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ABSTRACT 18 

Chile has more than half of the temperate forests in the southern hemisphere. These have 19 

been included among the most threatened eco-regions in the world, because of the high 20 

degree of endemism and presence of monotypic genera. In this study, we develop empirical 21 

models to investigate present and future spatial patterns of woody species richness in 22 

temperate forests in south-central Chile. Our aims are both to increase understanding of 23 

species richness patterns in such forests and to develop recommendations for forest 24 

conservation strategies. Our data were obtained at multiple spatial scales, including field 25 
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sampling, climate, elevation and topography data, and land-cover and spectrally derived 26 

variables from satellite sensor imagery. Climatic and land-cover variables most effectively 27 

accounted for tree species richness variability, while only weak relationships were found 28 

between explanatory variables and shrub species richness. The best models were used to 29 

obtain prediction maps of tree species richness for 2050, using data from the Hadley 30 

Centre’s HadCM3 model. Current protected areas are located far from the areas of highest 31 

tree conservation value and our models suggest this trend will continue. We therefore 32 

suggest that current conservation strategies are insufficient, a trend likely to be repeated 33 

across many other areas. We propose the current network of protected areas should be 34 

increased, prioritizing sites of both current and future importance to increase the 35 

effectiveness of the national protected areas system. In this way, target sites for 36 

conservation can also be chosen to bring other benefits, such as improved water supply to 37 

populated areas.  38 

 39 

Key words: Biodiversity, Hotspot, Natural Protected Areas, Species Richness, Spatial 40 

modelling.  41 

 42 

1. INTRODUCTION 43 

Loss of biodiversity is one of the most serious environmental problems today because of 44 

the associated economic, scientific, amenity and ecosystem service losses and the 45 

irreversible nature of global extinction (Newton, 2007). Threats to biodiversity remain 46 

strong, in large part because of continued increase in the rate of human-mediated 47 

destruction and conversion of habitats (May et al., 1995; Nagendra, 2001; Newton, 2007). 48 

The need to preserve biodiversity is therefore urgent. One of the main actions to protect 49 

biodiversity is to create or expand protected areas (Murphy, 1990; Nagendra, 2001). 50 
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Selection of areas for conservation should take into consideration the representation and 51 

persistence of key attributes within sets of areas (Araújo, 1999). Species diversity is often 52 

used as a target attribute of biological communities to determine areas of high conservation 53 

value (De Vries et al., 1999; Luoto et al., 2002; Armenteras et al., 2006; Cayuela et al., 54 

2006a); although it is only one of the important variables, it often correlates with other key 55 

measures. In turn, species richness (by which we mean the number of species in a given 56 

area), which is both the simplest and most easily interpreted measure of species diversity, 57 

tends to correlate strongly with the other measures (Whittaker et al., 2001). Explaining 58 

patterns of species richness is, however, a complex challenge because the diversity results 59 

from many interacting factors that operate at different spatial and temporal scales 60 

(Diamond, 1988; Willis and Whittaker 2002).  61 

At fine scales, a variety of variables typically account for (or at least correlate with) spatial 62 

diversity patterns (Whittaker et al., 2001; Field et al., 2009). These fine-scale correlations are 63 

usually weaker than those at broad scales (Field et al., 2009). Changes in elevation, slope or 64 

exposure can determine the ecological response of individual species and therefore 65 

contribute to overall changes in species richness (Luoto et al., 2002). Human activities also 66 

influence the shape of geographical patterns of diversity in intensively managed regions 67 

(Lawton et al., 1998; Ramírez-Marcial et al., 2001; Cayuela et al., 2006b; Hall et al., 2009).  68 

At broader spatial scales, patterns of species richness are correlated strongly with climatic 69 

variables (Currie, 1991; O'Brien, 1998; O'Brien et al., 2000; González-Espinosa et al., 2004, 70 

Field et al., 2005). If climate directly or indirectly determines patterns of richness, then 71 

when the climatic variables change, richness should change in the manner that spatial 72 

correlations between richness and climate would predict (Acevedo and Currie, 2003; 73 

Venevsky and Veneskaia, 2003; Field et al., 2005). This might have important consequences 74 
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for long-term conservation, since prioritization of highly diverse habitats today might not 75 

be effective in preserving future hotspots of species richness in the face of climate change. 76 

 In this study, we develop empirical models to investigate present and future spatial 77 

patterns of woody species richness in temperate forests in south-central Chile. We follow 78 

the lead of Cayuela et al. (2006a), who developed a predictive model using a similar 79 

approach, which allowed identification of high-priority areas for conservation of tropical 80 

forests in areas where the accessibility was limited. Our models include information 81 

obtained at multiple spatial scales, including field sampling, climate, topography and land-82 

cover variables. The applied goals of this research are to inform attempts to prioritize the 83 

extant forest patches in the region and to provide recommendations for their conservation. 84 

This is of paramount importance as these forests are included in the Global 200 initiative 85 

launched by the World Wildlife Fund and the World Bank (Dinerstein et al., 1995), which 86 

focuses on the most threatened eco-regions in the world. In addition, these forests have 87 

been classified as one of the world's biological hotspots, e.g. by Myers et al. (2000), because 88 

of their high degree of endemism and presence of monotypic genera (Arroyo et al., 1996; 89 

Smith-Ramírez, 2004). The temperate forests of Chile are specifically considered to be 90 

vulnerable to impacts of climate change (IPCC, 2001; Pezoa, 2003). Paradoxically, in Chile, 91 

at broad scales the amount of land dedicated to conservation is inversely correlated with 92 

the number of species and endemism (Armesto et al., 1998). Thus, more than 90% of the 93 

14 million hectares of protected land (CONAF et al., 1999) is concentrated in high latitudes 94 

(> 43º), leaving unprotected a large proportion of high-biodiversity areas (Armesto et al., 95 

1998). Here we investigate whether the inverse relationship between amount of conserved 96 

land and numbers of species is true at a smaller spatial scale. For all these reasons, 97 

establishing guidelines for prioritization of natural protected areas is a crucial step towards 98 

biodiversity conservation in this important eco-region. 99 
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 The specific objectives of this study are: (a) to assess the independent and joint 100 

contribution of different groups of variables in describing the variation in woody species 101 

richness in the study area, thereby increasing our knowledge and understanding of Chile’s 102 

temperate Andean forests; (b) to develop a model to estimate present-day, fine-scale woody 103 

species richness across the study area; (c) to develop a model to predict the effects of 104 

climate change on woody species richness; and (d) to use the models to evaluate the 105 

effectiveness of the currently protected areas for maintaining biodiversity both now and in 106 

the face of climate change. The models we develop can also be used to inform future 107 

modification of the protected area network and to facilitate forest restoration programmes.  108 

 109 

2. MATERIALS AND METHODS 110 

2. 1 Study area 111 

Our study was conducted in the Maule region of Chile, which lies mainly in the Andean 112 

area between 35º and 36º latitude south (Fig. 1). The study area covers approximately 113 

270,000 ha and is between 200 and 3,900 m.a.s.l. The predominant soils are volcanic in 114 

origin, with different degrees of development (Schlatter et al., 1997). The predominant 115 

climate is of the Mediterranean type, with annual precipitation averaging between 700 and 116 

1,300 mm and concentrated mostly during the winter season, and an average annual 117 

temperature of 9ºC (Pezoa, 2003). 118 

The area is characterized by the presence of secondary and old-growth forests 119 

(dominated by species like Nothofagus obliqua, N. glauca, N. dombeyi and sclerophyllous 120 

species over 2 m high and >50% coverage), shrublands (composed mainly of low-height 121 

sclerophyllous species such as Criptocarya alba, Quillaja saponaria and Lithraea caustica), exotic 122 

plantations (mainly of Pinus radiata), agricultural lands, herbaceous vegetation, grasslands, 123 

and other types of land cover such as bare land, urban areas and water bodies (Appendix 1) 124 
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(CONAF et al., 1999; Altamirano et al., 2007). The intensification of land use, particularly 125 

firewood extraction and selective logging, has caused much deforestation and forest 126 

disturbance, which may have a negative impact on biodiversity (Lara et al., 1996, 2003; 127 

Olivares, 1999; Echeverría et al., 2006). 128 

The national protected areas system of Chile comprises 96 sites, totalling 129 

approximately 14 million hectares and representing 19% of the land (CONAF et al., 1999). 130 

The three main types of protected area are National Parks, National Reserves and Natural 131 

Monuments. National Reserves are medium-sized areas that are protected with the aim of 132 

conserving species, soils and hydrological resources; sustainable natural resource use is 133 

allowed. There are two of these reserves in our study area: Altos de Lircay (approx. 12,000 134 

ha) in the north, and Los Bellotos (approx. 400 ha) in the south (Figure 1).  135 

 136 

2.2 Field sampling and estimation of woody diversity 137 

The study area was divided into approximately 700 cells, each 2 x 2 km. Of these, 82 were 138 

selected via a random sampling scheme stratified by vegetation structure (see below), to 139 

contain field plots. One field plot was located in each of these 82 cells so that it was as 140 

close to the centre of the plot as possible, given the constraints that it was within the most 141 

representative vegetation structure in terms of percentage cover inside the cells, and was 142 

accessible. The plots provided good coverage of the main vegetation and soil types, and of 143 

the elevational range. In a pilot study, the numbers of species in ten circular plots of 500 144 

m² and 250 m² were compared. No significant differences were found (Student’s paired t-145 

test, t= 2.3, P= 0.16), so in order to allow greater replication, 250 m² (i.e. 9 m radius) was 146 

set as the plot size. The 82 plots were sampled in 2005 and 2006. In each, all trees and 147 

shrubs with a height greater than 1.4 m were identified to species (see Appendix 1), 148 

counted and measured; from this, we calculated basal area. Fisher’s alpha index, Shannon's 149 
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diversity index and species richness (number of species observed) were calculated for each 150 

sample. Fisher’s alpha and Shannon's indices were, however, highly correlated with species 151 

richness (r = 0.92, P < 0.0001; r = 0.87, P < 0.0001 respectively). Because of this strong 152 

similarity and the ease of interpretability, we only report results for species richness. 153 

  154 

2.3 Explanatory variables 155 

To model species richness we focused on six climatic variables, two topographic variables 156 

and three land-cover variables (Table 1). We initially obtained 19 climatic variables from 157 

the WorldClim database (www.worldclim.org). WorldClim is a set of global climate layers 158 

(climate grids) with a spatial resolution of 1 x 1 km (Hijmans et al., 2005). This set includes 159 

19 temperature, rainfall and bioclimatic variables. The bioclimatic variables were derived 160 

from the monthly temperature and rainfall values in order to be more biologically 161 

meaningful, and represent annual trends in seasonality and extreme or limiting 162 

environmental factors (Hijmans et al., 2005). We carefully examined the correlation matrix 163 

to determine the degree of collinearity and redundancy between these climatic variables 164 

(and the other explanatory variables), as well as their correlations with species richness. We 165 

additionally performed a hierarchical cluster analysis of these variables in order to identify 166 

groupings of correlated explanatory variables. To achieve this, we used the 'Hmisc' library 167 

(Harrel et al., 2009) of the R environment (R Development Core Team, 2009), defining a 168 

threshold of Spearman’s ρ = 0.6. We combined this information with theoretical 169 

considerations to select climatic variables for further analysis that would minimise 170 

multicollinearity, while being expected to account best for species richness, as 171 

recommended by Carsten F. Dormann (pers. comm.). Multicollinearity tends both to 172 

promote statistical artefacts (resulting in false model accuracy) and to cause unstable 173 

parameter estimates, which are particular problems when making predictions of future 174 

http://www.worldclim.org/
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diversity. Thus we chose the following climatic variables for the regression analyses (Table 175 

1): minimum temperature of the coldest month (Tmin), temperature seasonality (Tseas), mean 176 

annual precipitation (Pan), mean precipitation of the driest month (Pmin) and precipitation 177 

seasonality (Pseas). Mean annual temperature was strongly correlated with Tmin (r = 0.98); we 178 

chose Tmin because it is very similar to minimum monthly potential evapotranspiration 179 

calculated by the Thornthwaite method, which previous empirical and theoretical work has 180 

shown to be a good predictor of woody species richness (e.g. Field et al., 2005). In our 181 

dataset, Tmin correlated more strongly with species richness than Tmean, supporting our 182 

reasoning. Pmin is appropriate in climates where precipitation is lowest during the summer 183 

months, as in our study area, because it represents a strong constraint on growth. 184 

Elevation was derived from a digital elevation model, with a spatial resolution of 90 185 

x 90 m, based on the Shuttle Radar Topography Mission (SRTM). The SRTM data are 186 

available from the Global Land Cover Facility (GLCF) website 187 

(http://www.landcover.org).  It was classed as a climate proxy for several reasons. 188 

Elevation is a powerful and very precise determinant of small-scale climatic variation, 189 

particularly temperature; this is because of the close association between temperature and 190 

elevation that results from the effects of the adiabatic lapse rate. The relationship between 191 

elevation and precipitation is less strong, more indirect and more complex. In this study, 192 

elevation, with its resolution of 90 x 90 m, is much more precisely measured than the 193 

WorldClim variables (resolution 1 x 1 km), so it can be expected to model climate 194 

(particularly temperature) well for the field plots. Given the scale of the field plots and the 195 

nature of the study area, elevation was also a poor topographic measure, indicating nothing 196 

about topographic heterogeneity, nor about aspect. This reasoning is backed up by the fact 197 

that, in our dataset, elevation was not correlated with topographic variables (r = 0.035 and -198 

0.044 for slope and aspect respectively), but was almost perfectly inversely correlated with 199 
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Tmin and mean annual temperature (r = -0.95 and -0.94) despite the difference in resolution. 200 

The correlation between elevation and precipitation was moderate (r = -0.55 for Pan; r = -201 

0.71 between 1/elevation and Pmin). 202 

The topographic variables used were aspect and slope (Table 1). Aspect was 203 

measured as degrees from north. These variables were derived from the digital elevation 204 

model. 205 

We performed image analysis on remotely sensed imagery, acquired in March 2003 206 

by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), to 207 

identify different forest types in relation to their degree of disturbance and to calculate 208 

different vegetation indices. We georeferenced the image using 43 control points derived 209 

from vector maps of roads and rivers, obtained from the Native Vegetation Survey 210 

(CONAF et al., 1999), resulting in an estimated error of less than one pixel. We 211 

atmospherically corrected the image using the dark pixel subtraction method and features 212 

such as water bodies (Mather, 1999). 213 

We performed a supervised land cover classification (Aplin, 2004) of the image 214 

using the maximum likelihood algorithm (Lillesand et al., 2004). Four different types of 215 

vegetation structure (VST) were identified in relation to human disturbance: open 216 

shrubland (VST1), dense shrubland (VST2), arborescent shrubland (VST3) and forest 217 

(VST4), which includes old-growth forest, secondary forest and an intermediate 218 

condition(Altamirano et al., 2010). Other land cover types were excluded from the analyses 219 

and predictions reported herein. Training sites were selected using different sources of 220 

information such as vegetation maps, aerial photographs from 2003 and field visits 221 

conducted between 2004 and 2006. The overall accuracy of the supervised classification 222 

was 92%. The lowest accuracy was obtained for shrubland and secondary forests; this was 223 

because of spectral confusion between these two classes. The pre-processing and 224 
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classification of remotely sensed data were performed using the ERDAS Imagine 8.4® 225 

software (ERDAS 1999).  226 

In addition, we calculated two spectral indices: the normalised difference vegetation 227 

index (NDVI) and the normalised difference infrared index (NDII). The NDVI was 228 

calculated as the difference between the near-infrared and red reflectances divided by their 229 

sum, which represents a measure of vegetation productivity (Turner et al., 2003; Aplin, 230 

2005). The NDII was calculated as the difference between the near-infrared and mid-231 

infrared reflectances divided by their sum, which is related to the hydric stress (Bannari et 232 

al., 1995; Gao, 1996). We did not use spectral bands from the ASTER image because they 233 

were both highly correlated with, and less interpretable than, NDVI and NDII (|r| > 0.85, 234 

P < 0.001). 235 

 236 

2.4 Statistical analyses  237 

To inform subsequent analysis, we used variance partitioning to explore the independent 238 

and joint contribution of all available explanatory variables, including all 19 WorldClim 239 

variables and elevation (‘climatic’ category), the spectral bands from the ASTER image and 240 

derived land-cover variables (‘land cover’) and slope and aspect (‘topographic’) in 241 

accounting for spatial variation in woody species richness. The partition of the variance is 242 

derived from partial redundancy analyses (RDA) and was used to determine the 243 

proportions that could be attributed to the single and combined effects of explanatory 244 

variables (Legendre and Legendre, 1998), using adjusted R2 ratios (Peres-Neto et al., 2006). 245 

These analyses were computed using the ‘vegan’ library (Oksanen et al., 2008) of the R 246 

environment (R Development Core Team, 2009). 247 

 The results of the variance partitioning informed the selection of variables for 248 

modelling, in which we used multiple regression to develop models to predict woody 249 
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species richness in the study area. Most regression analysis was performed with the S-PLUS 250 

6.0 software (Insightful Corporation, 2001); spatial analysis was conducted using SAM 251 

(Rangel et al., 2006). Before performing multiple regression, we examined the correlation 252 

matrix and the hierarchical cluster analysis. We noted explanatory variables that were highly 253 

correlated (|r| > 0.6) and the clusters of such correlated variables, which might therefore 254 

lead to problems associated with multicollinearity. We used the same mix of theoretical and 255 

statistical considerations as described above for selection of WorldClim variables, to 256 

determine which of all the explanatory variables could be combined in any one model. We 257 

also calculated the variance inflation factor (VIF) for all terms in all multiple regression 258 

models, to quantify any remaining multicollinearity, using a maximum allowable level of 259 

VIF of 4. In addition, we examined the correlations between species richness and all 260 

selected explanatory variables (Table 1). Further, because relationships between species 261 

richness and environmental variables are often curvilinear (Austin, 1980) and interactive 262 

(Francis and Currie, 2003), we included quadratic and cubic terms in the models, as well as 263 

some interactions expected from previous research (e.g. between temperature and water 264 

variables).  265 

 Our modelling procedure was step-wise and manual (Murtaugh, 2009), using a 266 

combination of model building and model simplification. We produced the first model by 267 

building from the null model (the mean), adding terms in order of explanatory power, 268 

defined as the change in residual sum of squares resulting from the addition of individual 269 

terms to the current model. Model building finished when no more terms were both 270 

significant and reduced AIC (Akaike Information Criterion) (Venables and Ripley, 2002; 271 

Anderson and Burnham, 1999). We then used a similar procedure, but with different 272 

starting variables (chosen according to variable type and variance accounted for) and 273 

different orders of addition. We also produced a series of models by simplifying from 274 
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various maximal models (Crawley, 2002). It was necessary to simplify from more than one 275 

maximal model because the sample size of 82 did not support highly complex models. We 276 

compared all models obtained statistically using P-values, AIC and the proportion of 277 

variation accounted for (R²). We also used ‘Model Selection and Multi-model Inference’ in 278 

SAM to rank over 16,000 possible models by AICc and AIC-weights and to calculate the 279 

‘importance’ of each variable across all the models. This combination of model fitting 280 

approaches allowed confidence in the robustness of the results. Selection of the ‘best’ 281 

models was based on both theoretical criteria (plausibility, generality, simplicity, parsimony) 282 

and statistical strength (O’Brien et al., 2000). 283 

We used Moran’s I to evaluate the spatial autocorrelation of the residuals of the 284 

fitted models. Finding no residual spatial autocorrelation means that we can assume the 285 

significance values to be reliable, and that we do not need to introduce the further 286 

uncertainties (coefficient instability) associated with spatial regression (Bini et al., 2009). We 287 

checked the model residuals for normality using histograms and the Kolmogorov–Smirnov 288 

test. We assessed homoscedasticity via residual plots, and we mapped model residuals to 289 

examine their spatial patterning. To validate the predictive power of the models, we used a 290 

bootstrap approach for each model. This method generates new samples with replacement 291 

from the original sample, allowing a quantification of the error introduced by data 292 

uncertainty as well as model estimation procedure (Quinn and Keough, 2003).  293 

We used the resulting regression models to predict current species richness values 294 

for parts of the study area where there were no field plots. This was done for every pixel in 295 

the ASTER imagery and involved using the coefficients from the models and substituting 296 

the applicable values for the explanatory variables, to calculate predicted current species 297 

richness. 298 

 299 
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2.5 Climate change scenario 300 

We used the coefficients derived from modelling current woody species richness to predict 301 

future species richness across the study area, using climatic data obtained for a climate-302 

change scenario. Climate scenarios are guesses of future climates, based on assumptions 303 

about future emissions of greenhouse gases and other pollutants, and obtained via general 304 

circulation models, such as CCCMA, HadCM3 and CSIRO. We used projected climate 305 

data for 2050, from the Hadley Centre’s climate model (HadCM3 Worldclim 306 

implementation) under the low (B2a) CO2 emissions scenarios (Zhang and Nearing, 2005), 307 

obtained from WorldClim. We used scenario B2a because it emphasizes more regionalized 308 

solutions to economic, social, and environmental sustainability (Zhang and Nearing, 2005). 309 

 310 

2.6 Conservation value 311 

To analyse conservation value we produced categorized maps of the predicted current 312 

woody species richness into three levels: high (> 8 species), medium (5–8 species) and low 313 

(< 5 species). When examining tree species richness, we used > 6, 4–6 and < 4 species 314 

respectively. This was done for all pixels of the ASTER image (with a spatial resolution of 315 

15 m) that had land cover in one of the categories VST1, VST2, VST3 and VST4. Pixels 316 

classified as other categories were excluded from further consideration. Predicted future 317 

species richness was categorized using the same criteria and results were compared in terms 318 

of: (1) forest area occupied by each conservation value category now and in 2050; (2) 319 

overall forest area that will change to a different conservation value category by 2050; and 320 

(3) forest area in current natural protected areas assigned to different conservation value 321 

categories now and in 2050.  322 

 323 
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3. RESULTS 324 

We recorded 67 woody species (28 trees and 39 shrubs)  in the field plots (Appendix 1), 325 

with a mean (± S.D.) number of species per plot of 8.3 (± 3.1), ranging from 2 to 16. We 326 

found significantly lower mean tree and overall (tree + shrub) species richness in VST1 327 

(open shrubland) than in the other three categories (ANOVA, P = 0.006 and 0.017 328 

respectively), but no differences between VST2 (dense shrubland), VST3 (arborescent 329 

shrubland) and VST4 (forest). Therefore for regression modelling we re-categorized the 330 

forest structure variable into two categories: VST1 and closed canopy (VST2, VST3 and 331 

VST4 combined) because this is more robust and parsimonious (Crawley, 2002). 332 

Interestingly, there was no significant difference between VST categories in either tree or 333 

shrub abundance. 334 

The strongest single-variable correlates of both tree and overall species richness in 335 

the 82 field plots were Tmin, Pmin and ELEV (Table 1). None of the explanatory variables in 336 

Table 1 correlated with shrub species richness at the 1% significance level. At the 5% level 337 

only NDVI and NDII were significant, both correlating weakly and negatively with shrub 338 

species richness (Table 1); this effect was driven by the open shrubland (r = -0.50 for both 339 

NDVI and NDII) and was not significant for the denser woody vegetation categories. The 340 

difference in shrub diversity between the different VST categories was also not significant. 341 

Basal area of woody plants correlated negatively with shrub species richness (r = –0.31, P = 342 

0.005) and band 5 of the ASTER image correlated positively (r = 0.36, P = 0.0009). Band 5 343 

and basal area represented the strongest statistical model, with neither NDVI nor NDII 344 

significantly improving it, but this model only accounted for 18% of the variation, had 345 

non-normal residuals and contained potential circularity. Overall, then, we were unable to 346 

produce a satisfactory model of shrub species richness, which also did not correlate 347 

significantly with tree species richness (Table 1). Models of overall woody species richness 348 
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were all qualitatively identical to, but quantitatively weaker than, those for tree species 349 

richness; they were driven by the tree species richness pattern, with shrub species richness 350 

effectively adding noise. We therefore focus on reporting the results for tree species 351 

richness. 352 

Minimum temperature (Tmin) correlated positively and ELEV negatively with tree 353 

species richness, both consistent with greater energy allowing more species. The correlation 354 

between tree species richness and Pmin, however, was negative, both singly and when 355 

included in multiple-regression models. Both log and inverse transformations of ELEV 356 

improved the linearity of its association with tree species richness, 1/ELEV the more so, 357 

which also improved the normality of regression residuals compared with models using 358 

ln(ELEV).  Using 1/ELEV made the relationship with tree species richness positive and 359 

increased the strength of the bivariate correlation to r = 0.66. 360 

In variance partitioning, topographic, climatic, and land-cover variables accounted 361 

for 2%, 52% and 7%, respectively, of the adjusted variance of woody species richness (Fig. 362 

2). Overlap between the categories in variance accounted for was minimal (Fig. 2), 363 

supporting our contention that elevation acts as a climatic, not topographic, variable in our 364 

dataset.  365 

 366 

3.1 Predictive models of species richness 367 

Tmin correlated strongly with 1/ELEV (r = 0.91), so only one of the two variables could be 368 

used in the same regression model. We developed models independently using both 369 

variables. In all cases, as with simple correlation, 1/ELEV gave a closer fit with woody 370 

species richness (Model 1, Table 2a). However, for predicting species richness for the year 371 

2050 we preferred models featuring Tmin instead of 1/ELEV (model 2a and b). 372 

Temperature has a direct physiological effect on species performance, while elevation is a 373 
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surrogate variable for a mixture of influences, but driven by temperature (Guisan and 374 

Zimmermann, 2000; Pausas and Austin, 2001), so temperature is preferred on theoretical 375 

grounds. Most of the effect of elevation is related to temperature and precipitation, and 376 

with climatic changes over the next 40 years, the regression coefficients derived from 377 

current conditions for elevation are not applicable to prediction for 2050. Therefore for 378 

prediction of future species richness, and for comparison of the conservation value of 379 

protected areas now and in the future, we used the best models that were based on Tmin 380 

(Models 2a and 2b; Table 2b,c). VST was considered appropriate for 2050 because its main 381 

determinant is human activity (disturbance); its inclusion in Model 2a,b assumes no change 382 

in the disturbance regime during the first half of the 21st century. 383 

The ‘best’ regression models (Models 1 and 2a,b) were selected on the grounds of 384 

theoretical plausibility, simplicity and statistical strength (secondary to the other two). 385 

These best models included two alternative models based on Tmin: Model 2a and Model 2b 386 

(Table 2). These were statistically indistinguishable and both were ecologically plausible. 387 

The strongest effects are the same in both models, and in a reduced model with only VST 388 

and Tmin. The first is a strong increase in tree species richness with increased Tmin, of 389 

approximately 1 species per 1°C. The second is approximately 1.5 fewer species in open 390 

shrubland than the other vegetation types. Thus the core of the models is the same; they 391 

differ in the final variable included, which in each case only accounts for an additional 4% 392 

of the variance (approx.). In Model 2a this is Tseas, with a decrease of approximately 6 tree 393 

species for every 1°C increase in seasonality (measured as the standard deviation; Table 1); 394 

this is ecologically plausible. In Model 2b the third variable is Pmin, with a decrease of 395 

approximately 1 tree species for every 3 mm increase in driest-month precipitation. 396 

Exploring this negative effect further (see also Table 1), we found a negative correlation (r 397 

= –0.40) between Pmin and overall tree abundance, suggesting a competition or crowding 398 
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effect, coupled with a more individuals effect (positive correlation, r = 0.54, between tree 399 

abundance and tree species richness). However, using data for basal area and average tree 400 

diameter for all plots in the dataset, we found no correlation between either variable and 401 

Pmin. Nor did either basal area or average tree diameter correlate with tree species richness. 402 

So, while Pmin could be measuring a competition effect, we are far from certain that it does 403 

indeed do so, or whether it is measuring another biologically meaningful effect such as 404 

inhibition of seed germination or seedling survival (Donoso, 1994), or whether the 405 

apparent effect is due to correlation with other important biological influences. Because 406 

Pmin and Tseas are positively correlated (r = 0.58) and neither is even close to significant 407 

when the other is in the model, Models 2a and 2b are straight alternatives and we are 408 

unable satisfactorily to reject one in favour of the other. Therefore our predictive 409 

modelling was based on average predictions from the two models, hereafter referred to 410 

collectively as Model 2. This averaging of predictions, a form of ensemble forecasting 411 

(Araújo and New, 2007), should also increase the robustness of the predictions. 412 

All models presented in Table 2 are statistically significant (P < 0.0001) and all rely 413 

on few explanatory variables, reducing the likelihood of artefact, which is particularly 414 

important when predicting future species richness. All the models met assumptions of 415 

homoscedasticity and normality of residuals. For all the models, Moran’s I values for 416 

residuals were not significant for any of the short distance classes (Fig. 3), indicating no 417 

inflation of degrees of freedom resulting from spatial autocorrelation, and the absence of 418 

intrinsic autocorrelation that could disturb the Type I error rates and the coefficient 419 

estimates. In other words, the regression models have accounted for the spatial 420 

autocorrelation present in the species richness data. This also means that our predictive 421 

model is of the type considered the best for predicting responses to climate change by 422 

Algar et al. (2009): they concluded that the most accurate predictions of shifts in species 423 
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diversity in response to climate change are obtained via the single best richness–424 

environment regression model, after accounting for the effects of spatial autocorrelation. 425 

Further, our model has the advantage that the spatial autocorrelation is accounted for via 426 

ordinary least-squares regression, so that there is no chance of real effects being ‘corrected 427 

for’ while removing spatial autocorrelation in spatial regressions. 428 

 429 

3.2 Predicted species richness 430 

Present-day woody species richness was predicted for the whole study area using Model 1 431 

(Fig. 4a) and Model 2 (Fig. 4b). Model 2 predicted slightly higher species richness on 432 

average than Model 1, but the spatial patterns were very similar. The areas of higher 433 

predicted richness at this scale (250 m²) are concentrated mainly in the western locations of 434 

the study area and in valleys, at lower elevation and higher temperatures. These areas are 435 

dominated by shrubland and arborescent vegetation. The two protected areas in the study 436 

area have relatively low levels of predicted current species richness (Fig. 4a,b).  437 

 Our map predictions for 2050 (Fig. 5a) suggest that the higher ground in the east of 438 

the study area will increase in tree species richness, while the lower ground in the west will 439 

decrease. Thus the species-richness gradient across the study area is expected to persist but 440 

weaken (compare Fig. 5a with Fig. 4b) with climate change. Overall, of the 1296 km² for 441 

which we made predictions, a net loss of species was predicted for 490 km² (38%) and a 442 

net gain for 698 km² (54%), the remainder staying approximately constant. Using our 443 

categories for conservation value, 58% of the pixels (each 225 m²) were predicted by Model 444 

2 to have present-day woody species richness in the low category (0–3 species), with 31% 445 

having more than six species (Fig. 6a). Of all the pixels, 34% were predicted to change 446 

from low to medium conservation value, while 16% were predicted to change from high to 447 

medium (Fig. 6a).  448 
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 Only 29.0 km² of the land currently designated as protected areas is covered by 449 

woody vegetation, as judged by our analysis of the ASTER image. All of this area is 450 

currently in the low conservation priority (value) category, according to Model 2. Our map 451 

predictions suggest that 8.6 km² (30%) of the protected area will improve to the medium 452 

category by 2050, the rest remaining ‘low’ (Fig. 6b). 453 

 454 

4. DISCUSSION 455 

We found that the highest tree species richness occurs in low and medium elevation areas, 456 

with the highest minimum temperatures, and where there is relatively dense woody 457 

vegetation cover. The protected areas within the study area contain very low tree species 458 

richness and our modelling suggests that the areas of highest tree conservation value are far 459 

from the currently protected areas. Our predictions for changed climate indicate reduced 460 

tree diversity where it is currently high and increased diversity where it is currently low. The 461 

currently protected areas may therefore slightly increase in tree conservation value over the 462 

next 40 years, but will still be relatively low in diversity. Meanwhile, the areas of greatest 463 

species richness are predicted to suffer losses, thereby degrading in conservation value. The 464 

resulting predominance of areas of relatively average conservation value suggests a need for 465 

the conservation of greater areas of forest. Greater connectivity of patches of woody 466 

vegetation may also be important. Although the protected areas may be important for 467 

species other than woody plants, their continued low value for tree species conservation is 468 

of great conservation concern because Chile has more than half of the temperate forests in 469 

the southern hemisphere (Donoso, 1994), because of the uniqueness of these forests 470 

(Smith-Ramírez, 2004), and because of the high levels of threat to these forests (Dinerstein 471 

et al., 1995). 472 
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These concerns about tree conservation that arise from our species richness 473 

modelling are backed up by our field observations of threatened species within our study 474 

plots. We recorded four threatened species, all of which are trees: Nothofagus glauca, 475 

Austrocedrus chilensis, Beilschmiedia berteroana and Cytronella mucronata. These species have a 476 

restricted distribution and highly specific habitats (Hechenleitner et al., 2005). Migration 477 

capabilities for these species under climate change may well be limited. N. glauca (by far the 478 

most common of the four in our field plots) is restricted largely to the Maule region and is 479 

found mainly in intermediate elevation sites (Hechenleitner et al., 2005), so may not be 480 

much affected by climate change. However, B. berteroana may be negatively affected by 481 

climate change because its habitat is coincident with sites where species richness is 482 

expected to decrease. To aggravate the problem, only 8 sub-populations of this species 483 

have been identified in the country (Hechenleitner et al., 2005). The other two threatened 484 

species have wider distributions and may therefore be less vulnerable to climate change. An 485 

additional consideration is that many mountain plants reproduce vegetatively and grow 486 

slowly; consequently they are likely to take a long time to disperse into new, climatically 487 

suitable areas (Trivedi et al., 2008). 488 

There are continuing threats to temperate Andean forests and their biodiversity, 489 

such as hydroelectric-power projects and the rapid growth of the exotic plantations 490 

industry (Lara et al., 2003). In recent years, exotic plantations have expanded specifically in 491 

the south-central temperate forests of Chile (Echeverría et al., 2006) because of the growth 492 

of the pulp and wood industry (Lara et al., 2003). These developments may facilitate the 493 

establishment and invasion of alien species, which may also be enhanced by predicted rises 494 

in the frequency of natural disturbances (e.g. forest fires), and ultimately reduce the cover 495 

of native vegetation (Pickering et al., 2008). Studies in Chile have shown that alien species 496 

are moving into native forests in national parks in mountain areas (Pauchard and Alaback, 497 
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2004). Given these various forms of disturbance in the study area, our results suggest that 498 

protected areas are important for conservation: we found that the most disturbed areas of 499 

woody vegetation have the lowest tree species richness, with no accompanying increase in 500 

shrub species richness. This suggests that one way of improving conservation is to 501 

minimize disturbance. 502 

Our predictions, by necessity, assumed no change in protection/disturbance regime 503 

(land-cover type). Nonetheless, our coefficients for the disturbance variable (VST) can be 504 

used to explore future scenarios in which disturbance regimes do change in prescribed 505 

ways. Our assumption of no increase in disturbance may be optimistic, unless the protected 506 

area network is modified, or unless parts of the landscape not in protected areas are 507 

managed for woody plant conservation. We consider that both strategies should be 508 

implemented. New protected areas should be created, and because our prediction maps 509 

indicate that current high-priority sites are coincident with high-priority sites in 2050, we 510 

suggest that sites that have high tree species richness now should be targeted for national 511 

protection. In the study area, these sites include river valleys, and so this should help to 512 

ensure reliable supplies of clean water downstream. Such targeting is important: Babcock et 513 

al. (1997) demonstrated that enrolling land into a conservation programme on the basis of 514 

the lowest cost of purchasing land (as has been the case for many of Chile’s protected 515 

areas) is a far less efficient use of taxpayers’ money than targeting land on the basis of the 516 

cost–benefit ratio of that land. The application of newer approaches to protected area 517 

design could help stakeholders find designs that simultaneously maximize ecological, 518 

societal and industrial goals (Gonzales et al., 2003). Planning tools such as Sites (Davis et 519 

al., 1999) and Marxan (Game and Grantham, 2008) represent good examples. Of high 520 

relevance to areas not formally protected, in 2008 Chile passed a new law that supports 521 

native forest management and biodiversity conservation. This law gives economic 522 



 

 22 

 

incentives to landowners to engage in biodiversity conservation. Again, the law can target 523 

high-priority conservation sites, as indicated by our prediction maps, for improved 524 

effectiveness (Macmillan et al., 1998). Subsidies to encourage landowners to manage their 525 

land in ways that increase the provision of non-market benefits may also be appropriate 526 

(Van der Horst, 2007). 527 

Our research represents a starting-point, but more work is needed to inform 528 

conservation in the temperate Andean forests. First, our model should be seen as a tool, 529 

for addressing urgent conservation issues, that should be assessed, discussed and evaluated 530 

further. Also, we have not investigated individual species’ requirements; for example, 531 

species-specific conservation measures for endemic and threatened species, including ex 532 

situ conservation, may be required. Woody species may have differential abilities to cope 533 

with climate change (Parolo and Rossi, 2008), and habitat connectivity may be important in 534 

enabling some to migrate. Species usually differ in their habitat requirements and habitat 535 

mosaics may be appropriate in meeting each species’ needs (Drechsler et al., 2007). In this 536 

context, important future challenges for biodiversity conservation research are to 537 

investigate beta diversity and determine how much habitat heterogeneity is needed to 538 

maintain species diversity at coarser scales than in our study. Furthermore, we used climatic 539 

and topographic data that are widely used for this sort of analysis (WorldClim and SRTM). 540 

However, some environmental data sets may be less useful in some areas (i.e. rugged, 541 

remote and steep terrain) and scales (Peterson and Nakazawa, 2008). Therefore, further 542 

corroboration and testing of other source information will be necessary. 543 

Our study adds to knowledge and understanding of species richness patterns and 544 

their correlates. Tree species richness correlated most strongly with temperature-related 545 

variables (elevation and minimum temperature), which is common at broad scales but less 546 

common at the finer scale of our study (Field et al., 2009). This may be because we 547 
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sampled quite a large altitudinal range, and fits with the findings of Bhattarai & Vetaas 548 

(2003). The closer match, in terms of scale of measurement, between elevation and species 549 

richness, compared with climatic variables, probably explains the stronger correlation of 550 

species richness with elevation. The relatively small amount of variation accounted for by 551 

Pmin and Tseas is probably due, in large part, to the fact that both vary little in the data for 552 

our study plots (Table 1). Despite their coarse scale of measurement, climatic variables 553 

performed well in accounting for tree species richness patterns, relative to the fine-554 

resolution variables such as slope, aspect and NDVI. This supports the contention 555 

(Cayuela et al., 2006a) that broad-scale patterns (e.g. Hawkins et al., 2003; Field et al., 2005) 556 

can be replicated across altitudinal gradients at finer spatial scales. In addition, there was a 557 

positive correlation (r = 0.54) between tree abundance and tree species richness in our field 558 

plots; adding tree abundance to any of the final tree species richness models led to about a 559 

5% increase in variation accounted for. This suggests a ‘more individuals’ effect, whereby 560 

more individuals tend to be associated with more species (Srivastava & Lawton, 1998; 561 

Currie et al., 2004). However, this was of little use for modelling because our best model of 562 

tree abundance contained only Tmin and only accounted for 26% of the variation. 563 

Our best tree species richness model accounts for approximately 50% of the 564 

variance, which is quite typical for this scale (Field et al., 2009). Small-grain species richness 565 

is hard to predict, as it depends on so many interacting factors and chance events 566 

(Diamond, 1988; Whittaker et al., 2001; Willis and Whittaker 2002), and small-grained 567 

studies typically account for less than 50% of the variation in species richness, even at 568 

geographic extents spanning hundreds of km (Field et al., 2009). Not surprisingly, 569 

therefore, even our best models left much of the variation unaccounted for, suggesting that 570 

other, unmeasured factors also influence woody species richness in the study area. 571 

Hydrological, soil factors and biotic interactions might account for some of the residual 572 
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variation. This is particularly relevant to shrub species richness, which did not correlate 573 

strongly with any of our measured variables, and which we could not model well enough to 574 

allow prediction. The strongest correlation with shrub species richness was a negative one 575 

with basal area, suggesting that shading by trees may reduce shrub diversity. This accords 576 

with the recent findings by Oberle et al. (2009) that understorey plant species richness in 577 

field plots of similar size to ours correlates much less with regional productivity-related 578 

variables than does tree species richness, and that canopy density partly controls shrub 579 

species richness at this scale.  580 

Overall, our research contributes to understanding of globally important temperate 581 

Andean forests, and represents a step towards targeting conservation of the forests more 582 

effectively.  583 
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 593 

APPENDIX 1. List of tree species and shrubs sampled in the study area. Nomenclature 594 

follows the Index Kewensis, except for those cases in which no record was found, for 595 

which the Gray Herbarium Card Index (http://www.ipni.org) was used.  596 

Species Family 

http://www.ipni.org/
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Trees  

Acacia caven (Molina) Molina Leguminosae 

Aextoxicon punctatum Ruiz & Pav. Aextoxicaceae 

Austrocedrus chilensis (D.Don ) Pic.Serm. & M.P.Bizzarri Cupressaceae 

Beilschmiedia berteroana (Gay) Kosterm. Lauraceae 

Crinodendron patagua Molina Elaeocarpaceae 

Cryptocarya alba (Molina) Looser Lauraceae 

Citronella mucronata (Ruiz & Pav.) D.Don Icacinaceae 

Dasyphyllum diacanthoides (Less.) Cabrera Asteraceae 

Drimys winteri J.R.Forst. & G.Forst. Winteraceae 

Embothrium coccineum J.R.Forst. & G.Forst. Proteaceae 

Gevuina avellana Molina Proteaceae 

Kageneckia oblonga Ruiz & Pav. Rosaceae 

Laureliopsis philippiana (Looser) Schodde Monimiaceae 

Laurelia sempervirens (Ruiz & Pav.) Tul. Monimiaceae 

Lithraea caustica Hook. & Arn. Anacardiaceae 

Lomatia dentata R.Br. Proteaceae 

Lomatia hirsuta (Lam.) Diels Proteaceae 

Luma apiculata (DC.) Burret Myrtaceae 

Luma chequen F.Phil. Myrtaceae 

Maytenus boaria Molina Celastraceae 

Nothofagus alpina (Poepp. & Endl.) Oerst. Fagaceae 

Nothofagus dombeyi (Mirb.) Oerst. Fagaceae 

Nothofagus glauca (R.Phil) Krasser Fagaceae 

Nothofagus obliqua (Mirb.) Oerst. Fagaceae 

Nothofagus pumilio (Poepp. & Endl.) Krasser Fagaceae 

Persea lingue (Miers ex Bertero) Nees Lauraceae 

Peumus boldus Molina Monimiaceae 

Quillaja saponaria Molina Rosaceae 

  

Shrubs  

Acrisione denticulata (Hook. & Arn.) B.Nord. Asteraceae 

Aristotelia chilensis Stuntz Elaeocarpaceae 

Azara celastrina D. Don Flacourtiaceae 

Azara dentata Ruiz & Pav. Flacourtiaceae 
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Azara petiolaris (D.Don) I.M.Johnst. Flacourtiaceae 

Azara serrata Ruiz & Pav. Flacourtiaceae 

Baccharis concava Pers. Asteraceae 

Baccharis linearis (Ruiz & Pav.) Pers. Asteraceae 

Baccharis salicifolia (Ruiz & Pav.) Pers. Asteraceae 

Berberis chilensis Gill. Berberidaceae 

Berberis grevilleana Gill. Berberidaceae 

Berberis microphylla G.Forst. Berberidaceae 

Buddleja globosa C.Hope Buddlejaceae 

Cestrum parqui L'Hér. Solanaceae 

Colletia spinosissima J.F.Gmel. Rhamnaceae 

Collihuaja sp 1 Euphorbiaceae 

Discaria chacaye (G.Don) Tortosa Rhamnaceae 

Ephedra chilensis C.Presl Ephedraceae 

 Undetermined sp1 Escalloniaceae 

Fabiana imbricata Ruiz & Pav. Solanaceae 

Gochnatia foliolosa D.Don ex Hook. & Arn. Asteraceae 

Maytenus magellanica Hook.f. Celastraceae 

Mutisia spinosa Hook. & Arn. Asteraceae 

Myoschilos oblongum Ruiz & Pav. Santalaceae 

Myrceugenia ovata O.Berg Myrtaceae 

Pernettia mucronata Gaudich. ex G.Don Ericaceae 

Podanthus mitiqui Lindl. Asteraceae 

Proustia cuneifolia D.Don Asteraceae 

Undetermined sp 2 Rhamnaceae 

Ribes cucullatum Hook. & Arn. Grossulariaceae 

Ribes magellanicum Poir. Grossulariaceae 

Schinus montanus Engl. Anacardiaceae 

Schinus patagonicus (Phil.) I.M.Johnst. ex Cabrera Anacardiaceae 

Senna sp 1 Fabaceae 

Schinus polygamus (Cav.) Cabrera & I.M.Johnst. Anacardiaceae 

Undetermined sp 3 Solanaceae 

Sophora macrocarpa Sm. Leguminosae 
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Undetermined sp 4 Undetermined 

 Undetermined sp 5 Undetermined 
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FIGURE CAPTIONS 831 

 832 

Figure 1. Map of the study area in the Andean range. 833 

 834 

Figure 2. Venn diagram of the partition of the variation of tree species richness for 835 

climatic, topographic and land-cover variables. Table 1 shows which of the key variables 836 

were included in each category; other WorldClim data were included as ‘climatic’ and other 837 

variables derived from ASTER imagery were included as ‘land cover’.  The rectangle 838 

represents the total variance of tree species richness while each circle represents a given 839 

group of explanatory variables. The adjusted R² (expressed as % of the variance in tree 840 

species richness) is presented for each part of the Venn diagram. Intersections between 841 

circles represent the fraction of the variance of tree species richness jointly accounted for; 842 

if missing this fraction does not differ significantly from 0. 843 

 844 

Figure 3. Correlograms for tree species richness, fitted values and residuals of the ‘best’ 845 

regression models: (a) Model 1, (b) Model 2a, (c) Model 2b.  Equal distance classes; only 846 

classes with n > 100 shown.  See Table 2 for model specifications (n=82 cells). 847 

 848 

Figure 4. Map of predicted current woody species richness in 225 m² pixels.  A. current tree 849 

species richness according to Model 1; B. current tree species richness according to Model 850 

2 (average of predictions from Models 2a and 2b); C. current conservation priority (value) 851 

category, as defined by tree species richness predicted by Model 2 (low = <4, medium = 4–852 

6, high = >6).  No colour means no prediction because the pixel is not currently classed as 853 

any of the land-cover types in our analyses.  See Table 2 for model specifications. 854 

 855 
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Figure 5. Map of predicted tree species richness in 2050, in 225 m² pixels.  A. tree species 856 

richness in 2050 according to Model 2 (average of predictions from Models 2a and 2b); B. 857 

change in tree species richness from now to 2050, according to Model 2; C. uncertainty for 858 

2050 tree species richness predictions (absolute difference between the predictions of 859 

Models 2a and 2b); D. conservation priority (value) category in 2050, as defined by species 860 

richness predicted by Model 2 (low = <4, medium = 4–6, high = >6).  No colour means 861 

no prediction because the pixel is not currently classed as any of the land-cover types in our 862 

analyses.  See Table 2 for model specifications.  863 

 864 

Figure 6. Current forest area by conservation priority (value) category (horizontal axis 865 

labels), and how these conservation priorities will change in the year 2050 (shading), 866 

according to Model 2 (average of predictions from Models 2a and 2b). A) in the study area. 867 

B) in the current protected areas.  See Table 2 for model specifications.  868 
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Table 1. Climatic, topographic and land-cover variables used to model the spatial variation in woody species richness in the study area. Values 869 

given are for the 82 field plots. (Code = abbreviation used, St dev = standard deviation, r(WSR) = Pearson’s correlation coefficient for the 870 

relationship with woody species richness, r(TSR) = correlation with tree species richness, r(SSR) = correlation with shrub species richness, CV = 871 

coefficient of variation.) 872 

Variable and unit of measurement Code Mean St dev Min Max r (WSR) r (TSR) r (SSR) 

Response variable         

Woody species richness n.a. 8.3 3.1 2 16 n.a. 0.83 *** 0.63 *** 

Tree species richness n.a. 5.0 2.4 0 11 0.83 *** n.a. 0.10 n.s. 

Shrub species richness n.a. 3.3 1.7 0 8 0.63 *** 0.10 n.s. n.a. 

Climatic variables         

Elevation (m) – untransformed ELEV 674 292 288 1603 –0.50 *** –0.63 *** –0.03 n.s. 

Minimum temperature of coldest month (ºC) Tmin 0.31 1.29 –3.0 2.2 0.50 *** 0.60 *** 0.05 n.s. 

Temperature seasonality (st dev) Tseas 4.54 0.09 4.39 4.74 –0.28    * –0.42 *** 0.09 n.s. 

Annual precipitation (mm) Pan 1080 76 853 1260 0.22    * 0.40 *** –0.16 n.s. 

Precipitation of driest month (mm) Pmin 15.8 1.6 11 18 –0.47 *** –0.53 *** –0.11 n.s. 

Precipitation seasonality (CV x 100) Pseas 83.9 1.9 78 88 0.33   ** 0.44 *** –0.02 n.s. 

Topographic variables         

Aspect (degrees from north) ASPE 83.2 55.7 1 180 0.02 n.s. 0.17 n.s. –0.21 n.s. 

Slope (degrees) SLOP 14.2 8.5 1 38 –0.18 n.s. –0.11 n.s. –0.17 n.s. 
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Land-cover variables         

Normalised difference vegetation index NDVI 0.678 0.196 0.056 1.000 –0.13 n.s. 0.01 n.s. –0.26    * 

Normalised difference infrared index NDII 0.719 0.064 0.455 0.825 –0.23    * –0.11 n.s. –0.26    * 

Vegetation structure1 VST n.a n.a. 1 4 n.a. n.a. n.a. 
1Categorical data: 4 categories (1 = open shrubland, 2 = dense shrubland, 3 = arborescent shrubland, 4 = forest) 873 

*P < 0.05, ** P < 0.01, *** P < 0.001, n.s. = not significant 874 

n.a. = correlation is not applicable. 875 

 876 
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Table 2. ‘Best’ models for predicting spatial variation in tree species richness in the study 

area: (a) Model 1 – model for predicting current species richness (best model using all 

available variables); (b) Model 2a – model for predicting future species richness and for 

comparison of predictions; (c) Model 2b – alternative model for predicting future species 

richness and for comparison of predictions. D.f. = degrees of freedom; VIF = variance 

inflation factor; R2 = proportion of the variance accounted for (tested by deletion from the 

model); AICc = Akaike Information Criterion; RMSE (root mean square error) = square 

root of the error variance. All predictions are for plots of 250 m². See Table 1 for full 

variable names and units. 

Model Coefficient D.f. VIF t-value p R2 AICc 

Null Model  81     383.5 

        

(a) Model 1 (RMSE: 3.0) 

Intercept –0.34   –0.53 0.597   

1/ELEV(in km) 2.35 1 1.00 8.07 0.000 0.41 376.7 

VST 1.59 1 1.00 3.33 0.001 0.07 338.2 

Overall model  2   0.000 0.50 329.6 

        

(b) Model 2a (RMSE: 3.3) 

Intercept 30.18   2.79 0.007   

VST 1.54 1 1.01 3.09 0.003 0.07 344.5 

Tmin 0.93 1 1.21 5.40 0.000 0.20 361.0 

Tseas –5.88 1 1.20 –2.47 0.017 0.04 341.2 

Overall model  3   0.000 0.47 337.3 

        

(c) Model 2b (RMSE: 3.3) 

Intercept 9.51   2.90 0.005   

VST 1.51 1 1.01 3.02 0.003 0.06 344.8 

Tmin 0.81 1 1.66 3.98 0.000 0.11 350.9 

Pmin –0.38 1 1.65 –2.31 0.024 0.04 341.2 

Overall model  3   0.000 0.46 338.0 
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