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Synopsis: 

Edge-linked double cube nitrido complexes [M(3-N)(3-NH)2{Ti3(
5-C5Me5)3(3-N)}]2 (M = 

Li, Na, K, Rb, Cs), or corner-shared double cube nitrido complexes [M(3-N)(3-

NH)5{Ti3(
5-C5Me5)3(3-N)}2] (M = Na, K, Rb, Cs) have been obtained upon treatment of 

[{Ti(5-C5Me5)(-NH)}3(3-N)] (1) with alkali metal bis(trimethylsilyl)amido derivatives 

[M{N(SiMe3)2}] at different conditions. Analogous reactions of 1 with alkaline-earth 

derivatives [M{N(SiMe3)2}2(thf)2] afford the corner-shared double cube nitrido complexes 

[M{(3-N)(3-NH)2Ti3(
5-C5Me5)3(3-N)}2] (M = Mg, Ca, Sr, Ba) via single cube-type 

intermediates [(thf)x{(Me3Si)2N}M{(3-N)(3-NH)2Ti3(
5-C5Me5)3(3-N)}]. 
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Abstract: 

Treatment of [{Ti(5-C5Me5)(-NH)}3(3-N)] with alkali metal bis(trimethylsilyl)amido 

derivatives [M{N(SiMe3)2}] in toluene afford edge-linked double cube nitrido complexes 

[M(3-N)(3-NH)2{Ti3(
5-C5Me5)3(3-N)}]2 (M = Li, Na, K, Rb, Cs), or corner-shared double 

cube nitrido complexes [M(3-N)(3-NH)5{Ti3(
5-C5Me5)3(3-N)}2] (M = Na, K, Rb, Cs). 

Analogous reactions with 1/2 equivalent of alkaline-earth bis(trimethylsilyl)amido derivatives 

[M{N(SiMe3)2}2(thf)2] give corner-shared double cube nitrido complexes [M{(3-N)(3-

NH)2Ti3(
5-C5Me5)3(3-N)}2] (M = Mg, Ca, Sr, Ba). If one equivalent of the group 2 amido 

reagent is employed, single cube-type derivatives [(thf)x{(Me3Si)2N}M{(3-N)(3-

NH)2Ti3(
5-C5Me5)3(3-N)}] (M = Mg, x = 0; M = Ca, Sr, Ba, x = 1) can be isolated or 

identified. The tetrahydrofuran molecules are easily displaced with 4-tert-butylpyridine in 

toluene affording the analogous complexes [(tBupy){(Me3Si)2N}M{(3-N)(3-NH)2Ti3(
5-

C5Me5)3(3-N)}] (M = Ca, Sr). The X-ray crystal structures of [M(3-N)(3-NH)5{Ti3(
5-

C5Me5)3(3-N)}2] (M = K, Rb, Cs) and [M{(3-N)(3-NH)2Ti3(
5-C5Me5)3(3-N)}2] (M = Ca, 

Sr) have been determined. The properties and solid-state structures of the 

azaheterometallocubane complexes bearing alkali and alkaline-earth metals are discussed. 

 

Keywords: titanium · alkali metals · alkaline-earth metals · nitrido complexes · cage 

compounds 
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Introduction 

Chalcogenide-bridged cube-type clusters containing M4Q4 (Q = S, Se) cores where M is 

a transition metal are quite common in the literature.1 One of the most important strategies to 

access to that type of complexes is the building-block synthesis from lower nuclearity species, 

and it is especially convenient for the construction of heterometallic M´2M2S4 and M´M3Q4 

cluster complexes from dinuclear M2S2 or trinuclear M3Q4 aggregates.2 Since the pioneering 

studies of Shibahara and co-workers on the incorporation of heterometals M´ into M3S4 

aggregates with incomplete cube structures,3 the designated [3+1] strategy has been 

extensively used in the synthesis of heterobimetallic cube-type complexes (Chart 1).2,4,5 

Structures determined for those clusters reveal single cube [M´M3Q4], edge-linked double 

cube [M´2M6Q8] or corner-shared double cube [M´M6Q8] central cores. 
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Chart 1. The [3 + 1] building-block synthesis of heterometallic cube-type complexes. 

 

In 1995, we reported the synthesis and structure of a singular organometallic nitrido 

complex [{Ti(5-C5Me5)}4(3-N)4], which contains an almost perfect [Ti4N4] cube-type core.6 

This compound can be also obtained by treatment of the trinuclear imido-nitrido complex 

[{Ti(5-C5Me5)(-NH)}3(3-N)]7 (1) with [Ti(5-C5Me5)(NMe2)3].
8 Complex 1 shows an 

incomplete cube [Ti3(-NH)3(3-N)] core (Chart 2), which strongly resembles those found in 

iron [Fe3S4] and Group 6 [M3Q4] chalcogenide clusters. Based on this similarity, we have been 

engaged in a project devoted to apply the [3+1] synthetic approach to incorporate different 

metal fragments into the preorganized structure of 1. This methodology has allowed to access 
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to a new family of heterometallic nitrido compounds with cube-type [MTi3N4] cores (Chart 2), 

which we have designated as azaheterometallocubanes. 

Our initial work was focused on the incorporation of transition metal elements, and we 

have described the synthesis of several examples bearing single cube [MTi3N4] (M = Ti,8,9,10 

Nb,10 Ta,10 Cr,11 Mo,11 W,11 Rh,12 Ir12) or corner-shared double cube [MTi6N8] (M = Ti,9,10 

Zr,9,10 Nb,10 Ta10) central cores. We have also reported our preliminary results on the reactions 

with Group 1 and 2 amido and alkyl derivatives to give the first examples of edge-linked 

double cube [M2Ti6N8] (M = Li, Na, K) cores,13 and magnesium and barium complexes with 

single cube or corner-shared double cube structures.14 Herein, we present full details of our 

work with alkali and alkaline-earth elements, including the heavier s-block elements, and 

discuss the trends along the Groups 1 and 2 in structures and properties. 
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Chart 2. Structural core of 1 and [MTi3N4] cube-type complexes. [Ti] = Ti(5-C5Me5) 

 

Experimental Section 

General Considerations. All manipulations were carried out under argon atmosphere using 

Schlenk line or glovebox techniques. Toluene and tetrahydrofuran were freshly distilled from 

sodium or sodium/benzophenone. NMR solvents were dried with Na/K amalgam (C6D6) or 
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calcium hydride (C5D5N) and vacuum-distilled. Oven-dried glassware was repeatedly 

evacuated with a pumping system (ca. 1 x 10-3 Torr) and subsequently filled with inert gas. 

[M{N(SiMe3)2}] (M = Li, Na, K) were purchased from Aldrich and used as received. 4-tert-

butylpyridine was purchased from Aldrich and distilled from calcium hydride prior to use. 

[{Ti(5-C5Me5)(-NH)}3(3-N)] (1),7,8 [M{N(SiMe3)2}] (M = Rb, Cs),15 and 

[M{N(SiMe3)2}2(thf)2] (M = Mg, Ca, Sr, Ba)16 were prepared according to published 

procedures. 

Samples for infrared spectroscopy were prepared as KBr pellets. 1H and 13C{1H} NMR spectra 

were recorded on a Varian Unity-300 spectrometer. Chemical shifts (, ppm) are given relative 

to residual protons or to carbon of the solvent. Microanalysis (C, H, N) were performed in a 

Heraeus CHN-O-Rapid or a Leco CHNS-932 microanalyzers. 

Synthesis of [M(3-N)(3-NH)2{Ti3(5-C5Me5)3(3-N)}]2 (M = Li (2), Na (3), K (4)): The 

syntheses and characterization of complexes 2-4 have been reported previously.13 However, in 

order to establish a comparison with the analogous rubidium (6) and cesium (7) derivatives, 

herein we include the synthetic procedure for 2 and new NMR data for 2-4. 

Synthesis of 2: A solution of [Li{N(SiMe3)2}] (0.14 g, 0.82 mmol) in toluene (5 mL) was 

carefully added to 1 (0.50 g, 0.82 mmol) in toluene (10 mL). The system was allowed to react 

without any stirring for 20 h. After decantation, the resultant orange crystals were vacuum-

dried to afford 2·C7H8 (0.43 g, 80%). 1H NMR (C5D5N, 20 C, ): 2.07 (s, 15H, C5Me5), 2.17 

(s, 30H, C5Me5), 12.36 (s broad, 2H, NH); 13C{1H} NMR (C5D5N, 20 C, ): 11.9, 12.0 

(C5Me5), 115.0, 116.4 (C5Me5). 

NMR data for 3: 1H NMR (C5D5N, 20 C, ): 2.04 (s, 15H, C5Me5), 2.16 (s, 30H, C5Me5), 

12.83 (s broad, 2H, NH); 13C{1H} NMR (C5D5N, 20 C, ): 12.0, 12.1 (C5Me5), 113.8, 115.2 

(C5Me5). 
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NMR data for 4: 1H NMR (C5D5N, 20 C, ): 2.09 (s, 15H, C5Me5), 2.18 (s, 30H, C5Me5), 

13.14 (s broad, 2H, NH); 13C{1H} NMR (C5D5N, 20 C, ): 12.0, 12.1 (C5Me5), 113.5, 114.9 

(C5Me5). 

Synthesis of [Rb(3-N)(3-NH)2{Ti3(5-C5Me5)3(3-N)}]2 (5): A 100-mL Schlenk flask was 

charged with 1 (0.15 g, 0.25 mmol), [Rb{N(SiMe3)2}] (0.06 g, 0.24 mmol) and toluene (20 

mL). The reaction mixture was stirred at room temperature for 3 h to give a yellow precipitate 

and a yellow solution. After decantation, the yellow solid was vacuum-dried and characterized 

as 5 (0.10 g, 59%). IR (KBr, cm-1): 3339 (w), 2908 (s), 2856 (s), 1496 (w), 1437 (m), 1373 

(m), 1021 (w), 739 (vs), 705 (s), 653 (m), 616 (s), 541 (m), 471 (w), 437 (w); 1H NMR 

(C5D5N, 20 C, ): 2.09 (s, 15H, C5Me5), 2.19 (s, 30H, C5Me5), 13.20 (s broad, 2H, NH); 

13C{1H} NMR (C5D5N, 20 C, ): 12.1, 12.2 (C5Me5), 113.4, 114.8 (C5Me5). Anal. Calcd. for 

C60H94N8Rb2Ti6 (%): C 51.99, H 6.85, N 8.09; found: C 52.25, H 6.81, N 7.27. 

Synthesis of [Cs(3-N)(3-NH)2{Ti3(5-C5Me5)3(3-N)}]2 (6): In a fashion similar to the 

preparation of 5, treatment of 1 (0.15 g, 0.25 mmol) with [Cs{N(SiMe3)2}] (0.07 g, 0.24 

mmol) in toluene (20 mL) afforded 6 as a yellow solid (0.11 g, 61%). IR (KBr, cm-1): 3342 

(w), 2908 (s), 2856 (s), 1495 (w), 1437 (m), 1372 (m), 1021 (w), 739 (vs), 705 (s), 656 (m), 

624 (s), 540 (m), 472 (w); 1H NMR (C5D5N, 20 C, ): 2.09 (s, 15H, C5Me5), 2.20 (s, 30H, 

C5Me5), 13.25 (s broad, 2H, NH); 13C{1H} NMR (C5D5N, 20 C, ): 12.1, 12.2 (C5Me5), 

113.4, 114.7 (C5Me5). Anal. Calcd. for C60H94Cs2N8Ti6 (%): C 48.66, H 6.41, N 7.57; found: 

C 48.85, H 6.32, N 7.00. 

Synthesis of [Na(3-N)(3-NH)5{Ti3(5-C5Me5)3(3-N)}2] (7): A 100-mL Schlenk flask was 

charged with 3 (0.13 g, 0.10 mmol), 1 (0.12 g, 0.20 mmol) and toluene (15 mL). The reaction 

mixture was stirred at 70 ºC for 24 h. The resultant orange solid was isolated by filtration and 

vacuum-dried for 3 hours to give 7·C7H8 (0.21 g, 78%). IR (KBr, cm-1): 3350 (m), 2967 (m), 

2906 (s), 2854 (s), 1604 (w), 1495 (m), 1432 (m), 1375 (m), 1024 (w), 776 (m), 735 (vs), 704 
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(s), 672 (s), 656 (s), 635 (s), 623 (s), 578 (m), 540 (m), 473 (m). Anal. Calcd. for 

C67H103N8NaTi6 (%): C 60.45, H 7.81, N 8.42; found: C 60.86, H 8.14, N 8.07. 

Synthesis of [K(3-N)(3-NH)5{Ti3(5-C5Me5)3(3-N)}2] (8): A toluene solution (20 mL) of 1 

(0.30 g, 0.49 mmol) was carefully layered with a toluene solution (10 mL) of [K{N(SiMe3)2}] 

(0.05 g, 0.25 mmol). The system was allowed to equilibrate for 2 days to afford dark green 

crystals of 8·C7H8 (0.24 g, 75%). IR (KBr, cm-1): 3337 (w), 2907 (s), 2854 (s), 1492 (m), 1430 

(m), 1374 (m), 1065 (w), 1023 (m), 736 (vs), 701 (s), 670 (s), 653 (s), 623 (s), 572 (m), 536 

(m), 471 (m), 423 (m). Anal. Calcd. for C67H103KN8Ti6 (%): C 59.72, H 7.72, N 8.32; found: C 

59.85, H 7.65, N 8.76. 

Synthesis of [Rb(3-N)(3-NH)5{Ti3(5-C5Me5)3(3-N)}2] (9): A tetrahydrofuran solution (20 

mL) of 1 (0.30 g, 0.49 mmol) was carefully layered with a toluene solution (10 mL) of 

[Rb{N(SiMe3)2}] (0.06 g, 0.24 mmol). The system was allowed to equilibrate for 2 days to 

afford dark green crystals of 9 (0.21 g, 68%). IR (KBr, cm-1): 3338 (m), 2908 (s), 2849 (s), 

1489 (m), 1429 (s), 1374 (s), 1064 (w), 1022 (m), 737 (vs), 700 (s), 672 (s), 654 (s), 624 (s), 

571 (m), 535 (m), 471 (m), 424 (m), 399 (s). Anal. Calcd. for C60H95N8RbTi6 (%): C 55.37, H 

7.37, N 8.61; found: C 55.62, H 7.37, N 8.26. 

Synthesis of [Cs(3-N)(3-NH)5{Ti3(5-C5Me5)3(3-N)}2] (10): In a fashion similar to the 

preparation of 9, a tetrahydrofuran solution (20 mL) of 1 (0.30 g, 0.49 mmol) was carefully 

layered with a toluene solution (10 mL) of [Cs{N(SiMe3)2}] (0.07 g, 0.24 mmol) to afford 

dark green crystals of 10 (0.19 g, 59 %). IR (KBr, cm-1): 3339 (m), 2908 (s), 2854 (s), 1489 

(m), 1429 (s), 1374 (s), 1064 (w), 1022 (m), 737 (vs), 700 (s), 674 (s), 655 (s), 625 (s), 569 

(m), 534 (m), 471 (m), 426 (m), 396 (m). Anal. Calcd. for C60H95CsN8Ti6 (%): C 53.42, H 

7.11, N 8.31; found: C 53.42, H 7.20, N 8.11. 

Synthesis of [(thf){(Me3Si)2N}Ca{(3-N)(3-NH)2Ti3(5-C5Me5)3(3-N)}] (12): A 100-mL 

Schlenk flask was charged with 1 (0.30 g, 0.49 mmol), [Ca{N(SiMe3)2}2(thf)2] (0.25 g, 0.49 
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mmol) and toluene (25 mL). The reaction mixture was stirred at room temperature for 3 h to 

give an orange solution. After filtration, the volatile components were removed under reduced 

pressure to afford 12 as an orange solid (0.38 g, 88%). IR (KBr, cm-1): 3341 (w), 2941 (s), 

2909 (s), 2860 (s), 1491 (w), 1437 (m), 1375 (m), 1246 (m), 1236 (m), 1057 (s), 1033 (m), 879 

(m), 819 (s), 762 (m), 728 (vs), 710 (s), 661 (s), 637 (m), 623 (s), 587 (m), 533 (w), 475 (w), 

445 (w), 418 (m); 1H NMR (C6D6, 20 C, ): 0.25 (s, 18H, N(SiMe3)2), 1.32 (m, 4H, thf), 

2.05 (s, 15H, C5Me5), 2.10 (s, 30H, C5Me5), 3.73 (m, 4H, thf), 12.43 (s broad, 2H, NH); 

13C{1H} NMR (C6D6, 20 C, ): 6.0 (SiMe3), 12.0, 12.3 (C5Me5), 25.0, 69.9 (thf), 116.4, 118.3 

(C5Me5). Anal. Calcd. for C40H73CaN5OSi2Ti3 (%): C 54.58, H 8.38, N 7.96; found: C 54.23, 

H 8.14, N 7.99. 

Synthesis of [(thf){(Me3Si)2N}Sr{(3-N)(3-NH)2Ti3(5-C5Me5)3(3-N)}] (13): In a fashion 

similar to the preparation of 12, treatment of 1 (0.30 g, 0.49 mmol) with 

[Sr{N(SiMe3)2}2(thf)2] (0.27 g, 0.49 mmol) in toluene (25 mL) afforded 13 as an orange solid 

(0.34 g, 76%). IR (KBr, cm-1): 3335 (w), 2940 (s), 2909 (s), 2860 (s), 1492 (w), 1436 (m), 

1375 (m), 1243 (s), 1086 (s), 1035 (m), 879 (m), 817 (s), 727 (vs), 704 (s), 658 (s), 637 (m), 

622 (s), 603 (m), 573 (m), 531 (w), 474 (w), 445 (w), 417 (m); 1H NMR (C6D6, 20 C, ): 0.24 

(s, 18H, N(SiMe3)2), 1.31 (m, 4H, thf), 2.03 (s, 15H, C5Me5), 2.11 (s, 30H, C5Me5), 3.64 (m, 

4H, thf), 12.67 (s broad, 2H, NH); 13C{1H} NMR (C6D6, 20 C, ): 5.9 (SiMe3), 12.1, 12.3 

(C5Me5), 25.2, 69.3 (thf), 116.1, 117.9 (C5Me5). Anal. Calcd. for C40H73N5OSi2SrTi3 (%): C 

51.78, H 7.95, N 7.55; found: C 51.26, H 7.80, N 6.87. 

Synthesis of [Ca{(3-N)(3-NH)2Ti3(5-C5Me5)3(3-N)}2] (16): A toluene solution (15 mL) 

of [Ca{N(SiMe3)2}2(thf)2] (0.12 g, 0.24 mmol) was slowly added to 1 (0.30 g, 0.49 mmol) in 

toluene (10 mL). The system was allowed to react without any stirring for 2 days to afford 

orange crystals of 16·2C7H8 (0.20 g, 59%). IR (KBr, cm-1): 3341 (w), 2967 (m), 2907 (s), 

2857 (m), 1606 (w), 1496 (w), 1434 (m), 1374 (m), 1026 (w), 726 (vs), 706 (s), 655 (m), 623 
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(s), 593 (s), 528 (w), 473 (w), 464 (w), 442 (w), 416 (m). Anal. Calcd. for C74H110CaN8Ti6 

(%): C 61.74, H 7.72, N 7.79; found: C 61.36, H 7.69, N 7.82. 

Synthesis of [Sr{(3-N)(3-NH)2Ti3(5-C5Me5)3(3-N)}2] (17): In a fashion similar to the 

preparation of 16, treatment of 1 (0.30 g, 0.49 mmol) with [Sr{N(SiMe3)2}2(thf)2] (0.14 g, 

0.25 mmol) in toluene afforded orange crystals of 17·2C7H8 (0.22 g, 61%). IR (KBr, cm-1): 

3333 (w), 2098 (s), 2856 (m), 1491 (w), 1432 (m), 1374 (m), 1024 (w), 725 (vs), 700 (s), 655 

(m), 623 (s), 587 (m), 529 (w), 473 (w), 442 (w), 416 (m). Anal. Calcd. for C74H110N8SrTi6 

(%): C 59.77, H 7.47, N 7.54; found: C 59.22, H 7.49, N 7.08. 

Synthesis of [(4-tBupy){(Me3Si)2N}Ca{(3-N)(3-NH)2Ti3(5-C5Me5)3(3-N)}] (19): A 100-

mL Schlenk flask was charged with 1 (0.30 g, 0.49 mmol), [Ca{N(SiMe3)2}2(thf)2] (0.25 g, 

0.49 mmol), 4-tert-butylpyridine (0.07 g, 0.52 mmol), and toluene (25 mL). The reaction 

mixture was stirred at room temperature for 3 h to give an orange solution. After filtration, the 

volatile components were removed under reduced pressure to afford 19 as an orange solid 

(0.40 g, 87%). IR (KBr, cm-1): 3339 (w), 3028 (w), 2949 (s), 2909 (s), 2861 (s), 1609 (m), 

1498 (m), 1437 (m), 1375 (m), 1245 (m), 1231 (m), 1065 (s), 1024 (w), 1009 (m), 880 (m), 

819 (s), 762 (s), 731 (vs), 715 (s), 660 (s), 623 (s), 585 (m), 572 (m), 535 (w), 476 (w), 444 

(w), 418 (m); 1H NMR (C6D6, 20 C, ): 0.35 (s, 18H, N(SiMe3)2), 0.90 (s, 9H, NC5H4CMe3), 

2.097 (s, 15H, C5Me5), 2.102 (s, 30H, C5Me5), 7.09 (m, 2H, NC5H4CMe3), 9.11 (m, 2H, 

NC5H4CMe3), 12.57 (s broad, 2H, NH); 13C{1H} NMR (C6D6, 20 C, ): 6.1 (SiMe3), 12.0, 

12.4 (C5Me5), 30.1 (NC5H4CMe3), 34.6 (NC5H4CMe3), 116.4, 118.4 (C5Me5), 120.8, 152.0, 

162.4 (NC5H4CMe3). Anal. Calcd. for C45H78CaN6Si2Ti3 (%): C 57.30, H 8.35, N 8.91; found: 

C 58.12, H 8.39, N 7.76. 

Synthesis of [(4-tBupy){(Me3Si)2N}Sr{(3-N)(3-NH)2Ti3(5-C5Me5)3(3-N)}] (20): In a 

fashion similar to the preparation of 19, treatment of 1 (0.30 g, 0.49 mmol) with 

[Sr{N(SiMe3)2}2(thf)2] (0.27 g, 0.49 mmol) and 4-tert-butylpyridine (0.07 g, 0.52 mmol) in 
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toluene (25 mL) afforded 20 as an orange solid (0.37 g, 77%). IR (KBr, cm-1): 3334 (w), 3023 

(w), 2944 (s), 2909 (s), 1607 (m), 1497 (m), 1436 (m), 1374 (m), 1242 (m), 1095 (s), 1023 

(w), 1008 (m), 879 (m), 818 (s), 728 (vs), 708 (s), 658 (s), 637 (m), 623 (s), 603 (m), 572 (m), 

533 (w), 475 (w), 464 (w), 445 (w), 418 (m); 1H NMR (C6D6, 20 C, ): 0.35 (s, 18H, 

N(SiMe3)2), 0.89 (s, 9H, NC5H4CMe3), 2.098 (s, 15H, C5Me5), 2.103 (s, 30H, C5Me5), 7.11 

(m, 2H, NC5H4CMe3), 9.17 (m, 2H, NC5H4CMe3), 12.57 (s broad, 2H, NH); 13C{1H} NMR 

(C6D6, 20 ºC, ): 6.0 (SiMe3), 12.2, 12.4 (C5Me5), 30.2 (NC5H4CMe3), 34.7 (NC5H4CMe3), 

116.1, 118.0 (C5Me5), 121.2, 150.8, 162.2 (NC5H4CMe3). Anal. Calcd. for C45H78N6Si2SrTi3 

(%): C 54.55, H 7.95, N 8.48; found: C 54.04, H 7.88, N 6.76. 

X-ray structure determination of 8, 9, 10, 16 and 17. Crystals of 9, 10 and 16 were mounted 

in a glass capillary in a random orientation and transferred to an Enraf-Nonius CAD4 

diffractometer for characterization and data collection at room temperature. Crystals of 

complexes 8 and 17 were grown as described in the experimental section, removed from the 

Schlenks and covered with a layer of a viscous perfluoropolyether (FomblinY). A suitable 

crystal was selected with the aid of a microscope, attached to a glass fiber, and immediately 

placed in the low temperature nitrogen stream of the diffractometer. The intensity data sets 

were collected at 100K on a Bruker-Nonius KappaCCD diffractometer equipped with an 

Oxford Cryostream 700 unit. Crystallographic data for all the complexes are presented in 

Table 1 (see page 24). 

The structures were solved, using the WINGX package,17 by direct methods (SHELXS-97) 

and refined by least-squares against F2 (SHELXL-97).18 

All non-hydrogen atoms of 8, 9 and 10 were anisotropically refined. All the hydrogen atoms of 

8 and 9 were located in the difference Fourier map and refined isotropically, using a 5/6 factor 

of occupancy for the imido hydrogen. In the case of 10 all the hydrogen atoms were positioned 
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geometrically and refined by using a riding model, with the same 5/6 occupancy for the imido 

hydrogen atom. 

Poor quality crystals of complexes 16 and 17 crystallized with two molecules of toluene. 

Complex 16 presented severe disorder in both solvent molecules, which only could be refined 

isotropically. The rest of all non-hydrogen atoms of 16, except C22, C26, C27 C28 from one 

pentamethylcyclopentadienyl ring were anisotropically refined. Only the hydrogen atoms of 

the pentamethylcyclopentadienyl rings and the imido group (N23-H23) were included, 

positioned geometrically and refined by using a riding model. 

On the other hand, complex 17 presented severe disorder in one of the toluene solvent 

molecules (C201-C204) while the other (C101-C103) only showed disorder in the methyl 

group (two sites, 50% occupancy). All non-hydrogen atoms except those of the C201-C204 

toluene molecule were anisotropically refined. All hydrogen atoms were included, positioned 

geometrically and refined by using a riding model. Two imido hydrogen atoms statistically 

distribute over the four N13 nitrogen atoms linked to the central strontium (final 50% of 

occupancy) while the other two imido hydrogen atoms are positioned over the two N12 atoms. 

The highest peak found in the difference Fourier map of 3.167 eÅ-3 is located close to Sr1 

(0.90 Å). 

 

Results and Discussion 

Cube-Type Complexes Containing Alkali Metals. The synthetic chemistry is outlined 

in Scheme 1. Treatment of [{Ti(5-C5Me5)(-NH)}3(3-N)] (1) with 1 equiv of Group 1 

bis(trimethylsilyl)amido reagents [M{N(SiMe3)2}]15 in toluene at room temperature led to 

bis(trimethylsilyl)amine and precipitation of the alkali metal derivatives [M(3-N)(3-

NH)2{Ti3(
5-C5Me5)3(3-N)}]2 (M = Li (2), Na (3), K (4), Rb (5), Cs (6)). The preparation of 

2-4 in high yields as orange (2 and 3) or yellow (4) crystals was carried out by careful layering 
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of toluene solutions of 1 with toluene solutions of the corresponding amido reagents.13 

However, the synthesis of the rubidium (5) and cesium (6) derivatives was performed under 

vigorous magnetic stirring to obtain the compounds as yellow solids in 60% yield. The stirring 

of the reaction mixture is crucial for the heavier Group 1 derivatives, otherwise dark green 

crystals identified by X-ray crystal structure determinations (vide infra) as the corner-shared 

double cube azaheterometallocubane complexes [M(3-N)(3-NH)5{Ti3(
5-C5Me5)3(3-N)}2] 

(M = Rb (9), Cs (10)) are isolated in poor yields. Accordingly, a more convenient synthesis for 

the complexes 9-10, and the analogous potassium derivative [K(3-N)(3-NH)5{Ti3(
5-

C5Me5)3(3-N)}2] (8), involves the reaction of 1 with 0.5 equiv of the alkali metal amido 

reagents [M{N(SiMe3)2}] at room temperature, isolating 8, 9 and 10 as dark green crystals in 

60-75% yields. 
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Scheme 1. Synthesis of the double cube nitrido complexes 2-10. [Ti] = Ti(5-C5Me5) 

The existence of both edge-linked and corner-shared double cube complexes for the 

heavier alkali metals moved us to try the preparation of corner-shared derivatives of lithium, 

sodium or potassium by treatment of 2-4 with complex 1. While the potassium complex 4 

reacts immediately with 1 in toluene at room temperature to give 8, the sodium complex 3 
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needs prolonged heating at 70 ºC to afford [Na(3-N)(3-NH)5{Ti3(
5-C5Me5)3(3-N)}2] (7) as 

an orange solid in elevated yield, and attempts to prepare a double cube complex of lithium 

failed since 2 did not react with 1 even at 100 ºC for several days. 

Compounds 2-10 were characterized by infrared spectroscopy and C, H, N 

microanalysis, as well as by X-ray crystal structure determinations for 2, 3, 8, 9 and 10. 

Attempts to establish the degree of association of the compounds in the gas phase by mass 

spectrometry (EI, 70 eV) were unsuccessful due to the lack of volatility. IR spectroscopy 

(KBr) was not very informative to elucidate edge-linked or corner-shared structures since all 

the spectra are very similar, displaying only one absorption in the 3352-3336 cm-1 range for 

the NH vibrations and several very strong bands at 739-611 cm-1 for the MN vibrations in the 

molecules. 

Once isolated in the solid state, all the compounds are virtually insoluble in benzene-d6 

or toluene-d8, and decompose in chloroform-d1. Fortunately, edge-linked compounds 2-6 are 

soluble in pyridine-d5 and could be characterized by 1H and 13C{1H} NMR spectroscopy. The 

NMR data are consistent with a Cs symmetry in solution for these complexes. 1H NMR spectra 

reveal resonance signals for two 5-C5Me5 groups in a 2:1 ratio and broad signals for 

equivalent NH groups. The 13C{1H} NMR spectra show also two sets of resonances for the 5-

C5Me5 ligands. On the other hand, complexes 7-10 are not soluble in pyridine-d5 and attempts 

to gain insight into their structures by NMR spectroscopy failed. 

The solid state structures of 2 and 3 revealed two azaheterometallocubane cores 

[MTi3N4] linked by metal nitrogen bonds.13 The structures showed four coordinate lithium and 

sodium atoms, and were essentially identical with the differences due to the atomic radii of the 

alkali metal elements. Despite many attempts, we were not able to grow suitable crystals for 

the unambiguous structure determination in the solid-state of the potassium, rubidium or 



 14 

cesium derivatives 4-6. Therefore, we can only tentatively suggest an analogous composition 

in base to the similarities of the spectroscopic data and solubility properties. 

Complexes 8-10 crystallize as solvent-free molecules. The structures confirm similar 

corner-shared double-cube [MTi6N8] cores to those found in our previous studies.9,10,14 

Selected distances and angles of the three structures are compared in Table 2. The molecular 

structure of 8 is shown in Figure 1, a simplified view of the core of 9 in Figure 2, and a Van 

der Waals model for the cesium complex 10 is given in Figure 3. 

Table 2. Selected averaged lengths (Å) and angles (°) for complexes 1 and 8-10. 

 1 8 (M = K) 9 (M = Rb) 10 (M = Cs) 

M-N  2.958(2) 3.070(3) 3.219(4) 

Ti-N 1.924(6) 1.930(2) 1.918(3) 1.925(4) 

M···Ti  3.682(1) 3.808(2) 3.968(1) 

Ti···Ti 2.802(3) 2.802(1) 2.795(1) 2.800(1) 

Ti-N-Ti 93.7(3) 93.1(1) 93.6(1) 93.3(2) 

N1-Ti-N 85.9(3) 86.6(1) 86.2(1) 86.5(1) 

N-Ti-N 107.5(3) 104.1(1) 103.8(2) 104.1(2) 

N-M-Na  62.0(1) 

118.0(1) 

58.8(1) 

121.2(1) 

56.2(1) 

123.8(1) 

Ti-N-M  95.4(1) 96.8(1) 97.8(1) 

a Narrower values correspond to intracube and wider to intercubes N-M-N angles. 

 

Figure 1. Perspective view of [K(3-N)(3-NH)5{Ti3(
5-C5Me5)3(3-N)}2] (8) with thermal 

ellipsoids at the 50% probability level. 



 15 

 

Figure 2. Simplified view of [Rb(3-N)(3-NH)5{Ti3(
5-C5Me5)3(3-N)}2] (9) with thermal 

ellipsoids at the 50% probability level. 

 

 

Figure 3. Van der Waals model for [Cs(3-N)(3-NH)5{Ti3(
5-C5Me5)3(3-N)}2] (10). 

Hydrogen atoms are omitted. 

 

Molecules of 8, 9 and 10 lie on crystallographic inversion centers located on the alkali 

metal atoms and present a C3 axis along the N(1)···M(1) line. The six-coordinate geometries 

around the potassium, rubidium and cesium centers are best described as trigonal antiprism 

where the two tridentate organometallic ligands adopt a mutually staggered conformation. 
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Within the tridentate ligands, the titanium-nitrogen bond lengths and the titanium-nitrogen-

titanium angles in complexes 8-10 are very similar and compare well with those determined 

for 1.7 

As can be seen in Table 2, the alkali metal-nitrogen bond distances increase down the 

group (K 2.958(2) Å, Rb 3.070(3) Å, Cs 3.219(4) Å). The increments from K to Rb (0.112 Å) 

and Rb to Cs (0.149 Å) are very close to the difference among their ionic radii in six-

coordinate geometries.19 In agreement with those increments and geometries, the N-M-N 

intracube angles decrease with the higher cation size (K 62.0(1)º, Rb 58.8(1)º, Cs 56.2(1)º), 

whereas the N-M-N intercubes angles increase (K 118.0(1)º, Rb 121.2(1)º, Cs 123.8(1)º). For 

comparison, the M-N bond lengths in 8-10 are close to the averaged values found in the other 

polydentate anionic nitrogen ligands,20 and also to the values reported for complexes 

containing tridentate neutral nitrogen ligands.21 

 

Cube-Type Complexes Containing Alkaline-Earth Metals. The synthetic chemistry is 

outlined in Scheme 2. Treatment of 1 with one equivalent of Group 2 bis(trimethylsilyl)amido 

reagents [M{N(SiMe3)2}2(thf)2]
16 in toluene led to the alkaline-earth derivatives 

[(thf)x{(Me3Si)2N}M{(3-N)(3-NH)2Ti3(
5-C5Me5)3(3-N)}] [x = 0 M = Mg (11); x = 1 M = 

Ca (12), Sr (13)] via bis(trimethylsilyl)amine elimination. The reaction with the magnesium 

amido complex was very slow at room temperature and was carried out at 50 ºC, but the 

calcium and strontium derivatives reacted almost immediately. Complexes 11-13 were isolated 

as orange solids in 75-90% yields after workup and characterized by spectral and analytical 

techniques, as well as by an X-ray crystal structure determination for 11. Whereas the 

structural data for 11 correspond to a solvent-free single-cube structure,14 the presence of one 

tetrahydrofuran ligand in 12 and 13 was established through the spectroscopic and analytical 

data. The complexes are stable under argon atmosphere during months in the solid state but 
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their solutions exhibit a different behavior. Complex 11 is thermally stable in benzene-d6 

solutions at 150 ºC but the analogous calcium and strontium complexes 12 and 13 decompose 

within hours at room temperature via ligand redistribution reactions (vide infra). In the same 

way, although an analogous barium derivative [(thf)x{(Me3Si)2N}Ba{(3-N)(3-NH)2Ti3(
5-

C5Me5)3(3-N)}] (14) was detected by NMR spectroscopy14 following the reaction of 1 with 1 

equiv of [Ba{N(SiMe3)2}2(thf)2]
16 in benzene-d6, 14 decomposed within minutes and was not 

isolated in a pure form.  
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Scheme 2. Synthesis of single and double cube nitrido complexes 11-18. [Ti] = Ti(5-C5Me5) 

Analogous treatment of 1 with 0.5 equiv of Group 2 bis(trimethylsilyl)amido reagents in 

toluene at 20-50 ºC afforded the corner-shared double cube azaheterometallocubane 

complexes [M{(3-N)(3-NH)2Ti3(
5-C5Me5)3(3-N)}2] (M = Mg (15), Ca (16), Sr (17), Ba 

(18)). Complexes 15-18 were isolated in 45-60% yield as red or orange suitable crystals for X-

ray diffraction studies directly from the reaction. Alternatively, 15-17 can be also prepared 

through the reaction of the single cube complexes 11-13 with 1 equiv of 1 in toluene at room 

temperature. 
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Complexes 15-18 were characterized by infrared spectroscopy and C, H, N 

microanalysis, as well as by X-ray crystal structure determinations. IR spectra showed a 

unique absorption at 3354-3318 cm-1 for the NH vibrations and several strong bands at the 

730-618 cm-1 range for the MN vibrations in the molecules. None of the double cube 

complexes is soluble in arene, tetrahydrofuran or pyridine solvents; therefore, it was not 

possible to obtain their NMR spectra. 

The molecular structures of [Ca{(3-N)(3-NH)2Ti3(
5-C5Me5)3(3-N)}2] (16) and 

[Sr{(3-N)(3-NH)2Ti3(
5-C5Me5)3(3-N)}2] (17) are presented as examples in Figures 4 and 

5. Selected distances and angles of complexes 1514, 16, 17 and 1814 are compared in Table 3. 

 

 

Figure 4. Simplified view of [Ca{(3-N)(3-NH)2Ti3(
5-C5Me5)3(3-N)}2] (16) with thermal 

ellipsoids at the 50% probability level. 
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Figure 5. Simplified view of [Sr{(3-N)(3-NH)2Ti3(
5-C5Me5)3(3-N)}2] (17) with thermal 

ellipsoids at the 50% probability level. 

 

Table 3. Selected averaged lengths (Å) and angles (°) for complexes 1 and 15-18. 

 1 15 (M = Mg) 16 (M = Ca) 17 (M = Sr) 18 (M = Ba) 

M-N  2.304(8) 2.518(11) 2.686(6) 2.821(9) 

Ti-N 1.924(6) 1.933(8) 1.924(10) 1.946(5) 1.925(9) 

M···Ti  3.059(2) 3.282(2) 3.453(1) 3.594(2) 

Ti···Ti 2.802(3) 2.815(3) 2.797(3) 2.817(2) 2.790(3) 

Ti-N-Ti 93.7(3) 93.2(4) 93.1(5) 92.5(3) 92.8(4) 

N1-Ti-N 85.9(3) 86.7(3) 86.8(4) 87.3(2) 87.0(4) 

N-Ti-N 107.5(3) 97.0(4) 98.7(5) 100.1(3) 100.7(4) 

N-M-Na  77.6(3) 

102.4(3) 

70.7(3) 

109.3(3) 

67.4(2) 

112.6(2) 

63.3(2) 

116.7(2) 

Ti-N-M  92.2(3) 94.4(4) 95.2(2) 96.7(3) 

a Narrower values correspond to intracube and wider to intercubes N-M-N angles. 

 

Complexes 16 and 17 crystallize with two toluene molecules, and the structures confirm 

the expected corner-shared double-cube [MTi6N8] cores. Molecules of 16 and 17 lie on 

crystallographic inversion centers on the M atoms, and present a mirror plane containing the 

central metal center, one titanium and also the apical N1 nitrogen atom. The calcium or 

strontium central atoms exhibit six-coordinate geometries in which the nitrogen atoms occupy 

the vertices of a trigonal antiprism. In that arrangement, the tridentate organometallic ligands 
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{(3-N)(3-NH)2Ti3(
5-C5Me5)3(3-N)} force the pentamethylcyclopentadienyl groups to be 

into an alternate position. 

The existence of structural data for the six-coordinate Mg-Ba complexes 15-18 allows 

making a comparison on bond lengths and angles along the Group 2. The N-M-N intracube 

angles decrease with the higher cation size (Mg 77.6(3)º, Ca 70.7(3)º, Sr 67.4(2)º, Ba 

63.3(2)º), whereas the N-M-N intercubes angles increase with an inverse tendency (Mg 

102.4(3)º, Ca 109.3(3)º, Sr 112.6(2)º, Ba 116.7(2)º). As can be observed in Table 3, the 

alkaline-earth metal-nitrogen bond distances increase down the group. The increments from 

Mg to Ca (0.214 Å), Ca to Sr (0. 168 Å) and Sr to Ba (0.135 Å) are close to the difference 

among their ionic radii in six-coordinate geometries.19 The six-coordinate geometries around 

the alkaline-earth metals in complexes 15-18 resemble those determined for the 

bis(hydrotris(pyrazolyl)borato) complexes Tp2M (M = Mg,22,23 Ca,23,24 Sr,24 Ba25) but showing 

longer M-N bond lengths and narrower N-M-N intraligand angles. 

The existence of crystal structures with corner-shared double cube cores for the Group 1 

(8-10) and 2 (15-18) elements allows to compare bond lengths between elements of the same 

group or the same row, as it is illustrated in Figure 6.26 As already pointed out for the 

compounds 8-10 or 15-18, again the variance of the distances M···Ti for M = K to M = Ca 

(0.400 Å), Rb to Sr (0.355 Å), and Cs to Ba (0.374 Å) are similar to those expected from their 

ionic radii in six-coordinate geometries (K+ - Ca2+ 0.380 Å, Rb+ - Sr2+ 0.340 Å, Cs+ - Ba2+ 

0.320 Å). 
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Figure 6. Periodic variation of the M···Ti distance for Group 1 and 2 elements in the 

corner-shared azaheterometallocubanes 8-10 and 15-18. 

 

On the other hand, the increase in the size of the metal center down the group 2 could be 

related with the different stability in solution exhibited by the single-cube complexes 

[(thf)x{(Me3Si)2N}M{(3-N)(3-NH)2Ti3(
5-C5Me5)3(3-N)}] (11-14). The four-coordinate 

magnesium complex 11 is stable at high temperatures in benzene-d6 but less crowded alkyl 

derivatives [RMg{(3-N)(3-NH)2Ti3(
5-C5Me5)3(3-N)}] (R = CH2Ph, CH2CMe3)

14 undergo 

ligand redistribution reactions at room temperature to give the insoluble corner-shared double 

cube azaheterometallocubane complex [Mg{(3-N)(3-NH)2Ti3(
5-C5Me5)3(3-N)}2] (15). 

Analogous processes from alkylmagnesium containing hydro(trispyrazolyl)borato ligands 

have been reported by Parkin et al. and compared with the Schlenk equilibrium (eq 1).22 

 

2 RMgX                      R2Mg + MgX2         (1) 

 

The calcium and strontium derivatives 12 and 13 present one tetrahydrofuran molecule 

in the coordination sphere, but the larger size of those metals allows their participation in 

Schlenk-type equilibriums to give the double cube complexes 16 and 17 at room temperature. 

In order to obtain single cube-type complexes with increased thermal stability, the replacement 
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of the tetrahydrofuran ligands by other neutral donors was examined. Treatment of 12 and 13, 

prepared in situ, with 4-tert-butylpyridine in toluene at room temperature afforded the 

analogous compounds [(tBupy){(SiMe3)2N}M{(3-N)(3-NH)2Ti3(
5-C5Me5)3(3-N)}] (M = 

Ca (19), Sr (20)) as orange solids (Scheme 3). The structural assignment of 19 and 20 was 

based on spectral and analytical data. Although 19 and 20 show an enhanced thermal stability 

when compared to the tetrahydrofuran adducts 12 and 13, their solutions still decompose at 

room temperature within days to give the insoluble double cube complexes 16 and 17. 

Preliminary studies on the reaction of 12 and 13 with polydentate amines (TMEDA, 

bipyridine,…) did not afford more stable adducts and were not pursued further. 
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Scheme 3. Synthesis of the single cube complexes 19 and 20. 

 

Conclusion 

The trinuclear complex [{Ti(5-C5Me5)(-NH)}3(3-N)] (1) is capable to incorporate 

alkali and alkaline-earth metals into its incomplete cube structure to give cube-type 

derivatives. The titanium/alkali metal azaheterometallocubane complexes exhibit edge-linked 

double cube [M2Ti6N8] or corner-shared double cube [MTi6N8] central cores. The former 

structures show the alkali metals in four-coordinate geometries and are preferred for the lighter 

elements (Li, Na), whereas the heavier elements (K, Rb, Cs) led to that containing six-

coordinate alkali metals. In the same way, for the alkaline-earth metals derivatives single cube 
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structures [MTi3N4] are stable only for magnesium complexes bearing bulky anionic ligands. 

The less-crowded magnesium derivatives and those of the heavier Group 2 elements show a 

tendency to give corner-shared double cube azaheterometallocubane complexes, where the 

alkaline-earth atoms exhibit six-coordinate geometries. 
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Table 1. Experimental data for the X-ray diffraction studies on compounds 8, 9, 10, 16 and 17. 

Formula C60H95KN8Ti6 (8) C60H95N8RbTi6 (9) C60H95CsN8Ti6 (10) C60H94CaN8Ti6 (16) 2C7H8 C60H94N8SrTi6 (17) 2C7H8 

Mr 1254.94 1301.31 1348.76 1439.18 1486.72 

T [K] 100(2) 293(2) 293(2) 293(2) 100(2) 

[Å] 0.71073 0.71073 0.71073 0.71073 0.71073 

crystal system Trigonal Trigonal Trigonal Orthorhombic Orthorhombic 

space group R-3 R-3 R-3 Pnnm Pnnm 

a [Å] 18.523(2) 18.767(6) 18.799(5) 15.324(3) 14.590(3) 

b [Å] 18.523(2) 18.767(6) 18.799(5) 14.731(3) 16.724(3) 

c [Å] 15.474(2) 15.741(8) 16.115(5) 16.680(3) 15.165(3) 

V [Å3] 4597.5(7) 4801(3) 4932(2) 3765.3(13) 3700.5(11) 

Z 3 3 3 2 2 

calcd [g cm-3] 1.360 1.350 1.362 1.269 1.334 

mm-1] 0.856 1.510 1.280 0.718 1.375 

F(000) 1986 2040 2094 1524 1560 

crystal size [mm] 0.46 x 0.30 x 0.15 0.35 x 0.30 x 0.25 0.43 x 0.32 x 0.30 0.28 x 0.18 x 0.12 0.664 x 0.316 x 0.222 

 range 5.25 to 27.49° 1.80 to 22.49°. 1.78 to 22.97°. 1.80 to 24.96º 4.79 to 30.23 

index ranges 
-23≤h≤21, -23≤k≤24, 

-20≤l≤20 

-16≤h≤20, -20≤k≤20, 

-17≤l≤12 

-20≤h≤0, 0≤k≤20, 

0≤l≤17 

-18≤h≤0, -17≤k≤0, 

-19≤l≤0 

-18≤h≤18, -19≤k≤19, 

-21≤l≤21 

reflections collected 18910 4665 1675 3716 44388 

Unique data 2322 [Rint = 0.151] 1493 [Rint = 0.106] 1529 [Rint = 0.021 3430 [Rint = 0.002] 4345 [Rint = 0.242] 

obsd data [I>2(I)] 1901 1250 1202 1286 3496 

goodness-of-fit on F2 1.047 1.082 1.080 1.013 1.103 

final R indices [I>2(I)] R1 = 0.044, wR2 = 0.105 R1 = 0.038, wR2 = 0.092 R1 = 0.046, wR2 = 0.116 R1 = 0.105, wR2 = 0.269 R1 = 0.106, wR2 = 0.252 

R indices (all data) R1 = 0.059, wR2 = 0.114 R1 = 0.050, wR2 = 0.097 R1 = 0.068, wR2 = 0.126 R1 = 0.275, wR2 = 0.353 R1 = 0.129, wR2 = 0.276 

largest diff. Peak/hole [e.Å-3] 0.632/-0.633 0.514/-0.293 0.564/-0.409  1.320/-0.580 3.167/-1.459 

a R1=||F0|-|Fc||/[|F0|] wR2= {[w( F Fc0

2 2 )2] /[w( F0

2 )2]}1/2  
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