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ABSTRACT 15 

Evaluating the state of stress of a cylindrical shell based on elastic analysis originally involved 16 

a series of hypotheses concerning the conditions around it and the structural material used. All 17 

these hypotheses involved either idealising a reality that was impossible to ascertain a priori, 18 

or referring to an ideal, homogeneous and isotopic material, when reinforced concrete does not 19 

have any of those properties. However, it was impossible to guarantee that the state of stress 20 

obtained in the shell represented the indisputable "real state" of the structure.  21 

Thanks to the progress made in the study of plastic methods, a key figure in this context is the 22 

Danish engineer Knud Winstrup Johansen; in 1944, he published a pioneering article which set 23 

out the origin of the application of limit analysis to the structural calculation of long cylindrical 24 
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roof shells based on a plastic approach to equilibrium, enabling simple and accurate calculation 25 

of these types of structure, as will be discussed below. 26 

 27 

Keywords: beam method; Limit analysis; long cylindrical shell; K.W. Johansen; plastic 28 

approach to equilibrium; structural calculation of long cylindrical shells. 29 

 30 

NOTATION LIST 31 

The following symbols are used in this paper: 32 

A: Area of traction reinforcement; 33 

H: resultant of the shear stresses; 34 

L: Value of the resultant of external forces; 35 

M: Positive moment; 36 

𝑀"#$:		Moment of abutment; 37 

𝑚(:	Transverse moments due to the external load (P); 38 

𝑚):	Transverse moments due to reactions in the pillars; 39 

𝑚*:	Transverse moments due to shear forces (t); 40 

𝑚+: Resulting transverse moment; 41 

N: Resultant of the compressive stresses; 42 

𝑁-: Normal forces in the direction of the shell; 43 

𝑁.+:	Tangential forces in the cross-section of the shell; 44 

P: Value of the external forces acting on the shell; 45 

𝑃0: Oblique resultant of the external forces; 46 

Q: Resulting from the shear stress; 47 

r: Radius value of the shell arc;  48 

S: Value of reactions in the direction tangent to the curve; 49 
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𝑆2: Horizontal component of the reaction; 50 

𝑆3: Vertical component of the reaction; 51 

𝑆4: Normal component of the reactions in the pillars; 52 

𝑆5: Tangential component of the reactions in the pillars; 53 

t: Value of the shear stresses; 54 

𝑇7 : centre of mas; 55 

𝑇8: centre of mas; 56 

a: Angle between the arc and the horizontal; 57 

s: Maximum compressive stress in the concrete; 58 

 59 

INTRODUCTION 60 

The first long cylindrical reinforced concrete shell appeared in Germany in 1924, in the roof 61 

of a building that was to be used as a factory by the company Zeiss. 62 

Until the 1920s, and in Germany in particular, the structural behaviour of thin reinforced 63 

concrete shells was studied as if they were "membranes". These studies, begun by R. Maillart 64 

and later formulated by H. Reissner (Reissner 1908) and F. Emperger (Emperger 1910), found 65 

that if the stresses in a thin but sufficiently rigid shell were only compressive, tensile and 66 

tangential, were all contained within the shell's thickness and there were no bending stresses at 67 

any point, the sheet only needed to be very thin - just a few centimetres thick - in order for its 68 

shape and support conditions to meet certain basic conditions. The structure therefore no longer 69 

solved the resistant problems in terms of a cross-section, but instead did so using the pure form; 70 

thereby satisfying the principle of economy of material that was so important to engineers and 71 

builders at that time. Reinforced concrete was obviously the material that complied with this 72 

mathematical model, due to its moldability, as it contained reinforcements to counteract tensile 73 

and shear stresses. 74 



	 4	

Meanwhile, reinforced concrete cylindrical shells became widespread types of structure able 75 

to cover large spans with a minimal use of material in construction after the First World War. 76 

As a result, a new construction system emerged, with a geometry that was ideal for covering 77 

utilitarian spaces, such as stations, warehouses, factories and hangars; in short, spaces with 78 

large spans which had previously been constructed using steel. In view of the demand for these 79 

new types of buildings, it became necessary to establish a mathematical foundation that was 80 

able to calculate them before they were constructed. Elastic Theory was applied, due to its 81 

widespread use in the structural calculations of the time. 82 

The theory of elasticity began to be implemented in the structural calculation of long cylindrical 83 

shells in Germany in the 1930s, as a result of the work done by the engineers U. Finsterwalder 84 

(Finsterwalder 1928, 1932 and 1936) and Fr. Dischinger (Dischinger 1928, 1930, 1935 and 85 

1936) and later by the Norwegian A. Aas Jakobsen (Jakobsen 1937, 1939, 1940 and 1941). 86 

The mathematical formulation provided by analytical theory, which was at that time widely 87 

used and referred too ideal, homogeneous and isotropic materials complying with Hooke's law, 88 

was also applied to the structural calculation of long cylindrical reinforced concrete shells, 89 

without any consideration being given to the characteristics of the new construction material 90 

used. 91 

In the theory of elasticity, based on the elastic behaviour of material, both the equilibrium 92 

between the internal and external forces and the compatibility of deformations had to be 93 

satisfied. In addition, solving the mathematical problem provided by the equilibrium equations 94 

became an indeterminate when the shell was attached to other deformable structural items, 95 

such as edge beams, other similar and contiguous shells, etc.  In these cases, it was necessary 96 

to supplement the equilibrium equations provided by membrane theory with other equations 97 

generally derived from working theorems which considerably increased the complexity of the 98 

mathematical development. 99 
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By applying the theory of elasticity, it was thought to be possible to precisely determine the 100 

state of stress at each point in the shell, by solving eighth-order differential equations of great 101 

mathematical complexity. The solution to these equations determined the stresses and moments 102 

at all points in a long cylindrical shell, made of a homogeneous, isotropic and ideal material, 103 

as stipulated by Hooke's law. However, in practice it also became essential to introduce a 104 

number of hypotheses, which were so important that the fact that they were legitimate was 105 

neglected, provided that they did not contradict the real results. 106 

However, it was practically impossible to apply the elastic theory of shells, as it involved 107 

solving complex eighth-order differential equations, based on unreal hypotheses about the 108 

surrounding conditions and the structural material used. All these hypotheses involved either 109 

idealising a situation that was impossible to ascertain a priori, or referred to an ideal, 110 

homogeneous and isotopic material, when reinforced concrete does not have any of those 111 

properties. To guarantee that the state of stress obtained in the shell represented the indisputable 112 

"real state" of the structure was always impossible. Consequently, some obvious and significant 113 

insurmountable inconsistencies between the results obtained from the elastic calculation and 114 

the results under real conditions and in tests began to appear. 115 

A theoretical framework more appropriate to the one provided by elastic theory for the 116 

structural calculation of these types of structure was the study of the conditions in which the 117 

collapse of the structure occurred; or in other words, limit analysis. Although the "real" state 118 

of the structure could not be determined, its strength could be calculated accurately; it was also 119 

very insensitive to supposed shortcomings in the manufacture or execution, and to small 120 

variations in the conditions of the surroundings.  121 

Plastic theory and the fundamental theorems which are derived from it are the most significant 122 

contribution to structural theory in the twentieth century (Gvozdev 1936 and Prager 1952). The 123 
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cornerstone of limit analysis is the application of the study of possible states of equilibrium in 124 

the structure, the main corollary of the Security Theorem or Lower Limit Theorem. 125 

In this context, in 1944 the Danish engineer Knud Winstrup Johansen published a very 126 

important article in which he carried out a structural analysis of a long cylindrical shell in a 127 

real roof. The calculation was based solely on the equilibrium equations approach, thereby 128 

enabling a simple and reliable calculation of these structural types (Johansen 1944). Other 129 

engineers such as the Hungarian G. Kazinczy (Kazinczy 1949) and the Dane H. Lundgren 130 

(Lundgren 1949) continued with this type of study, formulating a practical, clear and simple 131 

theory for application based on the equilibrium approach in the late 1940s (Lundgren 1949). 132 

From 1950 until the appearance of computers, the application of limit analysis with the relevant 133 

study of systems of equilibrium was what really facilitated the calculation and construction of 134 

long cylindrical roof shells. This is how some engineers and architects worked when 135 

calculating these types of structures. This was the case with the engineer K. W. Johansen, as 136 

will be shown below. 137 

 138 

RESEARCH SIGNIFICANCE 139 

Reinforced concrete cylindrical shells have traditionally been designed according to either the 140 

membrane theory or the bending theory. The main assumption in both theories is that the shell 141 

material is linearly elastic which may be valid at low level working loads. For higher load 142 

levels and due to the material nonlinearity caused mainly by cracking of the concrete and 143 

plasticity of the reinforcement and the concrete; the assumption of linear elastic behavior is no 144 

longer applicable and a nonlinear analysis is required. Throughout the history of structures 145 

several studies have emerged that address this problem (Assan 2002, Suanno, Ferrari, Prates 146 

and E.E.T. 2003, Chen 2007, Chandrasekaran, Gupta and Carannante 2009, Jawad 2015 and 147 

Pophare and Jadhav 2017). 148 
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This study will not attempt to undermine the analytical method applied to these types of 149 

structure, but instead to fill a gap in the existing knowledge of the application of other simpler 150 

calculation methods, and specifically the so-called Beam Method. The present work tries to 151 

deepen in the methodological contribution of K. W. Johansen to the structural calculation of 152 

these typologies in a moment in which they were tried to be calculated, in a rigorous and "real" 153 

way, applying the mathematical mechanism of the theory of elasticity. It will be necessary to 154 

explain and demonstrate how the long cylindrical roof shells were analyzed using other simpler 155 

methods, as reliable as the analytical method, as the so-called beam method, based on the study 156 

of different equilibrium states, used by Johansen in the analysis of these structures. 157 

 158 

ORIGIN AND APPLICATION OF LIMIT ANALYSIS TO THE STRUCTURAL 159 

ANALYSIS OF LONG CYLINDRICAL REINFORCED CONCRETE ROOF SHELLS. 160 

The origin of plasticity studies. 161 

Although the assumptions established by the theory of elasticity seemed reasonable, common 162 

sense suggested that a trivial defect or imperfection in the shell, or at least an unpredictable 163 

one, could not really affect its strength. There also came a point at which the contradictions 164 

arising between the constructive reality of these structural types and the results of the analytical 165 

calculation were inadmissible. In this respect, the conclusion was clear: calculating elastic 166 

stresses was not relevant for predicting the real strength of long cylindrical roof shells. As a 167 

result, the search began for new, simpler and more effective calculation methods, which would 168 

provide a more accurate response to the real characteristics of the structural material used: 169 

reinforced concrete. 170 

Until well into the twentieth century, the most obvious and proven explanations for any 171 

structural phenomenon were discarded as "unscientific" if they were not accompanied by a 172 

corresponding formulaic deployment based on the theory of elasticity. However, non-linear 173 
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ideas were not completely neglected even though they were treated as if they were a scientific 174 

curiosity when they were mentioned. 175 

The Hungarian Gábor Kazinczy (1888-1964) was one of the first engineers who based the 176 

calculation of the plasticity of structures not only on theory, but also on empirical data obtained 177 

in tests. In 1914, he proved that the calculation of elastic stresses was not relevant in predicting 178 

a structure's real strength; if it was constructed using a ductile material, it was not dependent 179 

on the appearance of the threshold for elastic stress at a point on it, but instead due to the 180 

unacceptable increase in the deformations in it, due to the action of the loads (Kazinczy 2014). 181 

As a result, plastic theory emerged like any new scientific theory; in other words, due to the 182 

shortcomings of the previous theory - in this case the theory of elasticity. 183 

In this first study, Kazinczy only applied the concepts mentioned above to steel structures. 184 

Later, in 1933, he published another article on the plasticity of reinforced concrete, in which 185 

he proposed the concept of redistribution at moments of uniaxial bending, based on the plastic 186 

behaviour of both steel and concrete (Kazinczy 1933). 187 

Three years later, in 1936, two significant events occurred in relation to the study of plastic 188 

methods: important papers on plasticity were contributed to the Second Congress of the IABSE 189 

(Maier-Leibnitz 1936 and Melan 1936) in Berlin, and theorems of plasticity were announced 190 

by the Russian A. A. Gvozdev (Gvozdev 1936). In addition to these events, a third took place 191 

in Denmark, related to the studies carried out by the Danish engineers K.W Johansen and H. 192 

Lundgren, concerning the application of limit analysis to the structural calculation of long 193 

cylindrical roofing shells.  194 

Prior to the publication of the book Cylindrical Shells by H. Lundgren in 1949 (Lundgren 195 

1949), the literature about the structural analysis of long cylindrical shells contained very few 196 

studies of the problem, apart from membrane theory (Reissner 1908 and Emperger 1910) and 197 

above all the theory of elasticity. However, there were various avenues towards the 198 
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simplification of analytical tools for shell design, such as those proposed by the engineers W. 199 

Flügge (Flügge 1934), R. Vallette (Vallette 1934), H. Schorer (Schorer 1935), U. Finsterwalder 200 

(Finsterwalder 1932), and the Danish engineer A. Aas Jakobsen (Jakonbsen 1940). 201 

The contributions by the Danish engineer Winstrup Knud Johansen on structural analysis and 202 

calculation of long cylindrical shells were crucial in this respect, since they mark the beginning 203 

of the application of limit analysis to these types of structure (Johansen 1944 and 1948). 204 

 205 

K.W. Johansen and the application of limit analysis to the structural analysis of long 206 

cylindrical roof shells 207 

In 1944, the Danish engineer K.W. Johansen (1901-1978), a professor and doctor of 208 

Construction Engineering and the President of the Technical University of Delft, published an 209 

article in Danish (Johansen 1944); concerning the analysis and structural calculation of a 210 

complete and asymmetrical long cylindrical shell in reinforced concrete. The shell is the roof 211 

of the General Broadcasting Corporation building, used by the film industry in Copenhagen, 212 

built in 1938. Because of its characteristics, the shell that forms the roof of this building could 213 

not have been resolved by methods based on the application of elastic theory. The calculation 214 

of this shell is the one that is developed next trying to demonstrate how these structural 215 

typologies were analyzed using other simpler method, as reliable as the analytical method, as 216 

the so-called beam method, based on the study of different equilibrium states. 217 

The structure covers an area 16 m wide and 36 m long; it is divided in two spaces, one of 24 m 218 

and the other of 12, by means of a partition wall arranged across it. On the north side of the 219 

building, the shell is supported by pillars spaced 3.2 m apart; while on the south side of the 220 

building there is no support (Statsradiofonien 1946). The shell also is bounded at both ends by 221 

two transverse walls. The cross-section of the roof, which has a thickness of 12 cm, is roughly 222 

cylindrical but it has a ventilation channel inside. 223 
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The modelling of the cross-section of the shell prior to structural analysis is therefore as follows 224 

(Fig. 1). 225 

The cross-section is established by a circular arc 𝐴𝐵𝐷< , with a radius of 9.22 m. At point B on 226 

the arc, it tangentially touches another arc 𝐵𝐶> , with a radius of 14 m. In turn, a vertical straight 227 

section 𝐶𝐷>  starts at point C, thus closing its cross-section together with a concrete ogee as a 228 

cantilever roof.  229 

 230 

Analysis method. 231 

The hypotheses formulated prior to the calculation are as follows: 232 

1. Model the cross-section of the shell, dividing it into two parts due to its uneven structural 233 

behaviour.  Due to its stiffness, Johansen relates the structural behaviour of the part of the shell 234 

considered closed and defined by points B, C and D to that of a concrete beam. Meanwhile, 235 

due to its low stiffness, he considers the part defined by points A and B as similar to a 236 

membrane, i.e. where stresses act solely on its plane. As for the value of the reactions, on the 237 

supports of the shell's edge A, it will comply with the following expression: 238 

 𝑆 = 𝑃𝑟𝑐𝑜𝑠𝛼       [1] 239 

This expression being similar to the one referring to the value of normal union forces in the 240 

direction tangent to the curve: 𝑁E = 𝑃𝑟𝑐𝑜𝑠𝜙,  241 

Where P is the value of the external forces acting on the shell and 𝑁∅ is the value of the 242 

normal force in the direction tangent to the curve: 𝑁E = 𝑃H. 𝑟;	 243 

𝑃H is the value of the normal load: 𝑃H = 𝑃𝑐𝑜𝑠𝜙 and S is the value of reactions in the direction 244 

tangent to the curve. 245 

In 1928, Dischinger and Finsterwalder wrote on this subject; the components of the load P 246 

acting in a distributed manner along the cylindrical shell in the direction of the three axes 247 

(Dischinger and Finsterwalder 1928). 248 
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2. The second hypothesis refers to the rupture lines, or limits. Johansen says that the 249 

contribution of the concrete is not solely in terms of its tensile strength; while the acceptable 250 

stress in the iron reinforcements was that of the creep within a safety coefficient. In other 251 

words, he introduces the real and fundamental characteristics of the structural materials used, 252 

in contrast to the provisions of elastic theory. 253 

3. Finally, Johansen says that in statically indeterminate conditions, the moments will be 254 

distributed in accordance with the reinforcement made, i.e. in accordance with the theory of 255 

plasticity.  256 

These assumptions, set out by Johansen and applied to the structural calculation of a long 257 

cylindrical roofing shell, form the basis for limit analysis with its equilibrium approach. 258 

Having established the hypotheses, the structural analysis method used is based on the long 259 

cylindrical shell's behaviour being similar to that of a reinforced concrete beam (Fig. 2), which 260 

has the following calculation process. 261 

 262 

Longitudinal calculation of the shell: 263 

First, he obtains the value of the external forces acting on the shell. These actions consist of 264 

the permanent load, with a value of 340 𝑘𝑔 𝑚P⁄ , and the variable load of 100 𝑘𝑔 𝑚P⁄ . The 265 

resulting value is therefore 𝐿 = 9,80 𝑡 𝑚⁄ , acting at a distance of 1,06 m from point B (Fig. 3). 266 

Likewise, the reactions in the pillars, located on the north side of the building and in the 267 

direction tangential to the curve, will have a value of 𝑆 = 2,70 𝑡 𝑚⁄  [1] for an angle a= 48.62º 268 

at the start of the shell at point A, and will have horizontal component, 𝑆2 = 2,00 𝑡 𝑚⁄  and 269 

vertical component, 𝑆3 = 1,80 𝑡 𝑚⁄ . 270 

Combining the horizontal component, in a polygon of forces (top right in Fig. 3), with the 271 

resultant of the external forces L, gives an oblique resultant with a value of 𝑃0 = 7,40 𝑡 𝑚⁄ . 272 
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While the part of the cylindrical shell defined by points A and B rests on pillars, the other part 273 

of the shell, defined by points B, C and D, has a free end. This part of the roof consists of two 274 

spaces; each one is defined by the transverse end wall and the partition wall located in the 275 

middle of the building.  276 

As a result of these characteristics, Johansen proposes that the part of the shell defined by points 277 

B, C and D should be calculated as if it was a continuous concrete beam with two spaces; but 278 

with a plastic approach to the equilibrium, respecting the characteristics of the structural 279 

material used. It is here where the simplicity and validity of the method proposed truly lies. 280 

The moment of abutment is obtained directly with a value of: 281 

 𝑀"#$ =
Z
ZP
. 7,40 *

#
(24	𝑚)P = 400	𝑡𝑚       [2] 282 

This moment of abutment it would be greater than the real one because in fact the shear stress 283 

has a value greater than the theoretical case of the beam. Johansen estimates the value of this 284 

moment of abutment, according to the theory of elasticity, at 370𝑡𝑚; while the largest positive 285 

moment will be 𝑀 = 365𝑡𝑚. 286 

After obtaining the moments, Johansen places the neutral axis in the cross-section of the shell 287 

in order to obtain the normal stress and compressive forces. As the cross-section of the shell is 288 

unable to withstand torques, which is common in open sections, Johansen suggests placing the 289 

neutral axis based on a single assumption: that the resultant of the tangential forces has an equal 290 

magnitude and an opposite direction to that resulting from the shear stress Q; which in turn 291 

must be equal to the value obtained for the oblique resultant of the loads (Fig. 3). In other 292 

words, starting from a condition of equilibrium of forces, Johansen establishes the location of 293 

the neutral line, obtaining a solution to the structural problem as a result; but it is not the only 294 

one, because another positioning of the neutral line would obtain another state of equilibrium 295 

that would address other assumptions. 296 
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The true location of the neutral axis (line n-n' in Fig. 4) is determined empirically, i.e. after 297 

performing various tests only considering the equilibrium of tensile and compressive forces. 298 

Once the neutral axis has been located, it is easy to determine the reinforcement area required, 299 

and the concrete stress and shear stress. 300 

The point furthest from the neutral axis in the point designated B', and as such that point will 301 

have the greatest compressive stress. Meanwhile, iron rods are placed around the shell, at the 302 

centres of mass 𝑇7 and 𝑇8. 303 

As a result, the neutral axis is positioned at a distance of 0.80 m from the centre of mass of the 304 

tensioned axis 𝑇8, and 0.43 m from point B', where the most compressed axis in the shell is 305 

located (Fig. 3). 306 

For these distances and the rod stress, provided by Johansen in this article with a value of 307 

1200 𝑘𝑔 𝑐𝑚P⁄  at the point 𝑇8, the maximum compressive stress in the concrete, 𝜎, is 308 

determined as follows: 309 

 s	=	 `Paabc d#e⁄
`f

. a,gZ#
a,ha#

= 43𝑘𝑔 𝑐𝑚P⁄      310 

Having obtained the value of the maximum compressive stress for concrete, Johansen then 311 

calculates the module, the direction and the point of application of the resultant of the 312 

compressive stresses N, corresponding to a value of 𝑁 = 193𝑡; indicating that the bending 313 

plane must contain the force vector 𝑃0, meaning that the moment must be perpendicular to this 314 

plane. The torque, constituted by the result of the tensile and compression forces, must 315 

therefore be contained on the same plane that contains the force 𝑃0.  316 

On this basis, the point of application is obtained by the intersection of two lines. One is the 317 

line connecting the resultants of the tractions, i.e. the line 𝑇7 − 𝑇j0000000000; while the second is a line 318 

parallel to the direction of Q, which passes through the point B', i.e. the line resulting from the 319 

compressions. 320 
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The distance between points B' and T (Fig. 3) determines the lever arm between the torque, 321 

forming a distance of 190𝑐𝑚. The value of the positive moment, M, will therefore be: 322 

 𝑀 = 193𝑡. 1,90𝑚 = 367𝑡𝑚     [3] 323 

Knowing the tension relative to the steel used, the necessary area of traction reinforcement, 324 

A, will be determined by the expression: 325 

 𝐴 = 4
k

,     [4] 326 

where, N is the resultant of the compressive stresses and 𝜎 is the value of the maximum 327 

compressive stress in the concrete. 328 

In short, the procedure followed by Johansen related to the longitudinal calculation of the 329 

long cylindrical shell, based on successive results obtained by the equilibrium of forces is as 330 

follows: 331 

 1. Obtaining the value of the external loads. 332 

 2. Calculation of the positive and negative bending moments. 333 

 3. Obtaining the location of the neutral axis neutral axis in the cross-section of the shell 334 

by the equilibrium of forces. 335 

 4. Calculation of the maximum compressive stress of the concrete. 336 

 5. Obtaining the values for the normal forces of tension and compression. 337 

 6. Calculation of the longitudinal reinforcements in the shell. 338 

 339 

Transverse calculation of the shell. 340 

After obtaining the necessary longitudinal reinforcement in the shell, Johansen performs the 341 

transverse calculation. To do so, it is first necessary to obtain the value of the resultant of the 342 

tangential forces. 343 

 344 

Calculation of the transverse forces: 345 
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To do this, Johansen uses the beam theory, where the normal forces in the direction of the shell, 346 

𝑁., are concentrated in a single generatrix, called the beam, and applied at the centre of mass 347 

in the area concerned; while the tangential forces, 𝑁.+, in the cross-section of the shell remain 348 

constant within each interval between two beams (Bredt 1896). 349 

In the beam method, for a cylindrical cross-section, the resultant of the shear stresses H is 350 

placed on a line parallel to the bowstring at a distance ℎ = 4
3m 𝑓; measured from the bowstring 351 

(Fig. 4a) where f is its height measured from the bowstring. Meanwhile, the resultant of the 352 

shear forces H in this range would have a value of KH, where K is the value of the bowstring 353 

of the arc (Fig. 4b). 354 

The beam method therefore determines the location of each beam, the value of the normal 355 

forces in each one, and the tangential forces between the beams. 356 

On this basis, Johansen divides the cross-section of the shell analysed into three different arcs: 357 

𝐴𝐵’> , 𝐵’𝐷>  and 𝐵’𝐶𝐷< ; calling the tangential forces in each of the three sections:  358 

𝐻7,𝐻d, 𝐻8, 359 

meaning the resultant of each one would be (Fig. 3): 360 

9,3𝐻7, 2,5𝐻d	𝑎𝑛𝑑	3,0𝐻8 361 

The value of each one is obtained by decomposing the shear force Q, or the shear stress (the 362 

polygon of forces located in the upper left of Fig. 3), according to the three resultants of the 363 

tangential forces: 364 

 𝐻7 =
a,ttu
v,Z

= 0,083𝑄, 𝐻x =
a,ygu
P,f

= 0,256𝑄, 𝐻8 =
a,fvu
Z,a

= 0,197𝑄 365 

Since the lever arm is 1,90𝑚, then: 366 

 𝐻 = 𝐻7 + 𝐻x + 𝐻8 =
u

`,va#
     [5] 367 

Similarly, by making cuts only through Ta and Td, we obtain: 368 

 𝐻7 =
u
`,va

∙ 5|
5
= 0,097𝑄   369 
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 𝐻x + 𝐻8 =
u
`,va

∙ 5}
5
= 0,430𝑄  370 

With the ratio of these values to those previously determined in the polygon of forces we 371 

obtain: 372 

𝐻x = 0,243𝑄		𝑎𝑛𝑑		𝐻8 = 0,187𝑄 373 

Johansen thereby guarantees the real location of the neutral axis, and as has been demonstrated, 374 

he does so by means of the equilibrium of forces. 375 

The process would be the same for the cross-sections of the shell for the location of the 376 

corresponding negative moment.  377 

As in the case of the cross-section of the shell belonging to the positive moments, the normal 378 

compressive forces located in this case at both points A and D, with a lever arm of 379 

1, 80𝑚	would be calculated as follows: 380 

 𝑇 = Zta*#
`,ha#

= 205𝑡 = 𝑁 = 𝑁7 + 𝑁8      [6] 381 

Thereby obtaining a stress for the concrete of 66 𝑘𝑔 𝑐𝑚P⁄ . 382 

In this case, Johansen divides the cross-section of the shell into three parts: 𝐴𝑇> , 𝑇𝐷>  and 𝑇𝐶𝐷<, 383 

positioning the tangential forces belonging to each of these three sections and the magnitude 384 

of their resultants, after decomposing the force Q into a funicular polygon. 385 

Calculation of transverse moments: 386 

By sectioning an element of the shell (Fig. 5), of length dx in the direction of the generatrix of 387 

the shell and width ds, orthogonal to the previous one, we see how the resultant of the shear 388 

stresses H act upon it, due to the action of the external loads P. 389 

As the resultant of the shear stresses, H, it is proportional to the shear force, or shear Q, meaning 390 

that the shear stresses, t, are also proportional to the external loads, i.e.: 391 

 ¶u
¶.
= 𝑃0 = 7,4 𝑡 𝑚⁄ ,     [7] 392 

where 𝑃0 is the oblique resultant of the external forces. 393 
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Johansen obtains the various values for the shear stresses t in each section according to the 394 

values previously calculated for the tangential forces (Fig. 3): 395 

For the section 𝐴𝐵> : 396 

 𝑡7 = 0,097 ∙ 7,4 = 0,72 𝑡 𝑚P⁄   397 

For the section 𝐵’’’𝐶< : 398 

 𝑡x = 0,243 ∙ 7,4 = 1,80 𝑡 𝑚P⁄         399 

For the section 𝐵’’𝐷> : 400 

 𝑡8 = 0,187 ∙ 7,4 = 1,38 𝑡 𝑚P⁄   401 

As t does not vary along the length of the shell, i.e. in direction x, the tangential moments due 402 

to t will also be constant along that length.  403 

The transverse moments that Johansen analyses (Johansen 1944) are those due to (Fig. 5). 404 

 - Transverse moments due to shear forces (Fig. 6a). 405 

 - Transverse moments due to the external load P (fig 6b). 406 

 - Transverse moments due to reactions in the pillars (Fig 6c).  407 

The following expressions are obtained for all of these: 408 

Moment due to the tangential force t, (Fig 6a): 409 

𝑚* = ∫ �𝑟 − 𝑟𝑐𝑜𝑠(𝜑 − q)� ∙ 𝑡 ∙ 𝑟𝜕𝜃 = ∫ 𝑟P+
a

+
a 𝑡[1 − 𝑐𝑜𝑠(𝜑 − 𝜃)]𝜕𝜃 = (𝜑 − 𝑠𝑖𝑛𝜑)𝑡𝑟P      [8] 410 

Moment due to the external load P (Fig. 6b): 411 

 𝑚$ = −𝑝𝑟𝜑𝑧      [9] 412 

where: 413 

  𝑧 = 𝑟 ���	(
`
Pm +)

`
Pm +

𝑠𝑖𝑛�𝛼 − 1 2m 𝜑� − 𝑟𝑠𝑖𝑛(𝛼 − 𝜑) 414 

i.e. [15]: 415 

 𝑚$ = �𝑐𝑜𝑠𝛼 − 𝑐𝑜𝑠(𝛼 − 𝜑) + 𝜑𝑠𝑖𝑛(𝛼 − 𝜑)�𝑝𝑟P    416 

And finally, the moment due to the reaction in the supports (Fig 6c): 417 
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 𝑚� = 𝑆5𝑟(1 − 𝑐𝑜𝑠𝜑) − 𝑆4𝑟𝑠𝑖𝑛𝜑,   [10] 418 

where 𝑆5 is the tangential component and 𝑆4 is the normal component of the reactions in the 419 

pillars. 420 

In short, the resulting moment is given by the sum of the previous three moments, i.e.: 421 

 𝑚+ = 𝑚* +𝑚$ +𝑚�,    [11] 422 

where, 𝑚* is the transverse moments due to shear forces (t); 𝑚$ is the transverse moments due 423 

to the external load (P) and 𝑚� is the transverse moments due to reactions in the pillars. 424 

Or to put it another way: 425 

𝑚+ = 𝑝𝑟P �−
𝑆4
𝑝𝑟 𝑠𝑖𝑛𝜑 + �𝑐𝑜𝑠𝛼 +

𝑆5
𝑝𝑟�

(1 − 𝑐𝑜𝑠𝜑) − 𝜑𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝛼 − (𝑠𝑖𝑛𝜑 − 𝜑𝑐𝑜𝑠𝜑)𝑠𝑖𝑛𝛼 + (𝜑 − 𝑠𝑖𝑛𝜑)
𝑡
𝑝� 426 

[12] 427 

The value of this expression [14] becomes a minimum when 𝑆4 = 0, meaning that the first 428 

term of the formula is cancelled out. The second-order terms therefore also disappear from the 429 

formula when the trigonometric functions are developed in a series according to the angle. In 430 

this case, by including series of up to the fifth order, Johansen obtains the following expression: 431 

𝑚+ = 𝑝𝑟P �− �+
�

Z
− +�

Za
� 𝑠𝑖𝑛𝛼 + �+

�

y
− +�

`Pa
� *
$
+ +�

`P
𝑐𝑜𝑠𝛼�    [13] 432 

If we therefore apply this expression to the section 𝐴𝐵>  (Fig. 3), in the cross-section of the shell, 433 

where the value of the shear stress is 𝑡 = 0,72 𝑡 𝑚P⁄  and the value of the external load 𝑃 =434 

(340 + 100) 𝑘𝑔 𝑚P⁄ = 440𝑘𝑔 𝑚P⁄ : 435 

𝑡
𝑃 =

0,72 𝑡 𝑚P⁄
0,440 𝑡 𝑚P⁄ = 1,63 436 

𝛼 = 0.85𝑟𝑎𝑑(48.62�),			𝑠𝑖𝑛𝛼 = 0.75,			𝑐𝑜𝑠𝛼 = 0.661,			𝑟 = 9.28𝑚 437 

According to the expression [15], the value of the tangential moment obtained by Johansen 438 

would be: 439 

𝑚+ = 440 ∙ 9,28P �−
𝜑Z

3 �1 −
𝜑P

10� 0,75 +
𝜑Z

6 �1 −
𝜑P

20� 1,63 +
𝜑g

12 0,661� 440 
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or in other words: 441 

𝑚+ = 815(1 + 2,5𝜑 + 0,5𝜑P)𝜑Z 442 

Johansen adds a correction factor to the value of the reaction in the S pillars, due to the real 443 

position of the shell, which would affect its two components - both the normal, 𝑆4, and the 444 

tangential 𝑆5. Johansen determines the following values by trial and error: 445 

∆𝑚 = 360𝑘𝑔,			∆𝑆4 = −0,055 𝑡 𝑚⁄ ,			∆𝑆5 = −0,87 𝑡 𝑚⁄ , 446 

This means that the value of the resulting moment, depending on the angle j, is obtained from 447 

the sum of the tangential moments, 𝑚+, a moment of abutment, Δ𝑚, and the relative 448 

contribution to the correction of the value of the reaction in the supports, 𝑆4	𝑎𝑛𝑑	𝑆5. 449 

Depending on the angle j, these values are refined in table 1. 450 

Likewise, for the section 𝐵′𝐶>  (Fig. 3), the values adopted were:  451 

 𝑡x = 1,80 𝑡 𝑚P⁄ ,			𝑃 = 440𝑘𝑔 𝑚P⁄ ,			 *
(
= 4,09 452 

𝛼 = 0,472𝑟𝑎𝑑(27,04�),			𝑠𝑖𝑛𝛼 = 0,455,			𝑐𝑜𝑠𝛼 = 0,890,			𝑟 = 14,06𝑚, 453 

and since the value of S is null, the tangential moment would be obtained as follows [12], [13]: 454 

 𝑚+ = 440 ∙ 14,06P[(1 − 𝑐𝑜𝑠𝜑 − 𝜑𝑠𝑖𝑛𝜑)0,890 − (𝑠𝑖𝑛𝜑 − 𝜑𝑐𝑜𝑠𝜑)0,455 + (𝜑 − 𝑠𝑖𝑛𝜑)4,09] 455 

i.e.: 456 

 𝑚+ ∼ 440 ∙ 14,06P �− +e

P
�1 − +e

g
� 0,890 − +�

Z
0,455 + +�

y
4,09� 457 

As in point B’, there is a value of 𝜑 = 0,185: 458 

𝑚j¡ = −1020𝑘𝑔	459 

Finally, for the section 𝐵′′𝐷< (Fig. 3): 460 

𝑡8 = 1,38 𝑡 𝑚P⁄ ,			𝑃 = 340𝑘𝑔 𝑚P⁄ ,			
𝑡
𝑃 = 4,06 461 

𝛼 = 0,775𝑟𝑎𝑑,			𝑠𝑖𝑛𝛼 = 0,70; 			𝑐𝑜𝑠𝛼 = 0,715; 			𝑟 = 9,28𝑚, 462 

and since the value of S is null, the tangential moment would be obtained as follows [12]: 463 
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𝑚+ ∼ 340 ∙ 9,28P �− +e

P
�1 − +e

g
� 0,715 − +�

Z
0,70 + +�

y
4,06�, 464 

and as in point B’’, there is a value of 𝜑 = 0,33: 465 

𝑚j¢¢ = −636𝑘𝑔	466 

Thus, 467 

𝑚j¡ + 𝑚j¡¡ = −1656𝑘𝑔 468 

In addition, when making the calculations, Johansen also takes into account the moments 469 

related to the sections 𝐶𝐷>  and 𝐷𝐸> , as follows: 470 

In the section 𝐶𝐷> , the tangential force would be obtained from the expression: 471 

𝑡d ∙ 1,0𝑚 = 1,8 𝑡 𝑚⁄  472 

Since on the one hand, the weight of the section 𝐶𝐷>  is 0.34 t/m and that of the section DE, with 473 

an external load acting on it, is 0.44 t/m, the value of the moment at B'B'' will therefore be: 474 

(1,80 𝑡 𝑚⁄ − 0,34 𝑡 𝑚) ⋅ 2,5𝑚 − 0,44 𝑡 𝑚⁄ ⋅ 3𝑚 = 2,33𝑡 = 2330𝑘𝑔⁄  475 

The resulting moment in the section B'B'' in the cross-section of the shell will consequently be  476 

𝑚j¢j¢¢ = 2330𝑘𝑔 − 1656𝑘𝑔 ∼ 680𝑘𝑔 477 

In short, the transverse analysis of the shell is resolved by Johansen in an extremely simple 478 

manner, as is the longitudinal calculation, outlined as follows: 479 

 1. Calculate the expressions of the transverse forces and their location in the cross-section 480 

of the shell. 481 

 2. Calculate the transverse moments due to these tangential stresses on the outer load 482 

acting on the shell, and finally, those due to the reactions on the supports. 483 

With all this information, the necessary reinforcement to the shell can be determined 484 

immediately. 485 

Johansen concludes by referring to the use of the theory of plasticity, which by means of an 486 

appropriate selection of both the moment and the shear force, or shear, in the section CD, with 487 
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a plastic approach to the equilibrium of forces, can obtain resultant moments of equal 488 

magnitude at B' and B'', similarly to the procedure with a beam. 489 

For the purposes of buckling, Johansen compares the behaviour of the section AB with that of 490 

a cylinder subjected to a load of 𝑃 = 440𝑘𝑔 𝑚P⁄  and an axial compression equivalent to the 491 

compressive stress in that section, namely 43 𝑘𝑔 𝑚P⁄ . After making the relevant calculations, 492 

Johansen emphasises that the real situation of the shell is much more favourable than that of a 493 

cylinder, for two reasons. First, the section AB of the cross-section of the shell rests on pillars, 494 

and second, the remainder is a closed cross-section, where the resistance to buckling effects is 495 

considerably high. For these reasons, the shell is sufficiently safe against buckling problems. 496 

As set out above, we have tried to show that while the theory of elasticity was unable to give 497 

even an approximate image of the structural behaviour of long cylindrical roof shells, the 498 

method described by Johansen is the most suitable for the structural calculation of these types, 499 

as it is based solely on considerations of equilibrium, and does not take into account those 500 

related to the shell's compatibility and deformation. 501 

 502 

CONCLUSIONS 503 

The structural calculation of long cylindrical roof shells originated in Germany in the early 504 

1920s. Although engineers at that time based their calculations on the theory of elasticity, the 505 

most appropriate framework for the structural calculation of these types is breakage analysis. 506 

Although the "real" state of the structure could not be determined, its strength could be 507 

calculated accurately; it is also very insensitive to supposed defects in the manufacture or 508 

execution, and to small variations in the conditions of the surroundings.  509 

 510 
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The Danish engineer K.W. Johansen was the first to apply limit analysis with a balance 511 

approach to long cylindrical roof shells in 1944, following the publication of the fundamental 512 

theorems of plasticity in 1938, written by the Russian A.A. Gvozdev in 1936.  513 

  514 

The plastic method developed by K.W. Johansen in 1944 is a simple and secure method of 515 

structural calculation for long cylindrical roof shells, since: 516 

1. The beam method provides a solution of equilibrium which if the shell is made of a ductile 517 

material, and in the absence of instability problems, proves to be a safe solution, provided that 518 

the reinforced concrete's yield condition is satisfied.  519 

2. The steady state in the shell is achieved by transferring stresses from the areas most subjected 520 

to those that are least. This all depends on the transverse geometry of the shell, the location of 521 

the neutral axis and the various provisions made for the reinforcement. The state of equilibrium 522 

thus obtained is therefore one solution to the problem, but not the only one. Any state of the 523 

structure in which the equilibrium of forces occurs can be studied, meaning that the calculating 524 

engineer could focus on studying the safety of the shell in each one. 525 

3. When giving up the search for the "only" solution for the long cylindrical shell, the 526 

conclusion is that the essential aspect of limit analysis is the application of the "equilibrium 527 

approach," the main corollary of the Fundamental Theorem of Safety. This avoids the need to 528 

consider the shell's compatibility and deformation. 529 

 530 
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Fig. 1. Modelling and geometrical definition of the cross-section of the long cylindrical shell 609 

the roof of the General Broadcasting Corporation building.  610 

Fig. 2. Diagram of similarity between a reinforced concrete beam and a long cylindrical 611 

Shell. 612 

Fig. 3. Representation of external loads and internal forces in the cross-section of the 613 

cylindrical shell for the positive moment and polygons of forces. 614 

Fig. 4. Location of the tangential line of the arc.  615 

Fig. 5.  Representation of external loads and internal forces in the cross-section of the shell. 616 

Fig. 6. Obtaining tangential moments. 617 

Table 1. Parameter values depending on the value of the angle j. 618 
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