

Country

Bangladesh

Argentina

China

France

West Bengal, India

International Symposium on **BIODIVERSITY, AGRICULTURE, ENVIRONMENT AND FORESTRY**

11-12 December 2015, Ooty, Tamil Nadu, India

Theme: Plant, Soil and Environment

Arsenic hyperaccumulation efficiency depends on time and tissue in Pteris vittata

Rasika Potdukhe, B. K. Sarangi, R. A. Pandey, S. T. Thul* Environmenatl Biotechnology Division, CSIR-NEERI, Nehru Marg, Nagpur - 440020, India Email - s thul@neeri.res.in

The metalloid arsenic is a toxic environmental pollutant. Arsenic pollution becomes serious due to mining, mineral, smelting and tannery industry. Leaching of naturally occurring arsenic into drinking water aquifers, has been reported in many countries including India and Bangladesh. Available engineering methods for remediation is costly and difficult. Many plant species reported to accumulate arsenic. Pteris vittata has been reported as arsenic hyperaccumulator. An Indian eco-type of P. vittata has been used to study the arsenic accumulation. The plants were grown in arsenic containing soil along with soil without arsenic (control). The ferns were separated into two portions, i.e., above ground (fronds), stage specific as well as tissues from different position of pinnae and below ground (roots and rhizomes). Futher, it was also harvested at different time interval. Dried fern samples (0.1 g) were digested with mixture of concentrated nitric acid and perchloric acid. Heavy metal measurement in foliar and root samples was performed with ICP-OES. Tissue specific arsenic accumulation indicates that juvenile leaf contains highest arsenic than mature leaf. Middle pinnae of mature leaf show high arsenic content compared to upper and lower pinnae. Among the underground parts of the plant, rhizome contains high arsenic than roots. Further, time dependent arsenic accumulation study indicates that active accumulation of arsenic starts from day 7 to day 30 in leaf tissue, while in roots, day 3 to 7 show sudden increase and no much drastic change in accumulation from day 7 onwards.

Arsenic contamination B.K. Mandal, K.T. Suzuki / Talanta 58 (2002) 201-235 Arsenic contents in the soils of various countries

Number of samples

2235

10

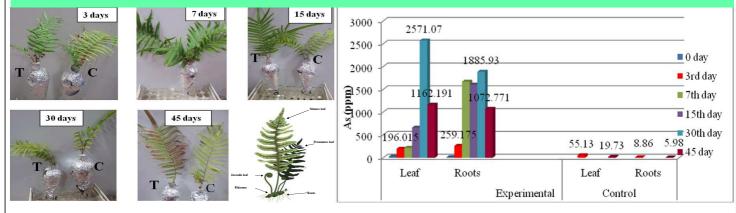
20 4095

Types of soil/sediment

Sediments

Sediments

All types


All types

All types

anga-Meghna-Brahmaputra Plain Range (mg kg $^{-1}$) 10-196 9.0-28 0.8 - 220.01-626 0.1 - 52.5-4.6

http://www.cgwb.gov.in/documents/papers/incidpapers/Paper%208%20-%20Ghosh.pdf

Germany	Berlin region	2	2.5-4.6	
Italy	All types	20	1.8-60	UTTAR PRADESH
Japan	All types	358	0.4-70	
	Paddy	97	1.2-38.2	BIHAR
Mexico	All types	18	2-40	A Contraction of the second seco
South Africa		2	3.2-3.7	Arsenic affected areas
Switzerland		2	2-2.4	Area and Population
United States	Various states	52	1.0-20	of GMB Plain:
	Tiller	1215	1.6-72	569749 sq. km & > 500 million

	100 87.69	Arsenic accumulation (mg Kg ⁻¹ dry biomass)						
	80	Tissue type arsenic accumulation		Time and tissue type dependant arsenic accumulation				
/Kg	60 - 20 701	Juvenile leaf	87.69 ±5.49	Days	Leaf	Roots	Total As	
As mg/Kg	40 - 26.462 - 32.66	Premature leaf	39.701±2.58	0	25.36±2.52	12.341±2.19	37.701	
	20	Upper pinnae	26.462±2.66	3	196.015±6.19	259.175±13.67	455.19	
	3.992	Middle pinnae	32.66±3.82	7	216.545±7.12	1668.975±6.67	1885.52	
	o liste of associat againers beginner gainers bearing to a	Lower pinnae	16.96±2.94	15	659.135±7.8	1603.4±4.95	2262.535	
	hydrafter transferret the transferret to the transf	Rhizome	20.69±1.88	30	2571.07±8.88	1885.93±2.51	4457	
		Roots	3.992±0.36	45	1162.191±7.3	1072.771±5.28	2234.962	

Acknowledgment: The authors wish to express their gratitude to Department of Biotechnology (DBT), Govt of India for financial assistance. Authors also acknowledge the kind support and encouragement extended by Director, NEERI, Nagpur