

Grado en Ingeniería en Tecnologías de Telecomunicación

Trabajo Fin de Grado

Portable data acquisition and representation system for a VLF
receptor

Autor: Fernando Montoya Andúgar

Tutor/es: Consuelo Cid Tortuero
 Antonio Guerrero Ortega

2019

Universidad de Alcalá
Escuela Politécnica Superior

Portable data acquisition and representation system for a VLF receptor SWE-Group

2 Fernando Montoya Andúgar

UNIVERSIDAD DE ALCALÁ

Escuela Politécnica Superior

GRADO EN INGENIERÍA EN TECNOLOGÍAS DE
TELECOMUNICACIÓN

Trabajo Fin de Grado
Portable data acquisition and representation system for a

VLF receptor

Autor: Fernando Montoya Andúgar

Tutor/es: Consuelo Cid Tortuero
Antonio Guerrero Ortega

 TRIBUNAL:

 Presidente: ………………………………………………

 Vocal 1º: …………………………………………………

 Vocal 2º: …………………………………………………

 FECHA: …………………………………………………

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 5

“I have noticed even people who claim
everything is predestined, and that we can do

nothing to change it, look before they cross the
road”

- Stephen Hawking

Portable data acquisition and representation system for a VLF receptor SWE-Group

6 Fernando Montoya Andúgar

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 7

Thank You Note

This note of thanks is directed to all those who have helped me all these years to accomplish this
project, this graduation work.

Furthermore, this past year has been especially difficult for me, but this year I found a very strong
support in order to complete, in a good manner, this degree. This key person is Mara, who always
believed in me and gave me all the help a person can give.

To my family and friends who always knew I could achieve this goal that I planned four years
ago.

To Consuelo Cid Tortuero, a tireless fighter who gave me the opportunity to demonstrate all I
could do even at the beginning of the degree. She gave me the opportunity to create the first
prototype of a VLF receptor, with a blind faith in me and my colleague Alberto, giving us all we
needed in order to complete that task. In addition to this, she continued giving us different chances
in different occasions like the opportunity to go to European Space Weather Week (ESWW), at
Belgium, to show to the community what are we doing in Alcalá de Henares. For that and for
many reasons, I have to greatly thank my tutor Consuelo.

To Antonio Guerrero Ortega, for helping me these four months in all I have needed. He gave me
total liberty to face the graduation work with the resources of my choice, giving me help both in
the technical part and in the stuff. I really liked this freedom in my work. For all that reasons,
thanks Antonio.

To Alberto García Merino, my companion fatigue and colleague that believed in us as a team and
put with me all we could do to achieve our goals. I hope, Alberto, you have a promising future.

To the rest of people that faced me once and, in a few minutes, told me they were completely sure
I could get to the end in these four years of degree.

To you all, thank you.

Portable data acquisition and representation system for a VLF receptor SWE-Group

8 Fernando Montoya Andúgar

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 9

Index

Resumen ... 11

Palabras clave ... 11

Summary ... 11

Key words ... 11

Extended Summary ... 12

Glossary of abbreviation ... 15

Memory .. 16

1.- Introduction and objectives .. 16

2.- Applicable theory .. 18
2.1.- Analog to digital conversion theory [3] ... 18
2.2.- Discrete Fourier Transform [8] ... 22
2.3.- Fast Fourier Transform ... 28
2.4.- Microcontroller [11] .. 30
2.5.- The C programming language ... 31
2.6.- Communication protocols [13] ... 33

3.- Hardware overview ... 37
3.1.- Microcontroller used .. 37
3.2.- Internal ADC .. 37
3.3.- TFT screen ... 39
3.4.- Real-Time Clock (RTC) ... 41
3.5.- NodeMCU ESP8266 ... 41

4.- Software overview .. 42
4.1.- Arduino IDE ... 42
4.2.- Libraries used .. 43

5.- Structure of the code .. 46
5.1.- State machine 1 .. 47
5.2.- State machine 2 .. 48

6.- Tests and results ... 49
6.1.- ADC ... 49
6.2.- RTC .. 57
6.3.- SD card .. 58
6.4.- ESP8266 code .. 60

7.- Main code explanation ... 63
7.1.- Includes ... 63
7.2.- Defines .. 63
7.3.- Global variables .. 64
7.4.- Statement of functions ... 66
7.5.- Setup() function .. 67
7.6.- Loop () function ... 69
7.7.- Implemented functions in the system .. 79
8.- Conclusions and future work ... 87

Scheme of the project .. 89

Budget .. 90
Hardware resources .. 90

Portable data acquisition and representation system for a VLF receptor SWE-Group

10 Fernando Montoya Andúgar

Software resources ... 90
Writing and typing .. 90
TOTAL .. 90

User manual .. 91

Bibliography .. 100

Annex I Main code ... 102

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 11

Resumen

Este trabajo consta de dos microcontroladores y una serie de periféricos que complementan su
funcionalidad. En uno de estos periféricos, la pantalla TFT, se muestra un menú donde se pueden
realizar diferentes funcionalidades.

El microcontrolador principal recibe una señal y es capaz de descomponer la misma en sus
componentes de frecuencia. Muestra en pantalla, bien sea el espectro de la señal, o la señal en el
dominio del tiempo, pudiendo elegir 4 frecuencias de interés que posteriormente podrán ser
almacenadas en una tarjeta SD y enviadas al servidor correspondiente mediante el segundo
microcontrolador.

Palabras clave
Arduino, Transformada Rápida de Fourier, Osciloscopio, HTTP, Conversor analógico-digital

Summary

This work is based on two microcontrollers and some peripherals that complement their
functionality. In one of these peripherals, the TFT screen, shows a menu where you can select
different tasks.

The main microcontroller receives a signal and it is capable of decompose the signal in its
frequency components. The screen shows both the signal spectrum and the signal in the time
domain, depending on the user choice, being able to select 4 of these components that will be
saved in a SD card memory and uploaded to the corresponding server through the second
microcontroller.

Key words
Arduino, Fast Fourier Transform, Oscilloscope, HTTP, Analog to Digital Converter

Portable data acquisition and representation system for a VLF receptor SWE-Group

12 Fernando Montoya Andúgar

Extended Summary

Today and increasingly, the society depends on technology. Our day-to-day needs technology and
communications to carry out the work we have to do and the normal course of our lives. In this
sense, a failure in the communications system could be as nefarious as the absence of this
technology.

Since the Carrington event, the solar storm of 1859, which caused the whole telegraph system
failure in Europe and in North America, space weather has gradually become more and more
relevant.

Space weather is the denomination of the different phenomena of the interaction between the Sun
and the Earth. It studies the varying conditions within the Solar System. Space weather is
influenced by the solar wind and the interplanetary magnetic field (IMF) carried by the solar
plasma. One of the space weather phenomena are solar flares.

Solar flares have caused communications interruptions on many occasions. We have to mention
the event occurred on September 2017 in the Caribbean Area [1], where the communication failed
when being crucial to save many lives. This gives us an idea of how important is to understand
our System Solar. In order to study the Sun, there are several geostationary satellites as GOES,
which measure, at different soft X-ray wavelengths, the flux from the Sun. These data can be
downloaded by the scientific community to carry out different research-related studies.

In this End-of-Grade work, we will take advantage of the effects of the solar flares in our
atmosphere to identify and quantify them. In particular, we can indirectly measure the sudden
ionospheric disturbances (SID) to monitoring in real time the solar activity.

This project will cover the half of a VLF receptor. More specifically, the data acquisition and
representation system of the radio signal which is considered already characterized. The antenna,
preamplifier and signal conditioning as well as the characterization of the signal are part of
another End-of-Grade work.

Firstly, we will discuss the specific objective of this End-of-Grade work and an introduction to
the system developed. We comment that our goal is to measure indirectly solar flares by
monitoring the Ionosphere with the whole VLF receptor built.

Then, we will explain all the applicable theory to implement the system. The analog to digital
conversion theory, the DFT and its improved FFT version, SPI, UART, I2C communication
protocols, are some of the points explained for this purpose. In addition to this, we will see
different aspects about the C programming language and the use of memory in order to understand
how the sketch coded for the system is implemented in our microcontroller.

At this point we will cover the hardware used for the system. As we said, the system is
implemented digitally in a microcontroller. We will go over the one used for this purpose:
Arduino Due. In this microcontroller we found good balance between quickly productivity and
power. It is backed up by the Arduino community and implements a powerful Cortex-M3
processor, which peripherals can be configured by the manufacturer libraries, written in C
language, in order to set them as user prefers. The connection between them will be seen lately in
the part related to the schemes.

After the microcontroller overview, we will see the rest of the hardware used in this project. We
discuss about the internal ADC, TFT screen, RTC and the microcontroller based on the ESP8266
chip.

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 13

Then, we will discuss about the software aspects. Arduino IDE is the one chosen for our system.
We will talk about the different parts of a sketch coded in this IDE. After this, we have to talk
about the libraries used for the schematics. We will cover all the libraries that the Open Source
Community has developed, showing the more relevant aspects of the libraries selected. As an
important review, the library developed for Arduino Due for the TFT screen controller, uses some
features present in the Due microcontroller, such as DMA, that are not present in others Arduino
microcontrollers. It gives us more speed than other basic libraries rendering the screen.

After the description of the whole system, in a hardware and a software point of view, we will
explain the structure of the code. The sketch, which is about 880 lines of code, implements two
state machines in order to control the options and features that our system is capable of. The state
machine number one basically checks the screen to know which button was pressed. Knowing
the button, there is a set of variables, which only can take the true or false value, that leads the
system to the state machine number two. This second state machine checks these variables in
order to execute the corresponding part of the code.

We will comment different tests that were made with the purpose of establishing the value of
some variables or to demonstrate the applicable theory. Also, we will show the different sketches
and examples implemented, for each device used on the system, to demonstrate their
functionality. The ADC tests were, probably, the most important part of the system analysis. As
a complement to this part, there is a MATLAB script created for the signal analysis of the samples
obtained with our system. With an oscilloscope, we input a signal with amplitude and frequency
known to obtain in MATLAB the corresponding signal and its frequency. MATLAB is a
programming platform designed specifically for engineers and scientists. The heart of MATLAB
is the MATLAB language, a matrix-based language allowing the most natural expression of
computational mathematics.

With all the tests made, we will explain all the parts of the code implemented. We will go through
each part explaining all the concepts that, in advance, were explained before in the corresponding
section. The explanation of the code will be better understood if the corresponding 6.-Tests and
results section has been read. We will see the global variables declared, the functions
implemented, and of course, each state of the state machines. We recommend following all the
corresponding section before analyzing the code entirely. We explain the purpose of each
variable, the meaning of each statement in the code, and go through each function implemented
step by step with references to the applicable theory and documentation.

The code basically has four main features. One is a kind of oscilloscope where the user can see
the input signal in the time domain. There it is showed part of the signal because the purpose is
to notice the maximum and minimum values of the input signal and the form of the wave to show
the aspect of the signal. Another function is to analyze in real time the spectrum of the input
signal. When we see the signal frequency domain, we can see the relevant harmonic present in
the signal. This pretends to see the frequencies of interests in which the user may want information
over time. Also, this function can be used as an indicator of the antenna orientation. We can
measure, at first glance, if the current orientation of the input signal generator is correct or not.
This is one of the main goals that this End-of-Grade work intends to achieve.

The others two goals are described in the following. In order to extract the information over time
respect for a certain frequency, there had to be a frequency selection capability. There is a screen
in the system implementation where the user can see the spectrum of the input signal and select,
over it, 4 frequencies of interest. Once the frequencies are selected, we go into the main purpose
of the project. This goal aims to log the data of the desired frequencies selected before. When this
capability is set, the system takes the magnitude of the corresponding frequency and store it in
memory. This is repeated each 5 seconds to store the values over a minute. When a minute passed,
the system takes the average of all the data collected and store them in the SD card, in the form
of a csv file. There is a file each day in question. In addition to his, there is implemented another

Portable data acquisition and representation system for a VLF receptor SWE-Group

14 Fernando Montoya Andúgar

extra feature with the intention to test the possibilities of the system. When the minute passed, the
average of the values is computed and stored in the SD card, also the main microcontroller sends
to the secondary, the first frequency selected and its average magnitude. This second
microcontroller establishes an HTTP connection with the server of the SPACE WEATHER
GROUP of University of Alcalá, with the purpose to make a GET method and store in the server
those values. The user can access to a specific web page to see these results online.

After the code explanation, we show the scheme connection of the system. Also, there are
diagrams and photos of the system in its case.

To end the memory of this End-of-Grade Work, we made a User Manual to manage the system.

In this User manual we show the corresponding screen with examples of the input signals to make
an idea of how the system works at high level point of view. We will see a guide to understand
the system behavior and with that manual, any user can interact with the system understanding
the procedure.

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 15

Glossary of abbreviation

ADC – Analog to Digital Converter
CME – Coronal Mass Ejection
CPU – Central Processing Unit
CSV – Coma Separated Values
DAC – Digital to Analog Converter
DFT – Discrete Fourier Transform
DFS – Discrete Fourier Series
DMA – Direct Memory Access
DTFT – Discrete-Time Fourier Transform
FFT – Fast Fourier Transform
GPIO – General Purpose Input-Output
HTTP – Hypertext Transfer Protocol
I/O – Inputs and Outputs
I2C – Inter-Integrated Circuit
IDE – Integrated Development Environment
IP – Internet Protocol
LCD – Liquid Crystal Display
LF – Low Frequency
LSB – Least Significant bit
MSB – Most Significant Bit
PCB – Printed Circuit Board
RAM – Random Access Memory
RTC – Real Time Clock
SAR – Successive Approximation Register
SCL – Serial Clock Line
SD – Secure Digital
SDA – Serial Data Line
SID – Sudden Ionospheric Disturbance
SoC – System on Chip
SPI – Serial Peripheral Interface
SWE-UAH – Space Weather Group of University of Alcalá
S/H – Sample and hold
TCP – Transmission Control Protocol
TFT – Thin Film Transistor
UART – Universally Asynchronous Receiver/Transmitter
VLF – Very Low Frequency
µC – Microcontroller
µs – microseconds

Portable data acquisition and representation system for a VLF receptor SWE-Group

16 Fernando Montoya Andúgar

Memory

1.- Introduction and objectives

A solar flare is a sudden flash of brightness variations on the Sun. They produce electromagnetic
radiation across the electromagnetic spectrum at all wavelengths, from radio waves to gamma
rays. They occur in active regions, sometimes labelled as sunspots, where intense magnetic fields
penetrate the photosphere to link the corona to the solar interior. The energy released in a flare
may produce a coronal mass ejection (CME) although the relationship between CMEs and flares
is still not well understood. Powerful flares disturb the ionosphere interrupting communications.

The Very Low Frequency (VLF 3-30 kHz) and Low Frequency (LF 30-300 kHz) waves are
propagated through the surface-ionosphere following a waveguide model. The lowest level of the
ionosphere (D layer, at 60-90 km of altitude) conforms a conductive layer formed by electrons
and ions that reflect these kinds of waves forming a Zig-Zag long range transmission. These
transmissions are often used to air radio navigation, time radio signals (radio clocks) and military
communications.

The objective is, therefore, been capable of measure a communication of an VLF or LF emitter
in order to monitoring the power of the signal. When a solar flare occurs, the power of the received
signal changes and, for that reason, we can measure indirectly the moment and magnitude of a
solar flare.

From the Space Weather Group of University of Alcalá (SWE-UAH), it has been intended to
build an antenna capable of measure the power of these kind of signals and monitoring the
ionosphere situation. There is a prototype in the facilities of SWE-UAH that measured several
solar flares on September 2017. This proved that the system works. The prototype consists on a
loop antenna with a preamplifier and a computer.

The analog to digital converter used in the prototype is the sound card of the PC, and the signal
processing is done with a Python algorithm programmed by Eric Gilbert called “SuperSID” [2].
This leads to the system having to be in a specific place with some characteristics allowing to set
the computer and the antenna. Also, you have to see the computer screen with the working
algorithm to see the variation of the signal received with changes of the antenna position.

The SWE-UAH has, in addition to this final degree work, another student in charge of a new
antenna characterization and the signal offered to the data acquisition system. This work is done
by Alberto García Merino and it complements my work, in order to build a complete solar flare
detector based on the sudden ionospheric disturbances.

This work consists on the data acquisition and the representation of the signal of that antenna.

Different microcontrollers are available in the market with a good analogue to digital converter
(ADC) like ST Microelectronics family, or a simple microcontroller with its own external ADC
designed to this kind of signal. After different approaches to different products, the choice was a
system based on the Arduino Due board.

Arduino is an open-source electronics platform based on easy-to-use hardware and software. The
flexibility of its Integrated Development Environment (IDE), the accessible libraries and the
hardware built to work together with it, could facilitate the work of integrating all the components
of the system. About the available boards, the requirements of the project made the choice
difficult because the microprocessors offered by this platform usually have low capabilities and
are used for low requirements. The typical boards are Arduino UNO, with an 8-bit processor with
20 MHz, and Arduino Mega, with more input and outputs ports but with an 8-bit processor with

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 17

16 MHz also. On the other hand, Arduino has a board based on the well-known 32-bit Cortex-
M3 processor, called Arduino Due. This board implements the AT91SAM3X8E microcontroller
with 32-bit bus, clock speed of 84 MHz, Direct Memory Access (DMA) hardware, 12-bits ADC
up to 1 msps (mega samples per second), and so on.

With this board, and after some tests with other microcontrollers, the system is based on this
Arduino environment with some additional hardware that I will comment on this End-of-Grade
work.

So, the heart and brain of the system is this board. The rest of the hardware that pretends to be the
complement is an TFT Screen, a Real Time Clock (RTC), SD memory card and another
microcontroller called ESP8266.

The TFT screen shows a menu when the system is turned on. You can select four options that is,
basically, to view in real time the signal that the board is processing, view the spectrum of that
signal, select four frequency components to store in both the SD card and in the SWE-UAH
server, and the option to starts logging the data of this four frequency components selected.

To store the data, the system starts to sample the input and stores in a buffer in memory all the
digital values. When the buffer is empty, a Fast Fourier Transform is applied to decompose the
signal in its frequency components and then store in other buffer the amplitude of the four
frequencies selected. When a minute passes, the microcontroller takes the average of the values
stored in this set of time and, with this final value, the system stores the data. The data are stored
as a csv file in the SD card that shows in each row the four frequencies and its corresponding
amplitudes with the timestamp at the end of the row. In addition to this, the system sends this
average value through a serial communication to the other microcontroller (ESP8266), which will
upload the data to the SWE-UAH server.

The ESP8266 is a low-cost Wi-Fi chip that implements a TCP/IP complete stack and a processor
called Tensilica Xtensa with 32 bits and 80MHz. Although the processor is nearly the same as
AT91SAM3X8E, the poor Input/Output (I/O) capability and the low memory capacity do not
allow us to implement the entire project in it. This chip can be programmed through Arduino
IDE as well, and for this project there is a simple program stored in its memory that receive a
communication from Due to receive the data and then upload them through a GET command
(HTTP protocol) to the server. For this project, and in order to show the capability of the system,
there is only one frequency implemented. Although in the SD card the file is, as described before,
in the server, there is a web? page that receives one frequency and its amplitude and saves it in a
text file which can be viewed through the internet.

The screen used is a 2.8-inch SPI module based on ILI9341 controller. This screen also has a
touch panel that lies under the display. Furthermore, the PCB of the screen counts also with a SD
slot and the corresponding tracks to implement the SPI protocol also with this memory hardware.
For these reasons, and because there is a library written for Arduino Due to handle this controller
using the DMA, we consider? that this screen was perfect for our purpose.

The RTC is based on the DS323 chip. This clock pretends to store the timestamp of the samples
in order to know when the signal is processed. Also, the system takes into account the day in order
to create in the SD card the file corresponding with the current day, which is labeled according to
the year, month and day.

Another important section would be the implementation of the Fast Fourier transform. Many tests
were made to characterize the signal and to check the correct functioning of the system. It has
even been possible to check the complexity of the algorithms of the Discrete Fourier Transform
(DFT) and the FFT. In the following parts of this memory we will discuss the tests as well as the
peculiarities of them and hardware limitations.

Portable data acquisition and representation system for a VLF receptor SWE-Group

18 Fernando Montoya Andúgar

The main program is a state machine written in C programming language that calls different
functions to draw in the screen, implement the FFT, configure peripherals, etc. There are several
libraries used written by the open-source community, that I will mention at the end of this
document, which helped me to save time developing the protocols and controllers’
communications.

2.- Applicable theory

 2.1.- Analog to digital conversion theory [3]

ADC is the device in charge of generating a digital output signal of n bits from an analogue
voltage signal. The n bits are fixed and intrinsic to the ADC device. There are many internal
conversion technologies designed for this purpose, all of them with different characteristics.

The time used for digitalization is called conversion time. The first task the ADC performs is to
sample and then convert to digital in the retention stage.

2.1.1.-Sample and hold

The sample and hold (S&H) parts are not mandatory, but necessary for most applications. These
two steps are executed by the S&H device which can be inside or outside of the ADC. The sample
is considered equally-spaced and constant in order to characterize the signal properly. While
sampling step is executing, there is no digital output in the ADC.

Figure 2: Real S/H process

We can define the sample step as the stage in which the value of an analogue input signal is
extracted, every Ts seconds. To obtain enough information of the analogue signal, we have to
meet the Nyquist theorem [4]. This means that the sampling frequency has to be at least twice the

Sample and hold Quantifying Codification

Figure 1: Steps of an ADC

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 19

highest frequency involved in the analogue signal. But in reference to this, this criterion is
sometimes poor in real applications and the criteria used is to sample with a frequency ten times
higher the highest frequency component.

In the hold process is where the analog to digital conversion process is carried out. It is important
that the input remains constant in this step because it is consulted continuously, and variations in
this value causes a bad conversion. In addition to this, the hold time is intended to be as small as
possible.

2.1.2.- Quantifying

It is performed during the retention interval (hold mode). This process reduces the set of infinite
values, at the input, to a finite range of digital values at the output. The ADC reduces a set of
values in a time interval into the same digital value, depending on the span configured. The span
is the difference between the maximum and minimum voltage that our ADC can handle. In our
case, we have a span of 3.3V. In order to obtain the digital value, the transfer function used could
be that shown in Figure 3, called quantification by rounding.

Figure 3: Transfer function of a quantifying process

We can appreciate in Figure 3 that for different values of an input we can obtain the same digital
output value. Each section depends on the denominated quantification step ‘q’. This factor
depends on the span and the number of bits. We can see this dependence in following expression:

𝑞 =
𝑉$%&'()*−	𝑉$%&'(-.

2. − 1

In our system, q is fixed as the numerator is 3.3 V, and the denominator only depends on the
number of bits of our ADC which is fixed. In this sense, we have a quantification step q of:

𝑞 =
3.3

234 − 1
= 805.86	µ𝑉

The fact that the rounding is necessary, leads us to make an uncertainty. This error can be seen in
Figure 3 for example if Vin is equal to 𝑞 2: . In this hypothetical case, if Vout is equal to 0, we
will make a −𝑞 2: mistake, and by counterpart, if Vout is equal to 𝑞 2: the error would be 𝑞 2: .
For that reason, for each point of discontinuity we have an error of:

𝐸𝑟𝑟𝑜𝑟 = 	
±𝑞
2
	𝑉

Vin

Vout

Portable data acquisition and representation system for a VLF receptor SWE-Group

20 Fernando Montoya Andúgar

2.1.3.- Codification

This process is basically the vertical axis of Figure 3. For each value of this axis corresponds a
digital value in bits starting with the smallest:

Quantification output Output Code (12 bits)
0·q 0000…0000
1·q 0000…0001
2·q 0000…0010
3·q 0000…0011
… …

Figure 4: Codification table

2.2.- Types of ADC

Depending on the way the input signal is sampled, there are several types of ADC with different
characteristics.

2.2.1.- Successive approximation ADC
The most commonly used.

Figure 5: Block diagram of a successive approximation ADC

This kind of ADC converts the input signal via a binary search through all possible quantization
levels before finally converging upon a digital output for each conversion [5]. The input signal is
acquired by the S/H and led to the comparator. The comparator subtracts the input with the signal
coming from the internal DAC, which converts the signal represented by the Successive
Approximation Register (SAR). With this procedure, in ‘n’ clock edges the final value is obtained
in SAR. Its serial nature limits its operating speed (kHz range) and get slower for high resolutions
(n bits growing).

2.2.2.- Flash ADC

Also known as a direct-conversion ADC is the fastest ADC at the market (few GHz range).

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 21

Figure 6: Block diagram of a flash ADC

The speed of the ADC means that there is no need for a S/H because the comparator are the
sampling devices. As we can see in Figure 6, a flash converter needs 2. − 1 comparators for an
n-bit conversion. Without go deeper in the digital encoding, the response time of this device is
basically the propagation delay of the digital gates.

2.2.3.- Pipelined ADC

This is the kind of ADC implemented in our µC. It uses a flash converter internally. It is faster
than SAR ADC but slower than flash ADC. A possible block diagram of a 12-bit pipelined
ADC would be:

Figure 7: Block diagram of a pipelined ADC [6]

Here, the analog input Vin is first sampled and held steady by a S&H, while the flash ADC, the
one seen before, in stage one quantizes it to 3 bits. The 3-bit output is then fed to a 3-bit DAC,
and the analog output is subtracted from the input. This "residue" is then gained up by a factor of
4 and fed to the next stage. This gained-up residue continues through the pipeline, providing 3
bits per stage until it reaches the 4-bit flash ADC, which resolves the last 4LSB bits.

Although each stage generates 3 raw bits, we can see that the interstage gain is only 4. This is
because each stage resolves effectively only 2 bits. The extra bit is to reduce the size of the residue
by one half.

 Because the bits from each stage are determined at different points in time, all the bits
corresponding to the same sample are time-aligned with shift registers before being fed to the
digital-error-correction logic. Note that as soon as a certain stage finishes processing a sample,
determining the bits and passing the residue to the next stage, it can start processing the next

Portable data acquisition and representation system for a VLF receptor SWE-Group

22 Fernando Montoya Andúgar

sample due to the sample-and-hold embedded within each stage. This pipelining action accounts
for the high throughput [7].

2.2.- Discrete Fourier Transform [8]

The information within a signal as well as its characteristics are difficulty extractable and
manageable in time domain. This is why the introduction to transformed domains supposes a great
advantage to understand and to interpret signals and systems. There are two useful aspects that
justify the domain change: in one hand, frequency components analysis of the signal, and on the
other hand, because the change domain allows us to simplify the computational complexity. As
an example of the second part we know that convolution in the time domain corresponds to a
simple multiplication in the frequency domain. The more useful transformation tool for the study
of digital signals is the Fourier Transform of discrete time signals: Discrete-Time Fourier
Transform (DTFT) [9], trough whose properties the theory of frequency analysis is developed.

As we need a microcontroller, we need to implement an algorithm to extract the previous
information. We know that that a continuous time signal x(t) admits a numerical interpretation
through the sampling theorem, which application give us a numerical sequence x[n] in discrete
time. This sequence then, can be processed by numerical algorithms. A similar problem appears
when we see that, resulting from DTFT as analysis tool, 𝑋(𝑒BC) is a function of the continuous
variable Ω. As a consequence, it is needed to develop a numerical procedure that allow us to use
the theoretical capabilities of DTFT. This technique is the DFT.

The DFT is a numerical sequence obtained from sampling the 𝑋(𝑒BC) spectrum, allowing us to
represent, in a unique way, the signal x[n] in a transformed domain. As a consequence, the DFT
keeps a close relationship with the Fourier Transform of x[n].

The inability to process signals of infinite length, mostly because the finite amount of memory,
supposes another limitation in digital signal processing. This situation is also handled by applying
the DFT as a medium to obtain the real spectrum of the signal. Another advantage is the
computational cost. The DFT calculus is solved, in a very efficient way, by fast algorithms called
Fast Fourier Transform (FFT). These algorithms justify the use of DFT, especially in those
applications, that for their characteristics as consumption, size or time response, need a real time
operation.

 The DFT can be studied from different point of view. On one hand, it can be raised as a result
from sampling the spectrum, and on the other hand it also supports an interpretation based on the
relationship with Discrete Fourier Series, with periodic sequences.

2.2.1 Sampling in frequency domain

The 𝑋(𝑒BC) spectrum of a signal in discrete time x[n] contains the whole frequency information
about itself and it is computed by the DTFT:

𝑥[𝑛]
ℱ
→ 	𝑋(𝑒BC)

𝑋K𝑒BCL = M 𝑥[𝑛]𝑒NBC. = ℱ{𝑥[𝑛]}
Q

.RNQ

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 23

But it is a function of continuous variable and, for that reason, computationally intractable.
Because of that, a possible strategy is applying the sampling technique to the spectrum, with the
objective of maintain the frequency information of x[n] sequence in a finite set of data.

Be 𝑋(𝑒BC) the periodic spectrum of period 2π of a discrete signal x[n], the DFT of x[n] is defined
as the sequence X[k], which results from uniformly sampling 𝑋(𝑒BC) in the interval [0, 2π]:

𝑋[𝑘] = 𝑋K𝑒BCL'
CR4TU V

	, 𝑘 = 0, 1, 2, … ,𝑁 − 1

From this expression we see that X[k] is a finite sequence composed of N samples equally-spaced
from the DTFT of x[n] in the interval [0, 2π]. As X[k] is a sampling of 𝑋(𝑒BC), a lot of its
properties will be reflected, specially the next three ones:

- X[k] is inherently periodic with period N, since the sampling of a period of 𝑋(𝑒BC)
implies the implicit sampling across Ω-axis.

- The low frequencies correspond with the values of k around 0 or N.
- The high frequencies correspond with the values of k around the half of N.

From the DFT definition it is observed that it can provides a good description of the signal
frequency components, at least in those values where DTFT and selected points of DFT coincide.
Now, beyond that, it is intended that the transformation is biunivocal, which means that x[n] can
be recovered without errors from X[k], in which case, X[k] will define x[n]. In these conditions,
it can be defined the inverse transform 𝑥[𝑛] = 𝒟ℱ𝒯N3{𝑋[𝑘]}. Similar to sampling analog signals
selecting the correct sample rate, in DFT case is the same as to select the number of samples N
needed.

To analyze the consequences of the spectrum sampling, we apply the previous definition

𝑋[𝑘] = 𝑋K𝑒BCL'
CR4TU V

	= 	 M 𝑥[𝑛]𝑒NB
4T
U V.

Q

.RNQ

	, 𝑘 = 0, 1, 2, … ,𝑁 − 1

This expression of infinite terms is divided in groups formed by N addends:

𝑋 \𝑒B
4T
U V] = ⋯+ M 𝑥[𝑛]𝑒NB

4T
U V.

N3

.RNU

+ M 𝑥[𝑛]𝑒NB
4T
U V.

UN3

.R`

+ M 𝑥[𝑛]𝑒NB
4T
U V.

4UN3

.RU

+⋯

=	 M M 𝑥[𝑛]𝑒NB
4T
U V.

$UaUN3

.R$U

Q

$RNQ

If we substitute n by n-rN and, taking into account that 𝑒NB

bc
d V(.N$U) = 𝑒NB

bc
d V.:

𝑋 \𝑒B
4T
U V] = M e M 𝑥[𝑛 − 𝑟𝑁]

Q

$RNQ

f 𝑒NB
4T
U V.

UN3

.R`

= M 𝑥g[𝑛]𝑒
NB4TU V.	, 𝑘 = 0, 1, 2, … ,𝑁 − 1

UN3

.R`

Where 𝑥g[𝑛] = ∑ 𝑥[𝑛 − 𝑟𝑁]Q

$RNQ .

This is called the analysis equation of the DFT.

Portable data acquisition and representation system for a VLF receptor SWE-Group

24 Fernando Montoya Andúgar

Figure 8: Periodic extension with temporary overlap

As we can see in Figure 8?, if the period is lower than the signal length, the overlap between some
samples appears, and the original signal is affected by the final sum.

As it is demonstrated before, the temporary overlap is avoidable exceptionally if x[n] is finite in
time. Therefore, if it is wanted to preserve the original signal:

𝑥[𝑛] = i𝑥g
[𝑛]	, 0 ≤ 𝑛 ≤ 𝑁 − 1

0	,															𝑟𝑒𝑠𝑡

The condition is N ≥ L, which means that the number of samples to be taken from the spectrum
has to be greater than the length of the signal.

Figure 9: (a) x[n] sequence of length L with (b) its periodic extension without temporary overlap

In compliance with the requirements, we can define the DTFT expression in the form:

𝑋K𝑒BCL = M 𝑥[𝑛]𝑒NBC.
UN3

.R`

Where the limits of the summation have been reduced for convenience to the interval [0, N-1], as
the signal is null outside the interval if N > L. This leads us to the analysis equation:

𝑋[𝑘] = 𝑋 \𝑒B
4T
U V] = M 𝑥g[𝑛]𝑒

NB4TU V.	, 𝑘 = 0, 1, 2, … ,𝑁 − 1
UN3

.R`

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 25

 By counterpart, we have the synthesis equation of DFT:

𝑥[𝑛] = 𝑥g[𝑛] = M 𝑋[𝑘]𝑒B
4T
U V.

UN3

VR`

	 , 𝑛 < 𝐿

2.2.2 Relationship between DFT and Fourier Series development

Let 𝑥g[𝑛] = 𝑥g[𝑛 − 𝑙𝑁]	∀	𝑙	 ∈ 	ℤ, the periodic extension of x[n] with N > L period, the DFS
serves to characterize 𝑥g[𝑛] and establishes that every periodic signal can be expressed as a
lineal combination of a set of harmonically-related exponential functions.

For convenience, we are going to express the synthesis equation of the Fourier Series in the
way:

𝑥g[𝑛] =
1
𝑁
M 𝑎V𝑒

B4TU V.
UN3

VR`

Where 𝑎V are the coefficients of the Fourier Series. Usually, this formula appears without the
constant 1/N, but this does not affect to the approach because the results with one or another
constant would be proportional.

For discrete time signals, the number of different coefficients is equal to the signal period,
which is N. The coefficient’s N values 𝑎V are determinates through the analysis equation:

𝑎V = M 𝑥g[𝑛]𝑒
NB4TU V.

UN3

.R`

As this is an example without temporary overlap, it verifies that the expression is equal to:

𝑎V = M 𝑥[𝑛]𝑒NB
4T
U V.

UN3

.R`

The relationship between transformed domains of the original signal and its periodic extension
is stablished comparing the equations:

𝑋K𝑒BCL = M 𝑥[𝑛]𝑒NBC.
UN3

.R`

𝑎V = M 𝑥[𝑛]𝑒NB
4T
U V.

UN3

.R`

Where the difference is on the exponent. It is deduced then that:

𝑎V = 𝑋K𝑒BCL'
CR4TU V

		,			𝑘 = 0, 1, … ,𝑁 − 1

Where the DFS coefficients 𝑎V match with spectrum samples of x[n] and, by definition, it is the
DFT. Whit that, the DFT also can be defined as:

Portable data acquisition and representation system for a VLF receptor SWE-Group

26 Fernando Montoya Andúgar

𝑋[𝑘] = i𝑎V	,			0 ≤ 𝑘 ≤ 𝑁 − 1
0	,																					𝑟𝑒𝑠𝑡

To correctly interpret this section, we have to take into account that 𝑎V coefficients represent the
periodical extension 𝑥g[𝑛], whether or not temporary overlap occurs. On the other hand, the
number of spectrum samples of x[n] determines the 𝑥g[𝑛] period. If no temporary overlap occurs,
the 𝑎V coefficients describe x[n] in a univocal way, and the original signal can be recovered by
the expression 𝑥g[𝑛] =

3
U
∑ 𝑎V𝑒

Bbcd V.UN3
VR` .

This case is illustrated in Figure 8 with N > L. It is easily deduced that the limit case is imposed
by the length L. While the condition N ≥ L is fulfilled, there is no temporary overlap. As a
consequence, the minimum number of points necessary to DFT in order to obtain a univocal
operation is N = L.

To accomplish this point, if we meet the specified requirements explained before, with no
temporary overlap, the usual way to express the analysis and synthesis equations of DFT are,
respectively:

𝑋[𝑘] = M 𝑥[𝑛]𝑒NB
4T
U V.

UN3

.R`

			,				𝑘 = 0, 1, … ,𝑁 − 1

𝑥[𝑛] = 	
1
𝑁
M 𝑋[𝑘]𝑒B

4T
U V.

UN3

VR`

	,			𝑛 = 0, 1, … ,𝑁 − 1

In both equations it is implicitly assumed that x[n] is a finite sequence of length N. For that, all
the operations involved in obtaining the DFT imply the complete set of samples.

2.2.3 Simple example of DFT

To show how DFT works, we will see an example of a 1 Hz sinusoid with amplitude equal to 1
and a sampling frequency equal to 8 Hz.

Figure 10: DFT example

N=L=8

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 27

With a sampling frequency of 8 Hz, we obtain the following points in our input signal sequence
x[n]:

x[0] 0 x[4] 0
x[1] 0,707 x[5] -0,707
x[2] 1 x[6] -1
x[3] 0,707 x[7] -0,707

Figure 11: Input signal of DFT example

In order to obtain the spectrum, we apply the analysis equation for each frequency bin:

𝑋[𝑘] = M 𝑥[𝑛]𝑒NB
4T
U V.

UN3

.R`

			,				𝑘 = 0, 1, … ,𝑁 − 1

𝑋` = 0𝑒NB
4T
t ` + 0,707𝑒NB

4T
t ` + ⋯ =M𝑥[𝑛] = 0

𝑋3 = 0𝑒NB
4T
t 3·` + 0,707𝑒NB

4T
t 3·3 + 1𝑒NB

4T
t 3·4 + 0,707𝑒NB

4T
t 3·w + ⋯ = −4𝑗

𝑋4 = 0𝑒NB
4T
t 4·` + 0,707𝑒NB

4T
t 4·3 + 1𝑒NB

4T
t 4·4 + ⋯ = 0

𝑋w = 0𝑒NB
4T
t w·` + 0,707𝑒NB

4T
t w·3 + 1𝑒NB

4T
t w·4 + ⋯ = 0

𝑋z = ⋯ = 0
𝑋{ = ⋯ = 0
𝑋| = ⋯ = 0

𝑋} = 0𝑒NB
4T
t }·` + 0,707𝑒NB

4T
t }·3 + 1𝑒NB

4T
t }·4 + 0,707𝑒NB

4T
t }·w + ⋯ = 4𝑗

So, the complex numbers obtained from the spectrum are:

X[0] 0 X[4] 0
X[1] 0-4j X[5] 0
X[2] 0 X[6] 0
X[3] 0 X[7] 0+4j

Figure 12: Sequence of the spectrum of the DFT example

The frequency resolution of the frequency bins is the sampling frequency divided by the number
of samples. In our case, we have 8 Hz of sampling frequency divided by 8 samples, so 1 Hz per
frequency bin.

To draw the spectrum, we can obtain from the sequence obtained magnitude and phase. We are
going to focus in the magnitude of the signal. For that, we can compute the magnitude of the
frequency bins by:

|𝑋V| = �𝑅𝑒{𝑋V}4 + 𝐼𝑚{𝑋V}4

Which give us the same magnitude for 𝑋3 and 𝑋}, that is 4.

If we analyze the result, we can see that we are facing a two-sided frequency plot. We have the
Nyquist limit at the half of sampling frequency and for that reason we have a symmetric result.
For that reason, in order to maintain the energy, we can twice the values and get rid of those
values above this limit. Doing that, we only have one frequency bin with value -8j.

Portable data acquisition and representation system for a VLF receptor SWE-Group

28 Fernando Montoya Andúgar

But, even knowing that the first frequency bin corresponds to 1 Hz, that is the frequency of our
example, we have a magnitude of 8. This is because we use 8 points to obtain the discrete
spectrum of the signal and for that reason, we have to average it out over the 8 samples.

In addition to this, if we analyze the phasor obtained by this first frequency bin, we can see that
the phase of -8j is -π/2 or 3π/2. If we delay π/2 the first frequency bin cosine function of amplitude
1 (averaged), what we obtain is exactly the initial input function at 1 Hz.

2.3.- Fast Fourier Transform

There are several algorithms that implements the DFT in an efficient way. These are called Fast
Fourier Transform algorithms. In this section, we are going to study the algorithm implemented
in the system. As we saw previously, the DFT transforms the input samples of a signal x[n] with
length L, into an output samples of that input signal spectrum X[k] with period N or also called
of N points. Also, we saw that for avoid temporary overlap we have to meet N ≥ L. We will obtain
an algorithm in the way:

Figure 13: DFT or FFT block diagram

We can express the DFT analysis equation changing the notation to simplify this section:

𝐹V = M 𝑥.𝑒
NB4TU V.

UN3

.R`

With k = 0, 1, …, number of samples and also for n = 0, 1, …, number of samples.

If we analyze the algorithm complexity, we can see the number of operations. In the general case,
𝑥. is a complex signal, and to obtaining the N samples of 𝐹V according to the analysis equation
we need 𝑁4 complex multiplications and N·(N-1) complex additions. In addition to this, apart
from the truncate and rounding operations of microprocessors, they work with real numbers. Each
complex multiplication corresponds to 4 real products and 2 real sums, and each complex addition
correspond to 2 real sums. The necessary operations are, then, 4𝑁4 real multiplications and
N·(4N-2) real additions. By counterpart, the objective of the FFT is to achieve a number of
operations proportional to 𝑁 log4 𝑁, that for great numbers, the numbers of operations are
drastically reduced.

The trick to speed up the DFT is to take advantage of the periodic nature of sinusoids. We can
firstly divide up the DFT in an even index summation and in an odd index summation. This was
discovered by J. W. Cooley and John Tukey and is used in the denominated Cooley-Tukey FFT
algorithm [10].

DFT or FFT
algorithm

In
pu

t b
uf

fe
r

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 29

𝐹V = M 𝑥.𝑒
NB4TU V.

UN3

.R`

𝐹V = M 𝑥4(𝑒
NB4TV(4()U

U
4N3

(R`

+ M 𝑥4(a3𝑒
NB4TV(4(a3)U

U
4N3

(R`

Now we have the result of DFT in two smaller summations, each one with the half size of the
original. Now, we move the two in the numerator that multiplies m to denominator.

𝐹V = M 𝑥4(𝑒
NB4TV(U

4:

U
4N3

(R`

+ M 𝑥4(a3𝑒
NB
4TV((a3 4:)

U
4:

U
4N3

(R`

And we can simplify the odd index term by distributing out the constant that we can move to the
front of the odd summation.

𝐹V|��� = M 𝑥4(a3𝑒
NB
4TV((a3 4:)

U
4:

U
4N3

(R`

= M 𝑥4(a3𝑒
NB4TV(U

4:
NB
TV3 4:
U
4:

U
4N3

(R`

= 𝐶V M 𝑥4(a3𝑒
NB4TV(U

4:

U
4N3

(R`

With 𝐶V = 𝑒NB
bc�
d .

If we take a look at the exponentials of even and index terms, they look identical:

𝐹V = M 𝑥4(𝑒
NB4TV(U

4:

U
4N3

(R`

+ 𝐶V M 𝑥4(a3𝑒
NB4TV(U

4:

U
4N3

(R`

= 𝐸V + 𝑒
NB4TVU 𝑂V

There is something tricky about this particular exponential if we expand it applying the Euler
identity, and taking into account that k has integers values from 0 to N:

𝑒
NB4TV(U

4: = cos �
−2𝜋𝑘𝑚
𝑁
2:

� − 𝑗𝑠𝑖𝑛 �
−2𝜋𝑘𝑚
𝑁
2:

�

When the k value is larger than N/2 we observe that:

cos �
−2𝜋(𝑁 2: + 𝑟)𝑚

𝑁
2:

�	; 		𝑟 ≔ 𝑘 − 𝑁 2: 			 ; 			𝑟: 1, 2, … ,𝑁 2:

And we can distribute the numerator:

cos�
−2𝜋𝑚𝑁

2: − 2𝜋𝑚𝑟
𝑁
2:

� = cos �−2𝜋𝑚 −
2𝜋𝑚𝑟
𝑁
2:
�			 ; 			𝑚: 0, 1, 2, … ,𝑁/2

Even index
(𝑥`, 𝑥4, 𝑥z, …)

Odd index
(𝑥`, 𝑥3, 𝑥w, …)

Portable data acquisition and representation system for a VLF receptor SWE-Group

30 Fernando Montoya Andúgar

Every time you add 2π to the operand of the cosine, we obtain simply the cosine function without
the 2π multiple. So, every time the k value is larger than N/2 it is simply the that k value minus
N/2. This is the called symmetry identity, and it applies to the cosine and sin.

Symmetry identity:

cos�−
2𝜋𝑘𝑚
𝑁
2:
� = cos�−

2𝜋(𝑁2 + 𝑘)𝑚
𝑁
2:

�

sin�−
2𝜋𝑘𝑚
𝑁
2:
� = sin�−

2𝜋 �𝑁2 + 𝑘�𝑚
𝑁
2:

�

𝑘: 0, 1, … , 𝑁

If we observe the periodicity of the exponential, we can express 𝑋Vadb

 in terms of 𝐸V and 𝑂V:

𝑋
VaU4

= M 𝑥4(𝑒
NB
4T�VaU4�(

U
4:

U
4N3

(R`

+ 𝑒NB
4T
U �VaU4� M 𝑥4(a3𝑒

NB
4T�VaU4�(

U
4:

U
4N3

(R`

=

= M 𝑥4(𝑒
NB4TV(U

4: 𝑒NB4T(

U
4N3

(R`

+ 𝑒NB
4T
U V𝑒NBT M 𝑥4(a3𝑒

NB4TV(U
4: 𝑒NB4T(

U
4N3

(R`

=

= M 𝑥4(𝑒
NB4TV(U

4:

U
4N3

(R`

− 𝑒NB
4T
U V M 𝑥4(a3𝑒

NB4TV(U
4:

U
4N3

(R`

=

= 𝐸V − 𝑒
NB4TU V𝑂V

So, we can rewrite the frequency bins in the form:

𝑋V = 𝐸V + 𝑒
NB4TU V𝑂V

𝑋
VaU4

= 𝐸V − 𝑒
NB4TU V𝑂V

𝐸V = M 𝑥4(𝑒
NB4TV(U

4:

U
4N3

(R`

						 ; 							𝑂V = M 𝑥4(a3𝑒
NB4TV(U

4:

U
4N3

(R`

Everything repeats after k=N/2, and for that reason the total number of operations effectively
reduces in one half. We can repeat this process and divide each of the even and odd index
summations into their own even and odd index summations. Every time we divide the
summations, we halve the number of operations in the algorithm.

These final expressions will be called again in the system algorithm explanation. The way the
code is implemented is related to this expression of the Cooley-Tukey Fast Fourier Transform.

2.4.- Microcontroller [11]

A microcontroller is just a small computer on a single integrated circuit. It could contain one or
more CPUs, along with memory and some I/O peripherals. Program memory is often included in

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 31

the system as well as small amount of memory RAM. Microcontrollers are designed for
embedded applications, in contrast to the microprocessor used in personal computers.

They are usually used in automatically controlled applications. By reducing the size and cost
compared to a design that uses separate microprocessors, memory, and I/O devices,
microcontrollers make economical to digitally control even more applications, processes and
devices. Nowadays is usually to find a mixed microcontroller, which has an analog part as well
as digital one.

2.4.1.- Embedded design

A microcontroller can be considered a self-contained system with processor, memory and
peripherals. While some embedded systems are very sophisticated, many have minimal
requirements for memory and program length, with no operating system, and low software
complexity.

Microcontrollers must provide real-time response to several events. When certain event occurs, a
signal can activate some part of the program at the very moment when it happens. Possible
interrupt sources are device dependent, and often include events such as an internal timer
overflow, completing an analog to digital conversion, a button being pressed, or a data received
on a communication link as UART.

Typically, microcontroller programs must fit in the available on-chip memory. Compilers and
assemblers are used to convert the high-level programming languages into a compact machine
code for storage in the microcontroller memory. There are several types of memory where the
microcontroller can store the program. Usually, they have an EEPROM and flash memory which
are easy to use and cheap to manufacture.

 2.4.2.- Direct Memory Access (DMA)

Direct Memory Access is a method that allows an input and output device to send or to receive
data directly to or from memory, bypassing the CPU to speed up memory operations. The process
is handled by the chip named DMA controller (CDMA). There can be several DMA channels,
allowing to some peripheral to send or receive data from or to memory in parallel. The DMA
channel allow to the CPU to do another task instead of waiting the transfer operation. Once the
transfer to memory is completed, an interrupt occurs saying to the CPU that the transfer is done.

2.5.- The C programming language

The C programming language is general purpose programming language developed by Dennis
Ritchie between 1969 and 1972 in Bell Laboratories. It is a programming language oriented to
the implementation of Operative Systems, UNIX specifically. This programming language is
appreciated due to its efficiency in the code it produces, and it is the most popular programming
language to create system’s software.

It has the typical structures of a high-level programming language as well as constructions that
allow us the control in a low level. Compilers usually have extensions that allow mix assembler
code wit C code or direct access to memory or peripherals devices.

C is a common language to programming embedded systems. The light code that a C compiler
generates, with the capability to access software layers near to the hardware are the causes of its
popularity. A C characteristic that justify its use convenience in embedded systems is the bits

Portable data acquisition and representation system for a VLF receptor SWE-Group

32 Fernando Montoya Andúgar

manipulation. The systems contain memory mapped registers (MMR), through which peripherals
are configured. These registers mix many configurations in the same memory address, tough
different bits. In C you can change easily one of those bits without change the rest ones.

A C library is a set of functions in C programming language. The most common used libraries
are the C standard library and the ANSI C library, which provides the specifications of the
standard that are widely shared between libraries, as input and output files functions, memory
hosting and common date operations.

As many programs are written in C language, there is a wide variety of libraries available. Some
of these libraries are written in C due that C generates object code quickly, and then programmers
generate library interfaces to interact with them with routines coded in a higher-level language
such as Java, Perl or Python.

 2.5.1.- Use of memory

We have to distinguish two types of memory: dynamic memory and static memory. The first one,
is the memory reserved in execution time. Its main advantage is that its size can vary during the
program execution. This use of memory is needed when the programmer does not know the exact
amount of data to handle. The second one, is the amount of memory created at declaring any type
of variable. The amount of memory occupied by these variables cannot change in execution time
neither be released manually.

The dynamic memory usually is at heap, and the static memory in the stack or in a specifically
part of the memory. The static memory has a size fixed known in compile time.

All the objects created in C have a limited time in memory. There are three types of duration:
static, automatic and assigned. The global variables and local variables declared with the keyword
“static” have static duration. They are created before the program starts its execution and they are
destroyed when the program ends. The local variables have an automatic duration. They are
created when the program goes inside the memory block where they were created, and they are
eliminated when the program returns back from this program block. Assigned duration refers to
the memory are created una dynamic way with the mechanism that C has.

 2.5.2.- Recursivity [12]

A function is “recursive” when in its execution it makes a call of itself. Each time the
function calls itself, the previous calling remains not ended and the “recursion level”
increases in one unit. Every recursive function needs an input argument or an internal
variable whose value varies in each entry. This happens until the “end of recursion”
condition is reached. At this moment, all the pendant calls of the function begin to finish.

Each new call to the function generates in the stack new instances of the local variables
and input arguments of the function. If too many of this called are executed, the stack
may get full and an error might occur. There are compilers that allow to the user the
configure of the stack, facilitating tools to have a bigger space for the stack. It is
convenient to apply recursive solutions only when the problem to solve can be clearly
defined in a recursive way. In most of the cases, it is convenient to use iterative solutions
with loops, which do not demand so much amount of memory.

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 33

2.6.- Communication protocols [13]

 2.6.1.- UART

The asynchronous serial communication is one of the simplest ways to communicate one
microcontroller to any peripheral device with only two communication wires and the voltage
reference. There are only needed the transmission line (Tx) and the reception line (Rx).

Figure 14: Interconnection scheme between two µC for UART communication

This type of communication is characterized by the not needing of a clock signal. The
transmission of a data is realized sending and receiving a frame through the previous ports.
Assumed that the resting state is at high level, the Tx/Rx of each frame starts with the START bit
(logic ‘0’). Then, the data is sent beginning with the least significant bit (LSB), that could have a
variable length, but usually it is worked with 8 bits. After this, it is possible to working with a
parity check, sending the parity bit, and ending the transmission with the STOP bit with a high
logical level. For example, to send the ASCII code of the letter ‘A’, with an even parity, we could
have the format shown in Figure 15.

Figure 15: UART example with ASCII code of 'A'

The Figure 15 0 corresponds to the even parity because it represents the numbers of logical ‘1’
present in the frame. In the example there is a low-level active bit because character ‘A’ has two
logical highs. In order to send more frames in the same communication, after the STOP bit, the
process repeats itself.

2.6.2.- I2C

The I2C protocol has a more complex architecture. The I2C bus was developed in the late 1970’s
for Philips consumer products. It is composed by two wire bus: Serial Data Line (SDA) and Serial
Clock Line (SCL). It is important to mention that the device need to have an open-drain or open-
collector output stages, implementing the wired-AND function.

Figure 16: I2C hardware architecture

Portable data acquisition and representation system for a VLF receptor SWE-Group

34 Fernando Montoya Andúgar

In the architecture, it could be multiple masters and slaves, implementing a bi-directional
communication between them:

- Master-transmitter
- Master-receiver
- Slave-transmitter
- Slave-receiver

Data collision is taken care off. The Master and Slave roles have to configure the architecture.
The master is the device that starts the communication between peripherals. Each device is
addressed individually by software. The address is unique per device, it can be fully fixed or with
a programmable part through hardware pins.

Figure 17: I2C Address

The communication must start with the START condition, and ends with the STOP condition:

The start bit is always followed by the slave address. The slave address is followed by READ or
NOT-WRITE bit that indicates if the master is going to send or to receive data. The receiving
device of the frame, after the READ bit must send an ACKNOWLEDGE bit. After all this
process, the communication starts sending the corresponding data.

Figure 18: I2C example

During the transfer, SDA must be stable when SCL is high. Each byte has to be followed by an
acknowledge bit. The number of data bytes transmitted per transfer is unrestricted. If a slave

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 35

cannot receive or transmit another complete byte of data because an interrupt for example, it can
hold the clock line SCL in low (clock stretching) to force the master into a wait state.

Data transfer with acknowledge is obligatory. The receiver must pull down the SDA line during
the acknowledge clock pulse so that it remains stable LOW during the HIGH period of this clock
pulse.

Figure 19: Clock stretching and ACK bit in I2C communication example

2.6.3.- SPI

Serial Peripheral Interface (SPI) is a 4-wire full-duplex synchronous serial data link. The wire
lines are Serial Clock (SCLK), Master Out Slave In (MOSI) which means a data from master to
slave, Master In Slave Out (MISO) which means data from slave to master, and Slave Select (SS).

It was originally developed by Motorola. It is used for connecting peripherals to each other and
to microprocessors. It is composed by shift register that serially transmits data to other SPI
devices. The difference between the previous protocols is that here, we need “3+n” wire interface
with ‘n’ number of devices. This means that the SCLK, MOSI and MISO wires are connected in
parallel between all the devices in the net, and from the master, there are as many wire lines as
devices, each one corresponding to the chip select of each one of them.

Figure 20: SPI scheme connection

Portable data acquisition and representation system for a VLF receptor SWE-Group

36 Fernando Montoya Andúgar

The data frame is sent synchronously with the clock pulses, as in I2C. Before the transmissions
starts, the master puts in slow the chip select line of the corresponding device.

Four communication modes are available. Basically, the SCLK edge on which the MOSI line
toggles, the SCLK edge on which the master samples the MISO line and the SLCK signal steady
level (that is the clock level, high or low, when the clock is not active). It is important to mention
that the clock signal only toggles when a data has to be sent. Each mode is formally defined with
a pair of parameters called ‘clock polarity’ (CPOL) and ‘clock phase’ (CPHA).

Figure 21: SPI clock polarity and clock phase example

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 37

3.- Hardware overview

3.1.- Microcontroller used

Arduino Due is a microcontroller board based on the Atmel SAM3X8E ARM Cortex-M3 CPU.
With an 84 MHz core clock, the microcontroller has 54 digital I/O where we use only 9, 12
analogue inputs where we use only one for the antenna signal, 4 UARTs where we use one for
debugging and another one to communicate with ESP8266 module, SPI header used for
communications between SD card and screen and 2 I2C where we use one for RTC
communication. The board presents more characteristics, but they will not be covered in this
memory.

It runs at 3.3 V, so the maximum voltage that I/O pins and analog inputs can tolerate is 3.3 V.
This means that the signal of the antenna cannot exceed 3.3 V. A safety circuit should be applied
in the preamplifier to avoid this undesirable situation.

Figure 22: Arduino Due board [14]

The microcontroller has a flash memory of 512 Kbytes, composed of two blocks of 256 Kbytes
each, and 64 + 32 Kbytes of SRAM.

It can be powered by a USB cable or through the 5 V DC Jack input. In a debug mode, it can be
powered through the USB cable and also make a UART communication with the computer in
order to see the commands created for this purpose.

3.2.- Internal ADC

The ADC of the µC is a 12-bit ADC managed by an ADC Controller. It integrates 16-to-1 analog
multiplexer, that makes possible the conversion of 16 channels. One channel is reserved for
internal temperature sensor. The ADC supports a 10-bit or 12-bit resolution mode, and conversion
results are reported in a common register for all channels, as well as in a channel-dedicated
register. There are many ways to trigger it, but for this project, we will trigger it through software.
The ADC also integrates a Sleep Mode and a conversion sequencer and connects with a PDC
(DMA) channel. These features can reduce both power consumption and processor intervention,
but for our system, these features are not used.

Portable data acquisition and representation system for a VLF receptor SWE-Group

38 Fernando Montoya Andúgar

The ADC has a selectable single-ended or fully differential input and benefits from a 2-bit
programmable gain. In our case, we use a single-ended input with no gain (gain = 1). We have to
mention that, as we said in microcontroller part, it runs at 3.3. V, so the span is internally
configured with an input Vref of 3.3 V. We can see as an example Figure 23from the µC manual:

Figure 23: Single ended and fully differential ADC input modes [15]

In the single ended mode, the conversion is made with the voltage that the µC finds at the
corresponding analog pin, referenced to ground. For that reason, we have to connect the µC
ground to the antenna signal ground.

Figure 24: ADC of the microcontroller board used [15]

The use of the ADC is made with a library that the manufacturer gives to programmers. This
library is written in C language and handle all the necessary signals that a conversion requires.

This ADC is a pipelined ADC seen in the applicable theory part as we can see in Figure 24.
Without going deep in all the signals required to a conversion, we can see an example extracted
for the manual to see all the steps in order to realize a conversion in each channel.

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 39

Figure 25: Signals involved in an ADC conversion [15]

 3.3.- TFT screen

The screen used is a 2.8-inch SPI module based on chip ILI9341, SKU: MSP2807. ILI9341 is a
262,144-color single-chip SOC driver for a-TFT liquid crystal display with resolution of
240RGBx320 dots, comprising a 720-channel source driver, a 320-channel gate driver, 172,800
bytes GRAM for graphic display data of 240RGBx320 dots, and power supply circuit. ILI9341
supports parallel 8-/9-/16-/18-bit data bus MCU interface, 6-/16-/18-bit data bus RGB interface
and 3-/4-line serial peripheral interface (SPI).

The moving picture area can be specified in internal GRAM by window address function. The
specified window area can be updated selectively, so that moving picture can be displayed
simultaneously independent of still picture area.

Figure 26: Screen of the system [16]

Portable data acquisition and representation system for a VLF receptor SWE-Group

40 Fernando Montoya Andúgar

This screen is handled by a C-library that will be explained in the software part of this memory.
The PCB of the screen has a SD slot in order to use SD card with SPI protocol also. This screen
also counts with a touch screen which lies under the TFT screen. From the manufacture, we have
the following figure and table which resumes all the pins on the screen and their use. At the end
of the memory, we will see the actual schematic of the system, with all the pins connected with
all the hardware. On the right side of the figure, we can see the SD card connections.

Number Pin Label Description

1 VCC 5V/3.3V power input

2 GND Ground

3 CS LCD chip select signal, low level enable

4 RESET LCD reset signal, low level reset

5 DC/RS LCD register / data selection signal, high level: register, low level: data

6 SDI(MOSI) SPI bus write data signal

7 SCK SPI bus clock signal
8 LED Backlight control, high level lighting, if not controlled, connect 3.3V always

bright
9 SDO(MISO) SPI bus read data signal, if you do not need to the read function, you cannot

connect it
(The following is the touch screen signal line wiring, if you do not need to touch function or the
module itself does not have touch function, you can not connect them)

10 T_CLK Touch SPI bus clock signal
11 T_CS Touch screen chip select signal, low level enable
12 T_DIN Touch SPI bus input
13 T_DO Touch SPI bus output
14 T_IRQ Touch screen interrupt signal, low level when touch is detected

Figure 27: Screen connections

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 41

3.4.- Real-Time Clock (RTC)

Based on the DS3231, the DS3231 is a low-cost, extremely accurate I2C real-time clock with an
integrated temperature compensated crystal oscillator (TCXO) and crystal. The device
incorporates a battery input and maintains accurate timekeeping when main power to the device
is interrupted. The integration of the crystal resonator enhances the long-term accuracy of the
device as well as reduces the piece-part count in manufacturing line.

The PCB used incorporates the DS3231 chip and EEPROM ATC24C32 to supply a 32 Kbytes
EEPROM to store data. In this project, this memory is not used because the system memory is
the SD card in order to facilitate the physically data transport.

Figure 28: RTC PCB used in the system

3.5.- NodeMCU ESP8266

NodeMCU is a name that involves both Open Source firmware and ESP8266 based PCB.
Nowadays, NodeMCU refers to the development board. This board is based on ESP12E.

Figure 29: NodeMCU ESP8266

The ESP12E is a miniature Wi-Fi module present in the market and is used for establishing a
wireless network connection for microcontroller or processor. The core of ESP12E is
ESP8266EX, which is a high integration wireless System on Chip (SoC). It features ability to
embed Wi-Fi capabilities to systems or to function as a standalone application. It is a low-cost
solution for developing IoT applications.

Figure 30: ESP12E

Portable data acquisition and representation system for a VLF receptor SWE-Group

42 Fernando Montoya Andúgar

It has a serial communication interface in which the UART communication between the µC is
performed, programmable GPIO, an SPI interface and, apart from this, is powered with 3.3 V
also.

This board has been programmed through Arduino IDE and it will be covered in the software
section of this memory.

4.- Software overview

 4.1.- Arduino IDE

The Arduino IDE is a cross-platform application that is written in the programming language
Java. It is used to write and upload programs to Arduino compatible boards, but also, with the
help of 3rd party cores, other vendor development boards. It supports the languages C and C++
using special rules of code structuring [17].

The Arduino IDE supplies a software library from the Wiring [18] project, which provides many
common input and output procedures. User-written code only requires two basic functions, for
starting the sketch and the main program loop, that are compiled and linked with a program stub
main() into an executable cyclic executive program with the GNU toolchain, also included with
the IDE distribution.

If we take a look at a typical program in Arduino, we have:

Figure 31: Typical program structure in Arduino IDE

Where we can see, according to the Wiring project, the basics functions of setup() and loop(). The
setup function is executed once, while the loop functions is iterative. This means that the loop
function is executed over and over again while the microprocessor is powered on.

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 43

4.2.- Libraries used

 4.2.1.- ILI9341_due [19]

This is an Arduino Due library for interfacing with ILI9341 SPI TFTs. Although this library can
be used for other microcontroller thanks to its implementation, it can take advantage of the
Arduino Due DMA. It can be configured in DMA SPI optimized mode which provides a very
faster way to transfer data in comparison with the use without DMA. The library is based on 3
libraries:

- Ili9341_t3 library from Paul Stoffregen [20]
- SdFat from Bill Greiman [21]
- GLCD from Michael Margolis and Bill Perry [22]

The first one was used as a base. This ili9341_t3 library has various optimization for Adafruit’s
ILI9341 and GFX libraries. One class from SdFat library is used for utilizing Due’s DMA in SPI
transfers which provides the main speed boost. This library is also used to handle the file inside
de SD card. From the GLCD library the ili9341_due library takes the gText class as a base for
rendering custom fonts. The documentation of the library can be seen in the webpage of the author
[16]. It is important to mention that the LCD is measured in pixels. The pixels have an x-
coordinate and a y-coordinate. The pixel [0,0] is in the upper left corner of the screen.

4.2.2.- URTouch [23]

This library provides touch functionality to the system. It also uses the SPI library to communicate
with the TFT. The library implements some functions that read the register of the TFT controller
and handle the data to simplify the use of it. The documentation is within the library and it can be
obtained from the author webpage. In our case, we will see the functions used for this project.

4.2.3.- ILI9341_due_Buttons [24]

Created by Graham Lawrence, it is an add-on library which allows to easily add buttons to the
user interface. It is based on the UTFT buttons library, that is the predecessor of the URTouch
library commented before. Its documentation is within the library downloaded.

4.2.4.- RTClib [25]

This library is a fork of the original Jeelab’s RTClib library. It is implemented by Adafruit and it
is a lightweight date and time library for JeeNodes and Arduino. It uses I2C communication
between microcontroller and the device. The use of the library is very simple, and with the
example we can know how to handle it.

4.2.5.- Including and using the libraries

At the beginning of the sketch, we have to include the libraries

#include <SPI.h>
#include <SdFat.h>
#include <ILI9341_due.h>
#include <URTouch.h>
#include <ILI9341_due_Buttons.h>
#include "SmallFont.h"

Portable data acquisition and representation system for a VLF receptor SWE-Group

44 Fernando Montoya Andúgar

#include "BigFont.h"
The Fonts are needed in order to write text in the LCD screen. These are basically for an
automation and simplicity in the code.

Also, we have some defines to simplifies the code.

#define Y_MAX 240 //Maximum pixels in Y axis
#define X_MAX 320 //Maximum pixels in X axis
#define Xo 53 //Pixels for axis (0,0)
#define Yo 10

// LCD
#define TFT_RST 8
#define TFT_DC 9
#define TFT_CS 11
//SD
#define SD_CS 10
//Touch pannel
#define T_CLK 30
#define T_CS 28
#define T_DIN 26
#define T_DOUT 24
#define T_IRQ 22

The last 3 lines are the pins where RESET and DC pins of the LC screen are connected in Arduino
Due, while the last one is the chip select of the SD card.

Once all of this is declared, we can start to create the objects needed to work with the peripherals
in the Arduino IDE. We create the filesystem SD for the SD card and create the file that for the
program it is called logSIDSWAP. Then, for the TFT we use the initialization function provided
in the library with the pins necessary for the correct use of it. We do the same with the touch panel
using all the pins connected in the initialization function. With these to objects created we can
use the buttons library passing the memory address of the objects commented and for the last, we
create the rtc object to handle the RTC device.

//File that we will save in the SD
SdFat sd; // set filesystem
SdFile logSIDSWAP;

// Use hardware SPI
ILI9341_due tft = ILI9341_due(TFT_CS, TFT_DC, TFT_RST);

URTouch myTouch(T_CLK, T_CS, T_DIN, T_DOUT, T_IRQ);

// Finally we set up ILI9341_due_Buttons :)
ILI9341_due_Buttons myButtons(&tft, &myTouch);

RTC_DS3231 rtc;

To operate with the times that our device will give us, we have to create a time structure as the
example does. We create two structures in order to operate with intervals of time

DateTime now;
DateTime after;

Also, it is important to mention that, the buttons library works with an integer when works with
the button. For that reason, all the buttons in the system have to be declared as an integer. In the
code we can see the definition of all of them as a global variable.
int backButton, dispButton, fftButton, logButton, selectFreqButton;

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 45

int saveButton, leftButton, rightButton;
To end with this section of using the libraries, we have to mention the differentiation between
two areas in the LCD Screen.

gTextArea graphArea{Xo, Yo, X_MAX - Xo, 180};
gTextArea allArea{0, 0, X_MAX, Y_MAX};

They are just to select the working area when a graph is rendered. The graphArea is a square area
smaller than the whole screen (allArea), that paints the signal or the FFT of the signal without
changing the axis and the labels of the axis.

4.2.6.- Arduino-Core SAM libraries [26]

As we will see in the test section of the memory, it is needed to handle the ADC in a different
way than the Wiring does. Using the ADC, just like any peripheral, is done by setting appropriate
values to related register. We can see in the ADC section all the signals needed to handle the
device, and in the manual, we can see the 32-bit 14 involved registers on its behavior. It can be
done directly in program, but it is quite susceptible of errors. For that reason, Atmel provides
libraries to make the task easier.

They are bundle in Arduino (\%arduino%\hardware\arduino\sam\system\libsam\), but we can see
in the references the webpage where they are allocated in order to see the structure of it. With this
library, instead write directly in the registers we can use C functions with the appropriate
parameters. There are two functions related with the ADC and we are going to explain them in
this part.

/*Configure
ADC***
**/

void configureADC() {
 // Setup all registers
 pmc_enable_periph_clk(ID_ADC); // To use peripheral, we must enable clock
distributon to it
 adc_init(ADC, SystemCoreClock, ADC_FREQ_MAX, ADC_STARTUP_FAST); //
initialize, set sampling frequency
 adc_disable_interrupt(ADC, 0xFFFFFFFF); //disable interrupt of theA ADC
 adc_set_resolution(ADC, ADC_12_BITS); //We use the available resolution of
the ADC
 adc_configure_power_save(ADC, 0, 0); // Disable sleep, always powered
 adc_configure_timing(ADC, 0, ADC_SETTLING_TIME_3, 1); // Set timings -
standard values
 adc_set_bias_current(ADC, 1); // Bias current - maximum performance over
current consumption
 adc_stop_sequencer(ADC); // not using it
 adc_disable_tag(ADC); // it has to do with sequencer, not using it
 adc_disable_ts(ADC); // disable temperature sensor
 adc_disable_channel_differential_input(ADC, ADC_CHANNEL_7); // A0 is channel
7 of the ADC
 adc_configure_trigger(ADC, ADC_TRIG_SW, 1); // triggering from software,
freerunning mode
 adc_disable_all_channel(ADC);
 adc_enable_channel(ADC, ADC_CHANNEL_7); // just one channel enabled
}

Most of the parameters are by default, but we use them to make sure their status. In every function
there are the corresponding comment explaining the intention of it. As resume, we enable the the
peripherals clock and we use the maximum ADC working frequency. We will comment some
aspects about that with the tests and results obtained. The analog input used for the project is A0,

Portable data acquisition and representation system for a VLF receptor SWE-Group

46 Fernando Montoya Andúgar

and that input does not correspond with the channel 0 of the ADC, instead is the channel 7. We
trigger the ADC in our code and for that reason the trigger is set by software.
/*Sampling**
*********/

void Sampling(double *sw, double *re, double *im)
{
 adc_start(ADC);
 for (int i = 0; i < N; i++) {
 while ((adc_get_status(ADC) & ADC_ISR_DRDY) != ADC_ISR_DRDY)
 {}; //Wait for end of conversion
 sw[i] = adc_get_latest_value(ADC); // Read ADC
 }

 adc_stop(ADC);

 for (int i = 0; i < N; i++) {
 //To store the voltage value in the array -> value*SPAN_ADC/(2^n-
1)
 sw[i] = sw[i] * 3.3 / 4095;
 re[i] = sw[i];
 im[i] = 0;
 }

}

The Sampling function receives the memory address of three variables, which is the destination
array, and also two arrays in order to difference the real and imaginary part of the signal. Even
this is apparently unnecessary, we use the data with two arrays to operate with complex values
when we work with the FFT.

Once the ADC starts, the microcontroller waits actively to obtain the complete conversion of the
sample. Once it is done, that is flagged by the corresponding register, we add the value to the
destination array. This value is in bits, so, once the array is completed, we do in the real array the
adequate operation (multiplying by q) to obtain the voltage value. The active wait has been chosen
due to the system requirements. As the main purpose of the system is to graph data corresponding
with a day, and the time needed to fulfill the array is 36µs as we will cover in the corresponding
section, the needs of the system allow us to make this decision instead of working with
interruptions.

In order not to intervene in the sampling, we compute the voltage value of each sample after the
array is completed and the ADC stops.

5.- Structure of the code

The structure of the code is basically:

- Includes
- Defines
- Global variables
- Functions declarations
- Setup function that is executed once
- Loop function that implements two states machine to handle the system

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 47

To explain the states machine, we are going to use the following diagrams. Each part of the state
machine will be covered in the explanation of the code. The first state machine handles the screen
and the variables that are the base for the second state machine.

5.1.- State machine 1

now = actual time
variables set false

ConfigureADC()
Sampling()

sendData2Esp()
data2Esp=false

If data2Esp = true

If log_data = false

Check
button
pressed

If pressed button

-Draw the time
graph
Paint_time = true
Paint_fft = false
Log_data.= false
Sel_freq = false

backButton

dispButton

fftButton

logButton

selectFreqButton

-sidFFT()
-Draw the freq
graph
Paint_time = false

Paint_fft = true
Log_data.= false
Sel_freq = false

-now=actual time
-after=5seconds
more
Paint_time = false
Paint_fft = false
Log_data.= true
Sel_freq = false

-sidFFT()
-Draw the freq
graph
-Buttons for select
freq screen
enabled
Paint_time = false
Paint_fft = false
Log_data.= false
Sel_freq = true

sel_freq

Check
button
pressed

Paint
vertical
line and
compute
the index
of actual

frequency
Store the
frequency
selected

leftButton

rightButton

saveButton

Paint
vertical
line and
compute
the index
of actual

frequency

Portable data acquisition and representation system for a VLF receptor SWE-Group

48 Fernando Montoya Andúgar

5.2.- State machine 2

Check variables

refresh_screen--

If paint_time=true

Draw the first
half (512)
samples

-Draw the second half
(512) samples

-Refresh_screen=100

Refresh_screen=50

Refresh_screen=0

refresh_screen--

If paint_fft=true

-sidFFT()
-postProcessing()
-draw FFT
-Refresh_screen=100

Refresh_screen<=50

-Check if has passed 5 seconds, if
does:

-ConfigureADC()
-Sampling()
-sidFFT()
-postProcessing()
-Store temp value of freqs selected

-Store the average value in SD
-Send freq and mag to the server

Minute achieved

5 seconds of span

If log_data=true

-sidFFT()
-postProcessing()
-draw FFT
-show the frequency where
the vertical line is
- Refresh_screen=100

refresh_screen--

Refresh_screen<=50

If sel_freq=true

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 49

6.- Tests and results

6.1.- ADC

6.1.1.- Test ADC 1

First, the basic test that we made in order to check the performance of the Wiring functions, it
was coded the following simply sketch:
int input = A0;
int led = 13;
int val;
int time1, time2;
int count = 0;
void setup()
{
 pinMode(input,INPUT);
 pinMode(led,OUTPUT);
 Serial.begin(115200);
 delay(1000);
}
void loop()
{
 time1 = micros();
 digitalWrite(led,HIGH);
 val = analogRead(input);
 time2 = micros() - time1;
 digitalWrite(led,LOW);
 Serial.println(time2);
 count++;
 if(count==50) while(1);
}

Where we use the UART to see how much time spends the microcontroller in 50 conversions
with the standard wiring library. The result was:

Figure 32: First test of ADC with wiring library

We can see a sampling period of average 8 µs. Which means a sampling frequency of 125 kHz
which limits us to signals below 62,5 kHz. It is important to mention that Atmel says in the
datasheet of the microcontroller that the ADC has a maximum sampling rate of 1msps, which is
a maximum sampling frequency of 1 MHz. This difference between the manufacturer data and
the one obtained with the standard Arduino library led us to make another decision about the
ADC.

Portable data acquisition and representation system for a VLF receptor SWE-Group

50 Fernando Montoya Andúgar

As sending data through the serial port spends some time, without sending data and just
see with an oscilloscope [27] the output port 13, we observed:

Figure 33: ADC wiring test 2

That is a sampling period of 6,643 µs, or 150 kHz of sampling frequency.

6.1.2.- Test ADC 2

In this test we used the Arduino-Core SAM library. The explanation of the code was made in the
software part. Here the difference is in the way we put in high or low logical mode the
corresponding pin. As the function digitalWrite() is slow, we put the pin high or low with the
direct register operation through PIO_Set() and PIO_Clear():

int input = A0;
int led = 13;
int val;

void setup()
{
 pinMode(input,INPUT);
 pinMode(led,OUTPUT);
 // Setup all registers
 pmc_enable_periph_clk(ID_ADC); // To use peripheral, we must enable
clock distributon to it
 adc_init(ADC, SystemCoreClock, ADC_FREQ_MAX, ADC_STARTUP_FAST); //
initialize, set maximum posibble speed
 adc_disable_interrupt(ADC, 0xFFFFFFFF);
 adc_set_resolution(ADC, ADC_12_BITS);
 adc_configure_power_save(ADC, 0, 0); // Disable sleep
 adc_configure_timing(ADC, 0, ADC_SETTLING_TIME_3, 1); // Set timings
- standard values
 adc_set_bias_current(ADC, 1); // Bias current - maximum performance
over current consumption
 adc_stop_sequencer(ADC); // not using it
 adc_disable_tag(ADC); // it has to do with sequencer, not using it
 adc_disable_ts(ADC); // deisable temperature sensor
 adc_disable_channel_differential_input(ADC, ADC_CHANNEL_7);

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 51

 adc_configure_trigger(ADC, ADC_TRIG_SW, 1); // triggering from
software, freerunning mode
 adc_disable_all_channel(ADC);
 adc_enable_channel(ADC, ADC_CHANNEL_7); // just one channel enabled
 adc_start(ADC);
}

void loop()
{
 while(1)
 {
 PIO_Set(PIOB,PIO_PB27B_TIOB0);
 while ((adc_get_status(ADC) & ADC_ISR_DRDY) != ADC_ISR_DRDY)
 {}; //Wait for end of conversion
 PIO_Clear(PIOB,PIO_PB27B_TIOB0);
 val = adc_get_latest_value(ADC); // Read ADC
 }
}

With this test, what we found on the oscilloscope was:

Figure 34: Sampling frequency of ADC with SAM library

In figure 34 we can see that the cursors are more or less in 1 µs of span. However, the oscilloscope
says us that the effective frequency is 666,6 kHz. In any case, we can see how the difference
between one or other library is perhaps exaggerated.

6.1.3.- Test ADC 3 with MATLAB

To see how we can know the real sampling frequency, we made a script in Arduino and in
MATLAB to extract the information through the FFT implemented in MATLAB. The test
consists on sampling 1024 samples and send them through UART to the MATLAB script. In
order to do this, we create 8 different arrays of 128 samples each for the Arduino compiler to
better manage the memory.

Portable data acquisition and representation system for a VLF receptor SWE-Group

52 Fernando Montoya Andúgar

The microcontroller is constantly sending character ‘A’ through the UART waiting for the
response for the master, which is the MATLAB script. Once the contact is established, and the
master returns something in the buffer, the master waits for the command char ‘S’ to start the
procedure.

When the user writes ‘S’ in the Command Window, in the microcontroller are performed the
configureADC() and sample() functions. After this, the master sends ‘g’ through the UART that
means the microcontroller can send a sample. The communication is performed sample by
sample. After few seconds, the 1024 samples are obtained and a FFT is performed in MATLAB
to see all the samples in time domain and in frequency domain to test the ADC behavior of our
microcontroller.

Is important to mention that, in order to do the FFT correctly, we have to set the sampling
frequency in the MATLAB script. This is the key to check the real sampling frequency of the
ADC.

The script in Arduino was:

#define num_samples 128 // Number of samples in each array of
val
#define num_array_ADC 8 // Arrays of 128 values

uint16_t val[num_array_ADC][num_samples]; // Values from ADC
int input = A0; // Analog input for the antenna
//int led = 13;

uint8_t i = 0; // Typical general index for the
program
uint8_t ind = 0; // val[ind][i]
char inByte = 0; // Place holder for incoming character
from Matlab
char Tx_Serial = 'g'; // Character that, when received from
master, will
 // trigger a data TX.
char START_sample = 'S'; //Start conversion from ADC

uint16_t response = 0; // For serial communication with
Matlab

void configureADC(void);
void sample(void);
void establishContact(void);
int getResponse(void);

void setup()
{
 //pinMode(input,INPUT);
 //pinMode(led,OUTPUT);
 pinMode(LED_BUILTIN, OUTPUT);

 Serial.begin(115200);
 establishContact(); // Send byte to establish contact
until master responds
 i = 0;
 //configureADC();
 //sample();
}

void loop() {

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 53

 if(Serial.available()) {
 inByte = Serial.read(); // Store the command byte

 if(inByte==START_sample) {
 configureADC();
 sample();
 }

 if(inByte == Tx_Serial) { // Check to see if it matches
the command char
 if(i<num_samples && ind<num_array_ADC) {
 response = getResponse(); // Get the response integer
 Serial.println(response); // Send it back to the master
 }
 }

 if(inByte == 'P') {
 i=0;
 ind = 0;
 }
 }
}

void establishContact() {
 while (Serial.available() <= 0) {
 Serial.println('A'); // send a capital A
 delay(300);
 }

 inByte = Serial.read();
 }

int getResponse(){
 int response = 50;
 response = val[ind][i];
 i++;
 if(i==num_samples) {
 ind++;
 i = 0;
 }
 return response;
}

void configureADC() {
 // Setup all registers
 pmc_enable_periph_clk(ID_ADC); // To use peripheral, we must enable
clock distributon to it
 adc_init(ADC, SystemCoreClock, ADC_FREQ_MAX, ADC_STARTUP_FAST); //
initialize, set maximum posibble speed
 adc_disable_interrupt(ADC, 0xFFFFFFFF);
 adc_set_resolution(ADC, ADC_12_BITS);
 adc_configure_power_save(ADC, 0, 0); // Disable sleep
 adc_configure_timing(ADC, 0, ADC_SETTLING_TIME_3, 1); // Set timings
- standard values
 adc_set_bias_current(ADC, 1); // Bias current - maximum performance
over current consumption
 adc_stop_sequencer(ADC); // not using it
 adc_disable_tag(ADC); // it has to do with sequencer, not using it
 adc_disable_ts(ADC); // deisable temperature sensor
 adc_disable_channel_differential_input(ADC, ADC_CHANNEL_7);

Portable data acquisition and representation system for a VLF receptor SWE-Group

54 Fernando Montoya Andúgar

 adc_configure_trigger(ADC, ADC_TRIG_SW, 1); // triggering from
software, freerunning mode
 adc_disable_all_channel(ADC);
 adc_enable_channel(ADC, ADC_CHANNEL_7); // just one channel enabled
}

/*We have to control trough software the sampling frequency!!!!*/
void sample() {
 adc_start(ADC);
 i = 0;
 uint16_t value = 0;
 //Pin 13
 PIO_Set(PIOB,PIO_PB27B_TIOB0);
 while(i<num_samples) {
 while ((adc_get_status(ADC) & ADC_ISR_DRDY) != ADC_ISR_DRDY)
 {}; //Wait for end of conversion
 val[ind][i++] = adc_get_latest_value(ADC); // Read ADC
 //Serial.println(val[i++]);
 if(i==num_samples && ind<num_array_ADC-1) {
 i=0;
 ind++;
 }
 }
 adc_stop(ADC);
 PIO_Clear(PIOB,PIO_PB27B_TIOB0);
 i=0;
 ind=0;
}

And the script in MATLAB was:

%Number of samples in each array from arduino
num_samples = 128;
%Number of arrays with num_samples data
num_array = 8;

Fs=666600; % Configured sampling frecuency of arduino Due
Ts = 1/Fs; % Sampling period
L = num_array*num_samples; % Length of the signal
t = (0:L-1)*Ts;% Time vector

delete(instrfind({'Port'},{'/dev/cu.usbmodem14601'}));

%Counter for num_samples
cont_samples1 = 1;
%Counter for num_array
cont_samples2 = 1;
%Array to store the data
y = zeros(num_array, num_samples);

portName = '/dev/cu.usbmodem14601';
Tx_Serial = 'g';

s1 = openSerialPort(portName); % Open the serial port

START_sample = input("Send char 'S' to star sampling in Arduino Due:
");
fprintf(s1, '%s', START_sample);

while cont_samples1<=num_samples

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 55

 if (cont_samples1<=num_samples) && (cont_samples2<=num_array)
 value = getValue(s1, Tx_Serial)*3.3/4095; % Get a value from
the device
 y(cont_samples2,cont_samples1) = value;
 % disp(value); % Display it
 cont_samples1 = cont_samples1 + 1;
 end
 if (cont_samples1 > num_samples) && (cont_samples2<num_array)
 cont_samples1 = 1;
 cont_samples2 = cont_samples2 + 1;
 end
end

fprintf(s1, '%s', 'P');
closeSerialPort(s1);
plotData(y, num_array, num_samples, Fs, L);

With the functions created:

function serialPort = openSerialPort(portName)

%%%%%%%%%%%%%%%%%%%%%%%%%%% OPEN SERIAL PORT
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

serialPort = serial(portName); % define serial port
serialPort.BaudRate=115200; % define baud rate
set(serialPort, 'terminator', 'LF'); % define the terminator for
println
fopen(serialPort);

%%%%%%%%%%%%%%%%%%%%%%%%% ESTABLISH CONNECTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

w=fscanf(serialPort,'%s');
if (w=='A')
 fprintf(serialPort,'%s','A'); % establishContact just wants
 % something in the buffer
end

return

function value = getValue(serialPort, commandChar)

fprintf(serialPort, '%s', commandChar);
value = fscanf(serialPort, '%d');

return

function closeSerialPort(serialPort)

fclose(serialPort);

return

Portable data acquisition and representation system for a VLF receptor SWE-Group

56 Fernando Montoya Andúgar

With an input signal of 50kHz, 3,3 V peak to peak with an offset of 1,5 V (remember the limitation
of the ADC), we obtained the following figures:

Figure 35: Input signal for ADC test 3

Figure 36: MATLAB result from figure 35

As we can see, using a sampling frequency of 666,6 kHz as the oscilloscope told us, matches with
the input signal in our ADC. With these tests we can conclude that the SAM library works great
for our purpose. This third test validates the correct sampling of an input signal and clarifies us
the real sampling frequency of 66,6 kHz.

100 200 300 400 500 600 700 800 900 1000
samples [n]

0

0.5

1

1.5

2

2.5

3

Vo
lta

ge
 [V

]

Data sampled plot

0 50 100 150 200 250 300 350
Frequency [KHz]

0

0.5

1

1.5

Am
pl

itu
de

 o
f e

ac
h

ha
rm

on
ic

 [V
] FFT of the data

X 0
Y 1.483

X 50.13
Y 1.478

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 57

6.2.- RTC

The test of the RTC was extracted from the examples of the library with some modifications in
order to test the span of 5 seconds and the start of a new day.

#include <Wire.h>
#include "RTClib.h"

RTC_DS3231 rtc;

DateTime now;
DateTime future;

char daysOfTheWeek[7][12] = {"Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday", "Saturday"};
bool print00 = true;

void setup() {
 Serial.begin(115200);

 delay(3000);

 if (! rtc.begin()) {
 Serial.println("Couldn't find RTC");
 while (1);
 }

 if (rtc.lostPower()) {
 Serial.println("RTC lost power, lets set the time!");
 // following line sets the RTC to the date & time this sketch was
compiled
 rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
 // This line sets the RTC with an explicit date & time, for
example to set
 // January 21, 2014 at 23:59:40 you would call:
 //rtc.adjust(DateTime(2014, 1, 21, 23, 59, 40));
 }
 rtc.adjust(DateTime(2014, 1, 21, 23, 59, 40));
 now = rtc.now();
 future = now + TimeSpan(5);
 Serial.println("time:");
 Serial.print(now.hour());
 Serial.print(':');
 Serial.print(now.minute());
 Serial.print(':');
 Serial.print(now.second());
 Serial.println();
 Serial.println("Alarm set at:");
 Serial.print(future.hour(), DEC);
 Serial.print(':');
 Serial.print(future.minute(), DEC);
 Serial.print(':');
 Serial.print(future.second(), DEC);
 Serial.println();

}

void loop() {
 now = rtc.now();

 if((now.second()==future.second()))

Portable data acquisition and representation system for a VLF receptor SWE-Group

58 Fernando Montoya Andúgar

 {
 Serial.println("Alarm!!");
 Serial.print(now.hour(), DEC);
 Serial.print(':');
 Serial.print(now.minute(), DEC);
 Serial.print(':');
 Serial.print(now.second(), DEC);
 Serial.println();
 now = rtc.now();
 future= now + TimeSpan(5); //5 seconds
 }
 if((now.hour() + now.minute() + now.second()) == 0)
 {
 if(print00)
 {
 Serial.println("00:00:00!!!");
 print00=false;
 }
 }
}

With this sketch, where the comments clarify the meaning of each line, we obtain:

Figure 37: RTC test output through UART

With this test we can obtain an exact moment to stamp the samples of our system. Also, we can
see how the 5 seconds of span works and a section of the code can be executed in the desired
moment.

6.3.- SD card

The test for the SD card was codified based on the SDFat example called ReadWrite. After some
test with the code, we created an example that verifies the correct behavior of the microcontroller
and the SD card.

To test the handle of the library and the SD, the next code was written. The purpose of this code,
is to create the filesystem, create the object that represent the file, initiate the SD card, write the
data and close the file. The data to store, is basically a test that indicates two numbers for the four
frequencies (12, 34, 56 and 78), and the number of the frequency as its magnitude. Also is fixed
a time stamp to check the correct behavior of all the code. In the code we can see a comment that
indicates the structure. Also we have to comment that, the frequencies are directly written in kHz.

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 59

#include <SPI.h>
#include <SdFat.h>

#define SD_SPI_SPEED SPI_HALF_SPEED // SD card SPI speed
#define SD_CS 10

//File that we will save in the SD
SdFat sd; // set filesystem
SdFile logSIDSWAP;

char nameLogFile[50];

void setup() {
 Serial.begin(115200);

 Serial.print(F("Initiating SD card..."));
 if (!sd.begin(SD_CS, SD_SPI_SPEED))
 {
 Serial.println(F("Card failed, or not present"));
 return;
 }
 Serial.println(F("card initialized."));

 sprintf(nameLogFile, "SD_test.csv");

 if(logSIDSWAP.open(nameLogFile, FILE_WRITE))
 {
//Freq1[kzmag1[v],Freq2[kz];mag2[v];Freq3[kz];mag3[v];hh:mm:ss;yyyy/mm/dd
 logSIDSWAP.print(12);
 logSIDSWAP.print(F(";"));
 logSIDSWAP.print(1);
 logSIDSWAP.print(F(";"));
 logSIDSWAP.print(34);
 logSIDSWAP.print(F(";"));
 logSIDSWAP.print(2);
 logSIDSWAP.print(F(";"));
 logSIDSWAP.print(56);
 logSIDSWAP.print(F(";"));
 logSIDSWAP.print(3);
 logSIDSWAP.print(F(";"));
 logSIDSWAP.print(78);
 logSIDSWAP.print(F(";"));
 logSIDSWAP.print(4);
 logSIDSWAP.print(F(";"));
 logSIDSWAP.print(17);
 logSIDSWAP.print(F(":"));
 logSIDSWAP.print(50);
 logSIDSWAP.print(F(":"));
 logSIDSWAP.print(0);
 logSIDSWAP.print(F(";"));
 logSIDSWAP.print(2019);
 logSIDSWAP.print(F("/"));
 logSIDSWAP.print("May");
 logSIDSWAP.print(F("/"));
 logSIDSWAP.println(15);

 logSIDSWAP.close();
 Serial.println(F("Stored data in SD card OK"));
 Serial.println(nameLogFile);
 }
 else

Portable data acquisition and representation system for a VLF receptor SWE-Group

60 Fernando Montoya Andúgar

 {
 Serial.print(F("Error opening "));
 Serial.println(nameLogFile);
 }

}

void loop() {

}

In this example, the function loop is not used because we want to run once. With this sketch
compiled and uploaded to the microcontroller, we power down the µC, extract the SD card for
the Screen and we can see in the computer the file generated with the following data, indicating
that the csv file is separated by semicolon.

Figure 38: Content of the file SD_test.csv

We can open the Serial monitor to see the debug comment in the example:

Figure 39: Serial monitor of the example of SD

6.4.- ESP8266 code

The code implemented in the second microcontroller of the system has been developed in Arduino
IDE also. At the beginning we set the names of the network we want to connect, the server and
the port in which we are going to make a GET method (HTTP protocol). The ESP8266 board has
a blue led that are configured in the sketch to toggle if a good connection is achieved. If there is
no connection, the led remains off.

For this End-of-Grade work, there is implemented only one frequency with its magnitude to test
the correct GET method in the ESP8266 microcontroller.

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 61

In the loop() function, apart from toggle the led, we check the UART communication with the
Due microcontroller. There is a sequence which depends on the character received in one or
another side. The ESP8266 is constantly checking the UART in order to receive the character
“F”. When it occurs, it sends the character “G” that means the Due can send the frequency. After
receiving the character, the ESP8266 sends the character “H” to solicitate the amplitude of the
frequency. Once the values are stored, it can try the http GET method with the server.

This try to establish the HTTP connection, is carried out by the function implemented in the
ESP8266WiFi library, client.connect(). If the connection is established, then we put the GET
headers in a string to send it to the server. The GET string has the following form:

"GET /sid/test/test.php?f=x&v=y HTTP/1.1\r\n
Host: www.spaceweather.es\r\nConnection: close\r\n\r\n"

In the example, we have a statement that check the response of the server in order to print it in
the serial monitor if it is desired. If there is any problem with the UART communication, in the
way the characters and data are exchanged, in the serial monitor we will see “bad command”.

The code is the following one:

//esp8266wifi
#include <ESP8266WiFi.h>
#define LED_BUILTIN 2

const char* ssid = "iPhone de Fernando";
const char* password = "k28ku3tcd1894";
//const char* ssid = "MOVISTAR_D5C0";
//const char* password = "EUVKJFCH74H9M9EKMWMM";
const char* host = "www.spaceweather.es";
const int httpPort = 80;
String freq = "0";
String volt = "0";
WiFiClient client;

void setup() {
 WiFi.mode(WIFI_STA);//Client mode
 WiFi.begin(ssid, password);

 Serial.begin(115200);
 pinMode(LED_BUILTIN, OUTPUT);
 while (WiFi.status() != WL_CONNECTED) {
 delay(500);
 Serial.print(".");

 }
 Serial.println("");
 Serial.println("IP:");
 Serial.println(WiFi.localIP());

 if (!client.connect(host, httpPort)) {
 Serial.println("connection failed");
 return;
 }
delay(5000);
}
void loop() {
 // Toggle the led
 digitalWrite(LED_BUILTIN, LOW);
 delay(500);
 digitalWrite(LED_BUILTIN, HIGH);

Portable data acquisition and representation system for a VLF receptor SWE-Group

62 Fernando Montoya Andúgar

 delay(1000);
 //Check the serial communication to send data to the server
 if (Serial.available()>0) {
 String inByte = Serial.readString();
 if (inByte == "F") {
 Serial.print("G");
 delay(100);
 while(!Serial.available());
 freq = Serial.readString();
 delay(100);
 Serial.print("H");
 delay(100);
 while(!Serial.available());
 volt = Serial.readString();

 if (!client.connect(host, httpPort)) {
 Serial.println("connection failed");
 return;
 }
 // This will send the request to the server
 client.print(String("GET /sid/test/test.php?f=") + freq + "&v="
+ volt + " HTTP/1.1\r\n" +
 "Host: " + host + "\r\n" +
 "Connection: close\r\n" +
 "\r\n"
);
 while(client.available()) {
 String line = client.readStringUntil('\r');
 Serial.print(line);
 }

 }
 else {
 Serial.println("bad command");
 }

 client.stop();
 }
}

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 63

7.- Main code explanation

7.1.- Includes

This part has been covered in the software explanation section. We have to include all the libraries
covered and the standard libraries <Wire.h> and <stdin.h> to use some defaults functions in the
sketch.

//Use of Screen
#include <SPI.h>
#include <SdFat.h>
#include <ILI9341_due.h>
#include <URTouch.h>
#include <ILI9341_due_Buttons.h>
#include "SmallFont.h"
#include "BigFont.h"

//Use of RTC
#include "RTClib.h"

//Some necessary libraries
#include <Wire.h>
#include <stdint.h>

7.2.- Defines

After the includes, we have to define some variables that make the future ampliations and changes
easier. We can change the sampling frequency, the center of coordinates of our graphs, and pins
where the devices are connected.

#define Y_MAX 240 //Maximum pixels in Y axis
#define X_MAX 320 //Maximum pixels in X axis
#define Xo 53 //Pixels for axis (0,0)
#define Yo 10

// LCD
#define TFT_RST 8
#define TFT_DC 9
#define TFT_CS 11
//SD
#define SD_CS 10
//Touch pannel
#define T_CLK 30
#define T_CS 28
#define T_DIN 26
#define T_DOUT 24
#define T_IRQ 22

#define Esp8266 Serial2

The names of the variables in the defines are the same that are put in the PCB of the device to
simplify the understanding of the algorithm. We can see also, how we named the UART 2 of the
microcontroller as the second microcontroller. This is because the UART communication with
them are implemented in the UART 2 of Arduino Due and is easy to implement in the code the
serial communication with the ESP8266. Also, if it is connected in other serial port, we just need
to change this define without change any part of the code.

Portable data acquisition and representation system for a VLF receptor SWE-Group

64 Fernando Montoya Andúgar

7.3.- Global variables

First, we create the global objects to use the libraries as we could see in the software section. We
can see that we pass the variables of the defines.

//File that we will save in the SD
SdFat sd; // set filesystem
SdFile logSIDSWAP;

// Use hardware SPI
ILI9341_due tft = ILI9341_due(TFT_CS, TFT_DC, TFT_RST);

URTouch myTouch(T_CLK, T_CS, T_DIN, T_DOUT, T_IRQ);

// Finally we set up ILI9341_due_Buttons :)
ILI9341_due_Buttons myButtons(&tft, &myTouch);

RTC_DS3231 rtc;

Then, the global variables itself are declared with some parts differentiated:

/*** GLOBAL VARIABLES*************************/
int pressed_button;
//check if a button is already pushed
boolean pressed = false;
//in order to paint values in the graph
boolean paint_time = false;
boolean paint_fft = false;
boolean log_data = false;
boolean sel_freq = false;
boolean showFrequencies = false;

The Booleans are for identify what button was pressed and establish the state of the second state
machine. The Boolean pressed is just to know if the pulse in the screen has ended or not.

//Constant that extrapolates the voltage of the signal to adequate it
to pixels in the graph
uint16_t pixel_mag_factor = 52; //54.54 (180/3.3)
uint16_t pixel_magfreq_factor = 52;

These two variables are constants to adequate the actual values of the voltage in memory with
the pixels of the LCD to paint correctly the graphs of the signal. This mean that, if a 3,3 V is
obtained, we have to paint in the 3,3 level of the screen marked with the axis, this pixel.

//To store the values in time of x-axis in time draw
char xlabeltime[3][10];
char xlabelfreq[3][10];

These two variables are for to write in the axis the corresponding labels, either seconds or Hertz.

//Variable to do a passive wait to refresh the draw of the time signal
in the graph
uint32_t refresh_screen = 100;

This variable is to paint the graphs without keeping the CPU in a while() statement. Because the
user can touch the touch panel in any moment, the course of the program cannot be stopped for
a long in some section. For that reason, the CPU goes inside the paint section, evaluates the
variable and continue with the loop() statement. This can be seen in the state machine section.

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 65

int backButton, dispButton, fftButton, logButton, selectFreqButton;
int saveButton, leftButton, rightButton;

As we covered in the library section, these are the buttons to manage the corresponding functions
of them.

/*FFT stuff**/
const uint16_t N = 1024;
double input_wave[N];
double re[N], im[N], Xr[N], Xi[N];
double freqsFFT[N / 2], magFFT[N / 2], freqsSampled[4];
double preMax = -100.0;
//String to contain the max value of FFT and print it in the screen
char spreMax[20] = "0";
char dcComponent[20] = "0";

As we work with a processor, we decided to work with real numbers. To do that, we created two
arrays to store the corresponding values of the signals. We can see that we are to sample 1024
samples, which will be stored in the input_wave array. The array re[N] is to store the real part of
the input signal, that is, the signal itself, while im[N] stores the imaginary part of the signal, that
is 0. The Xr[N] stores the real part of the FFT computed and the Xi[N] stores the imaginary part
of the FFT computed.

The variable freqsFFT[N/2] stores the frequencies of the FFT according with the sampling
frequency and the number of points of the FFT. The variable magFFT[N/2] stores the magnitude
of each frequency store in the previous variable. The variable freqsSampled[4] stores the four
frequencies we want to save in the system to log the data.

The variable preMax stores the maximum magnitude value of the FFT computed. The variables
spreMax[20] and dcComponent[20] stores the string of the maximum value of FFT and DC
component of it respectively, in order to write its values on the screen. It is important to say, that
the library cannot write the number in the screen and we have to convert it to string.a

/*RTC stuff**/
DateTime now;
DateTime after;

These two objects are for store the time value at a given time and the time some seconds after.
This is done because we want to check an interval of time and compute the corresponding
operation periodically to log the data. We will see the procedure later.

/*LOG stuff**/
//Array containing the indexes of frequencies to sample in FFT array
(freqsFFT[N/2])
uint16_t logFFTindexes[4];
//to store the index temporary of FFT to save frequency
uint16_t indFx = 32;
//to print frequency 1, frequency 2, etc
uint8_t logFQIndexes = 0;
char logFQIndexesStr[4][3];
//To store the values of frequencies sampled
char freqSampledString[4][25];
//to show in sel frequencies screen the fq to store
char freqSampledStringTemp[4 + 1][25];
//Store the value every 5 seconds. 12 values every minute and 4
frequencies to store
double magValues5sec[4][60 / 5];
//index to store data in the above array

Portable data acquisition and representation system for a VLF receptor SWE-Group

66 Fernando Montoya Andúgar

int logindex5sec = 0;
//value to store in SD card
double valueSD_minute[4][1];
//Name of the file
char nameLogFile[50];
//Name of timestamp
char timestamp[12] = "00:00:00";

These are the variables related to the log operation. We can read at the comments that
logFFTindexes[4] store the indexes of the whole array where we have the frequencies
computed in order to select correctly the wanted frequency on this array. For example,
with N points of FFT, and with a sampling frequency of F kHz, we might have in
freqsFFT[N/2] the corresponding frequencies and maybe in index 3 we have the frequency bin
of 2 kHz. This index 3 is stored in logFFTindexes[4].

The variable indFx is an auxiliary variable to do certain operations to traverse the array of
frequencies. We will see the use of it in the corresponding part of the algorithm. The variables
logFQIndexes and its corresponding string version logFQIndexesStr[4][3] are just to know which
number of the 4 possible frequencies to save are selecting the user in the frequency selection
screen, and the string version of it with the purpose of print it on the screen.

The variable freqSampledString[4][25] is to store the string value of the corresponding frequency
of the 4 selected. That is, according with the previous example, the 2 kHz itself. The variable
freqSampledStringTemp[4+1][25] is just to store the temporary string value of the previous
variable in order to show in the screen the frequency selected before save its value (with
saveButton) in the freqSampledString[4][25] variable.

The variable magValues5sec[4][60/5] stores the magnitude values of the corresponding saved
frequency every 5 seconds per minute. The variable logindex5sec is just to save in the
corresponding index position the correct magnitude. The variable valueSD_minute[4][1] stores
the values to save in the SD card, which are computed every minute. The variable
nameLogFile[50] is just the variable that store the name of the csv file which contains all the data
corresponding with the day. The variable timestamp[12] is used to store the current time in a
string format.

/*Esp8266 Stuff**/
String freq2ESP = "0";
String volt2ESP = "0";
String inStr = "nothing";
bool data2Esp = false;

These variables are the frequency and the magnitude to send to ESp8266 for the server and
auxiliary variables to check the process and the state of the state machine.

/*Areas differentation***/
gTextArea graphArea{Xo, Yo, X_MAX - Xo, 180}; //170 available pixels
for draw signals in y-axis
gTextArea allArea{0, 0, X_MAX, Y_MAX};

These two structs are for select a definited area in the screen to work with the graphs. The struct
graphArea is the area inside the axis to clean and paint constantly the signal we have sampled.

7.4.- Statement of functions

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 67

After the declaration of all the variables our program will share between all parts of the code, we
declare all the functions used, in order to say to the compiler that it has to look for a specific part
of the memory where a function is written. These functions will be explained at the end of this
section.
/*** FUNCTIONS*************************/
void drawScreen1(ILI9341_due &d);
void timeAxis(ILI9341_due &d);
void freqAxis(ILI9341_due &d);
void drawGraph(ILI9341_due &d);

void sidFFT(double *X_real, double *X_im, double *xreal, double
*ximag, int freq_bin, int N, int h, int h_interval);
double postProcessing(double *Xr, double *Xi, double premax);

void Sampling(double *sw, double *re, double *im);
void configureADC(void);

void sendData2ESP(void);

7.5.- Setup() function

With all the declarations, we have the setup() function and the loop() function. Analyzing firstly
the setup() function we have:

void setup()
{
 //For PC communication
 Serial.begin(9600);
 //For Esp8266 communication we use Serial1,2 or 3 of Arduino Due
(Baudrate=115200)
 Esp8266.begin(115200);
 delay(2000);
 Serial.println(F("Initiating system..."));

Where we initiate the two UART communications, one with the computer to debug the system
and other with the ESP8266 microcontroller.

// Initial setup
 tft.begin();
 tft.setRotation(iliRotation270); // landscape
 tft.fillScreen(ILI9341_BLACK);

 tft.setFont(SmallFont);

 myTouch.InitTouch();
 myTouch.setPrecision(PREC_MEDIUM);

 myButtons.setTextFont(BigFont);

Here we initiate the screen with the ILI9341_due library, put the presentation in landscape mode,
paint all the LCD in black, select the small font initially to write in the screen, initiate the touch
panel with medium precision that is enough according with the experience, and select for the
buttons of the ILI9341_due_Buttons library the big font. The use of the libraries has been covered
according to the documentation of each one. The documentation, as we explain before, are
mention in the software section of the memory and in the Bibliography part.

/*Buttons to be used in the LCD menu ***************************/

Portable data acquisition and representation system for a VLF receptor SWE-Group

68 Fernando Montoya Andúgar

 /* Main Menu Buttons***************************/
 dispButton = myButtons.addButton(10, 20, 300, 30, "Signal
scope");
 fftButton = myButtons.addButton(10, 60, 300, 30, "FFT");
 logButton = myButtons.addButton(10, 160, 300, 30, "LOG data");
 selectFreqButton = myButtons.addButton(10, 200, 300, 30, "Sel
Frequencies");
 backButton = myButtons.addButton(10, 218, 75, 20, "BACK");

 /*To select the frequencies to sample*/
 leftButton = myButtons.addButton(95, 218, 70, 20, "<-");
 rightButton = myButtons.addButton(245, 218, 70, 20, "->");
 saveButton = myButtons.addButton(168, 210, 74, 30, "Save");

These are the instantiation of all the buttons object to handle its corresponding methods as we
will see in the code. The parameters are the coordinates in the screen and the labels of themselves.

if (! rtc.begin()) {
 Serial.println(F("Couldn't find RTC"));
 //while (1);
 }

Then we check if there is communication with the RTC.

if (rtc.lostPower())
 {
 Serial.println("RTC lost power, lets set the time!");
 // following line sets the RTC to the date & time this sketch was
compiled
 rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
 // This line sets the RTC with an explicit date & time, for
example to set
 // January 21, 2014 at 23:59:00 you would call:
 // rtc.adjust(DateTime(2014, 1, 21, 23, 59, 40));
 }
 Serial.println(F("RTC set:"));
 now = rtc.now();
 sprintf(timestamp, "%02d:%02d:%02d", now.hour(), now.minute(),
now.second());
 Serial.println(timestamp);

And if there is an error with the RTC or it lost the time, we set its time according with the
momentum when the sketch is compiled. In order to see the current time, we print in the monitor
the time set.

Serial.print(F("Initiating SD card..."));
 if (!sd.begin(SD_CS, SD_SPI_SPEED))
 {
 Serial.println(F("Card failed, or not present"));
 return;
 }
 Serial.println(F("card initialized."));

We start, in a similar way, the SD card, checking if it is initialized correctly or not.

sprintf(freqSampledString[0], "%.2f", 0);
sprintf(freqSampledString[1], "%.2f", 0);
sprintf(freqSampledString[2], "%.2f", 0);
sprintf(freqSampledString[3], "%.2f", 0);

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 69

Serial.println(F("Done"));
 tft.setTextColor(ILI9341_BLACK, ILI9341_WHITE);
 drawScreen1(tft);
}

Then we save the 0 value in the string to initiate those variables. With all of this done, we print
in the serial monitor that the system is initiated with de command “Done” and select for the text
in the screen the color black in a white background.

7.6.- Loop () function

7.6.1.- State machine 1 in loop () function

With the system initialized, we only have to run the state machines.

void loop()
{
 //to store the maximum value of FFT
 double preMax = -100.0;

 now = rtc.now();

 //Always sampling the signal if we are not loging the data
 if (!log_data)
 {
 configureADC();
 Sampling(input_wave, re, im);
 }

 if (data2Esp) {
 if(Esp8266.available()) inStr = Esp8266.readString();
 sendData2Esp();
 data2Esp = false;
 }

First, we set the maximum FFT value to an impossible value to check the correct functioning of
the algorithm. Then, in every iteration of the code we check the current time requesting it to the
RTC.

If we are not in the log state, we sample the input signal in each iteration in order to use the system
as an oscilloscope whether in time domain or frequency domain. This is because we can use the
system to analyze the input signal in almost real time, and so check the frequencies where most
of the power receiver is allocated. Also, we check the variable to send data to the server,
cancelling it to leave its activation to the corresponding part of the code.

With this, we start the state machine 1 that checks the buttons.

/*State machine that manages the behaviour of the project*/
 if (myTouch.dataAvailable() == true)
 {
 pressed_button = myButtons.checkButtons();

 if ((pressed_button == dispButton) && (!pressed))
 {
 tft.setTextArea(allArea);

Portable data acquisition and representation system for a VLF receptor SWE-Group

70 Fernando Montoya Andúgar

 myButtons.disableButton(dispButton);
 myButtons.disableButton(fftButton);
 myButtons.disableButton(logButton);
 myButtons.disableButton(selectFreqButton);
 myButtons.disableButton(leftButton);
 myButtons.disableButton(rightButton);
 myButtons.disableButton(saveButton);
 pressed = true;
 paint_time = true;
 paint_fft = false;
 log_data = false;
 sel_freq = false;
 drawGraph(tft);
 timeAxis(tft);
 myButtons.enableButton(backButton);
 myButtons.drawButton(backButton);
 }

If the touch panel detects a pulse, we check which button is pulsed. This means that the pixels
pressed are in the area of the coordinates of the corresponding object button. The structure of the
code of each button is more or less the same. With the pulse of the dispButton, we disable all the
buttons because the pulse can activate the buttons, even if they are not drawn. The pulse of the
user maybe lasts longer than an iteration lasts, and for that reason we have to disable all the
buttons. According to the button, we activate or deactivate the corresponding Boolean variables.
The button dispButton, activate the time domain screen, viewing the input signal as an
oscilloscope, and for that reason, we call the functions drawGraph(tft) and timeAxis(tft) to draw
in the screen the axis and its labels in time domain. We pass as an argument the tft object in order
to pass the address memory of it and handle correctly the TFT screen. Once it is done, we activate
and draw the backButton that leads us the main screen again.

if ((pressed_button == fftButton) && (!pressed))
 {
 tft.setTextArea(allArea);
 myButtons.disableButton(fftButton);
 myButtons.disableButton(dispButton);
 myButtons.disableButton(logButton);
 myButtons.disableButton(selectFreqButton);
 myButtons.disableButton(leftButton);
 myButtons.disableButton(rightButton);
 myButtons.disableButton(saveButton);
 pressed = true;
 paint_time = false;
 paint_fft = true;
 log_data = false;
 sel_freq = false;
 sidFFT(Xr, Xi, re, im, 0, N, 0, 1);
 // Post-processing
 preMax = postProcessing(Xr, Xi, preMax);
 drawGraph(tft);
 freqAxis(tft);
 myButtons.enableButton(backButton);
 myButtons.drawButton(backButton);
 }

If the user presses the fftButton, we do more or less the same as before. In this case, we also
compute the FFT and call to postprocessing function that, among other things, returns the
maximum value of the computed spectrum. We will cover these functions at the end of the section.
Then, we draw the graph and we put the corresponding frequency labels. We also enable the
backButton to return back to the main screen.

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 71

if ((pressed_button == logButton) && (!pressed))
 {
 myButtons.disableButton(fftButton);
 myButtons.disableButton(dispButton);
 myButtons.disableButton(logButton);
 myButtons.disableButton(selectFreqButton);
 myButtons.disableButton(leftButton);
 myButtons.disableButton(rightButton);
 myButtons.disableButton(saveButton);
 pressed = true;
 paint_time = false;
 paint_fft = false;
 log_data = true;
 sel_freq = false;

When the user pulses the log button, there are many things that our system does. First, it does the
same than the previous buttons.

tft.fillScreen(ILI9341_BLACK);
 //Show the screen displaying that data are stored
 tft.setTextScale(2);
 tft.setTextColor(ILI9341_BLACK, ILI9341_WHITE);
 tft.printAt("Loging data", Xo, Yo);
 tft.setTextColor(ILI9341_WHITE, ILI9341_BLACK);
 tft.setTextScale(1);

 tft.printAt(F("Frequencies sampled:"), Xo, Yo + 50);

 tft.setTextColor(ILI9341_GOLD, ILI9341_BLACK);
 tft.printAt(F("Frequency 1: "), Xo + 10, Yo + 80);
 tft.printAt(freqSampledString[0], Xo + 140, Yo + 80);
 tft.printAt(" kHz", Xo + 190, Yo + 80);

 tft.printAt(F("Frequency 2: "), Xo + 10, Yo + 110);
 tft.printAt(freqSampledString[1], Xo + 140, Yo + 110);
 tft.printAt(" kHz", Xo + 190, Yo + 110);

 tft.printAt(F("Frequency 3: "), Xo + 10, Yo + 140);
 tft.printAt(freqSampledString[2], Xo + 140, Yo + 140);
 tft.printAt(" kHz", Xo + 190, Yo + 140);

 tft.printAt(F("Frequency 4: "), Xo + 10, Yo + 170);
 tft.printAt(freqSampledString[3], Xo + 140, Yo + 170);
 tft.printAt(F(" kHz"), Xo + 190, Yo + 170);

After this, print in the screen the corresponding frequencies that the system will log in the SD
card. We can see that the code repeats in order to print the 4 frequencies and its corresponding
values. For better clarification, see the global variables section to understand the
freqSampledString variable. The values that the function tft.printAt receives, in addition to the
string value, are the coordinates where the text will show in the screen.

 now = rtc.now();
 //Alarm set 5 seconds later.
 after = now + TimeSpan(5);

Then the current time and a span of 5 seconds are computed.

 sprintf(nameLogFile, "%04d-%02d-%02d.csv", now.year(),
now.month(), now.day());

Portable data acquisition and representation system for a VLF receptor SWE-Group

72 Fernando Montoya Andúgar

Then, we store the name of the file that will contain the values of the day, in the corresponding
variable. We can see that the name of the file is just the current day. This is done because the user
can enter in the log screen as many times as the user wants, independently of the desire to store
data or not, and if the system is logging data or not. Each time the user presses the button, we
work with the corresponding file of the day.

 Serial.println(F("Starting with data loging..."));
 sprintf(timestamp, "%02d:%02d:%02d", now.hour(), now.minute(),
now.second());
 Serial.println(timestamp);

 myButtons.enableButton(backButton);
 myButtons.drawButton(backButton);

 tft.setTextColor(ILI9341_BLACK, ILI9341_WHITE);
 }

After that, we print in serial monitor the time when the system starts to log data and we enable
and draw the backButton as usual.

 if ((pressed_button == selectFreqButton) && (!pressed))
 {
 myButtons.disableButton(fftButton);
 myButtons.disableButton(dispButton);
 myButtons.disableButton(logButton);
 myButtons.disableButton(selectFreqButton);
 tft.clearTextArea(ILI9341_BLACK);
 pressed = true;
 paint_time = false;
 paint_fft = false;
 log_data = false;
 sel_freq = true;
 sidFFT(Xr, Xi, re, im, 0, N, 0, 1);
 // Post-processing
 preMax = postProcessing(Xr, Xi, preMax);
 drawGraph(tft);
 freqAxis(tft);
 myButtons.enableButton(leftButton);
 myButtons.drawButton(leftButton);
 myButtons.enableButton(saveButton);
 myButtons.drawButton(saveButton);
 myButtons.enableButton(rightButton);
 myButtons.drawButton(rightButton);
 myButtons.enableButton(backButton);
 myButtons.drawButton(backButton);
 }

This button is more or less the same than fftButton. The difference is in the Boolean variables.
This is because, to store the desired frequencies in memory, it is useful to see the current spectrum
in the screen. We will see soon, in this own state machine, which affects the variable sel_freq,
that is the difference between paint_fft. We can see, that in addition to this, we draw three new
buttons that is the leftButton, rightButton and saveButton. These buttons aim to select the
frequency of the four possible, which we want to store. With these buttons, as we will see in the
part that check the sel_freq variable, we can see the frequency selected in the spectrum to know
if the current frequency selected is the desired one or not.

 if ((pressed_button == backButton) && (!pressed))
 {

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 73

 myButtons.deleteAllButtons();
 dispButton = myButtons.addButton(10, 20, 300, 30, "Signal
scope");
 fftButton = myButtons.addButton(10, 60, 300, 30, "FFT");
 logButton = myButtons.addButton(10, 160, 300, 30, "LOG data");
 selectFreqButton = myButtons.addButton(10, 200, 300, 30, "Sel
Frequencies");
 backButton = myButtons.addButton(10, 218, 75, 20, "BACK");
 leftButton = myButtons.addButton(95, 218, 70, 20, "<-");
 rightButton = myButtons.addButton(245, 218, 70, 20, "->");
 saveButton = myButtons.addButton(168, 210, 74, 30, "Save");

 pressed = true;
 paint_time = false;
 paint_fft = false;
 log_data = false;
 sel_freq = false;
 tft.setTextArea(allArea);
 myButtons.disableButton(backButton);
 drawScreen1(tft);
 }
The backButton aims to return back to the main screen. After several tests with the system, we
discovered the necessity of clear all the buttons instead activate or deactivate them. This is
because the use of memory. The system needs a certain amount of dynamic memory, and the
library of the buttons take advantage of it. When we delete the buttons, we are releasing dynamic
memory, and when we want to create again the buttons objects, we use the dynamic memory
management, finding a new place in memory where all the corresponding data could be allocated.

 if (sel_freq)
 {
 if ((pressed_button == leftButton) && (!pressed))
 {
 pressed = true;
 //paint white line before paint the new one
 tft.drawFastVLine(Xo + indFx * 2, Yo + 20, 160,
ILI9341_WHITE);
 indFx -= 1;
 if (indFx < 0) indFx = 0;
 if (indFx > (N / 2) - 1) indFx = (N / 2) - 1;

 tft.drawFastVLine(Xo + indFx * 2, Yo + 20, 160,
ILI9341_DARKGOLDENROD);
 sprintf(freqSampledStringTemp[logFQIndexes], "%.2f",
freqsFFT[indFx] / 1000);
 }

We can see that with the sel_freq activated, we draw a vertical line in the middle of the spectrum.
We paint a white vertical line when the leftButton is pressed because we want to “erase” the “old”
vertical one and paint a “new” one at the left of this frequency. The handle of the frequencies is
also covered, we can see that we subtract in one the indFx variable because it marks the index of
the frequencies of the FFT computed. In the drawing of the vertical line, we can see that in X axis
we multiply by two the value. This will be covered in the explanation of the funcitons but,
basically, is because the pixels in the screen do not correspond with the absolute values of the
arrays. We draw each two pixels, the value of the array. This pretends to amplify the view to make
it easier for the user to view the signal. The rightButton behaves in a similar way as we can see.

if ((pressed_button == rightButton) && (!pressed))
 {

Portable data acquisition and representation system for a VLF receptor SWE-Group

74 Fernando Montoya Andúgar

 pressed = true;
 //paint black line before paint the new one
 tft.drawFastVLine(Xo + indFx * 2, Yo + 20, 160,
ILI9341_WHITE);
 indFx += 1;
 if (indFx < 0) indFx = 0;
 if (indFx > (N / 2) - 1) indFx = (N / 2) - 1;

 tft.drawFastVLine(Xo + indFx * 2, Yo + 20, 160,
ILI9341_DARKGOLDENROD);
 sprintf(freqSampledStringTemp[logFQIndexes], "%.2f",
freqsFFT[indFx] / 1000);
 }

The difference is that we add instead of subtracting one to the variable indFx.

if ((pressed_button == saveButton) && (!pressed))
 {
 pressed = true;
 logFFTindexes[logFQIndexes] = indFx;
 sprintf(freqSampledString[logFQIndexes], "%.2f",
freqsFFT[indFx] / 1000);
 tft.setTextColor(ILI9341_WHITE, ILI9341_RED);
 tft.printAt("SAVED!", Xo + 150, Yo + 10);
 tft.setTextColor(ILI9341_WHITE, ILI9341_BLACK);
 logFQIndexes ++;
 if (logFQIndexes > 3) logFQIndexes = 0;
 }
 }
 }

When the user pulses the saveButton, we can see the difference between the variables
freqSampledString and freqSampledStringTemp. The second one is for show in the screen the
frequency where the vertical line is, and the first one is to store this current value because is what
the user wants to save. Also, we store the index of the frequency spectrum array in logFFTindexes
and print the word “SAVED!” in the screen during a frame. As we have 4 frequencies to store,
the variable logFQIndexes adds one.

 else
 {
 pressed = false;
 }

With this we end the state machine 1. This else statement is to handle a long pulsation in the
screen by the user. We go into the state machine 1 code only once with one pulse.

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 75

7.6.2.- State machine 2 in loop() function

As we saw, the state machine 1 establishes the variables that are the input of the state machine 2.
These two state machines are implemented in parallel, and we are going to see how the second
one is implemented in the code.

if (paint_time)
 {
 tft.setTextArea(graphArea);
 refresh_screen--;

 if (refresh_screen == 50)
 {
 tft.clearTextArea(ILI9341_WHITE);
 for (int i = 0; i < 128; i++)
 {
 tft.drawLine(Xo + i * 2, 189 - input_wave[i]*pixel_mag_factor,
Xo + (i + 1) * 2, 189 - input_wave[i + 1]*pixel_mag_factor,
ILI9341_STEELBLUE); //147 vs 189
 }
 }

 if (refresh_screen == 0)
 {
 tft.clearTextArea(ILI9341_WHITE);
 for (int j = 128; j < 255; j++)
 {
 tft.drawLine(Xo + ((j - 128) * 2), 189 -
input_wave[j]*pixel_mag_factor, Xo + ((j + 1 - 128) * 2), 189 -
input_wave[j + 1]*pixel_mag_factor, ILI9341_STEELBLUE);
 }
 refresh_screen = 100;
 }
 }

When paint_time is activated, we go throw the oscilloscope screen. As we draw actually the axes,
we select the graphArea to update the signal only in the corresponding area. We use the
refresh_screen variable to update not too fast the graph, but with the real time sensation. We can
see in the code, concretely in the for loop statemen, that we draw 128 samples of the array. As we
have two for loops statements, we draw only 256 samples of the input signal. This is because the
system does not pretend to analyze the signal in time domain, but to analyze the signal in
frequency domain. Also, we notice that we add 189 to the Y coordinate. This is because the center
of the axes is in the top left corner. The purpose of this screen is to see certain aspect of the
sampled signal, analyzing the maximum and minimum values mainly.

Also, we can see how we draw a sampled value every two pixels in X axis. The purpose of this is
to find an equilibrium between simplicity in the code and legibility in the signal sampled and
showed. We do the same for the frequency domain graph.

 if (paint_fft)
 {
 tft.setTextArea(graphArea);
 refresh_screen--;

 if (refresh_screen <= 50)
 {
 sidFFT(Xr, Xi, re, im, 0, N, 0, 1);

Portable data acquisition and representation system for a VLF receptor SWE-Group

76 Fernando Montoya Andúgar

 // Post-processing
 preMax = postProcessing(Xr, Xi, preMax);
 preMax /= 1000;
 tft.clearTextArea(ILI9341_WHITE);
 //We draw until 84kHz because the frequencies of interest are
there
 for (int i = 0; i < 128; i++)
 {
 tft.drawLine(Xo + i * 2, 190 - magFFT[i]*pixel_magfreq_factor,
Xo + (i + 1) * 2, 190 - magFFT[i + 1]*pixel_magfreq_factor,
ILI9341_DARKSLATEBLUE);
 }
 //DC Component
 tft.setTextColor(ILI9341_DARKVIOLET, ILI9341_KHAKI);
 sprintf(dcComponent, "DC component: %.2f V", magFFT[0]);
 tft.printAt(dcComponent, 50, 210);
 sprintf(spreMax, "More Power at %.2f kHz", preMax);
 tft.printAt(spreMax, 5, 0);

 refresh_screen = 100;
 }
 tft.setTextColor(ILI9341_BLACK, ILI9341_WHITE);
 }

If we see the corresponding frequency domain option, we can see at first glance that there is only
one for loop statement. This is because when we analyze the spectrum of the signal, with 1024
points and with the sampling frequency of 666,6 khz, in the index 128 we have 83,32 kHz. As we
can see the frequencies below 100 kHz, for this End-of-Grade work it has been considered
enough. With a few lines more, the spectrum can be observed entirely.

In every iteration, taking into account the refresh_screen variable, we compute the FFT of the
input signal and call for the postprocessing function. In addition to this, we show the DC
component of the spectrum and the maximum value of the spectrum in text mode.

 if (log_data)
 {
 if (now.second() == after.second())
 {
 now = rtc.now();
 after = now + TimeSpan(5); //5 seconds of span
 sprintf(timestamp, "%02d:%02d:%02d", now.hour(), now.minute(),
now.second());
 Serial.println(timestamp);

 configureADC();
 Sampling(input_wave, re, im);
 sidFFT(Xr, Xi, re, im, 0, N, 0, 1);
 preMax = postProcessing(Xr, Xi, preMax);

 magValues5sec[0][logindex5sec] = magFFT[logFFTindexes[0]];
 magValues5sec[1][logindex5sec] = magFFT[logFFTindexes[1]];
 magValues5sec[2][logindex5sec] = magFFT[logFFTindexes[2]];
 magValues5sec[3][logindex5sec] = magFFT[logFFTindexes[3]];

 logindex5sec++;

When the user pulses logButton, we saw that, a span of 5 seconds is set. Also, at the beginning of
the state machine 1 we saw that there is no constant sampling when this variable is activated.
When the now and after variables match, configureADC and sampling functions are activated.

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 77

Then, is computed the FFT and executed the postProcessing function. Once all of this is done,
we store the values of the corresponding frequencies in the 5-seconds array magValues5sec. As
we want to measure over every 5 seconds, in order to average the value of a minute to store it in
the SD card, we add these 5-seconds values in the array magValues5sec.

 /*if we achieve the minute.... Store in memory the data*/
 if (logindex5sec == (60 / 5))
 {
 logindex5sec = 0;
 for (int i = 0; i < 60 / 5; i++)
 {
 valueSD_minute[0][0] += magValues5sec[0][i];
 valueSD_minute[1][0] += magValues5sec[1][i];
 valueSD_minute[2][0] += magValues5sec[2][i];
 valueSD_minute[3][0] += magValues5sec[3][i];
 }
 //we compute the average value of the minute
 valueSD_minute[0][0] /= (60 / 5);
 valueSD_minute[1][0] /= (60 / 5);
 valueSD_minute[2][0] /= (60 / 5);
 valueSD_minute[3][0] /= (60 / 5);

 freq2ESP = String(freqsFFT[logFFTindexes[0]]);
 volt2ESP = String(valueSD_minute[0][0]);
 data2Esp = true;

When it is been a minute, we compute the average value of all the samples in the 4 frequencies.
Also, we see that we activate the ESP8266 procedure in order to send the first frequency and its
magnitude to the server.

// Check if its 00:00:00-00:00:05
 if (((now.hour() + now.minute()) == 0) && (now.second() < 5))
 {
 //Create a new file
 sprintf(nameLogFile, "%04d-%02d-%02d.csv", now.year(),
now.month(), now.day());
 }

We have to check also the day in which the system works. This pretends to generate a new file
in a necessary case. When the system knows the file it has to handle, the csv file is generated.

//Freq1[kz] ; mag1[v]; Freq2[kz]; mag2[v]; Freq3[kz]; mag3[v];
hh:mm:ss ; yyyy/mm/dd.csv
 logSIDSWAP.print(freqsFFT[logFFTindexes[0]] / 1000);
 logSIDSWAP.print(";");
 logSIDSWAP.print(valueSD_minute[0][0]);
 logSIDSWAP.print(";");
 logSIDSWAP.print(freqsFFT[logFFTindexes[1]] / 1000);
 logSIDSWAP.print(";");
 logSIDSWAP.print(valueSD_minute[1][0]);
 logSIDSWAP.print(";");
 logSIDSWAP.print(freqsFFT[logFFTindexes[2]] / 1000);
 logSIDSWAP.print(";");
 logSIDSWAP.print(valueSD_minute[2][0]);
 logSIDSWAP.print(";");
 logSIDSWAP.print(freqsFFT[logFFTindexes[3]] / 1000);
 logSIDSWAP.print(";");
 logSIDSWAP.print(valueSD_minute[3][0]);
 logSIDSWAP.print(";");
 logSIDSWAP.print(timestamp);

Portable data acquisition and representation system for a VLF receptor SWE-Group

78 Fernando Montoya Andúgar

 logSIDSWAP.print(";");
 logSIDSWAP.println(nameLogFile);

 logSIDSWAP.close();
 Serial.println(F("Stored data in SD card OK"));
 }
 else
 {
 Serial.print(F("Error opening "));
 Serial.println(nameLogFile);
 }

We can see how we store the data in the file. The way to do that is the same as we explained
before in the tests section. Also, we add the debug option reading in the serial monitor if the file
has been created correctly or not.

 valueSD_minute[0][0] = 0;
 valueSD_minute[1][0] = 0;
 valueSD_minute[2][0] = 0;
 valueSD_minute[3][0] = 0;

 }

 }

 }

After the file is properly generated, we restart the variables in order to start a new minute of
values. It is important to mention that all the procedure has to spend less than five seconds. At the
beginning of this state, the span of 5 seconds was set. This is important in order to make
improvements on the system.

 if (sel_freq)
 {
 //freqsSampled[0] = selectFreqFunction(1);
 tft.setTextArea(graphArea);
 refresh_screen--;

 if (refresh_screen <= 50)
 {
 sidFFT(Xr, Xi, re, im, 0, N, 0, 1);
 // Post-processing
 preMax = postProcessing(Xr, Xi, preMax);
 tft.clearTextArea(ILI9341_WHITE);
 //We draw until 84kHz because the frequencies of interest are
there
 for (int i = 0; i < 128; i++)
 {
 tft.drawLine(Xo + i * 2, 190 - magFFT[i]*pixel_magfreq_factor,
Xo + (i + 1) * 2, 190 - magFFT[i + 1]*pixel_magfreq_factor,
ILI9341_STEELBLUE);
 }

 tft.setTextColor(ILI9341_BLACK, ILI9341_KHAKI);
 tft.drawFastVLine(Xo + indFx * 2, Yo + 20, 160,
ILI9341_DARKGOLDENROD);

 //Frequency %d: %.2f kHz

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 79

 tft.printAt(F("Frequency "), Xo - 30, 0);
 sprintf(logFQIndexesStr[logFQIndexes], "%d:", logFQIndexes + 1);
 tft.printAt(logFQIndexesStr[logFQIndexes], Xo + 65, 0);
 sprintf(freqSampledStringTemp[logFQIndexes], "%.2f",
freqsFFT[indFx] / 1000);
 tft.printAt(freqSampledStringTemp[logFQIndexes], Xo + 90, 0);
 tft.printAt(F(" kHz"), Xo + 140, 0);

 refresh_screen = 100;
 }
 tft.setTextColor(ILI9341_BLACK, ILI9341_WHITE);
 }

}

The last state of the state machine 2 is the sel_freq one. In this state, the system behaves nearly to
the FFT screen. The main difference is that the current frequency showed is updated every time
the system goes inside this state. In the state machine 1, we saw that when the user touches the
leftButton or rightButton, a vertical white line is drawn in the current frequency value and a new
yellow one is drawn in the correct position. This line position matches the frequency showed
when the system is inside this piece of code.

Whit this, all the features and the state machines of the system have been covered. In the next
section we are going to describe and to explain the implementation of the functions called from
the main code.

7.7.- Implemented functions in the system

7.7.1.- FFT function

To understand the code, the reader is recommended to read the recursivity section. The FFT
function is recursively implemented to take advantage of the intermediate results.

We also put here the call for the function in order to understand better the input arguments:

sidFFT(Xr, Xi, re, im, 0, N, 0, 1);

void sidFFT(double *X_real, double *X_im, double *xreal, double
*ximag, int freq_bin, int N, int h, int h_interval)
{
 uint32_t k;
 double Xre_temp, Xim_temp, Xre_temp_kplusN2, Xim_temp_kplusN2,
exp_Oddk_re, exp_Oddk_im;

 if (N == 1)
 {
 X_real[freq_bin] = xreal[h];
 X_im[freq_bin] = ximag[h];
 return;
 }
 else
 {
 //Even part of the DFT subsection. X0,x2,x4….

Portable data acquisition and representation system for a VLF receptor SWE-Group

80 Fernando Montoya Andúgar

 sidFFT(X_real, X_im, xreal, ximag, freq_bin, N / 2,
h, h_interval * 2);
 //Odd part of the DFT subsection computed through X[k+N/2]. X1,x3…
 sidFFT(X_real, X_im, xreal, ximag, freq_bin + N / 2, N / 2, h +
h_interval, h_interval * 2);

This first part of the function is the recursivity one. The recursivity is used to the split of the even
and odd summation of the original one. It is important to remark that the odd index summation is
computed from the values of X[k+N/2]. This is because we take the advantage of the recursivity
again. We store the values of the odd index summation at the same time that we work with
X[k+N/2] in the next part of the code. Thanks to this, we can use the equations of the FFT, shown
in applicable theory section, using X[k] and X[k+N/2] instead of each even and odd index
summation. In resume, we obtain the even index of the FFT through X[k] and, thanks to the
symmetry identity, the odd index of FFT through X[k+N/2]. We can see that the call of the
function needs some input arguments. These arguments are pointer to the address memory of the
corresponding global variable. With these, we only generate in the stack some double pointers
instead of a double array in each recursive call.

- X_real à is the destination real part. This array will contain the real part of the FFT
implemented

- X_im à is the imaginary part of the FFT array.
- xreal à is the real part of the input signal.
- ximag à is the imaginary part of the input signal
- freq_bin à is the index of X[k], where the summation is split. This is the recursive index

in the destination array that will set the limits of the even or odd summation to compute
the DFT. This input argument is the start of the summation.

- N à the number of points to compute the DFT
- h à the index of x[n] where the DFT has to compute its value.
- h_interval à Is the separation between samples to compute the summation (𝑥3, 𝑥w, …)

The first statement is if N is equal to 1. If we have a DFT of only one point, that it will be the
“end of recursion” condition, the 1-point DFT is equal to the 1-sample input signal. When we
divide the summation in an even an odd index summation, we can continue until only a
summation of one value is achieved. We can see that in the applicable theory.

One the “tree of recursivity” has been established in memory, and the “end of recursion” condition
is achieved, each call of the function will go inside the following part of the code, where we are
going to explain line by line.

for (k = 0; k < (N / 2); k++)
 {
First of all, we have the limits of the summation in the form of a for loop. We have to remember
that this N is not the global variable, but the input argument received in the recursivity process.
Each call of the function passes the half of N, generating a summation of even and odd indexes
of each summation. Once established the limits of the corresponding summation, and knowing
the corresponding interval of the variable k we have

 // t <- X_k
 // t_temp <- X[k]
 Xre_temp = X_real[k + freq_bin];
 Xim_temp = X_im[k + freq_bin];

Which means that we extract 𝐸V of X[k], and we store its real and imaginary part in Xre_temp
and Xim_temp.

 // t_temp_kplusN2 <-X[k+N/2]

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 81

 Xre_temp_kplusN2 = X_real[k + freq_bin + N / 2];
 Xim_temp_kplusN2 = X_im[k + freq_bin + N / 2];

We repeat the previous process storing the real and imaginary part of the odd index summation
through X[k+N/2].

If we remember the equations of FFT, to compute each frequency bin 𝑋V

𝑋V = 𝐸V + 𝑒
NB4TU V𝑂V

𝑋
VaU4

= 𝐸V − 𝑒
NB4TU V𝑂V

𝐸V = M 𝑥4(𝑒
NB4TV(U

4:

U
4N3

(R`

						 ; 							𝑂V = M 𝑥4(a3𝑒
NB4TV(U

4:

U
4N3

(R`

And now that we have the interval of m set, due to the corresponding recursivity call, we can
compute each frequency bin according with the expressions.

First of all, we comput the exponential term in terms of sin and cosine.

 // Calculation temp
 exp_Oddk_re = cos(-2 * PI * k / N) * Xre_temp_kplusN2 - sin(-2 *
PI * k / N) * Xim_temp_kplusN2;
 exp_Oddk_im = cos(-2 * PI * k / N) * Xim_temp_kplusN2 + sin(-2 *
PI * k / N) * Xre_temp_kplusN2;

This part of the code is for extract the real and imaginary part of the multiplication between the
exponential and the odd term. We can see it through the Euler identity. If we take −𝑗 4T

U
𝑘 = 𝛼,

we can see that:

𝑒�𝑂V = Kcos(𝛼) + 𝑗𝑠𝑖𝑛(𝛼)L · (𝑅𝑒{𝑂V} + 𝑗 · 𝐼𝑚{𝑂V}) =
cos(𝛼) · 𝑅𝑒{𝑂V} + 𝑗 · cos(𝛼) · 𝐼𝑚{𝑂V} + 𝑗𝑠𝑖𝑛(𝛼)𝑅𝑒{𝑂V} + 𝑗 · 𝑗 · sin(𝛼) 𝐼𝑚{𝑂V} =

(cos(𝛼)𝑅𝑒{𝑂V} − sin(𝛼) 𝐼𝑚{𝑂V}) + 𝑗(cos(𝛼) 𝐼𝑚{𝑂V} + sin(𝛼)𝑅𝑒{𝑂V})

So, at the end, we have the real part and imaginary part separated of the factor 𝑒NB

bc
d V𝑂V. This is

what we do with the varibles exp_Oddk_re and exp_Oddk_im.

 // X_k <- t + exp(-2*pi*i*k/N) X_(k+N/2)
 X_real[k + freq_bin] = Xre_temp + exp_Oddk_re;
 X_im[k + freq_bin] = Xim_temp + exp_Oddk_im;
 // X_(k+N/2) <- t - exp(-2*pi*i*k/N) X_(k+N/2)
 X_real[k + freq_bin + N / 2] = Xre_temp - exp_Oddk_re;
 X_im[k + freq_bin + N / 2] = Xim_temp - exp_Oddk_im;
 }
 }
}

With this, what we so is just compute the FFT equation using the temporary variables computed
before.

7.7.2.- ConfigureADC and Sampling function

void configureADC() {

Portable data acquisition and representation system for a VLF receptor SWE-Group

82 Fernando Montoya Andúgar

 // Setup all registers
 pmc_enable_periph_clk(ID_ADC); // To use peripheral, we must enable
clock distributon to it
 adc_init(ADC, SystemCoreClock, ADC_FREQ_MAX, ADC_STARTUP_FAST); //
initialize, set sampling frequency
 adc_disable_interrupt(ADC, 0xFFFFFFFF); //disable interrupt of theA
ADC
 adc_set_resolution(ADC, ADC_12_BITS); //We use the available
resolution of the ADC
 adc_configure_power_save(ADC, 0, 0); // Disable sleep, always
powered
 adc_configure_timing(ADC, 0, ADC_SETTLING_TIME_3, 1); // Set timings
- standard values
 adc_set_bias_current(ADC, 1); // Bias current - maximum performance
over current consumption
 adc_stop_sequencer(ADC); // not using it
 adc_disable_tag(ADC); // it has to do with sequencer, not using it
 adc_disable_ts(ADC); // disable temperature sensor
 adc_disable_channel_differential_input(ADC, ADC_CHANNEL_7); // A0 is
channel 7 of the ADC
 adc_configure_trigger(ADC, ADC_TRIG_SW, 1); // triggering from
software, freerunning mode
 adc_disable_all_channel(ADC);
 adc_enable_channel(ADC, ADC_CHANNEL_7); // just one channel enabled
}

void Sampling(double *sw, double *re, double *im)
{
 adc_start(ADC);
 for (int i = 0; i < N; i++) {
 while ((adc_get_status(ADC) & ADC_ISR_DRDY) != ADC_ISR_DRDY)
 {}; //Wait for end of conversion
 sw[i] = adc_get_latest_value(ADC); // Read ADC
 }

 adc_stop(ADC);

 for (int i = 0; i < N; i++) {
 //To store the voltage value in the array -> value*SPAN_ADC/(2^n-
1)
 sw[i] = sw[i] * 3.3 / 4095;
 re[i] = sw[i];
 im[i] = 0;
 }

}

These two functions are explained before in the tests section. We configure the ADC peripheral
of Arduino Due using the libsam library and the, we activate the ADC waiting actively each
sample of the input signal. After this, the ADC is stopped and we compute the real and imaginary
part of the voltage input.

7.7.3.- Postprocessing function

This function does some important things.

double postProcessing(double *Xreal, double *Xim, double preMax)

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 83

{
 double maxk = -1.0;
 double maxvalue = -1.0;
 int j = N / 2;
 for (int i = N / 2; i < N; i++) { //we check the
half of the FFT result because is symetric
 double nowFre = abs((i - N) * Fs * 1.0 / N); //actual
frequency.We start with the highest one!!!!!
 double temp = sqrt(Xreal[i] * Xreal[i] + Xim[i] * Xim[i]);
//temporal magnitude to compute the maximum

Firstly, goes through the FFT array obtaining the frequency and its magnitude value.

 if (j > -1)
 {
 freqsFFT[j] = nowFre; //We take the frequencies in
ascending order
 magFFT[j] = temp * 2 / N;
 j--;
 }

 With this data, we store the frequencies in ascending order to short the frequencies and
magnitudes.

 if (temp > maxvalue) {
 maxk = nowFre;
 maxvalue = temp;
 }
 }

And at the end of the for loop statement, we store the maximum value discovered in the FFT and
the frequency where it is.

//DC Component
 for (int k = 0; k < N; k++)
 {
 Xreal[0] = Xreal[0] + input_wave[k];
 }
 //magFFT contains the half of the samples! The average is then 2*N
 magFFT[0] = Xreal[0] / 2 / N;

 return maxk;
}

Then, we compute de DC component of the signal that is only the sum of all the averaged terms
of the input signal. With this, we have the FFT finished and also we have the maximum value of
it.

7.7.4.- sendData2Esp function

void sendData2Esp(void) {
 Serial.println("Starting communication with ESP:");
 delay(50);
 Esp8266.print("F");
 while (!Esp8266.available());
 inStr = Esp8266.readString();
 if (inStr == "G") {

Portable data acquisition and representation system for a VLF receptor SWE-Group

84 Fernando Montoya Andúgar

 Esp8266.print(freq2ESP);
 Serial.print("Sended as freq: ");
 Serial.println(freq2ESP);
 delay(50);
 while (!Esp8266.available());
 inStr = Esp8266.readString();
 if (inStr == "H") {
 Esp8266.print(volt2ESP);
 delay(50);
 Serial.print("Sended as voltage: ");
 Serial.println(volt2ESP);
 }
 }
 if(inStr=="H")
 Serial.println("Packet Send");
}

We saw that this function is activated when it is been a minute. Also, we saw in the tests section
that the protocol starts with the character “F”. Then, the microcontroller waits actively to the
character “G”. This wait is active because the ESP8266 code is also implemented in a continuous
way. After that, we can read in above code the rest of the protocol explained before.

7.7.5.- drawScreen1 function

/*Functions to draw the screen******************************/
void drawScreen1(ILI9341_due &d)
{
 d.setTextScale(1);
 d.fillScreen(ILI9341_BLACK);
 myButtons.enableButton(dispButton);
 myButtons.drawButton(dispButton);
 //delay(200);
 myButtons.enableButton(fftButton);
 myButtons.drawButton(fftButton);
 //delay(200);
 myButtons.enableButton(logButton);
 myButtons.drawButton(logButton);
 //delay(200);
 myButtons.enableButton(selectFreqButton);
 myButtons.drawButton(selectFreqButton);
}

This function just erase the screen in black and draw the buttons of the main screen.
7.7.6.- drawGraph function

void drawGraph(ILI9341_due &d)
{
 /* Function that draw a graph in the TFT screen. To compute the
values, we take
 into account that the axis are Y(10-200, 190 pixels of spam)
X(54-310, 256 of spam)
 */
 tft.fillScreen(ILI9341_WHITE);
 d.drawFastHLine(Xo - 2, 191, 256, ILI9341_DARKRED);
 d.drawFastVLine(Xo - 2, Yo + 1, 180, ILI9341_DARKRED);
}

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 85

The function basically paints the axes. We take into account the pixels available in the screen.
We have to take into account that the center of the axis is in the upper left corner on the screen.

7.7.7.- timeAxis function

void timeAxis(ILI9341_due &d)
{
 d.drawFastVLine(Xo + 64, 191, 2, ILI9341_BLACK);
 sprintf(xlabeltime[0], "%.2f", (float)64000 / (2 * Fs));
 d.printAt(xlabeltime[0], Xo + 41, 193);

 d.drawFastVLine(Xo + 128, 191, 2, ILI9341_BLACK);
 sprintf(xlabeltime[1], "%.2f", (float)128000 / (2 * Fs));
 d.printAt(xlabeltime[1], Xo + 105, 193);

 d.drawFastVLine(Xo + 192, 191, 2, ILI9341_BLACK);
 sprintf(xlabeltime[2], "%.2f", (float)192000 / (2 * Fs));
 d.printAt(xlabeltime[2], Xo + 170, 193);

 d.drawFastVLine(Xo + 256, 191, 2, ILI9341_BLACK);
 d.printAt("ms", Xo + 243, 193);

 //Horizontal lines to voltage reference
 d.printAt("V", Xo - 30, 0);

 d.drawFastHLine(Xo - 5, 105, 5, ILI9341_BLACK); //1,65 volts
reference
 d.printAt("1,65", Xo - 46, 97);

 d.drawFastHLine(Xo - 5, 149, 5, ILI9341_BLACK); //0,825 volts
reference
 d.printAt("0.83", Xo - 46, 146);

 d.drawFastHLine(Xo - 5, 61, 5, ILI9341_BLACK); //2,475 volts
reference
 d.printAt("2,48", Xo - 46, 58);

 d.drawFastHLine(Xo - 5, Yo + 7, 5, ILI9341_BLACK); //3.3 volts
reference
 d.printAt("3,3", Xo - 36, Yo + 4);

 d.printAt("0", Xo - 5, 195);
}

This function paints the labels of the axes. We can see that the value showed is a value obtained
from the sampling frequency. The procedure to obtain the exact pixel is basically divide the pixels
painted as axis, and then divide the sampling frequency in the same proportion. For the Y axis the
procedure is the same. We divide the axis and establish the correct position in pixels of the value.

7.7.8.- freqAxis function

void freqAxis(ILI9341_due &d)
{
 //Horizontal lines to voltage reference
 d.printAt("V", Xo - 30, 0);

Portable data acquisition and representation system for a VLF receptor SWE-Group

86 Fernando Montoya Andúgar

 d.drawFastHLine(Xo - 5, 104, 5, ILI9341_BLACK); //1,65 volts
reference
 d.printAt("1,65", Xo - 46, 96);

 d.drawFastHLine(Xo - 5, 148, 5, ILI9341_BLACK); //0,825 volts
reference
 d.printAt("0.83", Xo - 46, 145);

 d.drawFastHLine(Xo - 5, 60, 5, ILI9341_BLACK); //2,475 volts
reference
 d.printAt("2,48", Xo - 46, 57);

 d.drawFastHLine(Xo - 5, Yo + 6, 5, ILI9341_BLACK); //3.3 volts
reference
 d.printAt("3,3", Xo - 36, Yo + 3);

 d.printAt("0", Xo - 5, 195);

 //Vertical marks to reference the frequencies
 d.drawFastVLine(Xo + 64, 191, 2, ILI9341_BLACK);
 //As we draw a sample every two pixels Xo+64 -> freqsFFT[64/2]
 sprintf(xlabelfreq[0], "%.2f", freqsFFT[64 / 2] / 1000);
 d.printAt(xlabelfreq[0], Xo + 41, 193);

 d.drawFastVLine(Xo + 128, 191, 2, ILI9341_BLACK);
 sprintf(xlabelfreq[1], "%.2f", freqsFFT[128 / 2] / 1000);
 d.printAt(xlabelfreq[1], Xo + 105, 193);

 d.drawFastVLine(Xo + 192, 191, 2, ILI9341_BLACK);
 sprintf(xlabelfreq[2], "%.2f", freqsFFT[192 / 2] / 1000);
 d.printAt(xlabelfreq[2], Xo + 170, 193);

 d.drawFastVLine(Xo + 254, 191, 2, ILI9341_BLACK);
 d.printAt("kHz", Xo + 235, 193);
}

This function works in same way than the previous one. It divides the Y axis to establish the
voltage value, and then establishes vertical marks to put the frequencies as a reference to the user.

As we draw each sample every two pixels, we know that, as we see in the code, 64 pixels mean
the sample number 32.

We can see the graph area in pixels in the following way. Using the same procedure for the time
graph.

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 87

#define Y_MAX 240
#define X_MAX 320

gTextArea graphArea{Xo, Yo, X_MAX - Xo, 180}

As we can see, the graph will be painted starting from Xo, that is 53 pixels, so the difference
between the first frequency label is also 64 pixels. The same for the Y axis, that reaches a length
of 190, discarding the line of the x axis.

8.- Conclusions and future work

After all the parts covered, we can see that the system works as expected. In the User Manual we
can see how to handle the system and how the system responds correctly with a known input
signal.

We saw that the libraries used work properly, but we do not know entirely the behavior of them.
The libraries use the dynamic memory to reach their objectives, but this left to us an amount of
memory unknown to write the code. This has given us several problems. The Serial.print()
function, for example, uses dynamic memory to store the information to send or to receive. Also,
the buttons need some amount of memory to exist. All of these took us to situations in where the
behavior of the system was unexpected. We saw for example shift displacement in the FFT results
if we do not erase the buttons when we return back to the main screen, also the timestamp of the
sampled data was a meaningless string when we can see in other part of the code that it was right,
etc.

The use of the libraries and also the Arduino environment have showed us that for complex project
might be not recommended unless you are an experience user in embedded system programming.

On the other hand, we have seen how easy the Arduino programming can be. The use of the
functions implemented in Wiring project allow us to work without spend too much time in details
and certain aspects as the bit handle. The protocols used in the microcontroller are very well
implemented in the libraries and for that reason we do not take care of them in the code. In

Yo=10px

Yo+6=16px

60px

104px

148px

∆44px

∆44px

∆44px

191px

Xo-2=51px 51+256=307px Xo+64=117px Xo+128=181px Xo+192=245px

∆64px ∆64px

Portable data acquisition and representation system for a VLF receptor SWE-Group

88 Fernando Montoya Andúgar

addition to this, the use of the DMA in the screen library allow us to paint quickly the signal, that
is basically in projects where the user see the signal.

We can say too, that the Cortex M3 has been a good choice. With other microcontrollers in the
market, the price of the Cortex M3 and its implementation in an Arduino compatible board, has
made it possible to implement the End-of-Grade work in the semester time.

Also, we have seen that the second microcontroller has much more potential than the use of the
GET method. This opens to us new possibilities to improve the system due to the capabilities of
them. An embedded server, new peripherals, stand by modes or new features are just some
examples that can be implemented in our system.

As a future work, there are several things to do with this project. A design in another IDE with
other compilers would be necessary in order to improve the system and have more control over
the code and the microcontroller behavior. The handle of the memory begins necessary in large
projects. Furthermore, the energy of the system would be improved also. The system could be in
a place without internet and without power supplying. With the SD card there is no problem to
put the system far away from these electric requirements. In order to do that, the system could
have a green energy suppling which charges the system over the day, for example, and does not
run out of power. Also, a new design in PCB with a proper case would be much more professional
in the presentation of the system. Although these features are not too much complicated to
implement, the limited amount of time to develop the project left us these features in the future
work section.

After all the work done, and this is my opinion, we have learned a lot of embedded designs. We
have developed a digital system that can be modified without any change in the hardware and this
is the key to establish a foundation for a future project complex, elaborated and with a robust and
efficient aspect.

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 89

Scheme of the project

Portable data acquisition and representation system for a VLF receptor SWE-Group

90 Fernando Montoya Andúgar

Budget

Hardware resources

Components Price (€)
Arduino Due 35,00

TFT Screen 2.8-inch
ILI9341

8,30

4 GB SD card 4,29
RTC DS3231 6,79

ESp8266
8 x Battery AA
Rechargeable

10,00

AA Battery charger 5,00
Battery case 1,50

Breadboard wires 6,39
Acrylic case, screw and

DIY material
20,22

Total 97,49

Software resources

Concept Euros/hour Hours Amount (€)
Microcontroller programming 36 80 2.880

Algorithms developed to test the project 36 60 2.160
Study about other embedded platforms 36 80 2.880

Total 7.920

Writing and typing

Concept Euros/hour Hours Amount (€)
Telecommunication engineer 44 300 13.200

Memory typing 9 70 630
Total 13.830

TOTAL

Concept Amount (€)
Hardware resources 97,49
Software resources 7.920
Writing and typing 13.830

Total 21.847,49

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 91

User manual

We are to explain the use of the system in debug mode, powering the microcontroller with the
USB cable. When we power the system, and we open the serial monitor at 9600 baud, we see

Figure 40: Initiating system in serial monitor

This means that the system initiates correctly. Once the system is initialized, we can see the main
screen in the LCD.

Figure 41: Main screen of the system

Then, we can select any of the 4 features available. The “Signal scope” to see the input signal in
time domain, the “FFT” to see the spectrum of the input signal below 87 kHz, “LOG data” to
start logging the data in the SD card and sending to the server the frequency number one with its
magnitude, and “Sel Frequencies” to save the 4 frequencies of interest for the user in order to log
data.

As an example, we are going to set as an input a sinusoidal signal of 50 kHz, with 3 V peak to
peak with an offset of 1,5 v. The aspect of the input signal, according to the oscilloscope used is:

Portable data acquisition and representation system for a VLF receptor SWE-Group

92 Fernando Montoya Andúgar

Figure 42: Input signal for the example

We can see at the bottom right corner of Figure 42, that we set the wave generator with a signal
of 52,08 kHz. The values of the bottom left corner are values computed by the oscilloscope
according to the data sampled.

If we pulse the “Signal scope” button, what we see is:

Figure 43: Signal scope of the example

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 93

Where we can see that the values correspond with the input parameters, with 3 V of maximum
value and average value of 1,5 V.

To measure the signal properly, we use the FFT feature of the system. If we pulse “BACK” button,
and then we pulse “FFT” button, we can see the following figure:

Figure 44: FFT of the input example

The normal lapse of time between the screen updates is 1,20 seconds approximately. This interval
of time can be modified through the refresh_screen variable. We can see that the DC component
corresponds with the input data and also the harmonic. As the input is a pure sinusoidal, we only
have one harmonic that correspond with the maximum power of the input signal.

To check again the system, we are going to change the input signal, in order to distinguish between
DC component and the harmonic we want to measure. In this case, to match the frequencies in
the FFT array and the example, we are going to input the next signal:

Figure 45: Second input signal of the example

Portable data acquisition and representation system for a VLF receptor SWE-Group

94 Fernando Montoya Andúgar

With these, we should have a pure harmonic in our FFT with an amplitude of 1,2 V and
with DC component of 1,5 V.

Figure 46: FFT of the second example input signal

Then we go back pressing the “BACK” button in order to select the frequencies of interest. For
this example, we are going to select 20,83 kHz as frequency 1, and the DC component for
frequency 2. When we push “Sel Frequencies” we see:

Figure 47: Sel Frequencies screen 1

Where we can see the vertical line and the title indicating us the number of the frequency we are
going to save and the frequency itself. By default, the 20,83 kHz frequency is selected. We can
go through the spectrum with the arrow’s buttons. If we pulse the right button, we can see the
change:

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 95

Figure 48: Sel Frequencies screen 2

And we can see the next frequency bin in our FFT array. With this procedure, we can select the
frequency of interest. As we want to store the 20,83 kHz in frequency 1, we pulse the left arrow
and then pulse the “Save” button. When we pulse the button, we can see, during one frame which
is approximately 1,2 seconds, the next text on the screen:

Figure 49: Sel Frequencies screen 3

 Which means that the frequency selected when the user presses the “SAVE” button is stored in
frequency 1. After the frame, the system shows the same screen but with the label frequency 2 in
the title.

Portable data acquisition and representation system for a VLF receptor SWE-Group

96 Fernando Montoya Andúgar

Figure 50: Sel Frequencies screen 4

Then, we can go to the DC component through the left button. Once we are at frequency 0,0 kHz,
we pulse the “SAVE” button again. The system, by default, has the DC component as the
frequencies to sample in the 4 frequencies available. So, the selection of the DC component in
the frequency 2 is not necessary, but it is mentioned because we can only measure one harmonic
and the DC component for the example.

Once we have the desired frequencies stored, we can pulse “BACK” button to return back to the
main screen. Then, we can start to log the data by the pulse of the “LOG data” button. As we are
in debug mode, once we pulse the button, what we see is the next figure:

Figure 51: LOG data debuging 1

That shows us that the system is logging the data each 5 seconds. When it has been a minute, we
can see the following debugging comments.

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 97

Figure 52: LOG data debugging 2

Where we can see that the system stores in the SD card all the values and start the communication
with the ESP8266. Once it sends the packet through the GET method, we can see how the system
continues with the sample every 5 seconds.

If we go to the website created for the purpose of this End-of-Grade work:

http://www.spaceweather.es/sid/test/data.txt

We can see all the results for the selected frequency 1 of our system. In the moment we have
made this user manual, we can see in that webpage the next results:

Figure 53: Webpage with the result of frequency 1

Portable data acquisition and representation system for a VLF receptor SWE-Group

98 Fernando Montoya Andúgar

Where we can see that we sampled the DC component before the manual, and then, with the 20,83
kHz frequency selected as frequency one and in the LOG data mode, the corresponding results
are showed.

The LOG data screen in our system is the following one:

Figure 54: LOG data screen

Where we can see that the system is logging the data and it shows us the frequencies that have
been selected.

The data is stored in the SD card in the form of files with the name of the day. We can power
down the system and extract the SD card from the screen in order to see the files and its contents.
To maintain the same procedure than the one shown before, we put the system to sampling the
20,83 kHz frequency some minutes at the next day. This is just an example, and with several days
the system will have a file per day. If we check the content of the SD card for this purpose, we
can see that:

Figure 55: SD card content

The SD card has the file created for the test and also the file created while this user manual has
been created. If we open the file corresponding with the day when this manual has been created:

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 99

Figure 56: Results in SD card corresponding to the day of the user manual creation

And we can see the first frequency for this example that is 20,83 kHz, with and amplitude of 1,19
V, (2,44 V peak to peak of the input means 1,2 V of input amplitude), and a DC component
sampled in frequencies 2, 3 and for of 1,47 V (1,5 V DC component of the input).

With this, the User manual has been covered. We saw how to manage the system in order to store
the frequency components of the input signal in order to study their behavior lately.

Portable data acquisition and representation system for a VLF receptor SWE-Group

100 Fernando Montoya Andúgar

Bibliography

[1] R. Redmon, D. B. Seaton, R. Steenburgh, J. He and J. V. Rodriguez, "September

2017's Geoeffective Space Weather and Impacts to Caribbean Radio
Communications During Hurricane Response," Space Weather, no. 16, pp. 1190-
1201, 2018.

[2] E. Gilbert, "GitHub SuperSID," [Online]. Available:
https://github.com/ericgibert/supersid.

[3] I. b. Muñoz, Subject of Electronic Subsystems, vol. Data conversion, University
of Alcalá de Henares, 2018.

[4] H. Nyquist, "Certain topics in telegraph transmission theory," April 1928.
[Online]. Available:
https://web.archive.org/web/20130926031230/http://www.ieee.org/publications_
standards/publications/proceedings/nyquist.pdf.

[5] Wikipedia, "Succesive Approximation ADC," [Online]. Available:
https://en.wikipedia.org/wiki/Successive_approximation_ADC.

[6] M. Integrated, "Tutorial 1023," [Online]. Available:
https://www.maximintegrated.com/en/app-notes/index.mvp/id/1023.

[7] M. Integrated, "Understanding Pipelined ADCs," March 2001. [Online].
Available:
http://materias.fi.uba.ar/6644/info/varios/conversores/basico/Understanding%20p
ipelined%20ADCs.htm.

[8] M. B. Velasco, "La Transformada Discreta de Fourier," in Tratamiento Digital de
Señales, Servicio de Publicaciones Universidad de Alcalá, 2013.

[9] A. V. Oppenheim and A. S. Wilsky, Signals and Systems, Pearson Prentice Hall,
1997.

[10] J. W. Cooley and J. W. Tukey, "An algorithm for the machine calculation of
complex Fourier series," Mathematics of Computation, no. 19, pp. 297-301,
1965.

[11] Wikipedia, "Microcontroller," [Online]. Available:
https://en.wikipedia.org/wiki/Microcontroller.

[12] A. G. Baquero, "Recursivity," in Theory slides of Programming Subject, 2016.
[13] J. Pastor and J. M. Villadangos, Subject of Advanced Digital Electronic Systems,

University of Alcalá de Henares, 2019.
[14] A. Due, "Arduino Store," [Online]. Available: https://store.arduino.cc/due.
[15] ATMEL, "Datasheet SAM3X/SAM3A Series," [Online]. Available:

http://ww1.microchip.com/downloads/en/devicedoc/atmel-11057-32-bit-cortex-
m3-microcontroller-sam3x-sam3a_datasheet.pdf.

[16] L. Wiki, "SKU:MSP2807," [Online]. Available:
http://www.lcdwiki.com/2.8inch_SPI_Module_ILI9341_SKU:MSP2807.

[17] J. J. Purdum, Beginning C for Arduino: learn C programming for the Arduino,
New York: Apress, 2015.

[18] Wiring, "Wiring project," [Online]. Available: http://wiring.org.co/.
[19] M. Buriak, "ILI9341_due library," [Online]. Available:

http://marekburiak.github.io/ILI9341_due/.

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 101

[20] P. Stoffregen, "ili9341_t3," [Online]. Available:
https://github.com/PaulStoffregen/ILI9341_t3.

[21] B. Greiman. [Online]. Available: https://github.com/greiman/SdFat.
[22] M. Margolis and B. Perry. [Online]. Available: https://code.google.com/p/glcd-

arduino.
[23] H. Karlsen, "URTouch library," Rinky-Dink Electronics, [Online]. Available:

http://www.rinkydinkelectronics.com/library.php?id=92.
[24] G. Lawrence, "ILI9341_due_Buttons," [Online]. Available:

https://github.com/ghlawrence2000/ILI9341_due_Buttons.
[25] Adafruit, "RTClib," [Online]. Available: https://github.com/adafruit/RTClib.
[26] Atmel, "SAM libraries," [Online]. Available:

https://github.com/arduino/ArduinoCore-
sam/blob/master/system/libsam/include/adc.h.

[27] DIGILENT, "OpenScope MZ," DIGILENT, [Online]. Available:
https://reference.digilentinc.com/reference/instrumentation/openscope-mz/start.

Portable data acquisition and representation system for a VLF receptor SWE-Group

102 Fernando Montoya Andúgar

Annex I Main code

//Use of Screen
#include <SPI.h>
#include <SdFat.h>
#include <ILI9341_due.h>
#include <URTouch.h>
#include <ILI9341_due_Buttons.h>
#include "SmallFont.h"
#include "BigFont.h"

//Use of RTC
#include "RTClib.h"

//Some necessary libraries
#include <Wire.h>
#include <stdint.h>

#define SD_SPI_SPEED SPI_HALF_SPEED // SD card SPI speed

#define Fs 666600 //ADC_FREQ_MAX implies this Fs. See example ADC_Due

#define Y_MAX 240 //Maximum pixels in Y axis
#define X_MAX 320 //Maximum pixels in X axis
#define Xo 53 //Pixels for axis (0,0)
#define Yo 10

// LCD
#define TFT_RST 8
#define TFT_DC 9
#define TFT_CS 11
//SD
#define SD_CS 10
//Touch pannel
#define T_CLK 30
#define T_CS 28
#define T_DIN 26
#define T_DOUT 24
#define T_IRQ 22

#define Esp8266 Serial2

//File that we will save in the SD
SdFat sd; // set filesystem
SdFile logSIDSWAP;

// Use hardware SPI
ILI9341_due tft = ILI9341_due(TFT_CS, TFT_DC, TFT_RST);

URTouch myTouch(T_CLK, T_CS, T_DIN, T_DOUT, T_IRQ);

// Finally we set up ILI9341_due_Buttons :)
ILI9341_due_Buttons myButtons(&tft, &myTouch);

RTC_DS3231 rtc;

/*** GLOBAL VARIABLES*************************/
int pressed_button;
//check if a button is already pushed
boolean pressed = false;

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 103

//in order to paint values in the graph
boolean paint_time = false;
boolean paint_fft = false;
boolean log_data = false;
boolean sel_freq = false;
boolean showFrequencies = false;
//Constant that extrapolates the voltage of the signal to adequate it
to pixels in the graph
uint16_t pixel_mag_factor = 52; //54.54 (180/3.3)
uint16_t pixel_magfreq_factor = 52;
//To store the values in time of x-axis in time draw
char xlabeltime[3][10];
char xlabelfreq[3][10];
//Variable to do a passive wait to refresh the draw of the time signal
in the graph
uint32_t refresh_screen = 100;

int backButton, dispButton, fftButton, logButton, selectFreqButton;
int saveButton, leftButton, rightButton;

/*FFT stuff**/
const uint16_t N = 1024;
double input_wave[N];
double re[N], im[N], Xr[N], Xi[N];
double freqsFFT[N / 2], magFFT[N / 2], freqsSampled[4];
double preMax = -100.0;
//String to contain the max value of FFT and print it in the screen
char spreMax[20] = "0";
char dcComponent[20] = "0";

/*RTC stuff**/
DateTime now;
DateTime after;

/*LOG stuff**/
//Array containing the indexes of frequencies to sample in FFT array
(freqsFFT[N/2])
uint16_t logFFTindexes[4];
//to store the index temporary of FFT to save frequency
uint16_t indFx = 32;
//to print frequency 1, frequency 2, etc
uint8_t logFQIndexes = 0;
char logFQIndexesStr[4][3];
//To store the values of frequencies sampled
char freqSampledString[4][25];
//to show in sel frequencies screen the fq to store
char freqSampledStringTemp[4 + 1][25];
//Store the value every 5 seconds. 12 values every minute and 4
frequencies to store
double magValues5sec[4][60 / 5];
//index to store data in the above array
int logindex5sec = 0;
//value to store in SD card
double valueSD_minute[4][1];
//Name of the file
char nameLogFile[50];
//Name of timestamp
char timestamp[12] = "00:00:00";

/*Esp8266 Stuff**/
String freq2ESP = "0";

Portable data acquisition and representation system for a VLF receptor SWE-Group

104 Fernando Montoya Andúgar

String volt2ESP = "0";
String inStr = "nothing";
bool data2Esp = false;

/*Areas
differentation**/
gTextArea graphArea{Xo, Yo, X_MAX - Xo, 180}; //170 available pixels
for draw signals in y-axis
gTextArea allArea{0, 0, X_MAX, Y_MAX};

/*** FUNCTIONS*************************/
void drawScreen1(ILI9341_due &d);
void timeAxis(ILI9341_due &d);
void freqAxis(ILI9341_due &d);
void drawGraph(ILI9341_due &d);

void sidFFT(double *X_real, double *X_im, double *xreal, double
*ximag, int freq_bin, int N, int h, int h_interval);
double postProcessing(double *Xr, double *Xi, double premax);

void Sampling(double *sw, double *re, double *im);
void configureADC(void);

void sendData2ESP(void);

void setup()
{
 //For PC communication
 Serial.begin(9600);
 //For Esp8266 communication we use Serial1,2 or 3 of Arduino Due
(Baudrate=115200)
 Esp8266.begin(115200);
 delay(2000);
 Serial.println(F("Initiating system..."));

 // Initial setup
 tft.begin();
 tft.setRotation(iliRotation270); // landscape
 tft.fillScreen(ILI9341_BLACK);

 tft.setFont(SmallFont);

 myTouch.InitTouch();
 myTouch.setPrecision(PREC_MEDIUM);

 myButtons.setTextFont(BigFont);

 /*Buttons to be used in the LCD menu ***************************/
 /* Main Menu Buttons***************************/
 dispButton = myButtons.addButton(10, 20, 300, 30, "Signal
scope");
 fftButton = myButtons.addButton(10, 60, 300, 30, "FFT");
 logButton = myButtons.addButton(10, 160, 300, 30, "LOG data");
 selectFreqButton = myButtons.addButton(10, 200, 300, 30, "Sel
Frequencies");
 backButton = myButtons.addButton(10, 218, 75, 20, "BACK");

 /*To select the frequencies to sample*/

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 105

 leftButton = myButtons.addButton(95, 218, 70, 20, "<-");
 rightButton = myButtons.addButton(245, 218, 70, 20, "->");
 saveButton = myButtons.addButton(168, 210, 74, 30, "Save");

 if (! rtc.begin()) {
 Serial.println(F("Couldn't find RTC"));
 //while (1);
 }
 if (rtc.lostPower())
 {
 Serial.println("RTC lost power, lets set the time!");
 // following line sets the RTC to the date & time this sketch was
compiled
 rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
 // This line sets the RTC with an explicit date & time, for
example to set
 // January 21, 2014 at 23:59:00 you would call:
 // rtc.adjust(DateTime(2014, 1, 21, 23, 59, 40));
 }
 rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
 Serial.println(F("RTC set:"));
 now = rtc.now();
 sprintf(timestamp, "%02d:%02d:%02d", now.hour(), now.minute(),
now.second());
 Serial.println(timestamp);

 Serial.print(F("Initiating SD card..."));
 if (!sd.begin(SD_CS, SD_SPI_SPEED))
 {
 Serial.println(F("Card failed, or not present"));
 return;
 }
 Serial.println(F("card initialized."));

 sprintf(freqSampledString[0], "%.2f", 0);
 sprintf(freqSampledString[1], "%.2f", 0);
 sprintf(freqSampledString[2], "%.2f", 0);
 sprintf(freqSampledString[3], "%.2f", 0);

 Serial.println(F("Done"));
 tft.setTextColor(ILI9341_BLACK, ILI9341_WHITE);
 drawScreen1(tft);
}

void loop()
{
 //to store the maximum value of FFT
 double preMax = -100.0;

 //data2Esp = false;

 now = rtc.now();

 //Always sampling the signal if we are not loging the data
 if (!log_data)
 {
 configureADC();
 Sampling(input_wave, re, im);
 }

 if (data2Esp) {

Portable data acquisition and representation system for a VLF receptor SWE-Group

106 Fernando Montoya Andúgar

 if(Esp8266.available()) inStr = Esp8266.readString();
 sendData2Esp();
 data2Esp = false;
 }

 /*State machine that manages the behaviour of the project*/
 if (myTouch.dataAvailable() == true)
 {
 pressed_button = myButtons.checkButtons();

 if ((pressed_button == dispButton) && (!pressed))
 {
 tft.setTextArea(allArea);
 myButtons.disableButton(dispButton);
 myButtons.disableButton(fftButton);
 myButtons.disableButton(logButton);
 myButtons.disableButton(selectFreqButton);
 myButtons.disableButton(leftButton);
 myButtons.disableButton(rightButton);
 myButtons.disableButton(saveButton);
 pressed = true;
 paint_time = true;
 paint_fft = false;
 log_data = false;
 sel_freq = false;
 drawGraph(tft);
 timeAxis(tft);
 myButtons.enableButton(backButton);
 myButtons.drawButton(backButton);
 }

 if ((pressed_button == fftButton) && (!pressed))
 {
 tft.setTextArea(allArea);
 myButtons.disableButton(fftButton);
 myButtons.disableButton(dispButton);
 myButtons.disableButton(logButton);
 myButtons.disableButton(selectFreqButton);
 myButtons.disableButton(leftButton);
 myButtons.disableButton(rightButton);
 myButtons.disableButton(saveButton);
 pressed = true;
 paint_time = false;
 paint_fft = true;
 log_data = false;
 sel_freq = false;
 sidFFT(Xr, Xi, re, im, 0, N, 0, 1);
 // Post-processing
 preMax = postProcessing(Xr, Xi, preMax);
 drawGraph(tft);
 freqAxis(tft);
 myButtons.enableButton(backButton);
 myButtons.drawButton(backButton);
 }

 if ((pressed_button == logButton) && (!pressed))
 {
 myButtons.disableButton(fftButton);
 myButtons.disableButton(dispButton);
 myButtons.disableButton(logButton);
 myButtons.disableButton(selectFreqButton);

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 107

 myButtons.disableButton(leftButton);
 myButtons.disableButton(rightButton);
 myButtons.disableButton(saveButton);
 pressed = true;
 paint_time = false;
 paint_fft = false;
 log_data = true;
 sel_freq = false;

 tft.fillScreen(ILI9341_BLACK);
 //Show the screen displaying that data are stored
 tft.setTextScale(2);
 tft.setTextColor(ILI9341_BLACK, ILI9341_WHITE);
 tft.printAt("Loging data", Xo, Yo);
 tft.setTextColor(ILI9341_WHITE, ILI9341_BLACK);
 tft.setTextScale(1);

 tft.printAt(F("Frequencies sampled:"), Xo, Yo + 50);

 tft.setTextColor(ILI9341_GOLD, ILI9341_BLACK);
 tft.printAt(F("Frequency 1: "), Xo + 10, Yo + 80);
 tft.printAt(freqSampledString[0], Xo + 140, Yo + 80);
 tft.printAt(" kHz", Xo + 190, Yo + 80);

 tft.printAt(F("Frequency 2: "), Xo + 10, Yo + 110);
 tft.printAt(freqSampledString[1], Xo + 140, Yo + 110);
 tft.printAt(" kHz", Xo + 190, Yo + 110);

 tft.printAt(F("Frequency 3: "), Xo + 10, Yo + 140);
 tft.printAt(freqSampledString[2], Xo + 140, Yo + 140);
 tft.printAt(" kHz", Xo + 190, Yo + 140);

 tft.printAt(F("Frequency 4: "), Xo + 10, Yo + 170);
 tft.printAt(freqSampledString[3], Xo + 140, Yo + 170);
 tft.printAt(F(" kHz"), Xo + 190, Yo + 170);

 now = rtc.now();
 //Alarm set 5 seconds later.
 after = now + TimeSpan(5);

 sprintf(nameLogFile, "%04d-%02d-%02d.csv", now.year(),
now.month(), now.day());

 Serial.println(F("Starting with data loging..."));
 sprintf(timestamp, "%02d:%02d:%02d", now.hour(), now.minute(),
now.second());
 Serial.println(timestamp);

 myButtons.enableButton(backButton);
 myButtons.drawButton(backButton);

 tft.setTextColor(ILI9341_BLACK, ILI9341_WHITE);
 }

 if ((pressed_button == selectFreqButton) && (!pressed))
 {
 myButtons.disableButton(fftButton);
 myButtons.disableButton(dispButton);
 myButtons.disableButton(logButton);
 myButtons.disableButton(selectFreqButton);
 tft.clearTextArea(ILI9341_BLACK);

Portable data acquisition and representation system for a VLF receptor SWE-Group

108 Fernando Montoya Andúgar

 pressed = true;
 paint_time = false;
 paint_fft = false;
 log_data = false;
 sel_freq = true;
 sidFFT(Xr, Xi, re, im, 0, N, 0, 1);
 // Post-processing
 preMax = postProcessing(Xr, Xi, preMax);
 drawGraph(tft);
 freqAxis(tft);
 myButtons.enableButton(leftButton);
 myButtons.drawButton(leftButton);
 myButtons.enableButton(saveButton);
 myButtons.drawButton(saveButton);
 myButtons.enableButton(rightButton);
 myButtons.drawButton(rightButton);
 myButtons.enableButton(backButton);
 myButtons.drawButton(backButton);
 }

 if ((pressed_button == backButton) && (!pressed))
 {
 myButtons.deleteAllButtons();
 dispButton = myButtons.addButton(10, 20, 300, 30, "Signal
scope");
 fftButton = myButtons.addButton(10, 60, 300, 30, "FFT");
 logButton = myButtons.addButton(10, 160, 300, 30, "LOG data");
 selectFreqButton = myButtons.addButton(10, 200, 300, 30, "Sel
Frequencies");
 backButton = myButtons.addButton(10, 218, 75, 20, "BACK");
 leftButton = myButtons.addButton(95, 218, 70, 20, "<-");
 rightButton = myButtons.addButton(245, 218, 70, 20, "->");
 saveButton = myButtons.addButton(168, 210, 74, 30, "Save");

 pressed = true;
 paint_time = false;
 paint_fft = false;
 log_data = false;
 sel_freq = false;
 tft.setTextArea(allArea);
 myButtons.disableButton(backButton);
 drawScreen1(tft);
 }

 if (sel_freq)
 {
 if ((pressed_button == leftButton) && (!pressed))
 {
 pressed = true;
 //paint black line before paint the new one
 tft.drawFastVLine(Xo + indFx * 2, Yo + 20, 160,
ILI9341_WHITE);
 indFx -= 1;
 if (indFx < 0) indFx = 0;
 if (indFx > (N / 2) - 1) indFx = (N / 2) - 1;

 tft.drawFastVLine(Xo + indFx * 2, Yo + 20, 160,
ILI9341_DARKGOLDENROD);
 sprintf(freqSampledStringTemp[logFQIndexes], "%.2f",
freqsFFT[indFx] / 1000);
 }

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 109

 if ((pressed_button == rightButton) && (!pressed))
 {
 pressed = true;
 //paint black line before paint the new one
 tft.drawFastVLine(Xo + indFx * 2, Yo + 20, 160,
ILI9341_WHITE);
 indFx += 1;
 if (indFx < 0) indFx = 0;
 if (indFx > (N / 2) - 1) indFx = (N / 2) - 1;

 tft.drawFastVLine(Xo + indFx * 2, Yo + 20, 160,
ILI9341_DARKGOLDENROD);
 sprintf(freqSampledStringTemp[logFQIndexes], "%.2f",
freqsFFT[indFx] / 1000);
 }
 if ((pressed_button == saveButton) && (!pressed))
 {
 pressed = true;
 logFFTindexes[logFQIndexes] = indFx;
 sprintf(freqSampledString[logFQIndexes], "%.2f",
freqsFFT[indFx] / 1000);
 tft.setTextColor(ILI9341_WHITE, ILI9341_RED);
 tft.printAt("SAVED!", Xo + 150, Yo + 10);
 tft.setTextColor(ILI9341_WHITE, ILI9341_BLACK);
 logFQIndexes ++;
 if (logFQIndexes > 3) logFQIndexes = 0;
 }
 }
 }

 else
 {
 pressed = false;
 }

 if (paint_time)
 {
 tft.setTextArea(graphArea);
 refresh_screen--;

 if (refresh_screen == 50)
 {
 // Serial.println("Paint first half");
 tft.clearTextArea(ILI9341_WHITE);
 for (int i = 0; i < 128; i++)
 {
 tft.drawLine(Xo + i * 2, 189 - input_wave[i]*pixel_mag_factor,
Xo + (i + 1) * 2, 189 - input_wave[i + 1]*pixel_mag_factor,
ILI9341_STEELBLUE); //147 vs 189
 }
 }

 if (refresh_screen == 0)
 {
 tft.clearTextArea(ILI9341_WHITE);
 for (int j = 128; j < 255; j++)
 {
 tft.drawLine(Xo + ((j - 128) * 2), 189 -
input_wave[j]*pixel_mag_factor, Xo + ((j + 1 - 128) * 2), 189 -
input_wave[j + 1]*pixel_mag_factor, ILI9341_STEELBLUE);

Portable data acquisition and representation system for a VLF receptor SWE-Group

110 Fernando Montoya Andúgar

 }
 refresh_screen = 100;
 }
 }

 if (paint_fft)
 {
 tft.setTextArea(graphArea);
 refresh_screen--;

 if (refresh_screen <= 50)
 {
 sidFFT(Xr, Xi, re, im, 0, N, 0, 1);
 // Post-processing
 preMax = postProcessing(Xr, Xi, preMax);
 preMax /= 1000;
 tft.clearTextArea(ILI9341_WHITE);
 //We draw until 84kHz because the frequencies of interest are
there
 for (int i = 0; i < 128; i++)
 {
 tft.drawLine(Xo + i * 2, 190 - magFFT[i]*pixel_magfreq_factor,
Xo + (i + 1) * 2, 190 - magFFT[i + 1]*pixel_magfreq_factor,
ILI9341_DARKSLATEBLUE);
 }
 //DC Component
 tft.setTextColor(ILI9341_DARKVIOLET, ILI9341_KHAKI);
 sprintf(dcComponent, "DC component: %.2f V", magFFT[0]);
 tft.printAt(dcComponent, 50, 210);
 sprintf(spreMax, "More Power at %.2f kHz", preMax);
 tft.printAt(spreMax, 5, 0);

 refresh_screen = 100;
 }
 tft.setTextColor(ILI9341_BLACK, ILI9341_WHITE);
 }

 if (log_data)
 {
 if (now.second() == after.second())
 {
 now = rtc.now();
 after = now + TimeSpan(5); //5 seconds of span
 sprintf(timestamp, "%02d:%02d:%02d", now.hour(), now.minute(),
now.second());
 Serial.println(timestamp);

 configureADC();
 Sampling(input_wave, re, im);
 sidFFT(Xr, Xi, re, im, 0, N, 0, 1);
 preMax = postProcessing(Xr, Xi, preMax);

 magValues5sec[0][logindex5sec] = magFFT[logFFTindexes[0]];
 magValues5sec[1][logindex5sec] = magFFT[logFFTindexes[1]];
 magValues5sec[2][logindex5sec] = magFFT[logFFTindexes[2]];
 magValues5sec[3][logindex5sec] = magFFT[logFFTindexes[3]];

 logindex5sec++;

 /*if we achieve the minute.... Store in memory the data*/
 if (logindex5sec == (60 / 5))

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 111

 {
 logindex5sec = 0;
 for (int i = 0; i < 60 / 5; i++)
 {
 valueSD_minute[0][0] += magValues5sec[0][i];
 valueSD_minute[1][0] += magValues5sec[1][i];
 valueSD_minute[2][0] += magValues5sec[2][i];
 valueSD_minute[3][0] += magValues5sec[3][i];
 }
 //we compute the average value of the minute
 valueSD_minute[0][0] /= (60 / 5);
 valueSD_minute[1][0] /= (60 / 5);
 valueSD_minute[2][0] /= (60 / 5);
 valueSD_minute[3][0] /= (60 / 5);

 freq2ESP = String(freqsFFT[logFFTindexes[0]]);
 volt2ESP = String(valueSD_minute[0][0]);
 data2Esp = true;

 // Check if its 00:00:00-00:00:05
 if (((now.hour() + now.minute()) == 0) && (now.second() < 5))
 {
 //Create a new file
 sprintf(nameLogFile, "%04d-%02d-%02d.csv", now.year(),
now.month(), now.day());
 }

 if (logSIDSWAP.open(nameLogFile, FILE_WRITE))
 {
 //Freq1[kz] ; mag1[v]; Freq2[kz]; mag2[v]; Freq3[kz];
mag3[v]; hh:mm:ss ; yyyy/mm/dd.csv
 logSIDSWAP.print(freqsFFT[logFFTindexes[0]] / 1000);
 logSIDSWAP.print(";");
 logSIDSWAP.print(valueSD_minute[0][0]);
 logSIDSWAP.print(";");
 logSIDSWAP.print(freqsFFT[logFFTindexes[1]] / 1000);
 logSIDSWAP.print(";");
 logSIDSWAP.print(valueSD_minute[1][0]);
 logSIDSWAP.print(";");
 logSIDSWAP.print(freqsFFT[logFFTindexes[2]] / 1000);
 logSIDSWAP.print(";");
 logSIDSWAP.print(valueSD_minute[2][0]);
 logSIDSWAP.print(";");
 logSIDSWAP.print(freqsFFT[logFFTindexes[3]] / 1000);
 logSIDSWAP.print(";");
 logSIDSWAP.print(valueSD_minute[3][0]);
 logSIDSWAP.print(";");
 logSIDSWAP.print(timestamp);
 logSIDSWAP.print(";");
 logSIDSWAP.println(nameLogFile);

 logSIDSWAP.close();
 Serial.println(F("Stored data in SD card OK"));
 }
 else
 {
 Serial.print(F("Error opening "));
 Serial.println(nameLogFile);
 }

 Serial.println(timestamp);

Portable data acquisition and representation system for a VLF receptor SWE-Group

112 Fernando Montoya Andúgar

 Serial.println(nameLogFile);
 valueSD_minute[0][0] = 0;
 valueSD_minute[1][0] = 0;
 valueSD_minute[2][0] = 0;
 valueSD_minute[3][0] = 0;

 }

 }

 }

 if (sel_freq)
 {
 tft.setTextArea(graphArea);
 refresh_screen--;

 if (refresh_screen <= 50)
 {
 sidFFT(Xr, Xi, re, im, 0, N, 0, 1);
 // Post-processing
 preMax = postProcessing(Xr, Xi, preMax);
 tft.clearTextArea(ILI9341_WHITE);
 //We draw until 84kHz because the frequencies of interest are
there
 for (int i = 0; i < 128; i++)
 {
 tft.drawLine(Xo + i * 2, 190 - magFFT[i]*pixel_magfreq_factor,
Xo + (i + 1) * 2, 190 - magFFT[i + 1]*pixel_magfreq_factor,
ILI9341_STEELBLUE);
 }

 tft.setTextColor(ILI9341_BLACK, ILI9341_KHAKI);
 tft.drawFastVLine(Xo + indFx * 2, Yo + 20, 160,
ILI9341_DARKGOLDENROD);

 //Frequency %d: %.2f kHz
 tft.printAt(F("Frequency "), Xo - 30, 0);
 sprintf(logFQIndexesStr[logFQIndexes], "%d:", logFQIndexes + 1);
 tft.printAt(logFQIndexesStr[logFQIndexes], Xo + 65, 0);
 sprintf(freqSampledStringTemp[logFQIndexes], "%.2f",
freqsFFT[indFx] / 1000);
 tft.printAt(freqSampledStringTemp[logFQIndexes], Xo + 90, 0);
 tft.printAt(F(" kHz"), Xo + 140, 0);

 refresh_screen = 100;
 }
 tft.setTextColor(ILI9341_BLACK, ILI9341_WHITE);
 }

}

/*FFT***
**/

void sidFFT(double *X_real, double *X_im, double *xreal, double
*ximag, int freq_bin, int N, int h, int h_interval)
{
 uint32_t k;
 double Xre_temp, Xim_temp, Xre_temp_kplusN2, Xim_temp_kplusN2,
exp_Oddk_re, exp_Oddk_im;

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 113

 if (N == 1)
 {
 X_real[freq_bin] = xreal[h];
 X_im[freq_bin] = ximag[h];
 return;
 }
 else
 {
 //Even part of the DFT subsection
 sidFFT(X_real, X_im, xreal, ximag, freq_bin, N / 2,
h, h_interval * 2);
 //Odd part of the DFT subsection
 sidFFT(X_real, X_im, xreal, ximag, freq_bin + N / 2, N / 2, h +
h_interval, h_interval * 2);

 for (k = 0; k < (N / 2); k++)
 {
 // t_temp <- X_k
 Xre_temp = X_real[k + freq_bin];
 Xim_temp = X_im[k + freq_bin];
 // t_temp_kplusN2 <-X[k+N/2]
 Xre_temp_kplusN2 = X_real[k + freq_bin + N / 2];
 Xim_temp_kplusN2 = X_im[k + freq_bin + N / 2];
 // Calculation temp
 exp_Oddk_re = cos(-2 * PI * k / N) * Xre_temp_kplusN2 - sin(-2 *
PI * k / N) * Xim_temp_kplusN2;
 exp_Oddk_im = cos(-2 * PI * k / N) * Xim_temp_kplusN2 + sin(-2 *
PI * k / N) * Xre_temp_kplusN2;

 // X_k <- t + exp(-2*pi*i*k/N) X_(k+N/2)
 X_real[k + freq_bin] = Xre_temp + exp_Oddk_re;
 X_im[k + freq_bin] = Xim_temp + exp_Oddk_im;
 // X_(k+N/2) <- t - exp(-2*pi*i*k/N) X_(k+N/2)
 X_real[k + freq_bin + N / 2] = Xre_temp - exp_Oddk_re;
 X_im[k + freq_bin + N / 2] = Xim_temp - exp_Oddk_im;
 }
 }
}

/*Sampling**
*********/

void Sampling(double *sw, double *re, double *im)
{
 adc_start(ADC);
 for (int i = 0; i < N; i++) {
 while ((adc_get_status(ADC) & ADC_ISR_DRDY) != ADC_ISR_DRDY)
 {}; //Wait for end of conversion
 sw[i] = adc_get_latest_value(ADC); // Read ADC
 }

 adc_stop(ADC);

 for (int i = 0; i < N; i++) {
 //To store the voltage value in the array -> value*SPAN_ADC/(2^n-
1)
 sw[i] = sw[i] * 3.3 / 4095;
 re[i] = sw[i];
 im[i] = 0;
 }

Portable data acquisition and representation system for a VLF receptor SWE-Group

114 Fernando Montoya Andúgar

}

/*Post
processing**
*********/

double postProcessing(double *Xreal, double *Xim, double preMax)
{
 double maxk = -1.0;
 double maxvalue = -1.0;
 int j = N / 2;
 for (int i = N / 2; i < N; i++) { //we check the
half of the FFT result because is symetric
 double nowFre = abs((i - N) * Fs * 1.0 / N); //actual
frequency.We start with the highest one!!!!!
 double temp = sqrt(Xreal[i] * Xreal[i] + Xim[i] * Xim[i]);
//temporal magnitude to compute the maximum

 if (j > -1)
 {
 freqsFFT[j] = nowFre; //We take the frequencies in
ascending order
 magFFT[j] = temp * 2 / N;
 j--;
 }

 if (temp > maxvalue) {
 maxk = nowFre;
 maxvalue = temp;
 }
 }

 j = N / 2;

 //DC Component
 for (int k = 0; k < N; k++)
 {
 Xreal[0] = Xreal[0] + input_wave[k];
 }
 //magFFT contains the half of the samples! The average is then 2*N
 magFFT[0] = Xreal[0] / 2 / N;

 return maxk;
}

/*Configure
ADC***
**/

void configureADC() {
 // Setup all registers
 pmc_enable_periph_clk(ID_ADC); // To use peripheral, we must enable
clock distributon to it
 adc_init(ADC, SystemCoreClock, ADC_FREQ_MAX, ADC_STARTUP_FAST); //
initialize, set sampling frequency
 adc_disable_interrupt(ADC, 0xFFFFFFFF); //disable interrupt of theA
ADC
 adc_set_resolution(ADC, ADC_12_BITS); //We use the available
resolution of the ADC

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 115

 adc_configure_power_save(ADC, 0, 0); // Disable sleep, always
powered
 adc_configure_timing(ADC, 0, ADC_SETTLING_TIME_3, 1); // Set timings
- standard values
 adc_set_bias_current(ADC, 1); // Bias current - maximum performance
over current consumption
 adc_stop_sequencer(ADC); // not using it
 adc_disable_tag(ADC); // it has to do with sequencer, not using it
 adc_disable_ts(ADC); // disable temperature sensor
 adc_disable_channel_differential_input(ADC, ADC_CHANNEL_7); // A0 is
channel 7 of the ADC
 adc_configure_trigger(ADC, ADC_TRIG_SW, 1); // triggering from
software, freerunning mode
 adc_disable_all_channel(ADC);
 adc_enable_channel(ADC, ADC_CHANNEL_7); // just one channel enabled
}

void sendData2Esp(void) {
 Serial.println(F("Starting communication with ESP:"));
 delay(50);
 Esp8266.print("F");
 while (!Esp8266.available());
 inStr = Esp8266.readString();
 if (inStr == "G") {
 Esp8266.print(freq2ESP);
 Serial.print(F("Sended as freq: "));
 Serial.println(freq2ESP);
 delay(50);
 while (!Esp8266.available());
 inStr = Esp8266.readString();
 if (inStr == "H") {
 Esp8266.print(volt2ESP);
 delay(50);
 Serial.print(F("Sended as voltage: "));
 Serial.println(volt2ESP);
 }
 }
 if(inStr=="H")
 Serial.println("Packet Send");

}
/*Functions to draw the screen******************************/
void drawScreen1(ILI9341_due &d)
{
 d.setTextScale(1);
 d.fillScreen(ILI9341_BLACK);
 myButtons.enableButton(dispButton);
 myButtons.drawButton(dispButton);
 //delay(200);
 myButtons.enableButton(fftButton);
 myButtons.drawButton(fftButton);
 //delay(200);
 myButtons.enableButton(logButton);
 myButtons.drawButton(logButton);
 //delay(200);
 myButtons.enableButton(selectFreqButton);
 myButtons.drawButton(selectFreqButton);
}

void drawGraph(ILI9341_due &d)
{

Portable data acquisition and representation system for a VLF receptor SWE-Group

116 Fernando Montoya Andúgar

 /* Function that draw a graph in the TFT screen. To compute the
values, we take
 into account that the axis are Y(10-200, 190 pixels of spam)
X(54-310, 256 of spam)
 */
 tft.fillScreen(ILI9341_WHITE);
 d.drawFastHLine(Xo - 2, 191, 256, ILI9341_DARKRED);
 d.drawFastVLine(Xo - 2, Yo + 1, 180, ILI9341_DARKRED);
}

void timeAxis(ILI9341_due &d)
{
 d.drawFastVLine(Xo + 64, 191, 2, ILI9341_BLACK);
 sprintf(xlabeltime[0], "%.2f", (float)64000 / (2 * Fs));
 d.printAt(xlabeltime[0], Xo + 41, 193);

 d.drawFastVLine(Xo + 128, 191, 2, ILI9341_BLACK);
 sprintf(xlabeltime[1], "%.2f", (float)128000 / (2 * Fs));
 d.printAt(xlabeltime[1], Xo + 105, 193);

 d.drawFastVLine(Xo + 192, 191, 2, ILI9341_BLACK);
 sprintf(xlabeltime[2], "%.2f", (float)192000 / (2 * Fs));
 d.printAt(xlabeltime[2], Xo + 170, 193);

 d.drawFastVLine(Xo + 256, 191, 2, ILI9341_BLACK);
 d.printAt("ms", Xo + 243, 193);

 //Horizontal lines to voltage reference
 d.printAt("V", Xo - 30, 0);

 d.drawFastHLine(Xo - 5, 105, 5, ILI9341_BLACK); //1,65 volts
reference
 d.printAt("1,65", Xo - 46, 97);

 d.drawFastHLine(Xo - 5, 149, 5, ILI9341_BLACK); //0,825 volts
reference
 d.printAt("0.83", Xo - 46, 146);

 d.drawFastHLine(Xo - 5, 61, 5, ILI9341_BLACK); //2,475 volts
reference
 d.printAt("2,48", Xo - 46, 58);

 d.drawFastHLine(Xo - 5, Yo + 7, 5, ILI9341_BLACK); //3.3 volts
reference
 d.printAt("3,3", Xo - 36, Yo + 4);

 d.printAt("0", Xo - 5, 195);
}

void freqAxis(ILI9341_due &d)
{
 //Horizontal lines to voltage reference
 d.printAt("V", Xo - 30, 0);

 d.drawFastHLine(Xo - 5, 104, 5, ILI9341_BLACK); //1,65 volts
reference
 d.printAt("1,65", Xo - 46, 96);

 d.drawFastHLine(Xo - 5, 148, 5, ILI9341_BLACK); //0,825 volts
reference
 d.printAt("0.83", Xo - 46, 145);

Portable data acquisition and representation system for a VLF receptor SWE-Group

Fernando Montoya Andúgar 117

 d.drawFastHLine(Xo - 5, 60, 5, ILI9341_BLACK); //2,475 volts
reference
 d.printAt("2,48", Xo - 46, 57);

 d.drawFastHLine(Xo - 5, Yo + 6, 5, ILI9341_BLACK); //3.3 volts
reference
 d.printAt("3,3", Xo - 36, Yo + 3);

 d.printAt("0", Xo - 5, 195);

 //Vertical marks to reference the frequencies
 d.drawFastVLine(Xo + 64, 191, 2, ILI9341_BLACK);
 //As we draw a sample every two pixels Xo+64 -> freqsFFT[64/2]
 sprintf(xlabelfreq[0], "%.2f", freqsFFT[64 / 2] / 1000);
 d.printAt(xlabelfreq[0], Xo + 41, 193);

 d.drawFastVLine(Xo + 128, 191, 2, ILI9341_BLACK);
 sprintf(xlabelfreq[1], "%.2f", freqsFFT[128 / 2] / 1000);
 d.printAt(xlabelfreq[1], Xo + 105, 193);

 d.drawFastVLine(Xo + 192, 191, 2, ILI9341_BLACK);
 sprintf(xlabelfreq[2], "%.2f", freqsFFT[192 / 2] / 1000);
 d.printAt(xlabelfreq[2], Xo + 170, 193);

 d.drawFastVLine(Xo + 254, 191, 2, ILI9341_BLACK);
 d.printAt("kHz", Xo + 235, 193);
}

Universidad de Alcalá
Escuela Politécnica Superior

