
server with XML. A database can contain XML data, but the database itself
is not an XML document. You can store XML data into a database on a
server or retrieve data from a database in an XML format, but to do this,
you need to be running software written in a real programming language
such as C or Java.

3.1.3 XML Schema

An XML schema is a description of a type of XML document, typically
expressed in terms of constraints on the structure and content of documents
of that type, above and beyond the basic syntax constraints imposed by
XML itself. An XML schema provides a view of the document type at a
relatively high level of abstraction.

There are languages developed specifically to express XML schemas. The
Document Type Definition (DTD) language, which is native to the XML
specification, is a schema language that is of relatively limited capability,

5

but that also has other uses in XML aside from the expression of schemas.
Two other very popular, more expressive XML schema languages are XML
Schema (W3C) and RELAX NG. The mechanism for associating an XML
document with a schema varies according to the schema language. The
association may be achieved via markup within the XML document itself,
or via some external means.

The process of checking to see if an XML document conforms to a schema
is called validation, which is separate from XML’s core concept of syntactic
well-formedness. All XML documents must be well-formed, but it is not
required that a document be valid unless the XML parser is “validating”, in
which case the document is also checked for conformance with its associated
schema. DTD-validating parsers are most common, but some support W3C
XML Schema or RELAX NG as well. Documents are only considered valid
if they satisfy the requirements of the schema with which they have been
associated.

XML Schema language was published as a W3C Recommendation in
May 2001. It was the first separate schema language for XML to achieve
Recommendation status by the W3C. Like all XML schema languages, XML
Schema can be used to express a schema: a set of rules to which an XML
document must conform in order to be considered “valid” according to that
schema. However, unlike most other schema languages, XML Schema was
also designed with the intent of validation resulting in a collection of informa-
tion adhering to specific datatypes, which can be useful in the development
of XML document processing software.

An XML Schema instance is an XML Schema Definition (XSD) and
typically has the filename extension “.xsd”. The language itself is sometimes
informally referenced as XSD. XSD is also an initialism for XML Schema
Datatypes, the datatype portion of XML Schema.

3.2 Resource Description Framework (RDF)

The World Wide Web affords unprecedented access to globally distributed
information. Metadata, or structured data about data, improves discovery
of and access to such information. The effective use of metadata among
applications, however, requires common conventions about semantics, syn-
tax, and structure. Individual resource description communities define the
semantics, or meaning, of metadata that address their particular needs. Syn-
tax, the systematic arrangement of data elements for machine-processing,
facilitates the exchange and use of metadata among multiple applications.
Structure can be thought of as a formal constraint on the syntax for the
consistent representation of semantics [6].

The Resource Description Framework (RDF), developed under the aus-
pices of the World Wide Web Consortium (W3C), is an infrastructure that
enables the encoding, exchange, and reuse of structured metadata. This in-

6

frastructure enables metadata interoperability through the design of mecha-
nisms that support common conventions of semantics, syntax, and structure.
RDF does not stipulate semantics for each resource description community,
but rather provides the ability for these communities to define metadata ele-
ments as needed. RDF uses XML as a common syntax for the exchange and
processing of metadata. The XML syntax provides vendor independence,
user extensibility, validation, human readability, and the ability to repre-
sent complex structures. By exploiting the features of XML, RDF imposes
structure that provides for the unambiguous expression of semantics and,
as such, enables consistent encoding, exchange, and machine-processing of
standardized metadata.

RDF supports the use of conventions that will facilitate modular in-
teroperability among separate metadata element sets. These conventions
include standard mechanisms for representing semantics that are grounded
in a simple, yet powerful, data model. RDF additionally provides a means
for publishing both human-readable and machine-processable vocabularies.
Vocabularies are the set of properties, or metadata elements, defined by re-
source description communities. The ability to standardize the declaration
of vocabularies is anticipated to encourage the reuse and extension of se-
mantics among disparate information communities. For example, the Dublin
Core Initiative, an international resource description community focusing on
simple resource description for discovery, has adopted RDF. Educom’s IMS
Instructional Metadata System, designed to provide access to educational
materials, has adopted the Dublin Core and corresponding architecture and
extended it with domain-specific semantics. RDF is designed to support this
type of semantic modularity by creating an infrastructure that supports the
combination of distributed attribute registries. Thus, a central registry is
not required. This permits communities to declare vocabularies which may
be reused, extended and/or refined to address application or domain spe-
cific descriptive requirements.The goals of RDF are broad, and the potential
opportunities are enormous.

3.2.1 The RDF Data Model

RDF provides a model for describing resources. Resources have proper-
ties (attributes or characteristics). RDF defines a resource as any object
that is uniquely identifiable by an Uniform Resource Identifier (URI). The
properties associated with resources are identified by property-types, and
property-types have corresponding values. Property-types express the rela-
tionships of values associated with resources. In RDF, values may be atomic
in nature (text strings, numbers, etc.) or other resources, which in turn may
have their own properties. A collection of these properties that refers to the
same resource is called a description [6].

The application and use of the RDF data model can be illustrated by

7

concrete examples. Consider the following statements:

• “The author of Document 1 is John Smith”

• “John Smith is the author of Document 1”

To humans, these statements convey the same meaning (that is, John
Smith is the author of a particular document). To a machine, however,
these are completely different strings. Whereas humans are extremely adept
at extracting meaning from differing syntactic constructs, machines remain
grossly inept. Using a triadic model of resources, property-types and cor-
responding values, RDF attempts to provide an unambiguous method of
expressing semantics in a machine-readable encoding.

RDF provides a mechanism for associating properties with resources. So,
before anything about Document 1 can be said, the data model requires the
declaration of a resource representing Document 1. Thus, the data model
corresponding to the statement “the author of Document 1 is John Smith”
has a single resource Document 1, a property-type of author and a cor-
responding value of John Smith. To distinguish characteristics of the data
model, the RDF Model and Syntax specification represents the relationships
among resources, property-types, and values in a directed labeled graph. In
this case, resources are identified as nodes, property-types are defined as
directed label arcs, and string values are quoted. Given this representation,
the data model corresponding to the statement is graphically expressed as:

If additional descriptive information regarding the author were desired,
e.g., the author’s email address and affiliation, an elaboration on the previous
example would be required. In this case, descriptive information about John
Smith is desired. As was discussed in the first example, before descriptive
properties can be expressed about the person John Smith, there needs to
be a unique identifiable resource representing him. Given the directed label
graph notation in the previous example, the data model corresponding to
this description is graphically represented as:

In this case, “John Smith” the string is replaced by a uniquely identified
resource denoted by Author 001 with the associated property-types of name,
email and affiliation. The use of unique identifiers for resources allows for
the unambiguous association of properties. This is an important point,
as the person John Smith may be the value of several different property-
types. John Smith may be the author of Document 1, but also may be the
value of a particular company describing the set of current employees. The

8

unambiguous identification of resources provides for the reuse of explicit,
descriptive information.

In the previous example the unique identifiable resource for the author
was created, but not for the author’s name, email or affiliation. The RDF
model allows for the creation of resources at multiple levels. Concerning the
representation of personal names, for example, the creation of a resource
representing the author’s name could have additionally been described us-
ing “firstname”, “middlename” and “surname” property-types. Clearly, this
iterative descriptive process could continue down many levels. It is impor-
tant to consider which could be the practical and logical limits of these
iterations.

There is no one right answer to this question. The answer is dependent on
the domain requirements. These issues must be addressed and decided upon
in the standard practice of individual resource description communities. In
short, experience and knowledge of the domain dictate which distinctions
should be captured and reflected in the data model.

The RDF data model additionally provides for the description of other
descriptions. For instance, often it is important to assess the credibility of
a particular description (e.g., “The Library of Congress told us that John
Smith is the author of Document 1”). In this case the description tells us
something about the statement “John Smith is the author of Document 1”,
specifically, that the Library of Congress asserts this to be true. Similar con-
structs are additionally useful for the description of collections of resources.
For instance, “John Smith is the author of Documents 1, 2, and 3”. While
these statements are significantly more complex, the same data model is
applicable. A more detailed discussion of these issues is outside the scope
of this overview, but more information is available in the RDF Model and
Syntax Specification”.2

3.2.2 The RDF Syntax

RDF defines a simple, yet powerful model for describing resources. A syn-
tax representing this model is required to store instances of the model into
machine-readable files and to communicate these instances among appli-

2URL:http://www.w3.org/RDF/Group/WD-rdf-syntax/

9

cations. XML is this syntax. RDF imposes formal structure on XML to
support the consistent representation of semantics [6].

RDF provides the ability for resource description communities to define
semantics. It is important, however, to disambiguate these semantics among
communities. The property-type “author”, for example, may have broader
or narrower meaning depending on different community needs. As such, it
is problematic if multiple communities use the same property-type to mean
very different things. To prevent this, RDF uniquely identifies property-
types by using the XML namespace mechanism. XML namespaces pro-
vide a method for unambiguously identifying the semantics and conventions
governing the particular use of property-types by uniquely identifying the
governing authority of the vocabulary. For example, the property-type “au-
thor” defined by the Dublin Core Initiative as the “person or organization
responsible for the creation of the intellectual content of the resource” and
is specified by the Dublin Core CREATOR element. An XML namespace
is used to unambiguously identify the Schema for the Dublin Core vocab-
ulary by pointing to the definitive Dublin Core resource that defines the
corresponding semantics. If the Dublin Core RDF Schema, however, is ab-
breviated as “DC”, the data model representation for this example would
be:

This more explicit declaration identifies a resource Document 1 with the
semantics of property-type Creator unambiguously defined in the context of
DC (the Dublin Core vocabulary). The value of this property-type is John
Smith.

In the more advanced example, where additional descriptive information
regarding the author is required, similar syntactic constructs are used. In
this case, while it may still be desirable to use the Dublin Core CREATOR
property-type to represent the person responsible for the creation of the
intellectual content, additional property-types “name”, “email” and “affil-
iation” are required. For this case, since the semantics for these elements
are not defined in Dublin Core, an additional resource description standard
may be utilized. It is feasible to assume the creation of an RDF schema with
the semantics similar to the vCard 3 specification designed to automate the
exchange of personal information typically found on a traditional business
card, could be introduced to describe the author of the document. The data
model representation for this example with the corresponding business card
schema defined as CARD would be:

3URL:http://www.imc.org/pdi

10

The structural constraints RDF imposes to support the consistent encod-

ing and exchange of standardized metadata provides for the interchangeabil-
ity of separate packages of metadata defined by different resource description
communities.

3.2.3 The RDF Schema

RDF Schemas (RDF-S) are used to declare vocabularies, the sets of seman-
tics property-types defined by a particular community. RDF schemas define
the valid properties in a given RDF description, as well as any characteristics
or restrictions of the property-type values themselves. The XML namespace
mechanism serves to identify RDF Schemas [6].

A human and machine-processable description of an RDF schema may
be accessed by de-referencing the schema URI. If the schema is machine-
processable, it may be possible for an application to learn some of the se-
mantics of the property-types named in the schema. To understand a par-
ticular RDF schema is to understand the semantics of each of the properties
in that description. RDF schemas are structured based on the RDF data
model. Therefore, an application that has no understanding of a particular
schema will still be able to parse the description into the property-type and
corresponding values and will be able to transport the description intact
(e.g., to a cache or to another application).

The exact details of RDF schemas are currently being discussed in the
W3C RDF Schema working group.4 It is anticipated, however, that the
ability to formalize human-readable and machine-processable vocabularies
will encourage the exchange, use, and extension of metadata vocabularies
among disparate information communities. RDF schemas are being designed
to provide this type of formalization.

4 Ontologies

A body of formally represented knowledge is based on a conceptualization:
the objects, concepts, and other entities that are assumed to exist in some

4URL:http://www.w3.org/TR/WE-RDF-Schema/

11

area of interest and the relationships that hold among them (Genesereth
& Nilsson, 1987). A conceptualization is an abstract, simplified view of
the world that we wish to represent for some purpose. Every knowledge
base, knowledge-based system, or knowledge-level agent is committed to
some conceptualization, explicitly or implicitly. An ontology is an explicit
specification of a conceptualization. The term is borrowed from philosophy,
where an Ontology is a systematic account of Existence.

In recent years the development of ontologies has become common on
the World-Wide Web, moving from the realm of Artificial-Intelligence labo-
ratories to the desktops of domain experts. The ontologies on the Web range
from large taxonomies categorizing Web sites (such as on Yahoo!) to cate-
gorizations of products for sale and their features (such as on Amazon.com).
Many disciplines now develop standardized ontologies that domain experts
can use to share and annotate information in their fields, and which can
be used for reasoning about the objects within a particular domain. An
ontology defines a common vocabulary for researchers who need to share in-
formation in a domain. It includes machine-interpretable definitions of basic
concepts in the domain and relations among them.[7] Some of the reasons
for developing ontologies are:

• To share common understanding of the structure of information among
people or software agents

• To enable reuse of domain knowledge

• To make domain assumptions explicit

• To separate domain knowledge from the operational knowledge

• To analyze domain knowledge

Sharing common understanding of the structure of information among
people or software agents is one of the most common goals in developing
ontologies (Musen 1992; Gruber 1993). For example, suppose several differ-
ent Web sites contain medical information or provide medical e-commerce
services. If these Web sites share and publish the same underlying ontology
of the terms they all use, then computer agents can extract and aggregate
information from these different sites. The agents can use this aggregated
information to answer user queries or as input data to other applications.

Enabling reuse of domain knowledge was one of the driving forces behind
recent surge in ontology research. If one group of researchers develops an
ontology in detail, others can simply reuse it for their domains. Addition-
ally, if we need to build a large ontology, we can integrate several existing
ontologies describing portions of the large domain. We can also reuse a
general ontology, and extend it to describe our domain of interest.

12

Making explicit domain assumptions underlying an implementation makes
it possible to change these assumptions easily if our knowledge about the do-
main changes. Hard-coding assumptions about the world in programming-
language code makes these assumptions not only hard to find and understand
but also hard to change, in particular for someone without programming ex-
pertise. In addition, explicit specifications of domain knowledge are useful
for new users who must learn what terms in the domain mean.

Separating the domain knowledge from the operational knowledge is an-
other common use of ontologies. We can describe a task of configuring a
product from its components according to a required specification and im-
plement a program that does this configuration independent of the products
and components themselves (McGuinness and Wright 1998).

Analyzing domain knowledge is possible once a declarative specification
of the terms is available. Formal analysis of terms is extremely valuable when
both attempting to reuse existing ontologies and extending them (McGuin-
ness et al. 2000).

Often an ontology of the domain is not a goal in itself. Developing an
ontology is akin to defining a set of data and their structure for other pro-
grams to use. Problem-solving methods, domain-independent applications,
and software agents use ontologies and knowledge bases built from ontologies
as data.

4.0.4 Web Ontology Language - OWL

An ontology language is a formal language used to encode the ontology.
There are a number of such languages for ontologies, one of them being
OWL. OWL is intended to be used when the information contained in doc-
uments needs to be processed by applications, as opposed to situations where
the content only needs to be presented to humans. OWL can be used to ex-
plicitly represent the meaning of terms in vocabularies and the relationships
between those terms. OWL has more facilities for expressing meaning and
semantics than XML, RDF, and RDF-S, and thus OWL goes beyond these
languages in its ability to represent machine interpretable content on the
Web. OWL is a revision of the DAML+OIL web ontology language incor-
porating lessons learned from the design and application of DAML+OIL5.
[8]

OWL has been designed to meet the need for a Web Ontology Language.
OWL is part of the growing stack of W3C recommendations related to the
Semantic Web:

• XML provides a surface syntax for structured documents, but imposes
no semantic constraints on the meaning of these documents.

5http://www.w3.org/TR/daml+oil-reference

13

• XML Schema is a language for restricting the structure of XML doc-
uments and also extends XML with datatypes.

• RDF is a datamodel for objects (“resources”) and relations between
them, provides a simple semantics for this datamodel, and these data-
models can be represented in an XML syntax.

• RDF Schema is a vocabulary for describing properties and classes of
RDF resources, with a semantics for generalization-hierarchies of such
properties and classes.

• OWL adds more vocabulary for describing properties and classes:
among others, relations between classes (e.g. disjointness), cardinality
(e.g. “exactly one”), equality, richer typing of properties, characteris-
tics of properties (e.g. symmetry), and enumerated classes.

OWL provides three increasingly expressive sublanguages designed for
use by specific communities of implementers and users.

• OWL Lite supports those users primarily needing a classification hi-
erarchy and simple constraints. For example, while it supports car-
dinality constraints, it only permits cardinality values of 0 or 1. It
should be simpler to provide tool support for OWL Lite than its more
expressive relatives, and OWL Lite provides a quick migration path
for thesauri and other taxonomies. Owl Lite also has a lower formal
complexity than OWL DL, see the section on OWL Lite in the OWL
Reference for further details.

• OWL DL supports those users who want the maximum expressiveness
while retaining computational completeness (all conclusions are guar-
anteed to be computable) and decidability (all computations will finish
in finite time). OWL DL includes all OWL language constructs, but
they can be used only under certain restrictions (for example, while a
class may be a subclass of many classes, a class cannot be an instance
of another class). OWL DL is so named due to its correspondence
with description logics, a field of research that has studied the logics
that form the formal foundation of OWL.

• OWL Full is meant for users who want maximum expressiveness and
the syntactic freedom of RDF with no computational guarantees. For
example, in OWL Full a class can be treated simultaneously as a col-
lection of individuals and as an individual in its own right. OWL Full
allows an ontology to augment the meaning of the pre-defined (RDF
or OWL) vocabulary. It is unlikely that any reasoning software will
be able to support complete reasoning for every feature of OWL Full.

14

Each of these sublanguages is an extension of its simpler predecessor,
both in what can be legally expressed and in what can be validly concluded.
Ontology developers adopting OWL should consider which sublanguage best
suits their needs. The choice between OWL Lite and OWL DL depends on
the extent to which users require the more-expressive constructs provided
by OWL DL. The choice between OWL DL and OWL Full mainly depends
on the extent to which users require the meta-modeling facilities of RDF
Schema (e.g. defining classes of classes, or attaching properties to classes).
When using OWL Full as compared to OWL DL, reasoning support is less
predictable since complete OWL Full implementations do not currently ex-
ist.

OWL Full can be viewed as an extension of RDF, while OWL Lite and
OWL DL can be viewed as extensions of a restricted view of RDF. Every
OWL (Lite, DL, Full) document is an RDF document, and every RDF
document is an OWL Full document, but only some RDF documents will
be a legal OWL Lite or OWL DL document. Because of this, some care has
to be taken when a user wants to migrate an RDF document to OWL. When
the expressiveness of OWL DL or OWL Lite is deemed appropriate, some
precautions have to be taken to ensure that the original RDF document
complies with the additional constraints imposed by OWL DL and OWL
Lite.

5 An Ontology Example

In order to fully understand the previous concepts that where mentioned,
this section describes how to create an ontology of Argentinean music, dances
that originate from it, and the provinces where they are played.

5.1 Domain of interest

There are several reasons that justify our election for ontology domain. Mu-
sic provides us of many useful examples, but by itself it is too broad and
complex a topic. Therefore, we restrain the domain by limiting music to a
single country’s traditional music. The country of choice in our case will be
Argentina.

5.2 Ontology Language

The language we chose to use for the development this example was Protègè-
OWL. Protègè is a free, open-source platform that provides a growing user
community with a suite of tools to construct domain models and knowledge-
based applications with ontologies. At its core, Protègè implements a rich
set of knowledge-modeling structures and actions that support the creation,

15

visualization, and manipulation of ontologies in various representation for-
mats. The Protègè-OWL editor is an extension of Protègè that supports the
Web Ontology Language (OWL). OWL is the most recent development in
standard ontology languages, endorsed by the World Wide Web Consortium
(W3C) to promote the Semantic Web vision. A detailed tutorial on Protègè-
OWL goes beyond the intended purpose of this essay. We refer the reader
to [5] in order to gain a detailed explanation on the use of Protègè-OWL.

5.3 Creating our Ontology

The first step we must take after we decide to create an ontology, is to try to
find existing ontologies that relate to our domain of interest, and reuse them.
Protègè-OWL allows us to reuse existing ontologies, by importing them in
our project. By taking this approach, we accomplish quality and simplic-
ity in the ontology creation process. Creating an ontology from scratch is
usually reserved for ad-hoc and new, less common domains.

For our ontology domain, there are already some ontologies developed
that where considered in the creation process:

• The Music Ontology — http://purl.org/ontology/mo/

• The MusicBrainz Ontology — http://www.purl.org/net/MusicInstruments

However, we decided not to include the first one, given the fact that it
surpassed our ontology’s intended purpose. The Music Ontology covers a
wide range of music related terms, but does not develop each term to its full
extent. This is highly understandable, since the domain proves to be quite
broad. In our case, we considered reusing the term “Musical Instrument”
from an existing ontology. The music ontology’s scope did not go beyond the
inclusion of such a term. On the other hand, the MusicBrainz ontology did
develop the term, so we imported and expanded it by including a number
of traditional instruments that were not present in the original ontology.

5.3.1 The Onlotogy

We will now give a detailed explanation of each term that is included in our
onlotogy, an how they relate to each other.

1. Classes

• Argentina
Represents a South American country by the same name. Ar-
gentina is constituted as a federation of twenty-three provinces
and an autonomous city. This class contains a subclass “Provinces”,
which in turn contains an individual representing each Argen-
tinean province.

16

Figure 1: Provinces

• Folklore Music
Represents every Argentinean traditional music genre and con-
tains a subclass for each one.

• Folklore Dances
Represents every Argentinean traditional dance genre, and con-
tains a subclass for each one.

• Instrument
Represents a set of musical instruments. Each instrument corre-
sponds to an instrument individual from the MusicBrainz ontol-
ogy. Such a correspondence is made by linking our Instrument
class individuals to MusicBrainz instrument individuals by the
use of annotation properties, in particular, the rdfs:isDefinedBy
property. Thus the expression S rdfs:isDefinedBy O states
that the resource O defines S.

2. Disjoint Classes

Having added the previously mentioned classes to our ontology, we
must specify that these classes are disjoint, so that an individual can-
not be an instance of more than one of them.

17

Figure 2: Instruments

3. Properties

• has instrument
Determines whether a specific musical or dance genre, requires a
particular musical instrument.

• played in
Determines whether a specific musical genre, is played in a par-
ticular Argentinean province.

• danced in
Determines whether a specific dance genre, is played in a partic-
ular Argentinean province.

• has province
Determines whether a country, in our case “Argentina”, has a
particular province.

• is partOf
Determines whether a province, is part of a particular country.

4. Restrictions

In order to make sure that properties are used correctly, we include
restrictions in order to restrict the individuals that belong to a class.

18

Figure 3: Argentinean music Ontology Classes

Quantifier Restrictions

Universal restrictions are given the symbol ∀. They constrain the
relationships along a given property to individuals that are members
of a specific class.

• ∀ played in only Provinces
In this way we establish that a certain individual can only have
a relationship along the “played in” property to a member of the
Provinces class.

• ∀ danced in only Provinces
In this way we establish that a certain individual can only have a
relationship along the “danced in” property to a member of the
Provinces class.

• ∀ has instrument only Instrument
In this way we establish that a certain individual can only have
a relationship along the “has instrument” property to a member
of the Instrument class.

• ∀ has province only Provinces
In this way we establish that a certain individual can only have
a relationship along the “has province” property to a member of
the Provinces class.

• ∀ is partOf only Argentina
In this way we establish that a certain individual can only have
a relationship along the “is partOf” property to a member of the
Argentina class.

19

Figure 4: Argentinean music Ontology where Individuals are shown in white
whilst classes are shown in blue

Has Value Restrictions

A hasValue restriction, denoted by the symbol 3, describes the set
of individuals that have at least one relationship along a specified
property to a specific individual.

• 3 played in has <a province>

where <a province> represents an individual from the Province
class In this way we establish that a certain individual has the
property of “being played” in a specified province. We must
explicitly include such a restriction for each province individual
where a musical genre is played.

• 3 danced in has <a province>

where <a province> represents an individual from the Province
class In this way we establish that a certain individual has the
property of “being danced” in a specified province. We must
explicitly include such a restriction for each province individual
where a dance is danced.

• 3 has instrument has <an instrument>
where <an instrument> represents an individual from the Instru-
ment class In this way we establish that a certain individual has

20

the property of “having” a specified musical instrument. We must
explicitly include such a restriction for each instrument individual
that is used in a musical genre or dance.

Complex concepts can therefore be built up in definitions out of simpler
concepts. Furthermore, the logical model we build with Protègè-OWL allows
the use of a reasoner which can check whether or not all of the statements
and definitions in the ontology are mutually consistent and can also recognize
which concepts fit under which definitions. The reasoner can therefore help
to maintain the hierarchy correctly. This is particularly useful when dealing
with cases where classes can have more than one parent.

Figure 5: Complete Argentinean music ontology

6 Use cases of web ontologies

On February 10th 2004 W3C emitted a recommendation addressing OWL’s
requirements along with several use cases[1]. This section quotes six rep-
resentative use cases of web ontologies as described in the previously men-
tioned document. Note that this is not an exhaustive list, but instead a
cross-section of interesting use cases.

21

6.1 Web portals

A web portal is a web site that provides information content on a common
topic, for example a specific city or domain of interest. A web portal allows
individuals that are interested in the topic to receive news, find and talk to
one another, build a community, and find links to other web resources of
common interest.

In order for a portal to be successful, it must be a starting place for
locating interesting content. Typically this content is submitted by members
of the community, who often index it under some subtopic. Another means
of collecting content relies on the content providers tagging the content with
information that can be used in syndicating it. Typically, this takes the form
of simple metatags that identify the topic of the content, etc.

However, a simple index of subject areas may not provide the commu-
nity with sufficient ability to search for the content that its members re-
quire. In order to allow more intelligent syndication, web portals can define
an ontology for the community. This ontology can provide a terminology
for describing content and axioms that define terms using other terms from
the ontology. For example, an ontology might include terminology such
as “journal paper,” “publication,” “person,” and “author.” This ontology
could include definitions that state things such as “all journal papers are
publications” or “the authors of all publications are people.” When com-
bined with facts, these definitions allow other facts that are necessarily true
to be inferred. These inferences can, in turn, allow users to obtain search
results from the portal that are impossible to obtain from conventional re-
trieval systems. Such a technique relies on content providers using the web
ontology language to capture high-quality ontology relationships, and an
objective of OWL is to enable sufficiently rich and useful metadata con-
tent to motivate the necessary effort. It is a separate challenge to minimize
this effort and an ontology language will likely have a greater impact if it
can facilitate metadata capture as an nonintrusive part of any information
creation process.

One example of an ontology based portal is OntoWeb. This portal serves
the academic and industry community that is interested in ontology research.
Another example of a portal that uses Semantic Web technologies and could
benefit from an ontology language is The Open Directory Project; a large,
comprehensive human-edited directory of the Web. It is constructed and
maintained by a vast, global community of volunteer editors. RDF dumps
of the Open Directory database are available for download.

6.2 Multimedia collections

Ontologies can be used to provide semantic annotations for collections of
images, audio, or other non-textual objects. It is even more difficult for

22

machines to extract meaningful semantics from multimedia than it is to ex-
tract semantics from natural language text. Thus, these types of resources
are typically indexed by captions or metatags. However, since different peo-
ple can describe these non-textual objects in different ways, it is important
that the search facilities go beyond simple keyword matching. Ideally, the
ontologies would capture additional knowledge about the domain that can
be used to improve retrieval of images. Multimedia ontologies can be of two
types: media-specific and content-specific. Media specific ontologies could
have taxonomies of different media types and describe properties of different
media. For example, video may include properties to identify length of the
clip and scene breaks. Content-specific ontologies could describe the subject
of the resource, such as the setting or participants. Since such ontologies
are not specific to the media, they could be reused by other documents
that deal with the same domain. Such reuse would enhance search that
was simply looking for information on a particular subject, regardless of the
format of the resource. Searches where media type was important could
combine the media-specific and content-specific ontologies. As an example
of a multimedia collection, consider an archive of images of antique furni-
ture. An ontology of antique furniture would be of great use in searching
such an archive. A taxonomy can be used to classify the different types of
furniture. It would also be useful if the ontology could express definitional
knowledge. For example, if an indexer selects the value “Late Georgian” for
the style/period of (say) an antique chest of drawers, it should be possible
to infer that the data element ”date.created” should have a value between
1760 and 1811 A.D. and that the ”culture” is British. Availability of this
type of background knowledge significantly increases the support that can
be given for indexing as well as for search. Another feature that could be
useful is support for the representation of default knowledge. An exam-
ple of such knowledge would be that a “Late Georgian chest of drawers,”
in the absence of other information, would be assumed to be made of ma-
hogany. This knowledge is crucial for real semantic queries, e.g. a user query
for ”antique mahogany storage furniture” could match with images of Late
Georgian chests of drawers, even if nothing is said about wood type in the
image annotation.

6.3 Corporate web site management

Large corporations typically have numerous web pages concerning things
like press releases, product offerings and case studies, corporate procedures,
internal product briefings and comparisons, white papers, and process de-
scriptions. Ontologies can be used to index these documents and provide
better means of retrieval. Although many large organizations have a tax-
onomy for organizing their information, this is often insufficient. A single
ontology is often limiting because the constituent categories are likely con-

23

strained to those representing one view and one granularity of a domain;
the ability to simultaneously work with multiple ontologies would increase
the richness of description. Furthermore, the ability to search on values
for different parameters is often more useful than a keyword search with
taxonomies.

An ontology-enabled web site may be used by:

• A salesperson looking for sales collateral relevant to a sales pursuit.

• A technical person looking for pockets of specific technical expertise
and detailed past experience.

• A project leader looking for past experience and templates to support
a complex, multi-phase project, both during the proposal phase and
during execution.

A typical problem for each of these types of users is that they may not
share terminology with the authors of the desired content. The salesperson
may not know the technical name for a desired feature or technical people
in different fields might use different terms for the same concept. For such
problems, it would be useful for each class of user to have different ontolo-
gies of terms, but have each ontology interrelated so translations can be
performed automatically.

Another problem is framing queries at the right level of abstraction.
A project leader looking for someone with expertise in operating systems
should be able to locate an employee who is an expert with both Unix and
Windows. One aspect of a large service organization is that it may have
a very broad set of capabilities. But when pursuing large contracts these
capabilities sometimes need to be assembled in new ways. There will often
be no previous single matching project. A challenge is to reason about how
past templates and documents can be reassembled in new configurations,
while satisfying a diverse set of preconditions.

6.4 Design documentation

This use case is for a large body of engineering documentation, such as that
used by the aerospace industry. This documentation can be of several differ-
ent types, including design documentation, manufacturing documentation,
and testing documentation. These document sets each have a hierarchical
structure, but the structures differ between the sets. There is also a set
of implied axes which cross-link the documentation sets: for example, in
aerospace design documents, an item such as a wing spar might appear in
each. Ontologies can be used to build an information model which allows
the exploration of the information space in terms of the items which are
represented, the associations between the items, the properties of the items,

24

and the links to documentation which describes and defines them (i.e., the
external justification for the existence of the item in the model). That is
to say that the ontology and taxonomy are not independent of the physical
items they represent, but may be developed/explored in tandem.

A concrete example of this use case is design documentation for the
aerospace domain, where typical users include:

• Maintenance engineer looking for all information relating to a partic-
ular part (e.g., “wing-spar”).

• Design engineer looking at constraints on re-use of a particular sub-
assembly.

To support this kind of usage, it is important that constraints can be de-
fined. These constraints may be used to enhance search or check consistency.
An example of a constraint might be:

biplane(X) => CardinalityOf(wing(X)) = 2
wingspar(X) AND wing(Y) AND isComponentOf(X,Y) => length(X) < length(Y)

Another common use of this kind of ontology is to support the visual-
ization and editing of charts which show snapshots of the information space
centered on a particular concept (e.g., a class or instance). These are typi-
cally activity/rule diagrams or entity-relationship diagrams.

6.5 Agents and services

The Semantic Web can provide agents with the capability to understand and
integrate diverse information resources. A specific example is that of a social
activities planner, which can take the preferences of a user (such as what
kinds of films they like, what kind of food they like to eat, etc.) and use this
information to plan the user’s activities for an evening. The task of planning
these activities will depend upon the richness of the service environment be-
ing offered and the needs of the user. During the service determination /
matching process, ratings and review services may also be consulted to find
closer matches to user preferences (for example, consulting reviews and rat-
ing of films and restaurants to find the “best”). This type of agent requires
domain ontologies that represent the terms for restaurants, hotels, etc. and
service ontologies to represent the terms used in the actual services. These
ontologies will enable the capture of information necessary for applications
to discriminate and balance among user preferences. Such information may
be provided by a number of sources, such as portals, service-specific sites,
reservation sites and the general Web. Agentcities is an example of an initia-
tive that is exploring the use of agents in a distributed service environment
across the Internet. This will involve building a network of agent platforms

25

that represent real or virtual cities, such as San Francisco or the Bay Area,
and populating them with the services of those cities. Initially, these ser-
vices will be oriented towards business to consumer services, such as hotels,
restaurants, entertainment, etc., but eventually, they will be expanded to
include business to business services, such as payroll, and business to enter-
prize services. This will require a number of different domain and service
ontologies: Key issues include:

• Use and integration of multiple separate ontologies across different
domains and services

• Distributed location of ontologies across the Internet

• Potentially different ontologies for each domain or service (ontology
translation/cross-referencing)

• Simple ontology representation to make the task of defining and using
ontologies easier

6.6 Ubiquitous computing

Ubiquitous computing is an emerging paradigm of personal computing, char-
acterized by the shift from dedicated computing machinery to pervasive com-
puting capabilities embedded in our everyday environments. Characteristic
to ubiquitous computing are small, handheld, wireless computing devices.
The pervasiveness and the wireless nature of devices require network archi-
tectures to support automatic, ad hoc configuration. An additional reason
for development of automatic configuration is that this technology is aimed
at ordinary consumers. A key technology of true ad hoc networks is service
discovery, functionality by which “services” (i.e., functions offered by var-
ious devices such as cell phones, printers, sensors, etc.) can be described,
advertised, and discovered by others. All of the current service discovery and
capability description mechanisms (e.g., Sun’s JINI, Microsoft’s UPnP) are
based on ad hoc representation schemes and rely heavily on standardization
(i.e., on a priori identification of all those things one would want to com-
municate or discuss). The key issue (and goal) of ubiquitous computing is
“serendipitous interoperability,” interoperability under “unchoreographed”
conditions, i.e., devices which weren’t necessarily designed to work together
(such as ones built for different purposes, by different manufacturers, at a dif-
ferent time, etc.) should be able to discover each others’ functionality and be
able to take advantage of it. Being able to “understand” other devices, and
reason about their services/functionality is necessary, since full-blown ubiq-
uitous computing scenarios will involve dozens if not hundreds of devices,
and a priori standardizing the usage scenarios is an unmanageable task. The
interoperation scenarios are dynamic in nature (i.e., devices appear and dis-
appear at any moment as their owners carry them from one room or building

26

to another) and do not involve humans in the loop as far as (re-)configuration
is concerned. The tasks involved in the utilization of services involve discov-
ery, contracting, and composition. The contracting of services may involve
representing information about security, privacy and trust, as well as about
compensation-related details (the provider of a service may have to be com-
pensated for services rendered). In particular, it is a goal that corporate
or organizational security policies be expressed in application-neutral form,
thus enabling constraint representation across the diversity of enforcement
mechanisms (e.g., firewalls, filters/scanners, traffic monitors, application-
level routers and load-balancers). Thus, an ontology language will be used
to describe the characteristics of devices, the means of access to such de-
vices, the policy established by the owner for use of a device, and other
technical constraints and requirements that affect incorporating a device
into a ubiquitous computing network. The needs established for DAML-S
(particularly the issues surrounding the expressiveness of the language) and
the RDF-based schemes for representing information about device charac-
teristics (namely, W3C’s Composite Capability/Preference Profile (CC/PP)
and WAP Forum’s User Agent Profile or UAProf) directly relate to this use
case and the resource infrastructure which will support applications which
will negotiate and dynamically configure ad hoc networks.

6.7 Music Ontology related use cases

Until now we have described the basic steps involved in the development
of our Argentinean music ontology. Despite being highly specific, such an
ontology can be expanded and used in applications that carry out complex
music related searches.

Shazam Entertainment, an English company that specializes in music-
recognition software, has created a music-recognition system, that allows
people to identify tunes using their cell phones. When you hear a song –
on the radio, in a bar or on television – you punch in the Shazam service’s
four-digit code number on the handset, point the phone at the source of the
sound and hold it there for 15 seconds- Within a few minutes, the service
should return a text message giving the name of the song and the artist.
When a user with a mobile phone inputs 15 seconds of music, the system
creates a digital signature for that snippet and then looks for a matching
pattern in the database. To minimize the retrieval speed, all the data are
kept in active memory (rather than on hard disks) on a distributed computer
system consisting of about 70 PCs. The searches involved in systems such
as Shazam focus mainly on retrieving a song’s name and artist, and could
benefit greatly of a music ontology similar to the one we have developed in
order to expand their current data and search complexity. Consequently a
user could be able to retrieve not only a song’s name and artist, but every
artist that has made a version of the song, whether they have scheduled

27

concerts near the user’s current location, or any other related information
of interest. An example scenario in which a user is interested in upcoming
performances of the unknown artist que is listening to at the moment within
a 5 mile radius is depicted in figure 6.

Thus, by embedding these applications in electronic devices with some
form of wireless networking capability, such as mobile phones, we can sig-
nificantly enrich their current functionality.

7 Agents

The real power of the Semantic Web will be realized when people create
many programs that collect Web content from diverse sources, process the
information and exchange the results with other programs. The effectiveness
of such software agents will increase exponentially as more machine-readable
Web content and automated services (including other agents) become avail-
able. The Semantic Web promotes this synergy: even agents that were not
expressly designed to work together can transfer data among themselves
when the data comes with semantics [2].

An important facet of agents functioning will be the exchange of “proofs”
written in the Semantic Web’s unifying language (the language that ex-
presses logical inferences made using rules and information such as those
specified by ontologies). Another vital feature will be digital signatures,
which are encrypted blocks of data that computers and agents can use to
verify that the attached information has been provided by a specific trusted
source. Agents should be skeptical of assertions that they read on the Se-
mantic Web until they have checked the sources of information.

In the Semantic Web, the consumer and producer agents can reach a
shared understanding by exchanging ontologies, which provide the vocab-
ulary needed for discussion. Agents can even “bootstrap” new reasoning
capabilities when they discover new ontologies. Semantics also makes it
easier to take advantage of a service that only partially matches a request.

A typical process will involve the creation of a “value chain” in which
subassemblies of information are passed from one agent to another, each one
“adding value” to construct the final product requested by the end user. To
create complicated value chains automatically on demand, some agents will
exploit artificial-intelligence technologies in addition to the Semantic Web.
But the Semantic Web will provide the foundations and the framework to
make such technologies more feasible.

In the next step, the Semantic Web will break out of the virtual realm
and extend into our physical world. URIs can point to anything, including
physical entities, which means we can use the RDF language to describe
devices such as cell phones and TVs. Such devices can advertise their func-
tionality, what they can do and how they are controlled, much like software

28

agents. Such a semantic approach opens up a world of exciting possibilities.

8 Conclusion

The potential implications of widespread adoption of semantic web tech-
nologies, promises a knowledge revolution. If properly designed, it would
not only become a tool for conducting individual tasks, but it would also
assist the evolution of human knowledge as a whole, gaining access to our
everyday life through personal computers and handsets. Once the web has
been sufficiently populated with rich metadata, searching on the web will
become easier as search engines have more information available, and thus
searching can be more focused. Also, searching the web will be less time-
consuming, given the fact that software agents will do it instead. The web
of today, the vast unstructured mass of information, may in the future be
transformed into something more manageable - and thus something far more
useful, allowing agents and users to work and learn together.

References

[1] Owl web ontology language use cases and requirements. W3C Recom-
mendation, February 2004.

[2] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web.
Scientific American, 2001.

[3] Edd Dumbill. The semantic web: A primer. www.XML.com, November
2000.

[4] W. Scott Means Elliotte Rusty Harold. XML in a Nutshell. O’Reilly,
June 2002.

[5] Alan Rector Robert Stevens Chris Wroe Matthew Horridge, Hol-
ger Knublauch. A practical guide to building owl ontologies using the
protege-owl plugin and co-ode tools. August 2004.

[6] Eric Miller. An introduction to the resource description framework. D-
Lib Magazine, May 1998.

[7] Natalya F. Noy and Deborah L. McGuinness. Ontology development
101: A guide to creating your first ontology, September 2005.

[8] W3C Recommendation. Owl web ontology language, February 2004.

29

Figure 6: Upcoming concerts within a 5 mile radius query.

30

