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ABSTRACT 

 

Human capital theory (Becker 1962; Mincer 1958; Schultz 1960; 1961) posits that 

individuals can increase their labor market returns through investments in education and training. 

This concept has been studied extensively across several disciplines. An analog concept of 

criminal capital, while the focus of speculation and limited empirical study, remains considerably 

less developed theoretically and methodologically. This paper offers a formal theoretical model 

of criminal capital indicators and tests for greater illegal wage returns using a sample of serious 

adolescent offenders, many of whom participate in illegal income-generating activities. Our 

results reveal that, consistent with human capital theory, there are important illegal wage 

premiums associated with investments in criminal capital, notably an increasing but declining 

marginal return to experience and a premium for specialization. Further, as in studies of legal 

labor markets, we find strong evidence that, if left unaccounted for, non-random sample selection 

causes severe bias in models of illegal wages. Theoretical and practical implications of these 

results, along with directions for future research, are discussed.       

 

KEYWORDS: criminal capital, illegal earnings, sample selection, Heckman correction 
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INTRODUCTION 

 

     A half a century ago, the economist Gary Becker (1962: 9) noted the importance of 

“activities that influence future real income through embedded resources in people,” or what is 

typically referred to as human capital. The notion that individuals can generate positive 

outcomes such as higher earnings through investment in activities including education and 

training has made the study of human capital a longstanding and widespread source of inquiry in 

economics, sociology and education. For instance, estimating the return to personal investments 

in education has been studied extensively in empirical economics. Beyond their theoretical 

importance, these studies frequently generate popular interest and contentious debates.1    

The theory of human capital has also been considered in criminological discourse. 

However, unlike its conventional counterpart, theoretical and empirical development of an 

analog concept of criminal capital has been limited.2 Several ethnographic accounts of criminal 

careers illustrate that the accumulation of criminal skills undergoes a process very similar to 

conventional human capital (e.g., Klockars 1974; Letkemann 1973; Sutherland 1937). Since 

these important ethnographies, however, interest in criminal capital shifted from explaining the 

process of accumulating criminal skills and experience to explaining variations in the returns to 

crime (e.g., McCarthy and Hagan 2001; Matsueda et al. 1992; Morselli et al. 2006; Nguyen and 

Bouchard 2012; Uggen and Thompson 2003), resulting in a gap in the theoretical and empirical 

development of a more comprehensive concept of criminal capital.  

Unfortunately, this gap in the criminal capital literature is not without consequence. The 

relationship between indicia of criminal capital and its monetary returns have not been examined 

in the same detail as conventional human capital, making it premature to make connections 

between the two. Further, studies that explore variation in criminal earnings have found a 
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substantial positive effect between indicators of criminal capital and aggregate criminal earnings 

(McCarthy and Hagan 2001; Uggen and Thompson 2003). But these studies have not adequately 

accounted for key methodological obstacles which often arise in the study of labor markets. As a 

result, these studies have produced potentially inconsistent estimates that substantially reduce 

generalizability.  

 Information regarding the factors that contribute to criminal success is an important, 

underexplored avenue for both theory and policy. Even though empirical support for the 

relationship between the threat of (objective) sanctions and crime is relatively weak (Nagin 

1998), the association between perceived rewards and crime is consistently positive and strong, 

regardless of offense type or offender (e.g., Cornish and Clarke 1986; Paternoster and Simpson 

1993; Loughran, Paternoster and Weiss 2012; Piliavin, Thornton, Gartner, and Matseuda 1986). 

This suggests that individuals appear to be highly responsive to rewards from crime. Stated 

differently, illegal rewards may have a positive impact on offending frequency and overall 

criminal career length. Both Shover and Thompson (1992) and Sommers, Baskin, and Fagan 

(1994) found that the probability of desistance increases when offenders’ expectations for 

achieving rewards from criminal activity decline (see also Giordano, Cernkovich, and Rudolph 

2002; Laub and Sampson 2003; Paternoster and Bushway 2009; Pezzin 1995; Shover and 

Thompson 1986).   

The importance of understanding criminal capital, coupled with its relatively few 

empirical studies, animates the present study. Guided by classical human capital theory, this 

paper attempts to develop a more robust theory of criminal capital by considering the nature of 

illegal earnings and how certain criminal productivity indicators might yield higher returns in the 

illegal labor market. We then test these indicators on a sample of serious adolescent offenders, 
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some of whom earn income illegally. Our results suggest that criminal capital is analogous to 

human capital: greater investment in criminal capital results in significantly higher illegal wage 

rates. Finally, we present strong evidence that, as is well established in the case of legal labor 

supply, studies of illegal earnings suffer from important sample selection issues which must be 

properly addressed to produce useful estimates on illegal returns. 

Human Capital Theory 

Human capital theory posits that individuals and society derive economic benefits from 

investments that produce “changes in persons that bring about skills and capabilities that make 

them able to act in new ways” (Coleman 1988: S100). Human capital then, is an intangible stock 

of skills and knowledge and facilitates productive activity. Although investment in human capital 

can include a variety of activities, such as health and nutrition (Shultz 1981), the most salient 

forms of investment in human capital are through education, including investments in formal 

schooling (Mincer 1974), informal education (Schultz 1981), and both general and specific on-

the-job training that increases workers’ skills (Becker 1962). Human capital has a rich history of 

theoretical and empirical development, demonstrated through the impressive amount of 

scholarship devoted to its study (see Altonji et al. 2012).  

Mincer (1958), Schultz (1960, 1961) and Becker (1962) have each made seminal 

contributions to human capital theory and the notion that investment in human capital is an 

inseparable part of an individual, which positively affects wages that an individual can earn. In 

his influential piece “Investment in Human Beings”, Schultz (1961) argued that estimating the 

magnitude of human investment is not a straightforward task because qualities such as skills, 

knowledge and similar attributes are considered both consumption and investment, thereby 

posing conceptual difficulties and identification challenges. For example, there is an opportunity 
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cost for obtaining a formal education since individuals must forgo earnings while at school or 

when participating in on the-job-training. Given these factors, Shultz (1961) argued that the best 

way to quantify human investment is by its yield rather than by its cost. That is, the most 

efficient way to measure human capital is through the increase in one’s earnings. 

Mincer (1974) developed a basic function of the returns to education, known as the 

Mincerian function, which fits a function of log-wages by using years of schooling, years of 

labor market experience and its square as independent variables to determine the average rate of 

return of schooling and experience. According to Mincer (1974: 287), “as more skill and 

experience are acquired with the passage of time, earnings rise.” One of the key results 

highlighted by Mincer is that the relationship between experience and wages does not rise 

linearly—rather it follows an age-earnings profile where experience increases wage rates at a 

marginally decreasing rate. Hundreds of empirical studies have found support for the Mincer 

earnings function both in the United States and in other industrialized societies (Borjas 1996; 

Willis 1986).  

 Becker (1962) is often credited for the popularization of the idea of human capital and his 

ideas play an especially important role in the current study. In his treatment of human capital 

theory, Becker differentiated between on-the-job training through two different types of training: 

general and specific. Generalized training provides useful knowledge and skills that can be 

applied to various jobs. Specific on-the-job training is firm specific and tends to provide a greater 

rate of return only at the particular firm, whereas investment in general training provides less of a 

rate of return but is a transportable stock of knowledge and skills. 

In sum, several fundamental features of human capital theory should be considered 

before researchers can begin to draw a parallel between human capital and criminal capital. First, 
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human capital theory argues that investment in education is best captured by an increase in the 

rate of return. To be clear, specifying a wage rate rather than aggregate earnings in a period 

provides a more informative measure of the returns to human capital. Second, the relationship 

between experience and wages is nonlinear—there are diminishing returns to experience.3 Third, 

the main avenue of investment in human capital is through education, which can take various 

forms, exemplified by Becker’s (1962) important distinction between investments in general and 

specific training. Investment in both general and specific training should increase earnings; 

however, specific training will have greater returns for the particular job.  

Is there Criminal Capital? 

Does a criminal analog to human capital exist? McCarthy and Hagan (1995) first coined 

the term “criminal capital” and mirror the definition of human capital. Inspired by Schultz (1961) 

and Becker (1964), McCarthy and Hagan (1995: 66) define criminal capital as: “a type of human 

capital…[that] includes knowledge and that can facilitate successful criminal activity”. Using a 

sample of homeless adolescents from several cities in Canada, they argue that crime-specific 

tutelage relationships facilitate criminal skills and attitudes, which increases the frequency of 

drug selling and theft. While they do not directly consider monetary returns, they set the 

conceptual groundwork for the idea that investment in criminal training can be beneficial.  

Others have elaborated the concept of criminal capital and its potential parallels with 

human capital showing that the accumulation of criminal capital likely undergoes a process 

similar to the accumulation of human capital. For example, Shover (1996:66) looked at the 

criminal careers of persistent thieves and observed that “the knowledge and skills needed to earn 

a good living from stealing probably do not greatly differ from those required for successful 

legitimate employment”. A handful of other ethnographic studies illustrate that training and time 



8 
 

go into the development of skills in thievery (Sutherland 1937; Steffensmeier and Ulmer 2005), 

hustling and fencing (Klockars 1974), drug dealing (Fagan 1992; Williams 1989; Jacobs 1996), 

and burglary (Wright and Decker 1994).  

Similar to human capital, criminal specialization appears to have important effects on 

criminal outcomes. A series of studies on offender decision-making have found that some 

offenders possess specialized cognitive abilities. For example, Wright, Logie, and Decker 

(1995), using an experimental design, showed that active residential burglars outperformed a 

control group when given photos of residential dwellings and asked to recall details of the 

dwelling and its surrounding areas (see also Carroll and Weaver 1986; Nee and Meenaghan 

2006; Wright and Logie 1988; Logie, Wright, and Decker 1992). The value of specialized skills 

has been highlighted by a number of criminologists (e.g., Cloward and Ohlin 1960; Decker et al. 

1993; Shover 1996; Sutherland 1937; Topalli 2005; Shaw, 1930); yet few have investigated the 

returns to specialization (McCarthy and Hagan 2001). 

In addition to ethnographic accounts and a few experimental studies, several studies have 

attempted to model the relationship between criminal capital and returns from crime. These 

studies have conceptualized criminal capital in fairly consistent terms. They tend to show that 

measures such as criminal experience, specialization and tutelage are positive and significant 

predictors of greater aggregate illegal earnings (e.g., Morselli, Tremblay and McCarthy 2006; 

Nguyen and Bouchard 2012; Uggen and Thompson 2003). For example, using data from the 

National Supported Demonstration Work Project, Uggen and Thompson (2003) measured 

criminal experience by the total number of times the offender was arrested in the 36-month study 

period. They also included a quadratic arrest term, as, guided by human capital theory, positing 

that there should be diminishing returns to criminal experience. Uggen and Thompson (2003) 
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found that there was a significant curvilinear relationship between their proxy for criminal 

experience and total monthly illegal earnings.   

There are several mechanisms through which offenders can accumulate criminal capital. 

Sutherland (1937; 1947) shows the importance of differential association in his interviews with a 

professional thief.  Sutherland (1947: 6) argued that, through intimate personal ties or networks, 

“When criminal behavior is learned, the learning includes (a) techniques of committing the 

crime, which are sometimes very simple; (b) the specific direction of motives, drives, 

rationalizations, and attitudes”. Akers (1973) extended the notion of differential association in 

his social learning theory to argue that people acquire and maintain behavior through differential 

reinforcement contingencies (rewards and punishments); imitation or modeling others’ behavior; 

and through definitions, which are expressions of values and norms. In addition to providing 

models, training and reinforcements for criminal behaviors, peers can be valuable sources of 

information and opportunity that can make the returns to criminal capital greater (see Cloward 

and Ohlin 1960; Osgood et al. 1996; Stafford and Warr 1993; Warr 2002; for a discussion on 

various mechanisms of peer influence). Finally, Bayer, Hjalmarsson and Pozen (2009) explicitly 

hypothesized that an individual can build criminal capital while in correctional facilities. They 

found that increased exposure to peers with a history of a specific crime type increases the 

likelihood that the subject (who has already committed that crime type) will commit that 

particular crime type upon release. Their conceptualization of criminal capital is considerably 

broader and is more akin to a peer influence perspective rather than a traditional human capital 

orientation. 

Differences between Criminal Capital and Human Capital 
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Although human capital theory provides a useful theoretical point of departure for 

exploring the concept of criminal capital, a closer comparison reveals a number of ways these 

concepts diverge. First, while both human capital and criminal capital are grounded in a rational 

choice framework (Becker 1968), the former is necessarily steeped in the concept of a future-

oriented agent.4 Human capital theorists argue that one way to measure human capital at the 

individual level is through a cost-based approach that considers both investment costs and 

discounted income in the future (Kendric 1976; Jorgenson and Fraumeni 1989). This method 

represents the familiar notion of delayed gratification on the part of the individual investing in 

human capital. In the extensive literature on legal labor supply and rational choice, economists 

have articulated a range of concepts pertaining to agents making decisions in the context of the 

life cycle, including intertemporal substitution effects between work and leisure (e.g., Altonji 

1986), preferences for increasing wage profiles (Lowenstein and Sicherman 1991), and rational 

expectations regarding future earnings (Muth 1961). Accordingly, there is strong theoretical and 

empirical evidence to suspect that legal earnings reflect optimal investment in human capital 

over the life cycle (Ben-Porath 1967).  

Conversely, in the criminal realm, it is unclear if there is a related delayed gratification 

process or consideration of discounted future income. In fact, in direct contrast to economic 

theories of time which assert in one form or another that current period behavior is tied to 

expectations of future earnings, many criminal investments are more likely motivated by a 

heightened sense of present-orientation (Gottfredson and Hirschi 1990) or hyperbolic time 

preference. More specifically, illegal market entry decisions are more likely to be driven by the 

immediacy of criminal gains, as compared to legal earnings that are usually delayed. Laub and 
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Sampson (2003:179) for example, describe the influence of “fast money” as motivation for 

persistent offending in certain individuals.  

Furthermore, criminal earnings are almost certainly more transitory than legal earnings. 

The temporary status of criminal wages can cloud future expectations of illegal earnings and 

introduce instability into decision making. This inconsistency suggests that the models of illegal 

labor supply and criminal capital, while sharing some similarities to human capital and wages, 

could lead to quite different legal supply models—specifically, illegal entry decisions are 

perhaps a function of both immediate illegal and discounted (or foregone) legal incentives. 

Indeed, some descriptive evidence suggests that legal work and illegal work are not always seen 

as trade-offs (Fagan 1992; Freeman 1996; Reuter et al. 1990; Viscusi 1986).5 This also implies 

that to measure criminal capital, one must rely on the alternative income-based approach, as 

opposed to cost-based, which measures human capital through productivity measures, i.e., its 

rate of return (Shultz 1961; Mincer 1974).    

A second, more fundamental distinction between human capital and criminal capital is 

the role that social capital plays in acquisition and returns. Social capital, or resources embedded 

in a social structure that can facilitate action, was largely neglected in the conceptualization of 

traditional human capital theory (Coleman 1988). Coleman argued that the traditional world 

view of human capital was an under-socialized view and suggested that social structure could be 

incorporated in the economists’ principle of rationality. He noted that just as “human capital can 

facilitate productive activity, social capital does as well” (S101). For example, groups that have 

trust among its members are able to accomplish more than groups that have less levels of trust. 

Similarly, Granovetter (1985) criticized a pure market approach to economic action and 
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highlighted the importance of social structure in the economic analysis of human behavior. It is 

within social networks that most economic actions take place (see also McCarthy 2002).  

Social capital can exist in several different forms. It can be a collective resource that can 

facilitate mutual trust and informal social control (e.g., Sampson et al. 1999; Skogan 1990) or 

produce civic engagement (Putnam 2006). Alternatively, other scholars such as Bourdieu (1986), 

Burt (1992), and Lin (1999) illustrate how individuals instrumentally develop and mobilize 

social ties to secure their goals. Both forms of social capital can contribute to greater earnings. 

One of the most compelling demonstrations of the importance of social capital is in 

migrant communities. Several scholars underscore the importance of social capital in migration 

efforts (Massey and Aysa 2011; Garip 2008) and prosperous entrepreneurship in studies of the 

immigrant and ethnic entrepreneurship (Aguilera 2005; Zhou and Logan 1989). Through 

community networks, members of immigrant communities have access to information, start-up 

financial capital, and a pool of dedicated labor supply (Portes and Sensenbrenner 1993). Similar 

to this reliance on informal exchanges and trust, social capital also contributes to prosperity and 

cohesion among criminal networks (Browning et al. 2004; Portes 1998). In addition to 

facilitating the accumulation of criminal capital, social capital facilitates obtaining greater returns 

to criminal capital.6 

Human capital can be accumulated from social capital; however, criminal capital is 

arguably more reliant on criminal social capital because of the informal social nature of most 

criminal enterprises. For instance, unlike legal labor markets, the illicit economy has no formal 

“schools of crime” to facilitate the acquisition of criminal skills or knowledge nor are there 

formal avenues to advertise or disseminate knowledge. Much of the transmission of criminal 

skills takes place through informal social networks rather than structured opportunities, 
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economies or institutions. Castells and Portes (1989) draw distinctions between formal and 

informal economies to argue that the differences lie not in the goods themselves but in the 

manner in which goods are exchanged in the absence of state regulations, as the informal 

economy is dependent on social ties, trust, and mutual obligations for effective functioning (see 

also Portes and Haller 2005). Therefore, it is likely that embeddedness, or ongoing social 

relations, in criminal social networks plays a crucial role in both investment in and returns to 

criminal capital. Indeed, prior studies have shown that criminal embeddedness positively 

contributes to greater illegal earnings (e.g., Levitt and Venatesh 2000; Morselli et al. 2006; 

McCarthy and Hagan 2001). 

These studies suggest that intertemporal investments and measurements imply important 

differences between human capital and criminal capital. More important, while traditional human 

capital theory inherently and necessarily draws attention to the individual and her position 

relative to social and economic institutions, this strictly individualistic view of human capital 

only partially translates to the complex intersection of social structural and individual factors that 

shape the tangible returns to criminal capital. We elaborate these concerns in our theoretical 

specification in the sections that follow. 

THE PRESENT STUDY 

The current study builds on previous work in several ways. First, we simultaneously 

consider multiple measures of criminal capital, designed to capture both general and specific 

experience, using a sample of serious adolescent offenders for whom we observe detailed 

information about illegal wage and participation activity. Second, unlike previous studies of 

illegal wage functions that consider total wage volume, we model the outcome of wage rates to 

capture criminal productivity returns. We hypothesize that a participants’ wage rate will increase 
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as their criminal capital indicators rise, and specifically with respect to experience, this increase 

will occur at a marginally declining rate. Third, we address the problem of sample selectivity 

bias in estimating the returns to our criminal capital indicators, and attempt to correct for it using 

multiple strategies. We initially consider the classic, widely used solution offered by Heckman 

(1979)—a two-equation model where selection can be treated as a form of omitted variable bias. 

Though this estimator is sometimes criticized for over-sensitivity to distributional and functional 

form assumptions, as well as general misuse in criminological research (Bushway et al. 2007), 

the strength of our results rests on our usage of multiple exclusion restrictions (i.e., variables 

which are important to explain selection, but given productivity characteristics, do not explain 

illegal wage rates), which mitigate these concerns. Further, we exploit the fact that our data 

reveals more about the individual selection process beyond the binary participation choice, 

namely the total amount of time engaged in illegal income-generating activities. This allows us 

to modify the standard Heckman estimator and reduces the reliance on the nonlinearity 

assumptions in the standard model.  

The remainder of this paper is organized as follows. The next section describes the data 

and provides descriptive statistics of our criminal capital indicators and illegal wages. This is 

followed by a description of our model of the returns to criminal capital, a discussion of the 

problem of sample selectivity, and the empirical strategies employed to consistently estimate the 

model parameters. We then present the results. We conclude with a discussion of the findings 

and implications for subsequent research. 

DATA 

We analyze data from the Pathways to Desistance study, a longitudinal investigation of 

the transition from adolescence to young adulthood in serious adolescent offenders. Study 
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participants are adolescents who were found guilty of a serious offense (almost entirely felony 

offenses) in the juvenile or adult court systems in Maricopa County (Phoenix), AZ or 

Philadelphia County, PA. These youth were ages 14 to 17 at the time of enrollment into the study 

(M = 16.5). A total of 1,354 adolescents are enrolled in the study, representing approximately 

one in three adolescents adjudicated on the enumerated charges in each locale during the 

recruitment period (November, 2000 through January, 2003).7 The study sample is comprised 

mainly of non-white (44% African American, 29% Hispanic) males (86%), who were, on 

average, 14.9 years old at the age of their first petition, with an average of three petitions prior to 

the baseline interview. 

In this analysis, we use data collected at six consecutive follow-up interviews 

corresponding to six-month observational periods over 36 months for a total pooled sample of 

N=7,399 (which represents over 91% retention). As described below, not every individual 

reports involvement in illegal income-generating activity in all periods (this is the selection 

problem). In each period, we observe for each individual the number and types of income-

generating crimes they report committing, if any, during the observation period, along with their 

age, income risk perceptions, and drug dependency. In addition, detailed information regarding 

the number of continuously measured weeks in which participants were engaged in both legal 

and illegal activities and the total amount of money earned from each activity each month were 

recorded by using a life-event calendar that subjects completed as part of the interview. This 

information was aggregated to provide earnings and employment information for each of the 

follow-up periods. Also, the life history calendar allows us to determine the proportion of time 

each individual was not locked up in a secure facility (exposure time). Methods for constructing 

life-event calendars have been shown to be reliable in studies of criminal offending, antisocial, 
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and mental health service use (Caspi et al. 1996; Horney, Osgood, and Marshall 1995; Morris 

and Slocum 2010; Roberts and Horney 2010).  

Outcome Variable  

Illegal wage rate. The illegal wage rate was calculated by dividing an individual’s total 

reported illegal earnings in a month (based on the calendar) by the total number of weeks worked 

across all illegal jobs. The number of weeks were calculated by multiplying each week the 

participant worked by 1.3 to account for the fact that all months are not exactly four weeks long 

(52 weeks in a year / 12 months in a year = 4.333 weeks per month) and summed across all types 

of illegal work in the recall period.8   

In total, 496 individuals out of the 1,354 total sample report earning illegal wages in at 

least one period (~37%). Of these 496, more than half only report earning illegal wages in one 

period (n=265). Pooling all of the individual observations together yields a total sample size of 

N=883 observations of illegal wage rates (out of a total pooled sample of N=7,399). Due to 

missing data issues detailed below, our select sample is reduced to N=833 for model estimation. 

As is standard in wage models, we take the natural log of illegal wage rate to use as the 

dependent variable which helps deal with the skewness of the measure. Histograms of both the 

untransformed and transformed rates are displayed in Figure 1. We explore a descriptive 

summary of this outcome in more detail below.  

* Figure 1 about here * 

Criminal Capital Measures 

Criminal experience. We measure criminal experience as the individual’s cumulative 

frequency of participation in illegal income-generating activities in each period. The number of 

crimes an individual commits is derived from their self-reported offenses (SRO) recorded in each 
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period. This measure is a revised version of a common self-reported delinquency measure of the 

number of crimes committed (Huizinga et al. 1991). We trim this scale to include only the 10 

income-generating offenses (thus eliminating aggressive crimes which do not to have a direct 

relationship with illegal wages).9 In each period, an individual is asked whether they committed 

each of these 10 crimes in the past 6 months, and if so, how many times. These values are then 

summed to arrive at a total period frequency and then cumulative frequency. Therefore, our 

measure of experience provides a cumulative measure of general experience with income- 

generating crimes. 

Because cumulative income frequency is skewed, we created a vector of categorical 

experience variables using the quartiles of the conditional distribution of cumulative frequency 

based on participation. The lowest category was then subdivided in two in order to better capture 

variation among non-participators. This yields five unique experience categories: low (0-2 

cumulative crimes reported), moderate (3-20 crimes), high (21-110 crimes), very high (111-213 

crimes), and extreme (> 213 crimes). Beyond simply dealing with the skew problem, this 

categorical strategy allows us great flexibility in detecting potential nonlinear marginal returns to 

criminal experience, as is the case with diminishing marginal returns to experience in human 

capital.10  

Of the original N=883 observations, 88 cases (9.9%) had missing interview data in at 

least one time point prior to the relevant period, meaning we could not observe offending 

frequency for the missed period. Thus, we were unable to calculate a total cumulative frequency 

score. Of these 88 cases, we could safely conclude that 38 of them fell into the extreme category 

based on observed experience which already exceeded the top threshold regardless of the 

missing values. To use the remaining 50 cases, however, would have required us to make an 
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untestable assumption about the nature of the missingness. Therefore, we dropped these cases to 

bring our estimation sample to N=833.11    

 Specialization. Here we consider the unique number of crime types reported by an 

individual in the observation period and generate an indicator equal to 1 if the individual reports 

engaging in two or fewer unique crime types during the observation period and 0 else. We define 

specialization as two or fewer instead of one or fewer since there are certain pairs of crimes 

which are natural compliments (i.e., stealing and selling stolen goods).12 Over one-half (56.7%) 

of individuals reporting illegal wages were specialized. Also, importantly, there was variability 

in specialization among non-market participants (or else it would be a perfect predictor of 

participation). This is plausible as some individuals engage in crimes like stealing but do not 

generate monetary earnings from the activities.  

 Criminal embeddedness. We measure embeddedness in a criminal social network through 

the degree of peer delinquent behavior, a subset of similar measures used in the Rochester Youth 

Study (Thornberry et al. 1994). According to Hagan (1993), criminal embeddedness involves 

connections to delinquent peers as an indicator of opportunity structure. Hagan used a similar 

measure of criminal contacts as did Granovetter (1985) in his discussion of employment 

contacts. It is also probable that, through the context of social learning theory (Akers, 1973), 

embeddedness functions as an indicator of learning and training in illegal skills. An individual’s 

score is computed as the mean rating of the prevalence of friends who engage in 12 types of 

delinquent behavior (e.g., ‘How many of your friends have sold drugs?’). The subscales had very 

high internal consistency (α = .93).13  

 Panel A of Table 1 reports descriptive statistics for the two criminal capital/productivity 

measures as well as embededdness. Importantly, notice the distribution of experience in terms of 
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total frequency is very different between the select sample and non-earners. Finally, we note that 

for all three variables, there are important mean differences in each of the indicators between 

illegal wage earners and non-earners (all p-values < .001). 

* Table 1 about here * 

MODEL 

We wish to estimate the parameters of the following illegal wage rate function, specified 

as an analog to a traditional Mincer equation: 

                        ln(iwi) = β0 + β1 expi + β2 speci + β3 embedi + εi   [Eq. 1] 

where ln(iwi) is the natural log of the rate of weekly illegal earnings an individual reports, exp, 

spec and embed are our measures of criminal experience, specialization and criminal 

embeddedness, respectively, and their coefficients can be thought of as the returns to these 

criminal capital/productivity indicators. If we could observe the illegal wage offer for every 

individual in the sample, then the model parameters could be estimated simply by using Ordinary 

Least Squares (OLS). However, we are challenged by a key methodological issue that pervades 

all empirical earnings research—sample selectivity, which will require an alternative estimation 

strategy to produce consistent estimates.   

The Problem of Sample Selectivity in Modeling Illegal Wages 

Illegal wage data suffer from a problem known as incidental truncation, or a type of 

sample selection which occurs when we only observe one variable (illegal wage rate) based on 

another variable (participation in the illegal market).14 We only observe the illegal wage offer for 

individuals who participate in illegal markets; otherwise, their wage offer is unobservable. 

Furthermore, it is very likely that the selection mechanism is endogenous. OLS in this case will 
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yield biased estimates of the true model parameters, i.e., those which are generalizable to the 

population of serious adolescent offenders, the sample being considered in the current study. 

This complication is also a direct analog to another standard problem in labor 

economics—modeling a wage offer based on labor force participation, first considered by 

Gronau (1974). Ideally a rate of return to investment in education, for example, should be based 

on a representative sample of the population. Gronau’s model of labor supply implies that an 

individual will only choose to participate in the labor market if the wage offered is greater than 

the ratio of the (negative) marginal disutility of working to the marginal utility of income, a 

quantity known as one’s reservation wage. Intuitively, a reservation wage is the lowest wage rate 

for which a worker is willing to accept a job. The higher one’s reservation wage, the less likely 

they are to enter the market ceteris paribus. A common occurrence is in the study of female labor 

supply (Heckman 1974), where the wage offer is observed only for women who choose to enter 

the labor market, a nonrandom subsample of the population. Therefore, estimates of returns to 

productivity characteristics for this subsample will be biased estimates for the entire population. 

The identification issue in the context of sample selection has been discussed by various scholars 

(see Berk 1983; Heckman and Robb 1986; Bushway et al. 2007). 

To our knowledge, there is only one study on illegal earnings that addresses issues of 

sample selection. McCarthy and Hagan (2001) explore whether specialization in drug selling is 

associated with greater returns. McCarthy and Hagan first use a probit model to estimate the 

probability of participating in drug selling in the first wave, and then employ a tobit model to 

assess drug selling income in the second wave. However, this strategy essentially treats the zeros 

as being censored—which is unrealistic—as opposed to being unobserved due to selection. 

Furthermore, this does not allow for an examination of the magnitude of the bias which would 
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have occurred had the problem been ignored altogether. In sum, sample selection issues likely 

plague studies of illegal wages, which if ignored, will lead to biased estimates. Unfortunately, 

very few studies have adequately considered this issue, making previous estimates on criminal 

capital indicators difficult to generalize.  

The problem of incidental truncation requires us to use an estimator designed to correct 

for sample selectivity bias. To employ Heckman’s (1979) estimator and variations of it, we must 

observe the productivity characteristics for both illegal market participants and non-participants 

in the sample, even though we cannot observe the wage offer for the latter.   

Dealing with sample selection requires a second, selection equation: 

                          si = 1·[δδδδzi + υi > 0]     [Eq. 2] 

where 1·[ ] denotes a binary indicator function, si = 1 if the individual participates in an illegal 

income-generating activity during the observation period and 0 else, and zi is a vector which 

includes all of the regressors in eq. 1, as well as variables which, by assumption, are predictive of 

selection into illegal market participation, but given one’s capital/productivity characteristics, 

have no impact on the wage offer. These assumptions are known as exclusion restrictions, since 

they are excluded from the wage equation, and they are crucial for identification of the model 

parameters. We return to them shortly.  

 The Heckman model assumes that the error terms, εi and υi, are jointly normally 

distributed each with mean zero and correlation ρ. Under the null hypothesis H0: ρ = 0, selection 

is exogenous and eq. 1 can be consistently estimated using OLS. Rejection of H0 implies a 

selection problem, and we will need to correct for it.15 The parameters in eq. 1 can then be 

consistently estimated by first estimating eq. 2 using probit, and then use these first stage 
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estimates to calculate the inverse Mills ratio, λ(δδδδzi), for each individual.16 This term can be 

included as an additional regressor in eq. 1, which yields the following conditional expectation: 

 E[ln(iwi) | si =1, expi, speci, embedi] =  

β0 + β1 expi + β2 speci + β3 embedi + ρε,νσε λ(δδδδzi)    [Eq. 3] 

Written this way, one can see how the omission of the λ term, which contains elements of z, 

would result in an omitted variable bias, which OLS can ‘correct’ for once we include this term. 

The model can be estimated using a full maximum likelihood (ML) procedure, which by 

accounting for the λ term will yield consistent estimates of the β parameters.17 This procedure 

will also provide estimates of the selection equation δ parameters from eq. 2 via probit, as well 

as estimates of ρ and σε (the variance of the error term in the main equation). Notice that the 

coefficient on the λ term in eq. 3 is ρσε, meaning that failure to reject it is equal to zero means 

either σε = 0 (which is impossible) or ρ = 0, which is the same test of H0. 

A Tobit Selection Equation 

In the case where we have more information available on selected sample beyond binary 

participation, specifically concerning level of participation in the illegal market (e.g., hours, 

weeks), we can exploit this in selection correction. We still wish to consistently estimate the 

parameters of eq. 1, but now we may rewrite the selection equation as: 

                                         hi = max(0, ππππzi + ηi)    [Eq. 4] 

where hi is the amount of illegal hours or weeks supplied, ln(iwi) is observed only when hi > 0, 

the vector z again contains exclusion restrictions and ππππ is parameter vector. We make very 

similar assumptions to the standard Heckman model, except now we allow the error term ηi 

(again assumed to be normally distributed) to have an unknown variance. Here, we assume the 

relationship between the main equation error term εi and ηi can be written as E(ε | η ) = 
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γη, where γ is a parameter to be estimated. Now the selection equation can be estimated by tobit, 

and using the residuals from this model, the new conditional expectation function becomes: 

 E[ln(iwi) | hi =1, ηi, expi, speci, embedi] =  

β0 + β1 expi + β2 speci + β3 embedi + γηi    [Eq. 5] 

Thus, including the fitted residual values and using OLS will produce consistent estimates of 

the β parameters. A rejection of the null hypothesis H0,1: γ = 0 using the t-statistic from OLS 

implies there is a sample selection problem (Vella 1998).  

Amemiya (1985) refers to this correction procedure as a type III Tobit (T3T) model, and 

the parameters can be estimated by using either ML or a two-step procedure. As explained by 

Wooldridge (2002), there are two key benefits to using this model over the standard Heckman 

probit selection estimator. First, since we are using more information in the selection equation 

this should result in a more efficient estimate. Second, and more importantly, the absence of a 

valid exclusion restriction is not a problem here, as there will be variation in the tobit residuals 

just based on variation in the hours variable (as compared to the probit case where the variation 

would be due entirely to the nonlinearity based on a normality assumption). Therefore, in the 

case of the failure of our exclusion restrictions, we should still be able to consistently estimate 

the parameters of interest, although the validity of our exclusion restriction assumptions would 

be additionally useful.18    

Exclusion Restrictions 

Recall that we impose multiple exclusion restrictions on eq. 1, that is, we assume that 

some variables appear only in the selection equation (i.e., they are included in z) but not in the 

wage equation. The assumption here is that, conditioning on the capital/productivity 

characteristics, the regressors that only appear in the selection equation have no impact on the 
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wage offer.19 In the absence of such assumptions, the identification of the model parameters is 

due entirely to strong functional form assumptions, the failure of which can be highly 

problematic.20 Here, we consider five variables we argue have proper theoretical justification as 

joint exclusion restrictions: age, sanction risk perception for income-generating crimes, 

employment in legal work, drug dependency, and proportion of time during the 6-month 

interview period the individual was not in a secure detention facility (exposure time).  

Age. Age is perhaps the best predictor of crime participation (Farrington 1986; Hirschi 

and Gottfredson 1983; Steffensmeier et al. 1989), and it is particularly relevant of non-

participation (i.e., desistance) in the current sample of serious offending adolescents. Yet, any 

observed wage premium for older offenders would likely be due strictly to the correlation 

between age and experience, as opposed to age itself. The subject’s age was coded continuously 

at each follow-up interview. The average age of individuals who reported illegal market 

participation in the period was 18.31 years, slightly more than the mean of 18.28 years for those 

individuals who did not participate during a period.   

Income risk perception. An offender’s subjective risk perception has generally been 

shown to be negatively associated with offending decisions (Nagin 1998; Piquero et al. 2011), 

and in particular this association has often been observed more prominently when considering 

income-generating crimes (Loughran et al. 2011). Specifically, an offender’s reservation wage, 

and by extension his or her participation decision, should be directly related to how much risk is 

involved in the illegal activity. However, once the decision to participate in an illegal activity has 

been made, one’s own subjective risk perception should have no impact on the returns generated 

by the activity. Perceived risk is measured in each period by asking respondents how likely it is 

they would be caught and arrested for the following four crimes related to income-generating 
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offending: robbery with gun, breaking into a store or home, stealing clothes from a store, and 

auto theft. Response options ranged from 0 (no chance) to 10 (absolutely certain to be caught). 

The composite average of the four risk perceptions is then taken as the total measure. The mean 

risk score of those who report illegal earnings, 5.03, is expectedly lower than the mean for those 

who do not, 6.15.   

Legal employment. Employment in a legal job should be negatively related to illegal 

market participation, as legitimate employment has consistently been shown to aid in the 

desistance process (Sampson and Laub 1993; Uggen 2000). Also, Grogger (1998), in an analysis 

of the National Longitudinal Survey of Youth data, found that increases in legitimate wages 

reduce participation in crime. Moreover, there is no discernible reason to suspect that 

involvement in the legal market should influence one’s returns from the illegal market. Our 

measure is an indicator generated from the life event calendar equal to 1 if the individual reports 

having legitimate legal employment at any time during the observation period, else = 0. Over a 

third (34.5%) of illegal market participants report legal employment and 39.6% of non-

participants did.   

Drug dependency. Drug dependency was found to be the most important indicator of 

illegal wage volume by Uggen and Thompson (2003), suggesting participation in the illegal 

market is necessary to generate the types of funds needed for drug procurement. It is also likely 

that additional motivation from the prospect of substance use should lower one’s reservation 

wage. Importantly, Uggen and Thompson’s analysis consider total monthly illegal earnings, not 

wage rate. If, for instance, the desire for illegal earnings to purchase drugs increased the amount 

of time one chose to participate in illegal income-generating activities (which is likely as these 

individuals would probably have a lower reservation wage), then volume of participation could 
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explain this result, as opposed to the notion that one’s illegal wage rate should be higher for drug 

users. Subjects were asked to report on several indicia of their drug dependency in each recall 

period. A total of 10 items was summed into a count variable indicating the severity of 

dependency symptoms. If the subject answered affirmative to one or more of the symptoms, 

he/she was considered drug dependent and was coded 1. Subjects who did not report any 

symptoms of dependency were coded 0. Those who reported involvement in an illegal market 

reported considerably more drug dependency than those who were not (45.6% vs. 18.4%).  

 Exposure time. This measure is the proportion of time during the 6-month recall 

interview period the individual was not in a secure detention facility and was thus on the street. 

We expect that an individual’s exposure time should be positively related to participation purely 

through increased opportunity. Piquero et al. (2001) demonstrated that individual offending 

patterns were altered between models that did and did not include controls for exposure time. 

Beyond this, however, one’s exposure time should otherwise have no relation to illegal returns. 

To calculate, we include only stays in settings without access to the community (e.g., jail/prison; 

see: Mulvey et al. 2007). Individuals who report illegal market participation during a period have 

a slightly higher average exposure time than those not in the market (66.2% vs. 64.0%), although 

the latter group has a much higher standard deviation (.435 vs. .356). Also, note that 14.7% of 

the observations report an exposure time of 0, meaning they were in an institutional environment 

for the entire observation period. 

We point out that the number of exclusion restrictions is a strength of our analysis, and it 

means that our model is over-identified. Thus, the failure of any one should not be fatal. 

Importantly, we tested our model with various specification combinations of fewer restrictions 
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and found the results to be generally robust. Descriptive statistics for these excluded variables 

are summarized in Panel B of Table 1.  

Finally, we note that in all reported hypothesis tests throughout the remainder of the 

paper, standard errors are cluster corrected at the individual level. This is important since, as we 

are using pooled data, the error terms are likely not independent, and without such a correction, 

the standard errors are underestimated by as much as 30%.    

RESULTS 

Descriptive Statistics on Illegal Wage Rates 

Table 2 reports descriptive statistics for the illegal wage rate outcome. Overall, the mean 

reported illegal wage (conditional on reporting) rate is $929/week. To put this number in 

perspective, the mean reported legal wage rate in the sample is $290/week, or in other words, the 

mean illegal rate is about 320% higher than the legal rate. This expected premium reflects, 

among other things, the inherent risks in illegal wage activities as compared to legal wage 

activities which would increase one’s reservation wage. Of course, as is the case with any wage 

distribution, there is substantial skew (s.d. = $1,491). Still a comparison of the median rates still 

reflects a 78% premium for the illegal rate ($422/week vs. $245/week). Finally, the interquartile 

range for the illegal wage rate extends from $102/week to $1,000/week suggesting that, beyond 

just the outliers there is a great deal of variability in wage rates.21 

* Table 2 about here * 

Table 2 also reports how the average wage rate varies with our criminal capital measures. 

First, notice that the mean wage rate is generally increasing as a function of cumulative 

experience (as shown in Figure 2). More importantly, this relationship also appears to be 

nonlinear. The mean reported illegal wage rate for the low experience group is $441/week, while 
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the mean for the moderate group is almost identical, $439/week. However, there is a large 

premium in the rate going from moderate to high experience (F = 8.28; p = .002), for whom the 

rate is $824/week (a 91% increase). Similarly, there is another large increase in wage rate 

between the high and very high levels of experience (F = 5.05; p = .025), which increases to 

$1,221/week. This represents a 48% increase over the high rate, and a 178% increase over the 

moderate rate. Finally, there appears to be no premium for the extreme experience group, and in 

fact the mean wage rate actually decreases slightly, although we cannot reject a null of no 

difference between the very high rate (F = 0.20, p = .655).22 This set of results suggests that there 

may be a return to criminal experience in terms of a wage premium, at least once experience 

exceeds a certain threshold. Yet, there also appears to be a diminishing marginal return to 

experience, which is a perfect analog to the returns to experience predicted by human capital 

theory. 

* Figure 2 about here * 

There is also a 24% higher premium (t = 1.99, p = .046) for the mean rate of those 

individuals who are specialized ($1,034/week) as compared to non-specialized ($834/week). 

Finally, criminal embeddedness was also strongly and positively related to illegal wage rate (t = 

2.28, p = .023). Specifically, a one standard deviation increase in delinquent peer activity 

corresponds to a $127/week increase in mean wage rate.23    

It appears that illegal wage rates are related very strongly to our indicators of criminal 

capital. We now consider estimating the returns to the measure more rigorously.  

Selection into Illegal Income-Generating Participation 

 Table 3 reports the estimates from the first stage selection equations for both the probit 

and tobit selection models (eqs. 2 and 4, respectively). First notice that in both models, each of 
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the excluded regressors has a statistically significant impact on selection, with the lone exception 

of age in the tobit model (which could be due to the limited age range in the sample). Again, 

though we cannot explicitly test if our exclusion restrictions are valid, this set of results is highly 

congruent with our assumptions.24  

 The signs of the coefficients in all cases are consistent with the theoretical prediction. 

Individuals with a higher proportion of street time and those engaged in drug use were more 

likely to select into illegal wage generating activity and participate for more time. Conversely, 

older individuals, those with legitimate employment, and those with higher risk perceptions for 

detection were less likely to select into illegal earnings activities and fewer hours or weeks.  

* Table 3 about here * 

 These results from the selection equations strongly support our theoretical predictions 

and point to a problem of sample selection bias. We next consider the results from the main wage 

rate equations to test this formally.  

The Returns to Criminal Capital 

 Table 4 reports estimates of the parameters of the main wage equation (eq. 1) generated 

using pooled OLS, Heckman, and T3T estimation. The OLS results show that when considering 

all of the criminal capital indicators simultaneously, the returns to each of these indicators is 

strong and positive. As was the case with the conditional mean wage rates, there appears to be 

little to no wage premium for moderate experience (relative to the low base category), but returns 

increase with more experience (the reported F-tests show these incremental changes are 

statistically significant). Returns level off for the extreme group, again showing the same pattern 

of increasing (once a certain threshold is passed) but diminishing marginal returns to criminal 

experience. For instance, the coefficient on the high experience category implies that going from 
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low to high experience results in a 110% increase in expected illegal wage rate.25 Also, there are 

wage premiums for both specialization (61% increase) and criminal embeddedness (a one-unit 

increase in embeddedness corresponds to a 15% increase in wage rate).    

* Table 4 about here * 

 Still, results from both the selection correction models suggest the presence of strong 

selectivity bias in these prior estimates. In the Heckman model, we can comfortably reject H0: ρ 

= 0 (p = .019). Even stronger evidence comes from the T3T model estimates, where the t-ratio on 

the fitted residuals term is quite large (-4.43) meaning we can reject H0,1: γ = 0 (p < .001). But 

the best indicator of selectivity bias is much more intuitive—the coefficients from the two 

selection correction models, while similar between the two models, differ in magnitude 

considerably from the OLS estimates. In fact, it appears as if the OLS results on the select 

sample severely upwardly bias the returns to criminal capital indicators. The estimates from the 

selection corrected models reveal a 76% and 83% reduction in the magnitude of the coefficient 

on the high group for the Heckman and T3T estimates, respectively. Notice the sign of the 

estimate actually changes in both cases for the moderate coefficient. For all other model 

coefficients, there is between a 38%-51% reduction in the magnitude from the OLS point 

estimate.  

In the Heckman and T3T model estimates, there appear to be no returns to either 

moderate or high experience (in either model there is a small wage premium for high experience, 

~14% according to the T3T results, but these estimates fail to approach any conventional level of 

statistical significance). There are, however, large and statistically significant returns to very 

high levels of experience (an increase in wage rate of ~112%). Again though, the incremental 

change from very high to extreme experience is null (although notice that the change in point 
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estimates is now positive), again suggesting increasing but marginally declining returns to 

criminal experience. Also, once again this implies the existence of an experience ‘threshold’ 

before there is a wage rate increase. In terms of a specialization premium, the Heckman and T3T 

estimates imply increases of 32% and 27%, respectively, in wage rates. A one unit increase in 

the embeddedness measure yields a small increase return (~8%), although in both models this 

result is only marginally statically significant. Again, these magnitudes are substantially smaller 

than the OLS estimates. Finally, note that the estimates both from selection models are generally 

in close agreement, which is a good robustness check.  

 In total, these results suggest that, as is the case with human capital indicators, there are 

increasing but marginally declining returns to criminal experience, a wage premium for 

specialization, and perhaps a small return associated with criminal embeddedness. Moreover, 

there are strong selection effects that severely bias OLS estimation of returns to criminal capital.  

DISCUSSION 
 
 In this paper, we assessed whether it was theoretically and empirically reasonable to draw 

a direct parallel between human capital and criminal capital. To this end, we considered a 

number of fundamental theoretical and methodological concepts associated with human capital 

theory and attempted to mirror them in the criminal realm. In doing so, we attempted to develop 

a more theoretically and methodologically comprehensive way in which to assess the returns to 

investments in criminal capital. Among a sample of serious offending adolescents, we found to a 

certain extent that criminal capital operated similarly to conventional human capital, as it 

appeared that greater investment in criminal capital productivity characteristics likely yielded 

greater returns in the illegal activities markets.  
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 Specifically, we found that once a certain experience threshold was passed, there was a 

large, marginally declining wage premium for experience, a direct analog to results from Mincer 

earnings equations derived from human capital theory, something that few have considered in the 

illegal earnings literature. There are a number of reasons why the rate of return to investments 

decline over time. At higher levels of education, the reward structure tends to be smaller and 

have less income inequality. Moreover, human capital is most abundant at higher levels and 

therefore the premium for human capital is not as high (Psacharopoulos 1987; 2006). Similar 

logic would seemingly to apply to the illicit economy, which seems to also have strong market 

features and where there is likely important competition among certain high volume earners. 

Future research should continue to explore the illegal earnings experience profile to better 

determine the point at which the returns to criminal capital begin to decline, as it is an important 

consideration for policy makers.  

We also found important wage premiums for specialization in certain crimes, and to a 

lesser extent, criminal embeddedness. The premium for embeddedness, even after controlling for 

experience, implies that there is an important socialization aspect to illegal returns and makes the 

case for the relevancy of criminal networks. Taken together, these results imply that, through 

investment in one’s own criminal productivity characteristics, an offender can likely earn more 

through illegal means.  

Furthermore, our results revealed strong evidence that bias from sample selectivity, if left 

unaccounted for, can dramatically affect the inferences one draws about the nature of factors that 

contribute to illegal earnings. Specifically, using only offenders who report illegal earnings may 

constitute an endogenously selected subsample of a larger population of interest. We employed 

standard modeling techniques typically used in empirical labor economics to show that ignoring 
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such selection biases greatly overstated the magnitudes of the relationships between wages and 

important predictors. Going forward, we advocate for increased methodological and theoretical 

rigor borrowed from the rich and very well-developed field of labor economics in the study of 

illegal wages and labor supply.  

Substantively, these findings have important implications for sociological theories of 

crime. Descriptively, we find large amounts of important variability in the distribution of illegal 

wage rates, and we note that average wage rates, as well as the amount of variability, are 

considerably higher for illegal activities as compared to legal jobs. This finding suggests that 

individuals vary in their ability to earn money from crime. Tremblay and Morselli (2000) 

explored the idea of an efficiency ratio and found that a small group of offenders have much 

higher pay-offs per crime than others, though they did not assess the factors that contributed to 

the higher pay-offs. Our findings suggest that, as in legal work, investment in time, training, and 

specialization contributes to higher wage rates. This places evidence contrary to Hirschi’s (1986: 

115-116) contention that “the criminal career does not appear to be one of increasing in skill and 

sophistication but the reverse, a career that starts with little of either and goes downhill from 

there”. We find that similar to the importance of social networks in accessing legal work, 

criminal capital is a function of embeddedness in offender networks that supply both the training 

and perhaps the opportunities to increase the returns from illegal “work.” 

Our results also imply that the reward incentives from crime and the criminal capital 

investments one makes may actually be an important mechanism in the processes of desistance 

from and persistence in crime. Moreover, we speculate that the concept of an illegal reservation 

wage may be a useful in bridging criminal returns and contemporary life course theories of 

desistance, which are grounded in the concept of human agency and posit that humans plan and 
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make choices that construct their life course (Elder 1994; Laub and Sampson 2003). For 

instance, Sampson and Laub’s (1993) age-graded theory of informal social control argues that 

turning points such as marriage and employment strengthen conventional bonds and aids in the 

desistance process. It is likely that stronger bonds positively correlate with increased opportunity 

costs and one’s reservation wage for illegal participation, along with other factors such as age 

and higher risk aversion (see also Lochner 2004). As our results reveal an ostensible threshold 

level for the returns to criminal experience to become apparent, it is possible that certain low 

experience offenders might actually find that, with a higher reservation wage, illegal income 

generation is no longer a desirable endeavor, even though their expected rewards have not 

diminished. Conversely, offenders who, through agentic action, have built criminal social capital 

and have made investments in training and specialization—might find that, even though their 

reservation wage has also increased through the same developmental progressions, the returns 

from offending are actually high enough to offset this. For example, Steffensmeier and Ulmer 

(2005: 55) note that a group of “high criminal capital offenders” do exist. Hence, this small 

group of highly capital-invested offenders will continue to persist in offending. This underscores 

the importance of differentiating high criminal capital offenders from chronic offenders who 

persist in offending for vastly different reasons. Again, we can draw analogy to the legal labor 

market, where for example an individual may be dissatisfied with a certain profession, but the 

investments she has made in training, education and job experience make the wage offer too 

attractive to change professions.  

Furthermore, a much larger proportion of our offending sample participates and continues 

to participate in legal employment, for substantially lower wages. This reflects the centrality of 

the reservation wage in the problem context. We show that there are important determinates, 
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such as having a legal job, risk perception, and drug dependency, which strongly predict which 

individuals will select into illegal income-generating activities. This can provide important 

considerations for policy, and subsequent re-entry programs that seek to place returning 

offenders into meaningful and gainful employment.  

Accordingly, we envision multiple avenues for continued study of the illegal wage 

equation and returns to criminal participation and criminal capital. For instance, it is possible that 

crime type indicators would yield important main effects (e.g., a wage premium for drug dealing) 

and possibly even interact with experience, which data limitations prevented us from exploring. 

Interestingly, although there is no important wage rate difference between those who report drug 

selling versus those who do not, there is an enormous difference for those who report selling 

other drugs besides marijuana (~$719/week). Related to this, although our analysis is restricted 

to income-generating criminal experience, it is quite possible that instrumental violence is a key 

explanatory factor in higher earnings. Second, our results show that having a legal job is an 

important factor in not participating in illegal wage generating activities. While on average this 

likely is true, there still is the possibility that for some specific crimes, legal and illegal 

employment may in fact be compliments instead of substitutes. For instance, Reuter et al. (1990) 

speculate that drug dealers may retain legal employment as an opportunity to foster a potential 

client base, as well as a temporary respite from the risks of arrest and punishment that attend to 

illegal work. In general, there is a small line of research which acknowledges that certain 

individuals are not fully committed to either the legal or illegal markets, but rather drift between 

both depending on available wage opportunities (Fagan and Freeman, 1999; Grogger 1998; 

Myers 1983; Uggen and Thompson 2003). Therefore, we suspect that participation decisions in 
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either types of market as a function of wage offers in the other is a question worthy of 

investigation. 

In addition to our measures, it is possible that there are other sources whereby one can 

gain criminal capital. One source is through familial ties. For example, Hagan (1993) discusses 

how parental criminality can dampen conventional prospects and deepen criminal ones. Another 

source of criminal capital is through institutionalization, discussed by Bayer, Hjalmarsson, and 

Pozen (2009), which may facilitate greater criminal embeddedness. Future research might look 

into the role institutions play in criminal embeddedness and its impact on the returns to crime.   

One possible limitation of our results is the failure to consider fixed unobserved 

heterogeneity in the main wage offer equation which may be correlated with criminal 

productivity characteristics (a main strength of Uggen and Thompson’s findings). For instance, 

in labor market studies, economists often refer to unobserved ‘ability’ or ‘motivation’ as being 

an important determinant in the structural earnings equation. Indeed, some criminological 

scholars have speculated about the role of criminal ability (Morselli and Tremblay 2004; 

Steffensmeier and Ulmer 2005; Wright and Decker 1994), which if correlated with the both the 

wage offer and productivity indicators, could bias our results. We feel that the issue of criminal 

ability is worthy of its own theoretical framework and development as a potential key 

explanatory mechanism in the study of illegal markets. Accordingly, we advocate for this idea as 

an important topic for future scholarship.  

The ‘returns to criminal capital’ is an area of criminological research that has been 

severely neglected, both theoretically and especially methodologically. A wage-based 

consideration of these issues, within a framework of human and social capital, opens up 
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additional areas of inquiry and furthers our understanding of how offenders make decisions 

whether to offend or whether to either temporarily or permanently avoid offending.  
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Figure 1. Histograms of Illegal Wage Rate 

A) Reported Illegal Earnings per Week 

 
B) Ln(Illegal Earning per Week) 
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Figure 2. Mean Illegal Weekly Wage Rate by Experience Category 
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Table 1. Descriptive Statistics for Explanatory Variables   

       

Panel A: Criminal Capital Indicators     

  mean s.d.  Med Q1 Q3  

specialize? 0.16 0.36 0 0 0  

embeddedness 1.76 0.77 1.08 1.67 2.17  

experience (total frequency):      

overall 41.9 102.2 0 0 16  

illegal wage earners 162.3 177.6 20 110 213  

non-earners 26.1 74.4 0 0 6  

       

Panel B: Exclusion Restrictions     

 total 
illegal wage 

earners non-earners 

  mean s.d. mean s.d. mean s.d. 

Age 18.28 1.40 18.31 1.35 18.28 1.40 

legal job 0.39 0.46 0.34 0.47 0.40 0.49 

exposure time 0.64 0.43 0.66 0.36 0.64 0.44 

income risk perception 6.04 2.93 5.03 2.93 6.15 2.91 

drug  dependency 0.21 0.41 0.46 0.50 0.18 0.39 
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Table 2. Descriptive Statistics for Illegal Wage Rate  
(All Values is $/Week) 
    

Overall:     

Mean 929   

Median 422   

Q1 102   

Q3 1,000   

st.dev.  1,491   

    

Conditional on Experience:     

Low 441   

Moderate 439   

High 824   

Very high 1,221   

Extreme 1,152   

    

Conditional on Specialization:     

Yes 1,034   

No 834   

    

Conditional on Embeddedness*:      

change per unit increase 149   

change per standard deviation increase 127   

    

*the value for embeddedness is a bivariate OLS coefficient  
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Table 3. Parameter Estimates for Selection Equation, Binary and Censored Selection Equations 

        

 probit estimates tobit estimates  

 illegal participation (Y/N) hours worked illegally   

  est. (s.e.) t p-value est. (s.e.) t p-value  

Moderate 0.441 4.80 0.000 7.098 4.52 0.000  

 (0.092)   (1.570)    

High 1.113 13.27 0.000 17.336 12.43 0.000  

 (0.084)   (1.395)    

Very high 1.379 15.88 0.000 21.949 15.39 0.000  

 (0.087)   (1.426)    

Extreme 1.108 12.49 0.000 19.166 13.04 0.000  

 (0.089)   (1.469)    

Specialize? 0.658 10.41 0.000 9.471 9.86 0.000  

 (0.063)   (0.960)    

Embeddedness 0.143 4.82 0.000 2.512 5.30 0.000  

 (0.030)   (0.474)    

Proportion Street Time 0.297 4.18 0.000 6.641 5.51 0.000  

 (0.071)   (1.205)    

Income Crime Risk Perception -0.042 5.05 0.000 -0.785 6.02 0.000  

 (0.008)   (0.130)    

Age -0.028 1.38 0.168 -0.054 0.16 0.871  

 (0.021)   (0.330)    

Legal Employment? -0.253 4.10 0.000 -5.098 5.25 0.000  

 (0.062)   (0.970)    

Drug Dependency 0.719 11.98 0.000 11.397 12.86 0.000  

 (0.060)   (0.886)    

Intercept -1.834 4.87 0.000 -38.107 6.05 0.000  

  (0.377)     (6.302)      

        

N 7,399   7,399    
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Table 4. Estimates of Returns to Capital Indicators    

         

 I II III 

  OLS Heckman Type III Tobit 

 est.  est.  change est.  change 

  (s.e.) 
p-

value (s.e.) 
p-

value from OLS (s.e.) 
p-

value from OLS 

moderate 0.069 0.406 -0.166 0.298 -139.7% -0.244 0.206 -253.0% 
 (0.289)  (0.313)   (0.297)   

high 0.740 0.003 0.181 0.307 -75.6% 0.130 0.328 -82.5% 
 (0.259)  (0.359)   (0.290)   

very high 1.444 0.000 0.774 0.023 -46.4% 0.753 0.006 -47.9% 
 (0.247)  (0.387)   (0.293)   

extreme 1.427 0.000 0.856 0.007 -40.0% 0.880 0.001 -38.3% 
 (0.247)  (0.347)   (0.270)   

Specialize? 0.474 0.000 0.276 0.025 -41.8% 0.233 0.032 -50.8% 
 (0.120)  (0.141)   (0.126)   

embeddedness 0.155 0.008 0.081 0.106 -47.8% 0.076 0.116 -51.0% 
 (0.064)  (0.065)   (0.063)   

 -  -   -0.026 0.000  
      (0.006)   

intercept 4.323 0.000 5.712 0.000  5.672 0.000  

 (0.249)  (0.623)   (0.367)   

ρ -  -0.343 0.019  -   

   (0.134)      

ρσ -  -0.537 0.019  -   

      (0.231)           

βmod = βhigh 10.88 0.001 2.20 0.138  3.45 0.064  
(F-stat)         

βhigh = βvery high 19.59 0.000 12.99 0.000  15.61 0.000  
         

βvery high = βextr 0.01 0.905 0.27 0.600  0.73 0.394  

                  
                             N=833                        N=833                                               N=833 
 
Notes: Standard errors are cluster corrected for individuals. P-values are reported for one-tailed test.  

Base category is low experience.       
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ENDNOTES 

                                                           
1 See for example: Mincer (1974), Willis (1986), Ashenfelter and Krueger (1994), Carneiro, Heckman and Vytlacil 
(2011). 
2 We use the term criminal capital to mean the criminal form of human capital.  
3 Diminishing marginal returns to crime have been previously suggested by Grogger (1998).   
4 In other words, one must be willing to make what she considers to be a rational decision to forego wages in the 
current period to instead acquire an additional year of schooling or enter job training that are linked to prospect of 
higher future earnings or faster wage growth. We credit a helpful reviewer for urging us to develop this particular 
point.  
5 We offer several cautions on this complicated point. First, though we know of no formal criminological theories 
which suggest that individuals are attempting to maximize illegal earnings over their criminal career, and rational 
choice theories in criminology are generally silent on the role of time preferences (Nagin and Pogarsky 2001), it is 
plausible that some rational offenders could consider the opportunity for future illegal wages, even weighting the 
prospect against current period costs such as imprisonment. Second, there is a dearth of empirical research which 
directly comments on the relationship between legal and illegal work, and almost no formal theoretical predictions 
(except see Grogger 1998).  
6 According to Burt (1998) and Coleman (1990), human capital is necessary to succeed, but is useless without the 
social relations to gain the opportunities to employ it. In Woolcock’s (1998: 154) discussion of embeddedness and 
economic development in immigrant communities, he echoes this by stating: “The latest equipment and most 
innovative ideas in the hands or mind of the brightest, fittest person, however, will amount to little unless that person 
also has access to others to inform, correct, assist with, and disseminate their work”. This is particularly true for 
returns to criminal capital. 
7 Information regarding the rationale and overall design of the study can be found in Mulvey et al. (2004), while 
details regarding recruitment, a description of the full sample, and the study methodology are discussed in Schubert 
et al. (2004). 
8 We alert the reader to some conceptual challenges inherent to measuring illegal wage rate. As a reviewer pointed 
out: “It is not clear…that there is a really sensible way to convert illegal earnings to a standard metric equivalent to 
an hourly wage that would be used for legal employment.” We agree that such a standard metric for illegal earnings 
is a highly complicated yet fundamental measurement issue which the literature on criminal earnings has not yet 
adequately addressed. In prior studies of illegal earnings, the time frame over which illegal earnings were 
aggregated was quite large, leaving open the possibility for periods of inactivity to be unnecessarily included in the 
calculation, during which the offender was either not participating in illegal income-generating activities, or lacked 
opportunity due to incarceration or other incapacitation. In other words, aggregating illegal wages over too long of a 
period could potentially lead to inappropriate productivity comparisons among different offenders who might be 
spending vastly different amounts of time during the observation period involved in illegal activities. Of course, 
most studies of legal earnings do not face such an issue since wages are often calculated on a constant hourly basis, 
meaning differences among individual in hours worked is irrelevant. Yet it seems to us that “hours worked illegally” 
is almost impossible to accurately measure when comparing different acts which may vary in time even within 
individual, and the lack of any formal ‘work’ time records of illegal participation. Therefore, we settled on defining 
earning over weeks, as we feel it is the finest level of aggregation that is possible which still allows for some 
reasonable validity of self-reported activity, yet based on the life event calendar, we can still eliminate periods of 
inactivity due to incapacitation from the denominator. Of course, our weekly wage rate is by no means a perfect 
measure like some sort of ‘illegal hourly rate’ would be, yet we still feel it provides the most reasonable measure of 
comparison among different offenders, and we note that using a longer time period over which to aggregate earnings 
would only exacerbate measurement error.   
9 The 10 self-report items include: 1) entered or broken into a building to steal something, 2) stolen something from 
a store, 3) bought, received, or sold something that you knew was stolen, 4) used checks or credit cards illegally, 5) 
stolen a car or motorcycle to keep or sell, 6) sold marijuana, 7) sold other illegal drugs (cocaine, crack, heroine), 8) 
prostitution, 9) taken something from another by force, using a weapon 10) taken something from another by force, 
without a weapon. 
10 Murphy and Welch (1990) explicitly advocate the need for a flexible functional form specification for modeling 
returns to experience in the Mincer equation.   
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11 We considered an imputation strategy where the mean of each individual’s observed frequencies for each time 
period was used in place of the missing period to generate a cumulative sum. Using this method produced nearly 
identical results. There were also small amounts of missing data on the cases we did use on three predictors: peers, 
risk perception, and legal job (~5%, 3% and 1%, respectively). We retained all of these cases and used mean 
substitution conditional on participation to account for the missingness.  
12 Sensing there may be some reservation concerning the definition of specialization as two or fewer instead of one 
or fewer, we estimated all models using an indicator for endorsing one crime type. The results were very similar in 
terms of both sign and statistical significance.     
13 Haynie and Osgood (2005) have noted one limitation of self-reported peer delinquency measures is that, since 
individuals tend to project their own behavior onto their friends, these measures may overestimate the true influence 
of peers. We feel this is less of an issue in our analysis, since our usage of this measure is intended to be an indicator 
of opportunity structure rather than peer influence, and more importantly, we are attempting to explain illegal wages, 
not offending, in a model which includes offending behavior as a separate regressor.  
14 Note that this is not a problem of censoring, where we could simply treat the unobserved wage rate as zero and 
use a censored regression model (e.g., tobit).  
15

 To be clear, if H0 were true, this would mean that the unobservable reasons why someone does not participate in 

an illegal market are not correlated with the unobservable determinants of their illegal wage offer. This does not 
seem reasonable if, for instance, individuals who have unobservable motivation to offend, in turn, earn higher wages 

because of their motivation and willingness, then εi and νi are correlated.   
16 The inverse Mills ratio is the ratio of the standard normal density function, sometimes written as φ(·), evaluated at 

δδδδzi, to the standard normal cumulative distribution function, Φ(·), or λ(δδδδzi) = φ(δδδδzi)/Φ(δδδδzi). .  
17 The Heckman model can also be fit using a ‘two-step’ estimator, although assuming one has good exclusion 
restrictions, the ML procedure is more efficient.  
18 Some might point out that this specification still depends on a normality assumption. In fact, others have proposed 
semi-parametric estimators to circumvent this issue (e.g., Honore, Kyriazidou and Udry 1997). However, due to the 
very high proportion of truncation in our sample, these estimators are unfortunately not applicable in our case. 
19 For instance, in the female labor force participation example, in sample of married women Mroz (1987) uses non-
wife income (i.e., husband wages), as one exclusion restriction. The logic here is if the husband is a high earner, it 
should make the wife less willing to enter the labor force herself, but once she does, her husband’s earnings would 
have no bearing on her own wage offer.   
20 Bushway et al. (2007:163-165) provide an excellent description of all of the potential problems of estimating a 
Heckman model without a proper exclusion restriction.  
21 These results are comparable to past findings on illegal earnings. Freeman (1996) found that among a group of 
Boston youth who make money from crime, occasional offenders and weekly offenders earned $250 and $448 
respectively. Viscusi (1986) surveyed inner-city youth (15-24 years) from Boston, Chicago and Philadelphia and 
found that the average monthly illegal income was $272. Among a sample of homeless youth in Toronto and 
Vancouver, McCarthy and Hagan (2001) found that the average daily earnings of participants in the drug trade was 
$101. 
22 Some may wonder if the rate premium for increased experience might merely reflect a volume effect based on 
higher participation. This is explicitly why we consider rate as the outcome, to reduce this possibility. The 
denominator (weeks worked) is generally increasing with experience. For instance, on average those individuals 
with extreme experience report 21%, 56% and 82% more total illegal hours than the very high, high and moderate 
experience groups, respectively.  
23 Ideally, we would like to know how the wage rate varies with certain illegal activities. However, two things 
prevent us from doing this. First, there is a high degree of overlap in the sample with individuals endorsing multiple 
crime types, including 80% who report drug selling activity. Second, we are unable to disaggregate the illegal 
income earned by crime types, meaning we cannot match earnings to specific crimes. We note, however, that there 
is no important difference in mean rate for those who report selling drugs versus those who do not. We return to this 
idea in the discussion section.  
24 On this point, a reviewer challenged us to more deeply consider three of our exclusion restrictions. First, with 
respect to risk perceptions, s/he noted “offenders with lower risk perceptions might take more risky chances, and 
thus have a tendency to make bigger scores.” Second, s/he wondered if drug dependency might make “offenders 
‘sloppy’… [t]his means that drug dependent offenders would earn less illegally, net of their criminal experience.” In 
both of these instances, the reviewer argued that although s/he felt confident that these two variables did predict 
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selection, they in fact also might belong in the main wage equation. We then tested additional model specifications 
including both variables, separately and jointly, and found no significant effects of either variable on income, nor 
did the coefficients on our capital predictors materially change with inclusion. Finally, due to concerns over age 
being correlated with multiple things, we fit the model without age as an exclusion so as not to rely on it. Again, our 
results were robust. We note that these specification checks actually enhance our confidence in the validity of our 
results, as they show that our findings are not sensitive to any one assumption. Detailed results are available upon 
request. 
25 In a log-linear model with dummy predictors, the percentage impact of a change in the predictor from 0 to 1 on 

the (untransformed) outcome Y is 100 * [100*[  - 1]. 
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