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Abstract 11 

Large and high nitrogen (N) concentration seedlings frequently have higher survival and 12 

growth in Mediterranean forest plantations than seedlings with the opposite traits, which has 13 

been linked to the production of deeper and larger root systems in the former type of 14 

seedlings. This study assessed the influence of seedling size and N concentration on root 15 

growth dynamics and its relation to shoot elongation in Aleppo pine (Pinus halepensis Mill.) 16 

seedlings. We cultivated seedlings that differed in size and N concentration that were 17 

subsequently transplanted into transparent methacrylate tubes in the field. The number of 18 

roots, root depth, and the root and shoot elongation rate (length increase per unit time) were 19 

periodically measured for 10 weeks. At the end of the study, we also measured the twig water 20 

potential () and the mass of plant organs. New root mass at the end of the study increased 21 

with seedling size, which was linked to the production of a greater number of new roots of 22 

lower specific length rather than to higher elongation rate of individual roots. Neither plant 23 

size nor N concentration affected root depth. New root mass per leaf mass unit, shoot 24 

elongation rate, and pre-dawn  were reduced with reduction in seedling size, while mid-day 25 

 and the root relative growth rate was not affected by seedling size. N concentration had an 26 

additive effect on plant size on root growth, but its overall effect was less important than 27 

seedling size. Shoot and roots had an antagonistic elongation pattern through time in small 28 

seedlings, indicating that the growth of both organs depressed each other and that they 29 

competed for the same resources. Antagonisms between shoot and root elongation decreased 30 

with plant size, disappearing in large and medium seedlings, and it was independent of 31 

seedling N concentration. We conclude that root and shoot growth but not rooting depth 32 

increased with plant size and tissue N concentration in Aleppo pine seedlings. Since 33 

production of new roots is critical for the establishment of planted seedlings, higher absolute 34 

root growth in large seedlings may increase their transplanting performance relative to small 35 
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seedlings. The lack of antagonism between root and shoot growth in large seedlings  suggests 36 

that these plants can provide resources to sustain simultaneous growth of both organs.  37 

 38 

Key words: Nitrogen content, rhizotron, root elongation, shoot growth, sink-source relations, 39 

water potential. 40 
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Introduction 41 

Abiotic and biotic factors have a profound influence on root growth and structure 42 

(Alvarez-Uria and Korner 2007; Andersen, et al. 1986; Lopushinsky and Max 1990; Lyr 43 

1996; Munro, et al. 1999). Root growth and structure also varies across plant species and are 44 

linked to species functional and ecological characteristics (Comas and Eissenstat 2004; 45 

Schenk and Jackson 2002). By contrast, fewer studies have analysed how plant functional 46 

characteristics affect root growth and structure within a given species. Nursery cultivation 47 

conditions may determine future root growth and architecture. For instance, root restriction by 48 

containers in nursery-cultivated plants can affect root morphology for many years after 49 

transplanting (Halter and Chanway 1993; Lindström and Rune 1999). Similarly, new root 50 

growth capacity in greenhouse or growth chamber experiments is positively related to shoot 51 

size and nitrogen (N) concentration in forest species (van den Driessche 1992; Villar-52 

Salvador, et al. 2004).  53 

 New root growth after transplanting is essential to ensure seedling survival in forest 54 

plantations (Burdett 1990; Burdett, et al. 1983; Grossnickle 2005; Ritchie and Dunlap 1980) 55 

as new roots allow seedlings to access soil water and mineral nutrients in the surrounding soil 56 

(Grossnickle 2005; Lyr and Hoffmann 1967; Padilla and Pugnaire 2007). Villar-Salvador 57 

(2003) suggested that higher root growth after transplanting in containerized plants might 58 

explain the frequently improved survival and growth of large, N-rich seedlings relative to 59 

seedlings with the opposite traits in Mediterranean plantations  (Luis, et al. 2009; Oliet, et al. 60 

2009; Puértolas, et al. 2003; Tsakaldimi, et al. 2005; Villar-Salvador, et al. 2004; Villar-61 

Salvador, et al. 2008). Cuesta et al. (2010) observed that large Aleppo pine (Pinus halepensis 62 

Mill.) seedlings had greater new root biomass in the field than small seedlings at the onset of 63 

summer drought. However, they did not examine the effect of seedling size and N 64 

concentration in root growth dynamics and rooting depth. 65 
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 Plants usually have limited resources to simultaneously support their main 66 

physiological processes (growth, defence, maintenance, storage, and reproduction) (Chapin 67 

1990; Herms and Mattson 1992; Obeso 2002). Trade-off in resource allocation among organs 68 

or functions increases with limiting environmental conditions and varies with organ type 69 

(Obeso 2002; Thaler and Pagès 1996b). In some studies, roots and shoots alternate their 70 

growth through time suggesting that both organs compete for the same pool of resources and, 71 

therefore, occur at the expense of the other (Langlois, et al. 1983; Thaler and Pagès 1996a; 72 

Willaume and Pagès 2006). Other studies, however, have not reported an alternating growth 73 

between roots and shoots (Corchero-de la Torre, et al. 2002; Harmer 1990; Lyr and Hoffmann 74 

1967). Differences among studies suggest different sink/source relations among species or 75 

individuals within a species. Consistent with this argument, defoliation of Quercus pubescens 76 

seedlings amplified the decrease in root growth concomitant with leaf expansion (Willaume 77 

and Pagès 2006). Therefore, it can be expected that antagonist growth between organs in a 78 

given species will be lower in individuals with high photosynthetic capacity and / or amount 79 

of nutrients stored for remobilization. 80 

This study examines the root growth dynamics of Aleppo pine (Pinus halepensis) and 81 

how it is the influenced by shoot growth, seedling size and tissue N concentration. We 82 

assessed the hypotheses that large seedlings and plants with high tissue N concentration 1) 83 

produce larger and deeper root systems because they produce more roots and individual roots 84 

elongate faster, and 2) have lower antagonism between root and shoot growth relative to 85 

plants with the opposite attributes. To test these hypotheses, we transplanted into transparent 86 

methacrylate tubes seedlings that differed in size and N concentration and periodically 87 

measured root and shoot growth. We selected P. halepensis because it is a structural species 88 

in many types of woodland throughout the Mediterranean basin and it is commonly used in 89 

reforestation projects.  90 
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  91 

Materials and Methods 92 

 93 

Seedling nursery cultivation 94 

 95 

Seeds from an inland Spain provenance were sown in Plasnor 190/300-45 trays (45 cavities of 96 

300 ml per tray; Plasnor, Spain) with unfertilized Sphagnum peat (Kekkilä B0, Finland). We 97 

cultivated 135 seedlings of six phenotypes that differed in size (small, medium and large 98 

types) and N concentration (high and low) (Table 1). To achieve differences in plant size we 99 

varied seeding date, which determined the length of the growing season. Seeds were sown on 100 

December 15, 2005 (large seedlings), March 13, 2006 (medium seedlings) and May 23, 2006 101 

(small seedlings). After emergence, seedlings were fertilized weekly with a 100-ppm N 102 

fertilizer solution until September 27, 2006. Fertilization started in May 10, June 2 and 103 

August 2 for the seedlings sown in December, March and May, respectively. To achieve 104 

differences in tissue N concentration, half of the seedlings of each seeding date were fertilized 105 

weekly with 200 ppm N from early October until mid December 2006 (high-fertilized 106 

seedlings, N+). The remainder half was not fertilized any more (low-fertilized seedlings, N-). 107 

Fertilization was done with a Peters Professional® 20-7-19: N-P2O5-K2O fertilizer (Scotts 108 

Professional, The Netherlands). Seedlings were grown in a glasshouse, which temperature 109 

ranged from 4 to 25 ºC and radiation was approximately 50% of that outside, until mid May 110 

2006. Then plants were moved outside and kept under full sun during the rest of the 111 

experiment. Seedlings were kept well watered according to their requirements by irrigating 112 

them every 1–3 days. Cultivation finished when plants stopped their growth due to low winter 113 

temperature in late December 2006. 114 

 115 
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Morphology and N concentration measurements following cultivation 116 

 117 

Fifteen plants of each seedling phenotype were randomly sampled in mid January 2007 for 118 

morphology and N concentration determinations. Shoots were cut at the cotyledon insertion 119 

point and root plugs were cleaned from the peat. Shoot height was measured as the length of 120 

the stem while shoot diameter was measured as the stem thickness at the cotyledon insertion 121 

point. Then, all plant parts were washed with tap water, rinsed in distilled water and dried in a 122 

ventilated oven at 60ºC for 48 h to measure their mass (Table 1). Plants of each seedling 123 

phenotype were randomly distributed into three groups and finely ground to assess tissue N 124 

concentration. N concentration was determined by Kjeldahl analysis with K-SeSO4-Se2Cu4 as 125 

catalyst in a Tecator DS-40 digestion system (FOSS Tecator, Sweden) and a SAN ++ auto-126 

analyser (Skalar, Netherlands). 127 

 128 

Experimental design and field measurements 129 

 130 

The experiment was carried out in Guadalajara, central Spain (38º38´ N, 3º28´ W) at 650 m 131 

a.s.l. on a flat plot. The climate is Mediterranean continental with mean annual precipitation 132 

and temperature of 400 mm and 13.4 ºC, respectively. A pronounced dry and hot season 133 

occurs from June to late September and frosts in winter are frequent.  134 

Six seedlings per seedling phenotype were transplanted into transparent methacrylate 135 

tubes (here after rhizotrons) on April 18, 2007. One seedling was planted in each rhizotron. 136 

Rhizotrons were 1 m in length, 13.5 cm in exterior diameter, and had a wall thickness of 0.5 137 

cm. Rhizotron bottom end was closed with a perforated PVC lid, which drainage holes were 138 

covered with a mesh to prevent substrate loss. The bottom of the rhizotron was filled with 139 

gravel (ca. 10 cm in height) and the remainder was filled with washed and sieved sand. 140 
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Subsequently, we planted the seedlings placing the root plug against the rhizotron wall. 141 

Rhizotrons were inserted into the soil to maintain roots as close as the plot soil temperature. 142 

To facilitate periodic extraction, each rhizotron was inserted into a second opaque plastic tube 143 

1.1 m in length and 15 cm in interior diameter that was buried in the soil with a 30º 144 

inclination to force root growth against the rhizotron wall. As the top of the opaque tube and 145 

of the rhizotron protruded 10-15 cm from the ground, we wrapped an insulating sheet around 146 

the protruding portion of the opaque tube to prevent rhizotron overheating. Seedlings were 147 

thoroughly irrigated at planting and then again on April 23, May 10 and May 18 with 200 ml 148 

per plant to simulate standard spring rainfall at the experimental site. During the rest of the 149 

experiment, seedlings were not irrigated to simulate the summer drought typical of 150 

Mediterranean climate. 151 

 When most seedlings had visible roots, we measured root elongation and depth as well 152 

as shoot height every 6-12 days from April 30 to July 11. On each date, all new roots were 153 

drawn on the same acetate sheet, which was placed over the rhizotron wall on identical 154 

position, and their length was measured after correcting for root curvatures. We counted the 155 

number of new growing roots. The roots that stopped their growth for at least 15 days were 156 

not counted. The mean root elongation rate was calculated as the mean elongation of each 157 

individual root per time unit. We also calculated the total root elongation rate of a plant as the 158 

sum of elongations of all individual roots per time unit, which estimates plant effort to expand 159 

its root system. Root depth was measured as the vertical distance from the plug bottom to the 160 

tip of each drawn root. Shoot height was measured as the distance between the cotyledon 161 

insertion point and the shoot apex, and shoot elongation rate was calculated as the differences 162 

in seedling height between two dates. We also measured the stem diameter at the cotyledon 163 

insertion point with a calliper in the first day of the field experiment to calculate the initial 164 
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stem volume assuming the stem to be a cone. Stem volume was highly correlated with plant 165 

mass (r = 0.92, P < 0.001, n = 36) and we used it as a proxy of initial seedling size.  166 

 On the last day of the field experiment, we measured the twig water potential at 167 

predawn (pd) and at midday (md) in all seedlings with a pressure chamber.  168 

 169 

 Morphological analyses following the field experiment 170 

 171 

At the end of the field experiment, seedlings were extracted from the rhizotrons and 172 

separated into leaves, stems and old and new roots, which were washed with tap water and 173 

dried in a ventilated oven at 60 ºC for 48 h to measure dry mass. Roots protruding out of the 174 

root plug were designated as new roots while those in the root plug were classified as old 175 

roots. Absolute increments in shoot and old and new root mass, and the root relative grow 176 

rate (RGRroot) were calculated. RGRroot was calculated as: 177 

RGR= (logem2 – logem1) / (t2 – t1)         178 

where m1 and m2 are the total root mass at the end of the nursery cultivation and at the end of 179 

the field experiment, respectively. 180 

Standardization of new root mass by leaf mass (NR/L) was used as a proxy of the 181 

plant’s water balance potential. We also calculated the production of new root mass per total 182 

plant mass (NR/P). Before drying the new roots, we measured new root length according to 183 

methodology proposed in Marsh (1971). We calculated the specific root length (SRL) as the 184 

new root length to mass ratio. 185 

 186 

Data analysis 187 

 188 
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Differences in seedling attributes following nursery cultivation were analysed by two-factorial 189 

ANOVA, with sowing date and fertilization as main factors. Root and shoot mass increment, 190 

RGRroot, NR/L and NR/P at the end of the field experiment was analysed by ANCOVA. Mean 191 

and total root elongation rate and depth, the number of roots and  were analysed by repeated 192 

measure ANCOVA. In these analyses, fertilization was the categorical predictor and seedling 193 

stem volume at the beginning of the field experiment was the covariable.  194 

Antagonism between root and shoot growth was measured by calculating the slope of 195 

the linear regressions between the standardized shoot and total root elongation rate. Negative 196 

slopes mean that roots and shoot have an antagonistic growth pattern, while regressions with 197 

zero or positive slope values mean no antagonism between roots and shoot growth. The effect 198 

of fertilization and plant size on the slope values between root and shoot elongation rate was 199 

analysed by ANCOVA, where plants size was the covariable. To assess if the slope values in 200 

each seedling type were different from zero, we carried out a t-test for single samples. Data 201 

were checked for normality and homogeneity of variances and were transformed when 202 

necessary to correct deviations from these assumptions. In ANCOVA, we also checked the 203 

homogeneity of slopes across fertilization treatments and in all cases treatment slopes were 204 

similar (no significant covariable × Fertilization interaction). All statistical analyses were 205 

performed with the Statistica 6.1. Package (StatSoft, Inc., Tulsa, OK, USA). For simplicity 206 

we classified plants into three size categories according to sowing date in the nursery (small, 207 

medium and large; see Table 1), to show the results of the effect of the stem volume 208 

covariable on studied variables. 209 

 210 

Results 211 

 212 

Seedling attributes following nursery cultivation 213 
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 214 

Seedling height increased with the delay in sowing date (F = 214, P < 0.001), and increased 215 

with fertilization, but only in seedling sown in March (sowing date  fertilization interaction, 216 

F = 5.3, P = 0.011). Delay in sowing date and fertilization increased seedling diameter (F = 217 

190, P < 0.001 and F = 7.5, P = 0.01, respectively). Shoot and root mass decreased with the 218 

delay in sowing date (F=116, P<0.001 and F = 103, P < 0.001, respectively), while 219 

fertilization had no effect. Seedling total mass in plants sown in December were 1.5 and more 220 

than six times larger than plants sown in March and in May, respectively, while plants sown 221 

in March were more than four times larger than those sown in May. By contrast, seedling 222 

mass did not differ between fertilization treatments (Table 1). Seedling shoot/root ratio was 223 

close to 1 and did not differ among sowing dates, but it was lower in N+ than in N- seedlings 224 

(F = 7.09, P = 0.009). 225 

Fertilization increased seedling N concentration (F = 53.4, P < 0.001), which was on 226 

average 35% higher in N+ than in N- seedlings. Delay in sowing date also increased seedling 227 

N concentration (F = 15.3, P < 0.001); seedlings sown in May had 26 and 30% higher N 228 

concentration than those sown either in March or in December, respectively. Both sowing 229 

date (F = 81.5, P < 0.001) and fertilization (F = 23.5, P < 0.001) affected seedling N content, 230 

with seedlings sown in December and May having the highest and lowest N content, 231 

respectively, while seedlings sown in March had intermediate values. N content was 30% 232 

higher in N+ than in N- seedlings. 233 

 234 

Root and shoot growth in the field 235 

 236 

Shoot elongation rate decreased with seedling size. Small seedlings had two shoot elongation 237 

rate peaks through time while medium and large seedling had only one peak, which did not 238 
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coincide in time with those of small seedlings (time  stem volume interaction; Table 2). Over 239 

all dates, mean elongation rate of individual roots was not affected by seedling size (Table 2, 240 

Fig. 1). This occurred because seedling size increased mean root elongation rate during the 241 

first weeks but it reduced it at the end of the experiment (time  stem volume interaction; 242 

Table 2). Fertilization significantly reduced the mean elongation rate of individual roots. Total 243 

root elongation rate increased with seedling stem volume, but there were no differences 244 

between large and medium plants at the end of the study (time  stem volume interaction; 245 

Table 2). Fertilization did not affect total root elongation rate. The number of new roots 246 

increased with initial seedling stem volume, except in the first measurement date (time  247 

initial stem volume interaction; Table 2). Nursery fertilization significantly increased the 248 

number of roots, N+ and N- plants having 20.2 ± 1.3 and 14.5 ± 1.4 roots (mean ± 1SE), 249 

respectively. Mean and maximum root depth increased through time, ranging from 32 to 37 250 

cm and from 51 to 61 cm, respectively, at the end of the experiment. Neither initial seedling 251 

size nor fertilization significantly affected mean or maximum root depth.  252 

At the end of the experiment, both initial seedling stem volume and nursery 253 

fertilization significantly increased new root mass and length (Table 2, Fig. 2). New root mass 254 

was 29% higher in N+ seedlings than in N- seedlings. Large and medium seedlings had 52 and 255 

48% higher new root mass than small seedlings, respectively. New root length was 7.9 ± 0.92 256 

and 5.6 ± 0.54 m (mean ± 1 SE) in N+ and N- seedlings, respectively, whereas large, medium 257 

and small seedlings had 8.0 ± 1.03, 8.1 ± 0.89 and 4.2 ± 0.52 m of new roots, respectively. 258 

Seedling stem volume and fertilization significantly enhanced growth of both shoot and old 259 

root mass. Root to shoot mass ratio at the end of the experiment and RGRroot were not affected 260 

either by initial seedling stem volume or nursery fertilization (Table 2, means not shown). 261 

Increase in seedling stem volume significantly diminished NR/L, NR/P and SRL, although the 262 

effect was marginal in the latter (P = 0.065). Medium and large seedlings had 22% and 30% 263 
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lower NR/L, respectively, than small seedlings. Nursery fertilization did not significantly 264 

affect either NR/L, NR/TP or SRL. 265 

Mass of new roots was positively related to the seedling N content (Fig. 3) and the 266 

number of roots (r2 = 0.32, P < 0.001, n=36) at the end of the experiment, but not with either 267 

the mean elongation rate of individual roots (r2 = 0.05, P = 0.19, n=36) or the plant N 268 

concentration a the beginning of the study (r2= 0.05, P= 0.67, n=6).  269 

 270 

Seedling water potential and relation between root and shoot elongation rate 271 

 272 

Seedling pd was higher than md. Stem volume reduced pd whereas it did not affect md 273 

(time  initial stem volume interaction, Table 2). pd for large, medium and small seedlings 274 

was -1.21 ± 0.04, -1.05 ± 0.04 and -0.96 ± 0.04 MPa, respectively, whereas md was -2.53 ± 275 

0.08, -2.53 ± 0.08 and -2.48 ± 0.08 MPa, respectively. Nursery fertilization did not affect .  276 

The slope of the regression of total root elongation rate against shoot elongation rate 277 

was significantly and positively related to stem volume while fertilization had no effect 278 

(Table 2 and Fig. 4). Similarly, no interaction between fertilization and stem volume on the 279 

slope of the regression between the elongation rates of both organs was observed (F = 0.18, P 280 

= 0.68). Slopes of small seedlings were significantly lower from zero (-0.26 ± 0.046 [mean ± 281 

1SE], t = -5.63, P < 0.001). On the contrary, the slope of large plants was significantly greater 282 

than zero (0.20 ± 0.089, t = 2.25, P = 0.045), whereas the slope of medium seedlings did not 283 

significantly differ from zero (0.12 ± 0.09, t = 1.30, P = 0.22).  284 

  285 

 286 

Discussion 287 

 288 
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Root growth and structure 289 

 290 

Large Aleppo pine seedlings produced larger new root systems than small seedlings, which is 291 

in agreement with results in field experiments in P. halepensis and Juniperus thurifera 292 

(Cuesta et al. 2010; Martínez-Sanz 2006) and in root growth capacity tests performed in 293 

controlled environments in other forest species (van den Driessche 1992; Villar-Salvador, et 294 

al. 2004). In agreement with our first hypothesis, large seedlings produced larger new root 295 

systems because they produced higher number of roots than small seedlings. Furthermore, 296 

new roots in large seedlings had lower SRL than in small seedlings. However, contrary to our 297 

hypothesis individual roots did not grow faster in larger than in smaller plants. Unlike Aleppo 298 

pine, elongation rate of individual roots increased with seedling size in J. thurifera (Martínez–299 

Sanz  2006). 300 

Seedling survival in dry ecosystems depends on the development of large and deep 301 

root systems (Burdett, et al. 1983; Grossnickle 2005; Padilla and Pugnaire 2007). Greater root 302 

systems of large seedlings could explain their frequently improved post-transplanting 303 

performance relative to small seedlings in Mediterranean plantations (Luis, et al. 2009; Oliet, 304 

et al. 2009; Tsakaldimi, et al. 2005; Villar-Salvador, et al. 2008). Contrary to our 305 

expectations, we did not find differences in root depth among seedlings phenotypes, which 306 

differs with the result found for J. thurifera seedlings, where roots of large seedlings grew 307 

deeper than those of small seedlings (Martínez-Sanz 2006). Absence of differences in root 308 

depth among seedling types is consistent with their lack of differences in the mean elongation 309 

rate of individual roots. Padilla and Pugnaire (2007) did not find any relationship between 310 

initial seedling size and either root extension rate or maximum root depth in a comparison of 311 

several Mediterranean woody species. This suggests that functional processes occurring 312 

across species may not coincide with those occurring at the intraspecific level. Accordingly 313 
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with our first hypothesis, high-fertilized seedlings also produced greater root systems than 314 

low-fertilized plants. Nevertheless, root elongation rate of individual roots was just slightly 315 

higher in low fertilized seedlings than in high-fertilized seedlings, which can explain the 316 

similar total root elongation rate between fertilization regimes. 317 

Specific root length depends on root thickness and/or density and varies widely among 318 

species, although it usually has low variation in response to environmental conditions such as 319 

temperature or nutrient availability (Alvarez-Uria and Korner 2007; George, et al. 1997; 320 

Pregitzer, et al. 2002; Reich, et al. 1998). We found that, at the intraespecific level, small 321 

seedlings tended to have higher SRL than large seedlings; this suggests that the former 322 

produced thinner and/or less dense roots, which have lower construction and maintenance 323 

cost than low SRL roots (Pregitzer, et al. 2002). 324 

NR/L provides an idea of the potential balance between the water transpiration and 325 

water uptake capacity in a plant. High NR/L may confer greater capacity of plants to maintain 326 

high water potential under drought conditions. In spite of the large differences in seedling size 327 

in our study, large seedlings were similarly water balanced than small seedlings. This 328 

argument is supported by the lack of differences in mid-day  among seedlings of different 329 

size. Higher root density (mass of new roots per soil volume unit) and enhanced root 330 

hydraulic conductance in larger plants (Chirino, et al. 2008; Wan, et al. 1996) in comparison 331 

to smaller plants could explain why large seedlings, in spite of having lower NL/R and NR/P, 332 

had similar mid-day  than small seedlings. Small seedlings had lower pre-dawn  than large 333 

seedlings, suggesting that the former rehydrate faster than the latter at night or that night 334 

transpiration increased with seedling size. 335 

Seedling size had greater effect on root growth than nursery fertilization as much more 336 

variables were affected by seedling size than fertilization (see Table 2). Differences in size 337 

among seedling phenotypes were higher than differences in N concentration, which probably 338 
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explains the greater effect of seedling size on root growth. As root growth in P. halepensis 339 

and other conifers strongly relies on current photosynthesis (Moreno 2003; van den Driessche 340 

1987), an increase in root growth with seedling size might be attributed to higher 341 

photosynthesis in larger plants than in small plants (Cuesta, et al. 2010). Early growth of new 342 

organs in spring is also supported by remobilization of stored N and growth is usually 343 

positively linked to the amount of remobilised N (Dyckmans and Flessa 2001; Malik and 344 

Timmer 1996; Millard 1996; Salifu and Timmer 2003). In our study, large plants had higher 345 

N content than small seedlings, which potentially increased the amount of remobilizable N. 346 

This might explain the positive relationship between the new root mass at the end of the 347 

experiment and seedling N content at planting (Fig. 3). In addition, nursery fertilization, 348 

which increased plant N concentration without promoting significant growth, had an additive 349 

effect on the effect of plant size on root growth. Increase in N concentration can stimulate 350 

growth by increasing the amount of remobilizable N and / or by enhancing photosynthetic rate 351 

(Field and Mooney 1986).  352 

 353 

Relationship between root and shoot growth 354 

 355 

As resources become limited, investment of resources to root growth can reduce shoot growth 356 

or reproduction and vice versa (Bloom, et al. 1985; Chapin 1990). The relationship between 357 

root and shoot elongation through time differs among species and if lateral or taproots are 358 

considered (Harris, et al. 1995; Lyr and Hoffmann 1967; Reich, et al. 1980; Riedacker 1976; 359 

Thaler and Pagès 1996a). Our study demonstrates that antagonism between root and shoot 360 

elongation also varies among individuals of contrasted size at a within species scale. In 361 

agreement with our second hypothesis, root and shoot growth did not have an antagonistic 362 

growth pattern in large and medium seedlings as the slope of the regression between shoot 363 
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and root elongation rate were positive and zero, respectively. On the contrary, the slope was 364 

negative in small seedlings indicating the growth of both organs depressed each other 365 

probably because they competed for the same resources. Willaume and Pagès (2006) found 366 

that reduction of photosynthesis by defoliation increased the alternating growth pattern of 367 

roots and shoots in Quercus pubescens, highlighting the importance of carbohydrate 368 

sink/source relations in this process. Decrease in root and shoot growth antagonism with 369 

increase in seedling size suggests that large seedlings can provide resources to sustain high 370 

and simultaneous growth of both organs. Because increase in seedling N concentration did not 371 

have an additive effect over the plant size effect on the antagonism between shoot and root 372 

growth, we suggest that differences in carbon economy rather than N remobilization might be 373 

the mechanism underlying the differences in the shoot-root growth relationship in Aleppo 374 

pine seedlings. Future studies should investigate this hypothesis. 375 

 We conclude that large seedlings developed denser but not deeper root systems than 376 

small seedlings due to greater proliferation of new roots with lower specific root length.  377 

Seedling size had greater influence on root growth than N concentration, which had an 378 

additive effect over plant size. Root and shoot growth did not depress each other in large and 379 

medium seedlings, whereas it did not occur in small seedlings. These findings provide 380 

insights for understanding root growth differences and transplanting performance among 381 

Aleppo pine stock-types in Mediterranean woodland plantations. 382 
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 537 

Table 1. Morphology and N concentration content of Pinus halepensis seedlings that were 538 

cultivated by sowing seeds on three distinct dates (December, March and May) and fertilized 539 

with nitrogen at two distinct rates (N+ and N-). Data are means ± one SE. n=15 except for N 540 

concentration where n=3. Seedling types with different letter indicate significant differences 541 

at P<0.05 after Tukey´s post-hoc test. 542 

 543 

 544 

 December March May 

 N- N+ N- N+ N- N+ 

Plant height (cm) 19.8±0.6a 19.1±0.8a 15.2±0.4b 16.9±0.4ab 8.0±0.5c 8.4±0.3c 

Plant diameter (mm) 4.0±0.1a 4.5±0.1a 3.4±0.1b 3.8±0.1b 2.1±0.1c 2.1±0.1c 

Root mass (g) 3.0±0.34a 2.9±0.16ab 2.0±0.09c 2.2±0.08bc 0.5±0.07d 0.6±0.06d 

Shoot mass (g) 3.2±0.35a 3.0±0.25ab 2.3±0.18bc 2.2±0.14c 0.5±0.04d 0.5±0.05d 

Shoot / Root mass 

ratio 
1.12±0.1a 1.07±0.1ab 1.11±0.05a 1.01±0.1ab 1.12±0.1a 0.77±0.1b 

Plant N 

concentration (mg g-

1) 

6±0.3d 10±1.1bc 7±0.2cd 10±0.9b 9±0.6bcd 14±0.6a 

Plant N content (mg) 42±2.5bc 56±3.6a 30±1.9c 45±4.7ab 9±2.1d 15±1.8d 
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Table 2. Effects of initial stem volume (covariable), fertilization and time (within effect in 545 

repeated measure ANCOVA) on root and shoot growth variables and twig water potential () 546 

in P. halepensis seedlings. Data are F ratios. 547 

 548 

 Initial stem 

volume  
Fertilization Time 

Initial stem 

volume   

Time 

Fertilization 

 Time 

Shoot elongation rate 9.98 *** 0.074 4.24***   6.64*** 0.79 

Mean root elongation 

rate 
0.32 3.49†  16.4***     2.66* 0.73 

Total root elongation 

rate 
  17.5*** 0.09  6.44***       4.44*** 1.65 

New root number     29.7***  4.91* 2.32*       6.40*** 1.24 

Average root depth  1.76 0.01   116*** 0.42 0.18 

Maximum root depth 2.00 1.57 137*** 1.18 1.46 

New root mass    23.1***  4.42* __ __ __ 

New root mass / leaf 

mass 
4.44* 0.41  __ __ __ 

New root mass / total 

plant mass 
13.7*** 1.48 __ __ __ 

Shoot mass to root mass 0.06 0.19 __ __ __ 

RGR root 0.0002 2.02 __ __ __ 

New root length   11.4**  4.67* __ __ __ 

New root specific length  3.51† 0.14 __ __ __ 

Root-shoot growth 

interference 
  19.5*** 0.01    

Old root increment     25.3***  3.99† __ __ __ 

Shoot increment     25.5*** 10.28** __ __ __ 

  5.08*  3.64†   580***    5.61* 0.04 

 549 

*** P ≤ 0.001, ** P ≤ 0.01, * P ≤ 0.05, † P < 0.07. 550 
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 551 

Fig. 1. Variation of shoot elongation rate, mean elongation rate of individual roots, total root 552 

elongation rate and number of roots in Pinus halepensis seedlings of three size types along the 553 

experiment. Data are means ± 1 SE. n=6 554 

 555 

Fig. 2. Shoot and old and new root mass increment (left), and new root mass to leaf mass ratio 556 

and new root mass to total plant mass ratio (right) at the end of the rhizotron experiment in 557 

Pinus halepensis seedlings that differed in size at transplanting and were cultivated with 558 

contrasting fertilization rate in the nursery. Data are means ± 1 SE. n=6. S (small seedling), M 559 

(medium seedling), L (large seedling) 560 

 561 

Fig. 3. Relationship between new root mass and N content in Pinus halepensis seedlings. Data 562 

are means ± one SE. S (small seedling), M (medium seedling), L (large seedling), N- (low 563 

fertilization) and N+ (high fertilization)  564 

 565 

Fig. 4. Relationship between the slope of the regressions of shoot against root elongation rates 566 

and seedling size in high and low N fertilized plants. Seedling size was measured as the initial 567 

stem volume at transplanting. Each point represents an individual seedling. S- (small seedling 568 

with low fertilization), S+ (small seedling with high fertilization), M- (medium seedling with 569 

low fertilization), M+ (medium seedling with high fertilization), L- (large seedling with low 570 

fertilization), L+ (large seedling with high fertilization). 571 

 572 

 573 

 574 
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