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Resumen

Las aplicaciones que basan su funcionamiento en una correcta localización y reconstruc-

ción dentro de un entorno real en 3D han experimentado un gran interés en los últimos

años, tanto por la comunidad investigadora como por la industrial. Estas aplicaciones

cubren desde la realidad aumentada, la robótica, la simulación, los videojuegos, etc. De-

pendiendo de la aplicación y del nivel de detalle requerido en la reconstrucción, se emplean

diversos dispositivos como: cámaras estéreo, sensores Red Green Blue and Depth (RGBD)

con Luz estructurada, cámaras Time of Flight (ToF), lásers 2D / 3D, etc. En los casos

de aplicaciones más sencillas se pueden usar dispositivos de uso común, como los smart-

phones, en los que aplicando técnicas de visión artificial, se pueden obtener modelos 3D

del entorno de trabajo con suficiente calidad para mostrar información aumentada.

En robótica, la localización y generación simultáneas de un mapa del entorno en 3D a

partir de una cámara es una tarea fundamental para conseguir la navegación autónoma de

robots. Para ello se han utilizado técnicas conocidas en el estado del arte como Simulta-

neous Localization And Mapping (SLAM) o Structure from Motion (SfM). La condición

para la aplicación de estas técnicas es que el objeto de interés no cambie su forma a lo

largo del tiempo, esto es, sea rígido. La reconstrucción es unívoca a falta de un factor de

escala, que en una captura monocular no es posible obtener sin una referencia fija.

Si la condición de rigidez en la escena no se cumple, es porque la forma del objeto

cambia a lo largo del tiempo, luego es deformable. Por tanto, el problema sería equiva-

lente a realizar una reconstrucción por fotograma, lo cual no se puede hacer de manera

directa, sino que hay que recurrir a otros métodos. Además, el problema, así planteado, es

muy ambiguo, puesto que diferentes formas, combinadas con diferentes poses de cámara

pueden dar lugar a proyecciones similares. Es por esto que el campo de la reconstrucción

de objetos deformables es todavía un área en desarrollo. Los métodos de SfM se han ido

adaptando a la reconstrucción de objetos deformables aplicando modelos físicos, restric-

ciones temporales, espaciales, geométricas o de otros tipos para reducir la ambigüedad en

las soluciones, naciendo así las técnicas conocidas como Non-Rigid Structure from Motion

(NRSfM).

En esta tesis se propone partir de una técnica de reconstrucción rígida bien conocida en

el estado del arte como es PTAM (Parallel Tracking and Mapping) y adaptarla para que

sea capaz de incluir técnicas de NRSfM, basadas en modelo de bases lineales para estimar
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las deformaciones del objeto modelado dinámicamente y aplicar restricciones temporales

y espaciales para mejorar las reconstrucciones, además de ir adaptándose a cambios de

deformación que se presenten en la secuencia. Los problemas de asociación de datos sobre

imágenes reales son también abordados.

Para ello, ha habido que realizar cambios en PTAM de manera que cada uno de sus

hilos de ejecución (seguimiento y generación de mapa) pasasen a procesar los datos no

rígidos de manera natural.

El hilo encargado del seguimiento ya realizaba de manera nativa seguimiento basado

en un mapa de puntos 3D, proporcionado a priori. La modificación más importante

propuesta para este hilo es la integración de un modelo de deformación lineal para que se

realice el cálculo de la deformación del objeto en tiempo real, asumiendo fijas las formas

básicas de deformación. El cálculo de la pose de la cámara está basado en el sistema de

estimación rígido, por lo que la estimación de pose y coeficientes de deformación se hace

de manera alternada usando el algoritmo E-M (Expectation-Maximization). También, se

imponen restricciones temporales y de forma para minimizar las ambigüedades inherentes

en las soluciones y mejorar la calidad de la estimación 3D.

Respecto al hilo que gestiona el mapa, se actualiza en función del tiempo para que

sea capaz de mejorar las bases de deformación cuando éstas no son capaces de explicar

las formas que se ven en las imágenes actuales. Para ello, se sustituye la técnica de

optimización del modelo rígido, Sparse Bundle Adjustment (SBA), por un método de

procesamiento exhaustivo no rígido NRSfM para mejorar las bases acorde a las imágenes

con gran error de reconstrucción que llegan desde el hilo de seguimiento. Con esto, el

modelo se consigue adaptar a nuevas deformaciones de manera secuencial, permitiendo al

sistema evolucionar y ser estable a largo plazo.

A diferencia de una gran parte de los métodos de la literatura, el sistema propuesto

aborda el problema de la proyección perspectiva de forma nativa, minimizando los prob-

lemas de ambigüedad y de distancia al objeto existente en la proyección ortográfica. El

sistema propuesto maneja centenares de puntos y está preparado para cumplir con las re-

stricciones de tiempo real necesarias para su aplicación en sistemas con recursos hardware

limitados. Además, presenta un buen equilibrio entre error de reconstrucción y tiempo de

procesamiento respecto a otras propuestas del estado del arte.

Palabras clave: model-based non-rigid reconstruction, NRSfM, SfM, AR,

PTAM descriptores, reconstrucción 3D, objetos deformables NRSfM, Recon-

strucción 3D, seguimiento basado en modelo, visión artificial, PTAM.



Abstract

There are applications based in a correct localization and reconstruction of a scene in a

real 3D environment, which has experienced a great interest in the latest years by re-

searchers and industrial community. These applications cover from augmented reality,

robotics, simulation, video-games, etc. Depending on the application and the required re-

construction detail level, different devices can be used such as: stereo cameras, Red Green

Blue and Depth (RGBD) sensors using Structured Light, Time of Flight (ToF) cameras,

2D / 3D lasers, etc. Simpler applications can use less complex hardware, i.e. commonly

use devices, like smartphones, and applying computer vision techniques, 3D models of the

workspace can be obtained with quality enough to render augmented information.

In robotics, localization and simultaneous 3D map generation using a camera is a

fundamental task for autonomous navigation. To that end, Simultaneous Localization

And Mapping (SLAM) or Structure from Motion (SfM) techniques have been used. The

condition for applying these techniques is the target object must not change its shape

along the time, so it must be rigid. In this case, the reconstruction is unique up to scale,

given that for a monocular capture is not possible to recover it unless there is a fixed

reference.

In case the rigidity condition does not apply on the scene, the object changes its shape

along the time, so it is deformable. Therefore the problem would be equivalent to perform

a reconstruction per frame, which is an ill posed problem and so ambiguous, as different

shapes combined with certain camera poses could lead to similar projections. This is

why deformable object reconstruction is an active research field nowadays. To perform

the reconstructions, SfM methods have been adapting to the non-rigid reconstruction of

deformable objects by incorporating physical models, temporal, spacial and geometrical

priors or other kinds of restrictions to reduce the solutions and better conform the recon-

struction, giving as a result the Non-Rigid Structure from Motion (NRSfM) techniques.

In this Thesis, we propose to depart from a well known state-of-the-art technique

PTAM (Parallel Tracking and Mapping) and adapt it to include NRSfM techniques, based

on linear bases model to estimate the object deformations dynamically and apply temporal

and spacial restrictions to improve the reconstruction. Additionally it is modified to adapt

to changes on the deformation types of the sequence.

To that end, there has been changes to be applied to each of PTAM execution threads
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to process the incoming non-rigid data of the scene in a natural way. Data association

problems are faced as well.

The tracking thread was already doing tracking from template in a native way, based

on 3D map points, previously provided. The main modification proposal of this thread

is the integration of a linear shape bases model to perform the computation of the shape

deformations in real time assuming the deformation bases fixed. The pose computation

is based on the previous rigid estimation system, so the whole state estimation is done

alternating pose and deformation coefficient steps by using an Expectation-Maximization

(EM) algorithm. Temporal and shape smoothness priors are also imposed to minimize

the ambiguities inherent to the solutions and to improve the 3D estimations quality.

Regarding the mapping thread, it is modified so that it can handle deformation bases

improvements when the current set of bases are not able to explain the currently seen de-

formations on the image. To that end, the rigid optimization technique of Sparse Bundle

Adjustment (SBA) is substituted by an exhaustive non-rigid NRSfM batch algorithm to

improve the bases according to the images having a great reprojection error that are sam-

pled from the tracking thread. With this setup, we are able to adapt to new deformations

in a sequential way, allowing the system to evolve and being stable in the long term.

Unlike some literature methods, the proposed system faces the perspective problem

in a native way, minimizing the problems of the ambiguity on the distance to the object

existing with the orthographic projection approaches. The proposed system also handles

hundreds of points and is ready to comply with real-time restrictions for its application

on limited hardware resources systems. Additionally, it presents a good trade-off between

reconstruction error and processing time regarding other proposals of the state-of-the-art.

Keywords: model-based non-rigid reconstruction, NRSfM, SfM, AR,

PTAM, descriptors, 3D reconstruction, deformable objects NRSfM, 3D recon-

struction, Model-based tracking, Computer vision, PTAM.
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Chapter 1

Introduction

1.1 Problem description

The problem of 3D reconstruction and camera localization from images is known as Struc-

ture from Motion (SfM). 3D awareness from visual cues is a natural task for a human

being, yet it is a very challenging problem in computer vision. During the last decades,

SfM has been widely studied. Thanks to modern computing capabilities (multicore CPU’s,

GPUs, etc), current SfM algorithms are considered mature and capable of dealing with

big amounts of data at standard video frame rates.

The general assumption in SfM is the rigidity of the environment, where changes in

the images are due to relative motion between the camera and the scene. Rigidity links

camera motion with image motion, making SfM a well-posed problem. Rigid SfM fails in

scenarios where the rigidity assumption is violated. For instance, it fails to reconstruct

scenes with multiple objects moving independently or with deformable objects that change

their shape with time, such as the human body, articulated bodies, wires, flags, sheets,

flesh, fabric, etc.

Reconstruction of deformable objects from images is known as Non-Rigid Structure

from Motion (NRSfM) and has been actively studied in the recent years. Current NRSfM

methods lack the level of maturity of SfM and it is a field under constant development.

In both SfM and NRSfM, there are two main categories of methods: Batch approaches

and Sequential approaches. In the former, all data (images) are available beforehand,

and jointly processed to obtain 3D. This approach is typically highly demanding in terms

of time and memory but achieves accurate reconstruction results. In the latter, the

data is collected and processed online. This is usually a harder problem where less data

is available for reconstruction than in batch approaches. This results in less accurate

reconstructions. However, online methods open the possibility of real-time applications

that need sequential reconstructions, such as Augmented Reality (AR).



2 Chapter 1. Introduction

1.2 Structure from Motion (SfM)

Structure from Motion can be defined as the problem of jointly inferring the 3D geometry

of a scene and the camera motion using images as inputs. Rigidity of the scene is a prior

condition for SfM. The geometry of multiple views of a rigid scene has been known for

centuries and the basic results for SfM are well known in photogrammetry and computer

vision [Hartley and Zisserman, 2004]. Modern SfM methods cope with large sequences

from both uncalibrated and calibrated cameras.

Sequential approaches in SfM are very important in robotics and were mainly developed

as solutions to the visual Simultaneous Localization And Mapping (SLAM) problem,

where the robot’s pose and a map of the 3D environment is sequentially obtained from a

camera system mounted on a mobile robot.

At the beginning, cameras were not the most important sensor to generate and locate

the robot inside a map. Given the improvements of SfM algorithms, vision based SLAM

became predominant in robotics, usually fused with other sensing elements installed in

the robot.

One of the first monocular visual SLAM systems was proposed in [Davison et al.,

2007]. It was posed as a sequential Bayesian inference problem, using the Extended

Kalman Filter (EKF) as the inference core and a sparse set of salient feature tracks as

observations. This method was real-time in a low cost hardware and was suitable in small

to medium size environments.

Years later another sparse SLAM method was proposed, based on sequential Bundle

Adjustment and known as Parallel Tracking And Mapping (PTAM) [Klein and Murray,

2007]. This method showed very accurate and stable pose estimation and reconstructions,

suitable for Augmented Reality (AR) applications. It remarkably improved over SLAM

methods based on statistical filtering. PTAM heavily influenced modern SLAM methods

and changed the processing paradigm from pure sequential to a parallel mapping and

tracking algorithm.

Recently, dense SfM methods have been proposed, such as Dense Tracking And Map-

ping (DTAM) [Newcombe et al., 2011b], further extended to depth sensors, such as Kinect

fusion [Newcombe et al., 2011a]. Using this approach, multiple object tracking on a scene

was developed, as well as dense dynamic scene tracking.

1.3 Non Rigid Structure from Motion (NRSfM)

In NRSfM the objective is to recover the 3D shape of an object undergoing deforma-

tions from a sequence of images. Each image shows the combination of rigid motion and

shape change in the object and thus rigid SfM is not applicable in this case. NRSfM

is ill-posed unless priors on the possible deformations are imposed. According to the
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deformation prior, existing NRSfM methods can be divided into two main groups: i)

Physics-based and ii) Statistical-based methods. In Physics-based models, the deforma-

tion model is taken from the field of Continuum Mechanics and models how materials

behave under the action of forces. The most popular models used in this category are the

isometric model [Chhatkuli et al., 2016, Vicente and Agapito, 2012, Bartoli and Collins,

2013,Chhatkuli et al., 2014a,Parashar et al., 2016,Chhatkuli et al., 2016] and the elastic

(linear and non-linear) model [Agudo et al., 2012a, Agudo et al., 2012b, Agudo et al.,

2016a]. The isometric model has been thoroughly studied and [Parashar et al., 2016]

proved that isometric NRSfM is a well-posed problem. However, isometric priors are

not accurate to describe deformations suffered by soft materials, such as a human organ.

Elastic models have been proposed in [Agudo et al., 2012a, Agudo et al., 2012b, Agudo

et al., 2016a], using Finite Element Method (FEM) approximations of linear and non-

linear elastic materials. They estimate both camera pose and the 3D reconstruction of

deformable objects from monocular scenes in real-time. These methods require object-

dependent physical parameters, such as the Young’s modulus or its ratio with the Poisson

coefficient. Besides, empirical evidence suggests that NRSfM is not well-posed with elastic

constraints. It requires additional boundary conditions to limit possible ambiguities.

In Statistical-based approaches, the object’s shape space is assumed to be low-

dimensional and is represented as the weighted sum of a set of basic shapes or shape

basis. This idea was first proposed by [Bregler et al., 1999] and it is based on the low-

rank assumption of the shape matrix. This low-rank prior has been studied by many

researchers in the NRSfM literature [Del Bue et al., 2006, Torresani et al., 2008, Garg

et al., 2013,Dai et al., 2012], as proved to be successful in many real world scenarios such

as in the gestures in the human face. NRSfM based on the low-rank models is ill-posed,

as the solution space is very ambiguous (several combinations of shapes, coefficients and

camera poses could yield similar image projections). The efforts are thus concentrated in

adding priors on the factorization of the tracking matrix. Some of them were estimating

an initial rigid component [Del Bue et al., 2006], setting priors on temporal smoothness

or spacial smoothness [Torresani et al., 2008], physical priors such as limiting stretching

or extension in the surface [Vicente and Agapito, 2012, Brunet et al., 2010] or the use

of trajectory bases [Akhter et al., 2009, Gotardo and Martinez, 2011] constraints for the

point tracks along the sequence. Most of statistical-based approaches assume orthographic

projection which allows to pose the problem as recovering a low-rank approximation of a

matrix.

Other approaches, like [Fayad et al., 2010, Russell et al., 2011] tackled the problem

in a piece-wise sense, using local models that better adjust certain parts of an object.

The main drawbacks of these approaches are how to assign the initial partition set of

models and how to assign the overlapping between points that share different models.

This implies that global coherence of the model, even it could be better adjusted, is not

guaranteed.
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Most of aforementioned methods are based on tracking a sparse set of image correspon-

dences, recovering a sparse 3D model of the object. As in SfM dense approaches have been

recently investigated in NRSfM. The first one is [Garg et al., 2013] which performs dense

optical flow combined with low-rank modeling and local smoothness priors. In [Russell

et al., 2014] the segmentation and reconstruction of local rigid models is proposed. On the

other hand, Kinect Fusion was further extended to handle deformable objects in Dynamic

Fusion [Newcombe et al., 2015] for depth cameras.

1.4 Shape-from-Template (SfT)

A special case of deformable reconstruction is known as Shape from Template (SfT),

where a reference model or template of the object is known and the objective is to find

the deformed 3D shape given a single image or a sequence of images. This is known

as model-based or template-based reconstruction. Most of SfT methods are based on

physics-based deformation priors and in particular the isometric model [Brunet et al.,

2010,Bartoli et al., 2015, Vicente and Agapito, 2012]. [Bartoli et al., 2015] describes the

problem as a Partial Differential Equation (PDE) system and proves that imposing the

isometry prior makes SfT a well-posed problem. Methods in SfT can be divided into

local solutions, mainly based on solutions of a PDE system and global solutions, based

on convex relaxations of isometry [Fua and Salzmann, 2011,Ngo et al., 2016].

The registration between the template and the model is needed in SfT. It is assumed

known or manually done in many cases, although there are some automatic methods like

[Pizarro and Bartoli, 2012].

1.5 Motivation

The pursue of this thesis is to propose a sequential solution to NRSfM that could run in

real-time in a low-cost system based on CPU.

It has recently been shown the possibilities of applications based on rigid methods

to be run efficiently with commodity software, i.e, not using GPU or other specialized

hardware, with the goal of using them in embedded systems.

Taking as starting point PTAM, a well known state-of-the-art rigid SfM method and

publicly available, this thesis tackles the improvements to be added (in both Tracking and

Mapping threads) in order to deal with deformable objects.

Another point that this thesis tackles is assuming perspective projection instead of

orthographic projection, assumed by most of NRSfM methods. The perspective projection

is an accurate projection model and does not suffer from many depth ambiguities existing

in the orthographic model. Adapting this model in NRSfM represents another challenge.
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Most of the current state of the art algorithms rely on the assumption of not actually

computing the tracking and data association, whereas in a real application this is one of

the most important challenges to face. In this thesis these two tasks will be conveniently

studied.

1.6 Applications

Several applications of SfM and NRSfM are summarized in the following sections.

1.6.1 Augmented reality, apps and games

The potential of the SfM and NRSfM on AR, mobile apps and games has started to be

exploited in the last years. AR needs SfM for localization and mapping of objects where

virtual objects are visualized in real-time.

With respect to the AR, there are libraries specifically designed to help with this task.

One of the most representative ones is Wikitude, although the most famous one on the

market is Vuforia, which was initially developed by Qualcomm as a trial to diversify its

main business line, but it was sold to the PTC company. Now, this library is widely

extended and can be used by several platforms: Android, IOS, Unity3D and recently

Hololens and Windows 10. As an example, there are computer games implementing AR

in some extend, like role card games. An example is given in Fig. 1.1 which also includes

an screenshot of Vuforia working on Unity3D and a live camera.

(a) (b)

Figure 1.1: (a) An example of a card game using AR (Drakerz). (b) An example of the required
libraries for Unity3D Vuforia

There are several modules involved on a simplified AR pipeline: acquisition / sensing,

processing and representation.

Regarding the acquisition modules there are peripherals that help on the sensing (ac-

celerometers and other sensors) or to perform the reconstruction. The breakthrough was



6 Chapter 1. Introduction

the Kinect sensor in their two versions: Structured Light and Time of Flight (ToF). Sim-

ilar versions of this sensor is available by other brands like Asus, Intel, etc. An example

of them could be seen in Fig. 1.2, as well as an example of the skeleton tracking directly

available on the drivers.

(a) (b)

Figure 1.2: (a) Kinect v1 device, (b) Kinect Skeleton Tracking example.

Rendering devices can be divided into two types: glasses and standalone. In the first

category we can find the Oculus Rift, HTC Vive and lately PS Virtual Reality (VR). In

the second category we can find devices like Hololens (MS) and Magic Leap (a Google

Venture). In Fig. 1.3 the Hololens device is seen jointly with a proof-of-concept example

of the Magic Leap technology.

(a) (b) (c)

Figure 1.3: AR / VR applications. (a) Hololens device. (b) Hololens running with a Minecraft demo
from the virtual camera view. (c) Magic Leap with a wale getting out of the watter

Mobile devices can also be used to apply AR as it has been demonstrated in recent

apps as Pokemon Go game in its AR mode (Fig. 1.4.a). There are apps performing recon-

struction of an object from several views either online or offline. There is an interesting

example of an app developed by Disney co. with live re-texturing of a 3D character using

NRSfM when the page is turned [Magnenat et al., 2015] (Fig. 1.4.b). PS Vita has also

some games implementing AR, as it can be seen in Fig. 1.5.
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(a) (b)

Figure 1.4: Apps using SfM: (a) Pokemon Go / NRSfM: (b) Disney Research to repaint 3D characters
live

(a) (b)

Figure 1.5: AR on PSVita games. (a) Invizimals. (b) PulzAR

1.6.2 Film industry / Cinema

Motion capture technique is massively used in the FX (special effects) industry. Many

approaches are based on point markers. An example can be seen in Fig. 1.6.a. The

“Virtual Camera”, as seen in “Avatar” movie, helps the directors and camera crew with

a preview of the scene that can be easily rendered, so as to guide the director in a closer

way to the final result, as it can be seen on Fig. 1.6.b.

(a) (b)

Figure 1.6: (a) Motion Capture systems. (b) Virtual camera systems. This is extensively used on the
film industry to add the special effects.

1.6.3 Marketing

There are also many applications in the field of marketing where AR has been used as a

novel asset. Good examples are the virtual fitting room made by Toshiba (Fig. 1.7.a) and

the so-called N-show by New Tempo (a Chinese company) in which you could try clothes
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or complements before actually buying them. There is also a virtual makeup mirror based

on Kinect that simulates makeup in real-time.

Additionally, some marketing strategies are based on cards for kids including some AR

games (Fig. 1.7.b). Clothes can also contain patterns on them that the apps are able to

detect. By taking a video with a phone, an animation is shown to the user. An example

can be seen in Fig. 1.7.c.

(a) (b) (c)

Figure 1.7: Marketing examples: (a) an example of a virtual fitting room. (b) an AR minion App used
for a campaign for a supermarket. Screenshot taken from zappar web. (c) a shirt with visual markers

which are recognized by an app and represents an animation taking into account the camera pose.

1.6.4 Surgery training / simulation. Medical imaging

AR is a well suited technique to help surgeons planning surgery and is a valuable tool for

training. An example of a surgery simulator can be seen in Fig. 1.8.a.

In medical applications, NRSfM is a suitable technique to be applied as human organs

and tissues are deformable objects. An extensive study of the state of the art with respect

to the reconstruction based on laparoscopic images is shown in [Maier-Hein et al., 2014].

An example of a reconstruction based on an angiography is shown in Fig. 1.8.b.

(a) (b)

Figure 1.8: Situations in which NRSfM could be applied. (a) A virtual simulation trainer, at the center
a live 3D reconstruction. (b) The 3D reconstruction of an angiography.
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1.6.5 Material research / Modelling

A way to compute deformation parameters along more than one dimension on live se-

quences can be to record the sequence of objects with visual markers placed on them. It

can also be done using a standard registration system and then to compute the sequence

offline, applying NRSfM techniques. There are also works for modeling a sailing boat flag

to check how well could the competitors be based on the shape of the sailing boats.

1.6.6 Arts

There are some artists using the latest VR / AR technologies to get another way

of artistic expression. An example is provided by Google artists using VR glasses

while doing different traces in a virtual 3D environment. This can be seen on virtu-

alart.chromeexperiments.com. This is also applicable to insert art elements on the real

world and load them using the adequate app or visor, as it is already done for marketing

apps.

https://virtualart.chromeexperiments.com/#/artists
https://virtualart.chromeexperiments.com/#/artists




Chapter 2

Related work

The process of reconstructing a 3D structure, either a set of sparse points or a dense mesh

or surface, from 2D images is a fundamental problems in computer vision. Without any

other precondition this problem is ill-posed.The most popular prior used for reconstruction

is based on scene’s rigidity. Image flow is then caused by camera motion and used as main

visual cue. Jointly estimating 3D shape and camera motion from a set of images is known

as Structure from Motion (SfM). When the position of several cameras is known and a

several cameras capture the scene simultaneously the setup is known as Multi View Stereo

(MVS). In this setup 3D is directly estimated by triangulation methods. Many works in

the literature use other visual cues and priors to recover 3D from images, such as focus,

shading or lighting. These techniques are out of the scope of this thesis and for more

information we refer the readers to [Paladini, 2011].

Other reconstruction methods are based on the use of specific sensing hardware such as

laser scanners or Red Green Blue and Depth (RGBD) sensors, like Time of Flight (ToF)

cameras or sensors based on the projection of structured light, such as the popular Kinect

v1 sensor.

The working principle of structured light is as follows: an image with a certain pattern

is projected onto the scene and its projection in the image allows one to recover the

3D geometry. In order to hide the pattern image in commercial systems and to avoid

inconveniences, the Infra Red (IR) spectrum is commonly used for these purposes.

With respect to the ToF cameras they use modulated IR emitter to illuminate the

scene. Using fast per-pixel correlation methods, depth is obtained from the phase change

measured at each pixel. An extensive explanation of the ToF principle can be found in

[Sarbolandi et al., 2015].

These active sensors are accurate but more expensive than passive methods based on

cameras. They are also more difficult to be embedded on a portable device such as a

smartphone or to be used in laparoscopy cameras. This thesis focuses on monocular 3D

reconstruction from images.
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2.1 Structure from Motion (SfM)

We refer as SfM to the problem of inferring the 3D geometry of a rigid scene given a

set of images where the camera moves relatively to the scene. The rigidity assumption

makes SfM a well-posed problem and it fits with many real applications. For instance,

the geometry of static objects like houses, streets, mountains, walls, doors, furniture, etc.

hardly ever changes, at least during the scene recording.

There are two main approaches for rigid reconstructions: batch and sequential ap-

proaches. In batch methods all the information of the sequence is available at processing

time and thus reconstruction is performed offline. These methods are mainly based on

Bundle Adjustment (BA) and use all constraints and image measurements at the same

time. This yields very accurate solutions. On the contrary, in the sequential/online ap-

proach the 3D structure and camera pose are updated with each new frame available.

This usually produces less accurate solutions with respect to batch methods but it admits

real time applications.

The problem of sequential localization and map generation is known as Simultaneous

Localization And Mapping (SLAM) in robotics. It has been studied for a large variety of

sensors, such as cameras, ultrasound, Light Detection and Ranging (LIDAR), laser, etc.

Vision-based SLAM is now widely used in robotics, showing that a camera mounted on

the robot can be used to recover both the robot pose and a map of visual features. This

represents a key technology for robot navigation as well.

2.1.1 Sparse reconstruction

The foundations of SfM are described in [Hartley and Zisserman, 2004]. The geometry

of multiple views of a rigid scene is well known and links camera motion with image

measurements. It generalizes to other reconstruction problems, including multiple camera

setups, where their position is known. The reconstruction procedure in these cases could

be materialized via triangulations, tensors, factorizations, etc, and further optimized using

some algorithms such as Gauss-Newton, gradient descent, Levenberg-Marquard (LM), etc.

2.1.1.1 Batch approaches

Early SfM approaches are based on matrix factorization. This technique decouples the

camera pose and map estimation and usually assume the orthographic camera. The

first important attempt was proposed in Tomasi and Kanade work [Tomasi and Kanade,

1992]. Matrix factorization was extended later to the perspective camera by Strum and

Triggs in [Sturm and Triggs, 1996] using an iterative alternation approach. Factorization

methods are not very accurate and nowadays are used as a way to initialize refinement

methods based on BA [Triggs et al., 1999]. This algorithm is based on the minimization
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of the reprojection error of all 3D features (points and line segments) seen in the images.

This gives a maximum likelihood estimate of the parameters (pose and 3D shape) when

the image noise is assumed to have a Gaussian distribution. BA is commonly used in

large scale batch problems where the processing time is not an issue. The most famous

example is in [Agarwal et al., 2009], where the reconstruction from a collection of Internet

photos of the city of Rome is proposed. BA implies the optimization of non-convex

functions. Iterative solvers are usually employed, such as Gauss-Newton or LM [Hartley

and Zisserman, 2004]. The Hessian matrix required by these methods grows quadratically

with the number of image measurements. In many problems they are usually higher than

ten or hundreds of thousands, and then the solution of the normal equations requires

exploiting the sparse structure of the Hessian matrix. A good initialization is crucial in

BA methods. Otherwise the optimizer is likely to fall into a sub-optimal local minimum.

Some aspects of BA are improved in recent works. Regarding the initialization of BA,

[Gong et al., 2015] use boundary constrains for certain parameters in the reconstruction

that improve global optimality of BA. The work of [Cui and Tan, 2015] presents a solution

for the case in which there are degenerate camera configurations, extracting a basic depth

map and then giving an approximation of the camera pose for the BA algorithm.

Regarding how the different images are processed in BA, [Schonberger and Frahm,

2016] propose an incremental SfM framework and introduced pre-triangulations for incre-

mental reconstructions prior to the execution of the BA. The proposal of [Cohen et al.,

2015] considers a combinational approach to solve loop closures without temporal infor-

mation. It also use sub-models, individual components and symmetry priors to solve

ambiguities. In the work of [Eriksson et al., 2016] the BA algorithm is reformulated to be

applied in a distributed manner, which allows the implementation on cloud systems.

2.1.1.2 Sequential approaches

Sequential SfM is important in many applications. In robotics, sequential SfM is known

as visual SLAM. It was first proposed as a sequential Bayesian inference problem in [Davi-

son et al., 2007] using the Extended Kalman Filter (EKF). In Smoothing And Mapping

(SAM), the problem is seen as a graph reduction problem, as depicted in [Dellaert and

Kaess, 2006].

In [Klein and Murray, 2007], Parallel Tracking And Mapping (PTAM) was proposed

as a solution to visual SLAM. This was considered a breakthrough in SLAM methods,

capable of giving enough quality for Augmented Reality (AR) applications.One of the main

reasons of the success of PTAM was its system architecture. The processing paradigm

changed from pure sequential to parallel. PTAM remarkably improved stability and

reconstruction accuracy over previous approaches. It’s also able to handle bigger maps

in real time with low cost hardware. This Thesis follows the PTAM philosophy and thus

more details about this methods will be given in section 2.1.2.
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PTAM is considered a solid reference on the state-of-the-art for SLAM systems and

many methods are inspired on it [Pan et al., 2009,Newcombe and Davison, 2010,Stühmer

et al., 2010,Tan et al., 2013] (a detailed explanation of each one can be found in section

2.1.2). In [Stühmer et al., 2010] and [Newcombe and Davison, 2010] authors moved

towards dense reconstruction, using the estimations of PTAM as base of their posterior

estimations. Dense approaches taking only images or RGBD data will be explained in

section 2.1.3. In addition [Klein and Murray, 2009] showed that PTAM could be run in

portable devices.

Sequential and sparse SfM methods are suitable now to be run in real time in portable

devices. [Wang et al., 2015] provides an example of a mobile implementation of a mall

indoor localization based on visual marks, not strictly on feature points but textual marks

and edges. In addition, it uses the mall map as a source of information to get the whole

map in advance. It roughly estimates the width of each of the shops on the mall and tries to

read the text from the shop panels. With those clues it tries to match with the information

provided with the given map so as to give an approximated indoor localization.

With respect to commercial computer visions systems for smartphones, there are two

main trends in the market:

• On the one hand, the whole processing is done on the device, as it was indicated

in the previous examples. This approach is sometimes restricted to certain types of

devices with enough resources to afford the computation. In addition, this approach

is one of the most CPU consuming ones.

• On the other hand, images are acquired, transmitted, processed "on the cloud", and

then the results are sent back to the device. This adds network costs but lowers

battery consumption and processing resources in the phone. The general quality,

bandwidth and user experience of the application depends on the mobile network

the device is connected to (2G / 3G / 4G / 5G).

Some AR companies like Wikitude supports both working modes (device and cloud)

whereas there are applications that only work on cloud or on device.

2.1.2 Parallel Tracking and Mapping (PTAM)

As was mentioned before, PTAM is considered a breakthrough in visual SLAM. This

method was first introduced in [Klein, 2006, Klein and Murray, 2007], further improved

in [Klein and Murray, 2008] by adding edges to the tracking system. It was optimized to

be implemented in an iPhone device in [Klein and Murray, 2009].

PTAM was also taken as a base for other projects like [Pan et al., 2009,Newcombe and

Davison, 2010,Stühmer et al., 2010,Tan et al., 2013], as it provides a good setup to get a

set of sparse point tracks and a stable camera pose.
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PTAM separates sequential SfM into two parallel process: the tracking thread and the

mapping thread. This multi-threading architecture is compatible with multicore proces-

sors, available for consumer electronics and portable devices. As mentioned in [Newcombe

et al., 2011a], this has several advantages over SLAM methods based on statistical filter-

ing, where the size of the state vector (camera pose and map points) becomes huge over

time and they suffer from accumulative drift error. Splitting the mapping thread and the

tracking thread in PTAM was an advantageous alternative to the full propagation of the

state vector frame by frame. It reduced drift and increased the amount of map points by

an order of magnitude that could be handled in real time compared to its predecessors.

We describe next the PTAM algorithm.

2.1.2.1 The tracking thread

The tracking thread is in charge of the following tasks:

1. When there is no map to track, it starts tracking points from the incoming images,

interacting with the user to select the first two representative keyframes. When the

user finishes and there are enough tracks, the track pairs are sent to the mapping

thread to create the map using a camera stereo approximation. A simple correlation

matching is followed in this case. Only the most robust matches are matched using

this mechanism. The tracking thread is only responsible of providing good tracks to

the mapping thread in order to generate the initial map based on them.

2. When there is a map available, the tracking thread behaves different, as there are

map points to track over the frames. In this case, the process is the following:

• First, the images are converted to grayscale, stored and downsampled 3 times

to create a 4 pyramid level image. On this pyramid, FAST features [Rosten

and Drummond, 2006] are extracted without maximal suppression. With this,

a handcrafted set of fast multilevel features is designed.

• When a frame is acquired, a prior estimation of the pose is generated from the

motion model. The motion model consists of a decaying velocity model that

only takes the velocity of the current and the previous frames:

v = αvcurrent + (1 − α) vold (2.1)

where v represents the estimated velocity, vcurrent is the currently estimated

velocity from the image, vold is the previous estimated velocity and α represents

the parameter controlling the decay of the model.

The motion model is applied on the pose as a regular update on the SE(3) Lie

group space (briefly explained in [Klein, 2006]) with the camera velocity already

computed as:
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E
′

CW = exp (v)ECW (2.2)

where ECW denotes the rigid transformation matrix from world to camera coor-

dinates. The velocity of each frame is estimated using the properties from the

SE(3) group. If blurring rotation is activated, the velocity is computed with the

help of [Benhimane and Malis, 2007].

• Map points are projected according to the previous pose estimation using the

perspective projection model including barrel radial distortion correction:
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with the correction terms r and r′ calculated as follows:
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where (x, y, z) are the three spacial coordinates of the points in camera coordi-

nates, fu, fv are the focal distances, u0, v0 is the projection center of the camera

and ω is a radial distortion parameter computed during camera calibration.

• Before continuing with the rest of the steps, using just the previous estimation

of the pose and the current frame, the points are searched on the current frame.

A fixed range search based on an affine warp on each point is performed around

the last found localization of the patch. An affine warp is computed for each

point. This warp is based on the displacement of the point on the current level

w.r.t the base level of the pyramid.

The warp is found by projecting pixel displacements in the source keyframe onto

the patch’s plane, and then, on the current frame. It gives an idea whether

the current pyramid level is correct, corrections in perspective, etc. The patch

intensities are normalized to reduce appearance changes due to illumination vari-

ations. At this stage, the point can be marked as not found, so it can be discarded

for some of the computations described below.

• Coarse-scale features are searched in the image and then a coarse estimation of

the pose from the previous estimation is obtained.

• Then, the fine-scale features are re-projected and scaled in the image. Camera

pose is then updated using the error of those fine scale selected candidates from

the total amount of points. A Gauss-Newton optimization method is used. The

maximum number of iterations is 10. Depending on the number of the iterations
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already performed for each frame, the treatment of outliers can be more or less

restrictive.

– The camera update is found by minimizing the following robust objective

function:

µ′ = argminµ

∑

jǫS

Obj

(
|ej|
σj

, σT

)
(2.6)

where Obj is the Tukey bi-weight objective function [Tukey, 1960]. µ is the

state vector of the 6 degrees of freedom formed by the 3 rotation angles and

the 3 translation axes, ej is the error of the current sample, σj is the standard

deviation of the current error distribution and σT is the standard deviation

threshold of the objective function. The implementation of the camera update

estimation is done using Weighted Least Squares (WLS) and each of the weights

is given by the M-estimator.

– Once the update estate µ′ is computed, it is applied to the pose following

the rules of the SE(3) group:

E
′

CW = exp (µ′)ECW (2.7)

• Quality is measured at every frame as a fraction of feature observations which

have been successful.

– If it is considered poor, tracking continues normal but no more keyframes

are added to the mapping thread.

– If it is very poor during some frames, the tracking is considered lost and a

recovery procedure is initiated.

2.1.2.2 The mapping thread

This thread is in charge of creating and maintaining the map. Previous approaches

considered the map as the set of 3D points. In this approach, the map was extended:

• The map contains the set of keyframes, taken at certain times, that include the

camera pose and the features seen in the keyframe.

• Each point feature represents a locally planar textured patch in the world and it

contains an estimated unit patch normal to the textured patch (for the use of the

warping matrices).

• Each of the keyframes stores a 4 pyramid level of gray-scale images.

• Each map point stores a reference to the first keyframe that was detected and the

pixel location for each pyramid level. It also stores the computed 3D position on

world coordinates.
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• Normal patch size is 8x8, but it depends on:

– The pyramid level.

– Distance from the source keyframe camera center.

– Orientation of the patch normal.

The main difference corresponds to the keyframes used to sample the scene at a certain

time. This change allows a severe saving in memory and CPU, as not all the sequence

frames must be processed.

Processing only keyframes in the mapping thread reduces real-time restrictions present

in the tracking thread. The whole map can be obtained from the keyframes with accurate

refinement methods such as BA. Features are re-visited and full map optimizations are

performed as new keyframes are included in the map.

The mapping tasks must be performed in a separate thread, as they are CPU and

memory intensive. Since the mapping is separated from the tracking, the mapping thread

can concentrate on reducing the overall error running BA.

In the case of hand-held camera, and because of the movements, data association errors

become a problem and the generated maps could be corrupted. To solve this problem it

is necessary to use outlier rejection algorithms.

Fig. 2.1 depicts the flowchart of the mapping algorithm. Hereafter we discuss the most

important points of the mapping steps:

1. The initialization mechanism is based on triangulation. It searches correspondences

along the epipolar line. RANSAC (RANdom SAmple Consensus) is proposed to dis-

card outliers [Stewenius et al., 2006]. The whole initial map estimation algorithm

assumes a distance between initial keyframes of approximately 10 cm to start con-

structing the map, as with a monocular system any reconstruction is always provided

up to a scale factor. This initialization procedure does not allow rotations, only pure

sideways translations. Afterwards BA is run on this map to refine the initialization.

Finally, the map is aligned to the plane z = 0.

2. Once the map is constructed from the first two keyframes, this thread is also in

charge of checking the map growing, updating it by using keyframe distance criteria.

The map is expanded if unknown regions are explored and known features from other

keyframes can be seen. There are some restrictions to add a keyframe to the map:

• Good tracking quality (measured by the tracking thread)

• Minimum time of 20 frames between keyframes

• Minimum distance from the nearest point already included in the map, to avoid

corruption and ensuring enough baseline to estimate new 3D points.
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3. The sparse BA implemented in PTAM is the one proposed in [Hartley and Zisser-

man, 2004], where several variants of iterative estimation methods can be found. It

implements the algorithm A6.4 of the book which describes the general sparse LM al-

gorithm. It does not take into account the Hessians which speeds up the computation

and has a negligible impact in accuracy.

4. This thread also handles outlier control, accounting, recycling and discarding points

if necessary. Recycling means that some points are given a second opportunity if

they are found on other frames and are further refined.

5. Over time, the map could be big enough to be efficiently handled with a regular

BA implementation. Instead, a local area BA is run for a neighborhood of incoming

keyframes and then, when there is enough time, it is run on the global map. Local

BA reduces computational cost from O(N2M) to O(NM)

Figure 2.1: PTAM mapping workflow diagram. Taken from [Klein and Murray, 2007]

An example of the live mapping operation can be seen in Fig. 2.2.

Compared to PTAM, Davison’s EKF-SLAM [Davison et al., 2007] has three main weak

points: 1) it needs a smooth camera movement prior to correctly estimate depths; 2) it
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Figure 2.2: PTAM incremental mapping example. Extracted from [Klein and Murray, 2007]

has small tolerance to motion blur and variation in focus and 3) it could handle less points

than PTAM.

This comparison can be seen in Fig. 2.3.

However, PTAM has also some drawbacks:

• It generally fails with severe blurring. This was mitigated by adding edges on the

tracking [Klein and Murray, 2008].

• It is not robust to repetitive structures (due to the use of a robust estimator), as it

was not designed for outdoors but for little workspaces. Trying to add a keyframe

when there is a repetitive structure could yield to a wrong estimation of the keyframe

pose. This would corrupt the map by insertion of the new keyframe with an erroneous

pose.

• Partial occlusions could affect the way that the points are inserted into the map.

This problem is solved in dense approaches [Newcombe and Davison, 2010,Newcombe

et al., 2011b]. As the model is sparse, no occlusion reasoning is possible.
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(a) (b) (c)

Figure 2.3: EKF-SLAM vs PTAM comparison. (a) shows the map produced by PTAM. (b) shows the
map generated by the latest version of EKF-SLAM at that date. (c) shows the trajectories compared

with the ground truth. Extracted from [Klein and Murray, 2007]

The use of PTAM with deformable objects has the following undesirable effects:

• The initialization depends on having a pure translation and a perfect rigid environ-

ment.

• In the case a point is deforming, the BA could automatically discard it by marking

it as non-visible several times or considering it as an outlier.

• The tracking does not allow deformations on the points, as it is an standard SfM

system. The deformation would be approximated to the closest rigid movement

possible from the given map.

2.1.3 Dense reconstruction

Dense reconstructions involve thousands of points for each image. These reconstructions

are mainly based on Total Variation (TV) algorithm [Curless and Levoy, 1996]. The

main advantage of these systems with respect to the sparse feature-based methods is that

they are less limited by the texture contents of the objects. They estimate the variation

between frames using optical flow.

The first approaches able to build dense reconstructions were built on top of sparse

reconstructions, such as [Stühmer et al., 2010] and [Newcombe and Davison, 2010]. Both

methods used PTAM for obtaining poses and interest points estimations in the initializa-

tion.

Dense Tracking And Mapping (DTAM) [Newcombe et al., 2011b] got rid off the initial

pose estimations given by PTAM, as they got full dense mapping and tracking based on the

volumetric data. The tracking was performed by full image alignment. The improvement

reached with this change can be seen in Fig. 2.4.
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The mapping thread is continuously updating a dense depth map which is globally

optimized with TV with L2 norm and iteratively smoothed. The algorithm can be run in

real time with the help of an efficient implementation in GPU. An example of the depth

maps computed for the map generation and a comparison with the PTAM features is

shown in Fig. 2.5.

(a) (b)

Figure 2.4: DTAM vs PTAM tracking comparison for fast movements. (a) Linear velocities for DTAM
(blue) and PTAM (red) over a challenging high acceleration back-and-forth trajectory close to a cup.

PTAM tracking losses are shown in green. DTAM’s linear velocity plot reflects smoother motion
estimation. (b) shows samples from the sequence. Extracted from [Newcombe et al., 2011b]

Figure 2.5: DTAM vs PTAM comparison. Inverse depth maps in (a) without subsample refinement
and in (b) with subsample refinement. Same scene in (c) with PTAM. (d) and (e) Novel wide baseline

mapped views of the reconstructed scene used for tracking in DTAM. Extracted from [Newcombe et al.,
2011b]

The way in which the camera pose is tracked in MonoFusion [Pradeep et al., 2013], is

similar to PTAM except for some modifications. It proposes a similar system to DTAM

but relaxing the expensive pose estimation given by the Total Variation algorithm applied

on the whole image. It could be seen as a similar approach as the presented in [Newcombe

and Davison, 2010].

With the appearance of the Kinect sensor, and having the drivers publicly available,

the RGBD data can be used and fused with a similar volumetric approach as DTAM, used

in Kinect Fusion [Newcombe et al., 2011a]. It aligns the depths maps given by the Kinect

sensor instead of computing them from the images by a multilevel Iterative Closest Point

(ICP) alignment algorithm. Some reconstruction examples could be seen in Fig. 2.6.
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(a) (b) (c) (d) (e)

Figure 2.6: Kinect Fusion examples. Generated in real time with a handheld Kinect sensor. (a) A noisy
and incomplete data from the kinect sensor, (b) the normal maps, (c) the 3D model including shading.
(d) another example of a desktop and (e) its normal maps. Extracted from [Newcombe et al., 2011a]

There is an experimental open source version available on PCL library [Rusu and

Cousins, 2011], in which a tutorial for large scale reconstruction to generate a textured

mesh for the kinect captures is included. There is also an open source project that uses

only CPU to produce volumetric maps called FastFusion [Steinbruecker et al., 2014].

As more CPUs and reduced GPUs are integrated on the mobile phones, dense SfM has

become a recent reality. In [Schöps et al., 2014] a semi-dense approach in which intensities

values are matched between images is presented. In [Ondruska et al., 2015] they present

a system for real-time dense 3D reconstruction running in a smartphone. It is based on

selecting keyframes where the depth map is estimated. The dense volumetric 3D model is

then fused with the IMU information to solve dense image alignment and pose estimation.

Still, these dense approaches are still only possible in high-end devices. Sparse methods

are thus preferred in mobile platforms.

A taxonomy of the presented approaches is depicted in Table 2.1.

2.2 Non-Rigid Reconstructions

So far, the presented approaches are able to reconstruct scenes that are rigid, where the

geometry does not change over time and the image motion is due to the relative motion

between the camera and the scene.

With deformable objects the rigidity prior cannot be applied and thus classic SfM

methods fail. In order to make the problem solvable, deformation priors are introduced,

as it is shown in 2.2.1. Section 2.2.2 shows a summary of the different model-based

reconstruction proposals. Model-free or Non-Rigid Structure from Motion (NRSfM) is

explained in Section 2.2.3.

2.2.1 Study of the ambiguities and deformation priors

The solution space of non-rigid reconstructions is much bigger than when rigidity is im-

posed. It is not only constrained by the 6 Degrees of Freedom (DoF) of rigid space
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Rigid approaches sparse/dense GPU RGB-D mobile sequential real-time

[Tomasi and Kanade, 1992]
(factor)

sparse no no no no no

[Sturm and Triggs, 1996]
(factor)

sparse no no no no no

[Tang and Hung, 2002]
(factor)

sparse no no no no no

[Dellaert and Kaess, 2006]
(SAM)

sparse no no no yes yes

[Davison et al., 2007]
(mono-SLAM)

sparse no no no yes yes

[Klein and Murray, 2007]
(PTAM)

sparse no no no yes yes

[Klein and Murray, 2009]
(PTAM)

sparse no no yes yes yes

[Agarwal et al., 2009](BA) sparse no no no no no
[Pan et al., 2009] sparse no no no yes yes
[Tan et al., 2013]

(PTAM-like+SIFT)
sparse

yes
(SIFT)

no no yes yes

[Gong et al., 2015] (BA) sparse no no no no no
[Cui and Tan, 2015](BA) sparse no no no yes no
[Cohen et al., 2015](BA) sparse no no no yes no

[Schonberger and Frahm, 2016]
(BA)

sparse no no no yes no

[Eriksson et al., 2016]
(BA,cloud)

sparse no no no no no

[Stühmer et al., 2010]
(PTAM+TV)

dense yes no no yes yes

[Newcombe and Davison, 2010]
(PTAM+TV)

dense yes no no yes yes

[Newcombe et al., 2011b]
(DTAM)

dense yes no no yes yes

[Newcombe et al., 2011a]
Kinect Fusion

dense yes yes no yes yes

[Pradeep et al., 2013]
Mono Fusion

dense yes no no yes yes

[Steinbruecker et al., 2014]
Fast Fusion

dense no yes no yes no

[Schöps et al., 2014]
(PTAM-like+inv depth map)

semidense no no yes yes yes

[Ondruska et al., 2015]
Mobile Fusion

dense yes no yes yes yes

Table 2.1: Rigid SfM approaches summary

transformations, but it is also affected by the DoFs imposed by the possible deformation

on the object. In order to better illustrate the problem, we can see the example of Fig.

2.7.

Deformation priors are necessary to properly constrain any deformable reconstruction

problem. Existing deformation priors can be divided into two main groups: i) Physics-

based and ii) Statistical-based models.



2.2 Non-Rigid Reconstructions 25

Figure 2.7: Ambiguity illustration example extracted from [Moreno-Noguer and Fua, 2013]. It shows
how different 3D shapes could yield a similar 2D projection, although the first out of the three proposed

solution rows is the one with the least 3D error.

2.2.1.1 Physics-based priors

In the literature, the following priors have been proposed, based on how real objects

deform when forces are applied:

• Piece-wise planarity: It assumes the surface deforms locally as a planar surface

and it is modeled by a combination of little planar patches [Varol et al., 2009].

• Partial rigidity: It assumes that there is a rigid prevalent component on the object

and then the rest of non-rigid components are much less significant [Aanæs and Kahl,

2002].

• Isometry: This prior implies that the geodesic distance between surface points does

not change [Bartoli and Collins, 2013, Chhatkuli et al., 2014a]. It is a strong prior

although much weaker than rigidity or local rigidity. In fact, rigidity is a particular

case of isometry.

For two neighboring points i and j on the surface k, Qk
i and Qk

j are isometric with

respect to the points on surface l Ql
i and Ql

j if:

∥∥∥Qk
i −Qk

j

∥∥∥
2

=
∥∥∥Ql

i −Ql
j

∥∥∥
2

(2.8)

• Inextensibility: it is a relaxation of the isometry prior as it imposes that the

euclidean distance between surface points must be less or equal than the geodesic
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distance of the points in the original surface [Chhatkuli et al., 2016, Vicente and

Agapito, 2012].

If the equality is reached, the isometry is met. This prior assumes dij is the geodesic

distance between points Qk
i and Qk

j of surface k, so it is inextensible if the following

condition is met:

∥∥∥Qk
i −Qk

j

∥∥∥
2 ≤ dij (2.9)

This prior is combined with a maximization of point depths to obtain a convex relax-

ation of isometry, commonly known as the Maximum Depth Heuristic (MDH).

• Elasticity: this prior allows the object to undergo elastic deformations. It is weaker

than isometry and usually depends on physical parameters of the object, such as

the Young’s modulus [Haouchine et al., 2014]. This constraint is usually discretized

using Finite Element Method (FEM) methods [Agudo et al., 2012b,Haouchine et al.,

2014].

2.2.1.2 Statistics-based priors

The following statistical priors were mainly studied in the literature of deformable recon-

struction:

• Temporal smoothness: It can be applied to both the camera and the object. The

camera is assumed to move smoothly along the sequence and the object deformations

are assumed to vary slowly [Torresani et al., 2008].

• Shape smoothness: It only applies to the reconstructed object. It assumes that

the shape is smooth, so it has no sharp endings, peaks, salients, etc. It also means

that the local curvature of the surface is small [Torresani et al., 2008].

• Low-rank shape: It is based on the fact that the number of the detected points

and the number of frames is much greater than the maximum number of deforma-

tions presented on an object. This is the statistical assumption behind the proposal

of [Bregler et al., 1999], that will be explained later in 2.2.3.4 section due to its

importance in most of the non-rigid reconstruction algorithms and this Thesis in

particular.

A more extensive study about these priors can be found in [Paladini, 2011]. As in-

dicated in this work, the priors are applied on both NRSfM and Shape from Template

(SfT) problems.

It must be highlighted that the deformation prior depends on the type of object to

be reconstructed. For instance, isometry or inextensibility prior could not be applied to
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an elastic surface. A temporal smoothing prior could not be applied to a rapidly moving

camera along a sequence or to a strongly waving flag, in which the variation changes on

the surfaces are substantial. This makes deformable reconstruction a more object specific

problem than SfM.

In [Moreno-Noguer and Fua, 2013] there are two clues that are used to disambiguate

possible solutions out of the set of possible non-rigid solutions: 1) The shading information

for estimating the sources of light from photogrammetric clues, and 2) the temporal

consistency of the solutions. As indicated in the paper these clues are used as a source of

disambiguation, that could be changed depending on the type on the problem considered.

2.2.2 Model-Based reconstruction techniques

The techniques grouped in this section are considered model-based reconstructions or

SfT, as they perform 3D reconstruction on a deformable object whose reference model or

template is previously known.

The reference model can be computed from samples, from a prior model of a physical-

based object, synthetically computed or even generated by other reconstruction algorithms

from a training sequence.

The solutions can be grouped in function of the type of deformation priors used.

2.2.2.1 Statistics-based SfT

The most commonly known algorithm on the literature that belongs to this category is

the Active Appearance Models (AAM), which is widely used for the reconstruction and

tracking of the human face. It was first introduced by [Cootes et al., 1998]. These methods

are also known as Morphable models.

The 3D Morphable Models (3DMM) can be seen as a sophisticated variant of the

AAM. The main difference is that they are dense, instead of sparse, and try to evaluate

the whole 3D shape of the object. An example of a system using Morphable models for

dense face tracking is depicted in [Muñoz et al., 2009]. A revisiting example of these

models including an extensive learning and its application over a database of 10,000 faces

is studied in [Booth et al., 2016].

Another variant of 3DMM is the one presented in [Bernard et al., 2016], this performs

a thorough analysis of the shape fitting by Principal Component Analisys (PCA) given

by other standard methods, but this algorithm proposes iterative improvement on local

support by applying sparsity to the factorization and further applying regularization to

the model.

The main disadvantage of AAM and related algorithms resides on the need of large

labeled databases for a proper training of the model. Hand-made labeled databases are
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prone to errors, not only due to the “human factor”, but also as different persons could

do the task differently. In the work of [Zhou et al., 2016] it takes advantage of some of

the approaches and dense correspondences to both infer the point correspondences and

predict the labeling.

An attempt to introduce Gaussian mixtures on the shape model and then a Kalman

filter on the visible regions to stabilize the estimation is done by [Sanchez-Riera et al.,

2010].

2.2.2.2 Physics-based SfT

Most of SfT methods fall into this category and in particular using the isometry

prior [Brunet et al., 2010,Bartoli et al., 2015,Vicente and Agapito, 2012]. [Bartoli et al.,

2015] describes the problem as a Partial Differential Equation (PDE) system and proves

that imposing the isometry prior makes SfT a well-posed problem. In Fig. 2.8 an illus-

tration of the SfT approach is shown when isometric constraints are imposed.

Figure 2.8: Geometric modelling scheme of SfT imposing isometric constraints. Extracted from
[Chhatkuli et al., 2014b]

Existing methods in isometric SfT can be divided into local solutions, mainly based on

solutions of a PDE system and global solutions, based on convex relaxations of isometry

[Fua and Salzmann, 2011,Ngo et al., 2016]. Recently [Gallardo et al., 2016] proposed a

dense SfT approach able to capture high-frequency deformations by incorporating shading

information. Dense Isometric SfT has been implemented in real-time in [Collins and

Bartoli, 2015] using a high-end GPU.

Non-isometric priors, such as elasticity has been recently studied [Haouchine et al.,

2014]. Well-posedness is not guaranteed in these methods and they usually require bound-
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ary conditions. Topology changes in elastic materials, such as cuts and tearing is modeled

in [Paulus et al., 2015].

Few approaches solve SfT from RGBD data. In [Leizea et al., 2014], a similar approach

in which tracking and mapping are separated is presented. This makes use of Mass Spring

Model (MSM) instead of FEM to make the computations a bit lighter. A Computer Aided

Design (CAD) 3D shape is loaded and then its pose and shape is tracked frame by frame,

adapting to the deformations.

The main drawback of all the template based approaches is that they require a very

strong knowledge about the object to be reconstructed.

In order to better organize the works of the literature, the Table 2.2 is depicted.

Model-based approach sparse/dense GPU proj seq. RT priors highlights
[Cootes et al., 1998]

AAM
sparse no orth yes yes N/A prior training

[Muñoz et al., 2009]
3DMM

dense no pers yes no N/A full tracking of the 3D model

[Booth et al., 2016]
3DMM

dense N/A pers no no N/A

[Bernard et al., 2016]
3DMM

dense N/A N/A no no N/A linear shape deformation
models

[Zhou et al., 2016]
AAM

sparse/dense N/A N/A no no low K constructs deformable models
with shape flow

[Brunet et al., 2010]
FFD

sparse no pers no no iso

[Joseph Tan et al., 2014]
FFD

sparse no N/A yes yes N/A requires training of the linear
predictors

[Salzmann et al., 2008] sparse no pers no no inext inext meshes, closed form
[Sanchez-Riera et al., 2010] sparse no pers no no pose, shape iterative solution, priors mod-

eled as gaussian mixtures
[Fua and Salzmann, 2011] sparse no pers no no shape linear local models
[Pizarro and Bartoli, 2012] sparse no orth no no shape warp estimation, self occlu-

sion reasoning
[Bartoli and Collins, 2013] sparse no pers no no iso solution for uncalibrated

weak and full perspective
[Chhatkuli et al., 2014b] sparse no pers no no iso PDE solution for SfT problem

[Bronte et al., 2014]
(factorization)

sparse no pers yes yes N/A PTAM + linear bases

[Collins and Bartoli, 2015] sparse/dense
yes

(render)
pers no <21fps iso,thin shell SfT impt for AR

[Leizea et al., 2015] sparse no N/A yes yes pre-trained deforms particle filter based tracking
for deforms

[Ngo et al., 2016] sparse N/A pers no 10 fps reg mat reg. matrix, planar/curved
templ, c++ impl.

[Magnenat et al., 2015] sparse no N/A yes 27fps reg mat, time, shape Live texturing of a drawing
book

[Wang et al., 2016] sparse no orth no no N/A non-rigid point registration
[Leizea et al., 2014] dense no N/A yes 7-15 fps MSM solid tracking based on model

and physical model
[Ngo et al., 2015] dense no pers no no length,smooth performs whole image align-

ment, minimal texture
[Parashar et al., 2015] dense no pers no no As Rigid As Possible (ARAP) extension of SfT to volumet-

ric modelling
[Paulus et al., 2015] sparse/dense no N/A yes no stretching,FEM cutting and tearing object

modelling
[Yu et al., 2015] dense yes pers yes no spatial, temp, ARAP dense tracking from model

[Liu-Yin et al., 2016] dense yes pers yes no
spatial,ARAP,
temp,sparse,

shading,specular
SfT + SfShading

[Gallardo et al., 2016] dense N/A pers N/A no
shading,motion,

boundary,iso
SfT + SfShading

Table 2.2: Model-based / SfT approaches summary
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2.2.3 Non-Rigid Structure-from-Motion (NRSfM)

In NRSfM the objective is to recover the 3D shape of an object undergoing deformations

from a sequence of images. Each image shows the combination of rigid motion and shape

change in the object.

2.2.3.1 Batch NRSfM

Most of batch NRSfM methods use statistics-based priors and in particular the low-rank

shape prior [Del Bue et al., 2006,Torresani et al., 2008,Garg et al., 2013,Dai et al., 2012]

and the non-rigid factorization algorithm. It was first introduced by [Bregler et al., 1999],

modelling deformations as a linear combination of basis shapes, resulting in specific metric

constraints on the factorization problem. Several works improved this approach to better

constrain the reconstruction. Fig. 2.9 shows the general idea behind low-rank shape

models, where thee object’s shape space is assumed to be low-dimensional and the shape

is represented as the weighted sum of a set of basic shapes or shape basis. Most of these

methods are based on the orthographic camera.

Figure 2.9: Linear basis shapes approximation.A visual representation of the model based on a set of
linear bases multiplied by its weights, conveniently rotated and translated in space could yield the

image of the current shape. Extracted from [Paladini, 2011].

Non-rigid factorization with the perspective camera was studied in [Lladó et al., 2005]

and [Hartley and Vidal, 2008].

It’s generally accepted that the low-rank prior renders NRSfM an ill-posed problem.

Therefore, the efforts were focused on adding priors on the factorization of the tracking

matrix. Some of them were estimating an initial rigid component [Del Bue et al., 2006],

setting priors on temporal smoothness or spacial smoothness [Torresani et al., 2008] or

using point trajectory constraints [Akhter et al., 2009,Gotardo and Martinez, 2011]. Re-

cently [Dai et al., 2012] demonstrates that many of the ambiguities associated to the

low-rank prior can be solved by minimizing the nuclear norm of the shape matrix. Many

recent methods use this prior, combined with stronger priors, such as the as-rigid-as-

possible soft constraint.

Low-rank shape priors are accurate for objects with simple deformations, such as

the human face. Deformations of some objects are high-dimensional. However less-

constraining the rank leads to over-fitting and wrong reconstructions [Paladini et al.,
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2009]. Physics-based priors, such as isometry, are useful for special deformation cases

[Vicente and Agapito, 2012,Brunet et al., 2010].

Other approaches, like [Fayad et al., 2010, Russell et al., 2011] tackled the problem

in a piece-wise sense, using local models that better adjust certain parts of an object.

The main drawbacks of these approaches are how to assign the initial partition set of

models and how to assign the overlapping between points that share different models.

This implies that global coherence of the model, even it could be better adjusted, is not

guaranteed.

As commented in the rigid section introduction (2.1), there were several approaches

for the rigid case that got successful results on monocular dense SfM in real time, as

demonstrated by DTAM [Newcombe et al., 2011b] and further extended to KinectFusion

[Newcombe et al., 2011a]. Since then, few approaches appeared to tackle the dense case

of NRSfM. The pioneering work in this line was the presented in [Garg et al., 2013], which

did per pixel dense reconstruction combining low rank prior with local smoothness priors.

In [Russell et al., 2014] authors proposed segmentation and reconstruction of local rigid

models.

Physics-based NRSfM has been recently studied for the isometric prior [Chhatkuli

et al., 2014a,Parashar et al., 2016,Chhatkuli et al., 2016]. [Parashar et al., 2016] proved

that isometric NRSfM is a well-posed problem by studying the differential properties

of the problem. It also proposes very accurate local solutions. [Chhatkuli et al., 2016]

proposes a global reconstruction method using inextensibility and the maximum depth

heuristic. It shows that NRSfM admits a convex relaxation that results in a large-scale

Second Order Cone Programming (SOCP) problem.

2.2.3.2 Sequential NRSfM

Previous approaches are batch and not suitable to run in real time. Very few methods

address sequential NRSfM. [Paladini et al., 2010] proposes a low-rank shape prior, that is

imposed on a temporal sliding window. [Agudo et al., 2012a,Agudo et al., 2012b,Agudo

et al., 2016a] proposes a sequential approach based on elasticity constraints and FEM

models (see Fig. 2.10). This is an object specific model that depends on knowledge about

physical parameters such as the Young’s modulus. It cannot be considered a pure NRSfM

method as it requires a reference shape of the object obtained from rigid SfM.

2.2.3.3 Camera models in NRSfM

Nowadays, very few of the approaches tackle the case of the perspective projection, as the

projection equations are more complex. Just two factorization based works tackled the
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(a)

(b)

Figure 2.10: FEM modelling principles. (a) shows the FEM partition of a surface or volume into
wedges. (b) shows the estimation of the surface normals to estimate volumetric wedges. Both figures

are extracted from [Agudo et al., 2016a]

perspective projection [Lladó et al., 2005,Hartley and Vidal, 2008]. Using the assumption

that the camera is far enough from the objects to be modeled and that the objects are

shallow, the perspective effects can be avoided. In real situations this assumption cannot

be taken. In fact in some of the latest works, like [Agudo et al., 2016b,Bartoli and Collins,

2013,Chhatkuli et al., 2014b] use perspective projection.

With this projection model, a more realistic way of modelling the objects can be

obtained when the object is close to the camera, as the perspective effects are more

evident.

The perspective effects can be used to minimize the effects of the ambiguities previously

addressed, except for the scale.

Figure 2.11: Orthographic vs perspective camera projection. Taken from [Paladini, 2011]

It is illustrated on Fig. 2.11 the differences between the orthographic and perspective

projections. All the points are projected the same way wherever the projection plane is

located in (a), whereas the projections are scaled if the image plane is moved for (b).
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A taxonomy of the previous approaches is shown in Table 2.3.

NRSfM approach sparse/dense GPU proj sequential real-time priors features

[Bregler et al., 1999] (factor) sparse no orth no no no first factor based work
[Aanæs and Kahl, 2002] (factor) sparse no orth no no shape first work depicting ambiguities
[Torresani et al., 2003] (factor) sparse no orth no no gaussian shape,

temp
Expectation-Maximization (EM) esti-
mation scheme

[Lladó et al., 2005] (factor) sparse no pers no no no divides problem in subproblems, itera-
tive

[Del Bue et al., 2006] (factor) sparse no pers no no rigidity estimates rigidity for motion indepen-
dently

[Hartley and Vidal, 2008] (factor) sparse no pers no no no closed form
[Torresani et al., 2008] (factor) sparse no w-pers no no shape linear subspace, PPCA
[Paladini et al., 2009] (factor) sparse no orth no no N/A metric projection, deform and articu-

lated
[Paladini et al., 2010] (factor) sparse no orth yes no temp(rot),shape first sequential NRSfM approach
[Fayad et al., 2010] (patch) sparse no orth no no temp (pose) piecewise patch NRSfM
[Russell et al., 2011] (patch) sparse no orth no no temp (pose) same as before, dynamic model assign-

ment
[Moreno-Noguer and Porta, 2011]

(fact)
sparse no pers no no statistical MAP formulation, probabilistic setup

[Dai et al., 2012] (fact,min K) sparse no orth no no min-K,orto best CVPR12 paper, orth condition in-
clusion

[Akhter et al., 2009] (traj) sparse no orth no no no trajectory bases
[Gotardo and Martinez, 2011]

(traj)
sparse no orth no no time smooth trajectory bases, prev reconst

[Vicente and Agapito, 2012]
(fact)

sparse no orth/pers no no iso,shape,temp template based / template free

[Agudo et al., 2012a]
[Agudo et al., 2016a]

(FEM)
sparse no pers yes yes(30 pts) FEM FEM+EKF-SLAM

[Lee et al., 2013] (procrust) sparse no orth no no procrustean normal procrustean normal distribution for
NRSfM

[Agudo and Moreno-Noguer, 2015a]
(fact)

sparse no orth no no low rank traj models force space from deformations

[Agudo and Moreno-Noguer, 2015b]
(BA+physics)

sparse no orth yes no motion laws,
temp(pose), shape,
extensibility

movement laws based BA for NRSfM

[Chhatkuli et al., 2016]
[Chhatkuli et al., 2014a]

(infinitesimal)
sparse no pers no N/A iso inextensible reconstruction SOCP, in-

trinsic template estimation
[Parashar et al., 2016]

(infinitesimal)
sparse no pers no N/A iso infinitesimal planarity based recon-

struction
[Kong and Lucey, 2016]

(priorless)
sparse no orth no no priorless compress-

ible
priorless compressible based on block
sparse dictionary learning

[Garg et al., 2013] dense yes orth no no spacial (edge and
trace)

first variational NRSfM approach

[Russell et al., 2014] dense yes orth no no edge, sparse (over-
lap), rigidity,
saliency

piecewise, dynamic scene dense recon-
struction

[Agudo et al., 2014] dense/sparse no orth yes no FEM tackling dense data decimating, trian-
gulating and applying FEM

[Newcombe et al., 2015] dense yes pers yes yes N/A RGBD input, dynamic non rigid model
and wrap computation

[Lee et al., 2016] sparse/dense no orth no no no weak recons, solves reflexion ambigui-
ties and then “strong” recons

[Ranftl et al., 2016] dense yes pers no no no comparative for dynamic scenes be-
tween methods, including NRSfM

Table 2.3: NRSfM approaches summary

2.2.3.4 Bregler et al.’s batch approach

The approach presented in [Bregler et al., 1999] is considered the pioneer method for

NRSfM. Most of the works that appeared after, including this Thesis, consider the de-

formation prior based on low-rank shape basis. Given its importance, its foundations are

detailed here.

The main idea is to extend the low-rank factorization performed by [Tomasi and

Kanade, 1992], in which the input of the algorithm is the set of 2D aligned tracked

points. The correspondence between images, as in most of the related works, is supposed

to be given and perfect.

The second assumption in the paper is that the projection model is orthographic. The
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tracking matrix W is defined as follows:

W =




q11 · · · q1N

...
. . .

...

qF 1 · · · qF N


 =




l11R1 · · · l1KR1

...
. . .

...

lF 1RF · · · lF KRF







B1

...

BK


 = MS, (2.10)

where qfn is 2 × 1 vector that denotes the image projection of the nth point in the fth

frame. All coordinates of frame f are centered with respect to their centroid. N denotes

the number of shape points and F the number of frames. Matrix W is thus of size 2F×N .

The low-rank shape bases assumes that W can be decomposed into the multiplication of

the 2F×3K motion matrix M and the 3K×N shape matrix S, where K is the number of

shape bases considered. The matrices {B1 · · ·BK} are the set of K 3D bases shapes, each

of them of size 3 × N . lfk are the deformation coefficients and Rf defines the projection

matrices of size 2 × 3 (in orthographic projection these are Stiefel matrices, containing

the first 2 rows of the rotation matrix, being also orthonormal vectors).

Therefore, for each frame f , the shape Sf can be expressed as:

Sf = lf1B1 + · · · + lfKBK (2.11)

Each 3 consecutive rows of M are defined as follows:

af = (lf1Rf · · · lfKRf ) =


 lf1rf1 lf1rf2 lf1rf3 · · · lfKrf1 lfKrf2 lfKrf3

lf1rf4 lf1rf5 lf1rf6 · · · lfKrf4 lfKrf5 lfKrf6


 (2.12)

where

af =




l1
...

lK



(
rf1 rf2 rf3 rf4 rf5 rf6

)
(2.13)

being rfi with i = 1, . . . , 6 the coefficients of the fth projection matrix Rf .

Note that the decomposition of W depicted in equation 2.10 is ambiguous. Given any

invertible 3K×3K matrix G and W = MS. the decomposition M̂ = MG and Ŝ = G−1S

is also valid. Some of the ambiguities can be solved by forcing Rf with f = 1, . . . , F to

have orthonormal rows:
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(
rf1 rf2 rf3

)
GfG

T
f

(
rf1 rf2 rf3

)T

= 1
(
rf4 rf5 rf6

)
GfG

T
f

(
rf4 rf5 rf6

)T

= 1
(
rf1 rf2 rf3

)
GfG

T
f

(
rf4 rf5 rf6

)T

= 0

(2.14)

where Gf with f = 1, . . . , F depend on the coefficients of the unknown matrix G.

Solving for G (metric update) is one of the main problems with this approach. Several

methods have been proposed to find G imposing additional constraints.

2.2.3.5 Paladini et al.’s Sequential approach

Based on the previous factorization approach, the idea of a sequential reconstruction of

deformable objects, inspired by PTAM [Klein and Murray, 2007] and imitating the way in

which rigid sequential SLAM systems were acting was proposed in [Paladini et al., 2010].

Before this method all the available approaches were batch, so it was the first proposal

able of doing an incremental reconstruction.

This algorithm proposed a rank-growing engine to check and insert when it was needed

a new deformation mode, inside a sliding window scheme. It also proposed a model capable

of representing deformations of rank lower than 3, for instance, along a plane or a line.

Therefore, this approach is able to deal with degenerate deformations.

The NRSfM algorithm proposed in [Paladini et al., 2010] obtains first a rigid shape

estimation using a factorization over the first few frames of the sequence. Then, the

process consists of using a non-rigid BA over a sliding window of w frames.

The cost to be minimized was the following:

min
Ri,Ui

f∑

i=f−W

‖Wi −Ri (S + UiV )‖2
F (2.15)

where Ri is the orthogonal projection 2x3 matrix, Wi is a selection of the latest frames

of the tracking matrix, and ‖‖F is the Frobenius norm.

The method proposed optional priors, such as rotation and shape smoothness. There-

fore, the expression to be minimized including these priors was as follows:

min
Ri,Ui

f∑

i=f−W

‖Wi −Ri (S + UiV )‖2
F + λ

f∑

i=f−W

‖Ri −Ri−1‖2
F + ψ

f∑

i=f−W

Di,i−1 (2.16)

If the error could not be sufficiently minimized using this expression, the model needed

to be updated. From the current estimate of Uf,1:r−1 and V1:r−1 the error of the model

was computed as
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W̃f = Rf

(
S + Uf,1:r−1V1:r−1 + Uf,rVr

)
(2.17)

A = W̃f −Rf

(
S + Uf,1:r−1V1:r−1

)
(2.18)

where Z = Uf,rVr. A was needed such as A = RfZ and rank(Z) = 1. As it was difficult

to be solved, a linear solution based on linear least squares was taken and then the first

row and column is taken from a Singular Value Decomposition (SVD) decomposition to

constrain the rank to 1.

After the rank growth, the sliding window was run again with the new set of bases.

Even though it was not said in the paper, there was an important issue to remark in

the implementation. When trying to reduce the error it could happen that the amount

of bases to describe a deformation of an object could grow indefinitely. In order to sort

this problem out, a re-factorization is proposed when a certain rank is reached.

The re-factorization of the bases consists of computing PCA over the current existing

ones and taking only the most important ones, discarding the rest and re-computing the

coefficients of the rest of the reconstructions.

Although this work is seminar in terms of being the first sequential NRSfM approach

and having served as inspiration to many other works, including the present Thesis, the

idea of making the estimations within a sliding window has been tackled by other authors

[Agudo et al., 2016a,Agudo et al., 2014,Agudo et al., 2012a] and their results outperformed

the original approach for certain type of objects.

In order to implement re-factorization proposal, the shape was reorganized, instead of

factorizing a SF x3P matrix, the shape matrix was set to S3F xP , being F the number of

frames and P the number of points, where each of the bases were transformed from 3xP

to 1xP each, so the coefficients were differentiated by each spacial dimension. The mean

shape was also considered in the deformation model, as usually done, so the model was

given by:

Sf = S̄ +
(
Uf1 · · · Ufr

)




V1

V2

...

Vr




(2.19)

in which S̄ was the mean shape, the Ufr were the 3-vector Ufr =(
U (x)fr U (y)fr U (z)fr

)T
and Vr the rows of the V matrix. It can be considered

that V was the low rank implicit model after a PCA compression and the U matrix was

the 3 dimensional coefficients affecting the bases to reconstruct the shape, represented in

3FxP.



2.2 Non-Rigid Reconstructions 37

Therefore, the tracking matrix given in orthographic projection, could be given by the

following expression

Wf =


 uf1 · · · ufP

vf1 · · · vfP


 = RfSf + Tf = Rf

(
S + UfV

)
+ Tf (2.20)

Using a rank 1 approximation to the model instead of the standard rank 3, the algo-

rithm becomes ideal to model degenerate deformations (1D or 2D ones), although this

part is not the most interesting one as the most frequent deformations that appear on

standard sequences are rank 3, which would imply growing three times the rank of the

model per frame, which is, in terms of CPU consumption very expensive.

Some results for the described algorithm are shown in Fig. 2.12 both quantitative and

qualitative for ideal tracking condition even though missing data is considered on the

tracking.

Figure 2.12: Sequential NRSfM results on actress sequence. On top qualitative results and at the
bottom, quantitative results, including reprojection error, rank growth and recovered rotation angles.

As the approach is orthographic no information about translation is given.
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2.3 Thesis objectives

This thesis takes the philosophy of two well known methods from the state-of-the-art, one

rigid and one non rigid, and combine both to propose a sequential NRSfM approach.

The first is PTAM [Klein and Murray, 2007], an efficient method in terms of processing

time, which provides a rigid framework to modify and deploy new algorithms in c++.

PTAM is efficient in terms of processing time. This provides a good reference for the

state-of-the-art, as it has been well tested, it has been already compared with other works

[Davison et al., 2007, Newcombe et al., 2011b, Newcombe et al., 2011a], and it has also

been used as base of other works [Pan et al., 2009,Newcombe and Davison, 2010,Stühmer

et al., 2010,Tan et al., 2013].

The second is the sequential and incremental non-rigid processing framework of [Pal-

adini et al., 2010]. The main idea behind the algorithm is to learn how an object is

deforming in a incremental and sequential way. The algorithm uses a two step error op-

timization scheme in which, for each frame, the tracking process finishes and sequentially

the modelling update starts.

Hereafter the concrete objectives to be tackled in this thesis are enumerated:

2.3.1 Non rigid tracking

This objective is to modify the core of PTAM tracking system, to adapt it to handle a

non-rigid model, maintaining real-time performance and its main features.

2.3.2 Incremental Modeling

Following the same philosophy of PTAM we propose a mapping process that runs in

parallel with the tracking. In this case the mapping consists of a batch NRSfM algorithm

that can perform a fast and good reconstruction for a window of keyframes in a sequential

way, in the line of the work of [Paladini et al., 2010].

2.3.3 Parallel tracking and modelling on collaborative mode.

Both threads will be adapted to work with non-rigid sequences, the update between both

threads will be transparent. The tracking thread keeps the model on real time and checks

if the currently seen deformations can be explained by the low-rank model. If not, new

keyframes are sent to the map and the model is conveniently updated. The mapping

thread checks for updates and performs batch updates on the incoming data so as to keep

a good enough model.
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2.3.4 Perspective projection

The direct use of perspective projection in the algorithm will allow to be more accurate,

reducing the natural ambiguities of the orthographic projection that exist in most of the

state-of-the-art NRSfM algorithms.

2.3.5 Dealing with real data association

The rejection of missing data and outliers is tackled in very few methods of the state-

of-the-art. However, it is a crucial problem when facing tracking of features in a real

sequence. In this thesis this problem will be faced.





Chapter 3

Real-Time Model-Based Non-Rigid

Tracking

This chapter presents a real-time solution for sequential model-based 3D reconstruction

of deformable objects. Our solution deals with data association and works in real time.

This is also an important module in our sequential Non-Rigid Structure from Motion

(NRSfM) solutions, that follows the parallel tracking and mapping philosophy, successfully

introduced in Parallel Tracking And Mapping (PTAM) [Klein and Murray, 2007] to solve

rigid Simultaneous Localization And Mapping (SLAM).

3D reconstruction from images is a key technology in many applications such as Human-

Machine Interface (HMI), Augmented Reality (AR) and robotics. These applications

require accurate and stable reconstructions. Deformable reconstruction is needed when

dealing with non-rigid objects, such as the human body or tissue. Robust and sequential

3D reconstruction is a priority in most of these cases. Algorithms must be able of deal-

ing with real data association between images, which causes outliers and missing data.

The development of a real-time non-rigid 3D reconstruction technique from monocular

sequences is clearly motivated in this context.

Real time constraints are defined here by the interval between incoming frames from a

camera, which, depending on its quality and acquisition features could vary between 17

ms (∼60 fps) to 66 ms (15 fps), being the standard value considered in the literature for

most of the capture systems 33 ms (30 fps).

As was discussed in Chapter 2, non-rigid reconstruction counts with two main cate-

gories of reconstruction methods: Model-free and Model-based approaches.

Model-free approaches solve the NRSfM problem. They have been studied for both

batch [Paladini et al., 2009, Moreno-Noguer and Porta, 2011, Gotardo and Martinez,

2011, Torresani et al., 2003] and sequential [Paladini et al., 2010, Agudo et al., 2012a]

reconstructions. They do not need a previous model and assume the low-rank shape

basis as the deformation constraint. As was mentioned in Chapter 2, those methods
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require accurate feature correspondences between frames, not handling properly outliers

and missing data in most of the cases. They are also computationally complex. Even

using GPU implementations they cannot produce reconstructions for every frame in a

long sequence.

Model-based / Shape from Template (SfT) approaches have been thoroughly studied.

In particular, physics-based deformation priors have attracted a lot of attention, such

as isometry or elastic deformations [Fua and Salzmann, 2011, Bartoli and Collins, 2013,

Parashar et al., 2015,Chhatkuli et al., 2014b,Ngo et al., 2016]. Statistical-based methods

have been also proposed, with special attention to particular objects, such as the human

face [Muñoz et al., 2009,Cootes et al., 1998]. They are able to simultaneously track feature

points from images and reconstruct the 3D shape by using a large training set of labeled

image data to train the model. Such training images are synthetically created or often

manually labeled. All these works have in common the need of a template, which consists

of a reference shape of the object and a texturemap. These methods require registration

between the input image and the template’s texturemap to obtain the reconstruction.

Deformation priors are then used to reconstruct the 3D shape from the template-to-image

registration. Model-based approaches are usually affordable to be run in real-time.

This chapter is organized as follows: our algorithm description following the most basic

modelling and projection equations are described in section 3.1, going through the data

association between the detected points and the model given in section 3.1.1, as well as

the feature matching used in 3.1.2, and the camera motion model in 3.1.3. Afterwards

the minimization procedure of the reprojection error is addressed in 3.1.4, as well as the

prior integration on that scheme in 3.1.5. In case the tracking algorithm is lost, the

basic recovery procedure is depicted in 3.1.6. In section 3.2 a summary of the results is

described. Finally, section 3.3 presents the main conclusions of the chapter.

3.1 Algorithm Description

Given a video sequence, a set of deformation bases, an initial estimation of the pose and

the rigid shape of an object, our algorithm estimates the camera pose and the 3D model

deformations of the object in the sequence for each frame, tracking some features over the

images. We refer this method as the tracking thread, as it will play that role inside our

parallel tracking and mapping NRSfM solution.

A block diagram of the tracking thread and the initialization process is presented in

Fig. 3.1. The main blocks of our tracking thread are included inside the red box. The

yellow blocks represent inputs, the orange blocks are configurations (priors), the green

blocks are estimations from the input data and finally the blue blocks are implemented

tasks.
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Figure 3.1: Tracking thread block diagram

We use the linear shape basis model introduced by [Bregler et al., 1999] for modelling

deformations. The shape is expressed as a linear combination of a fixed set of basis shapes

multiplied by time-varying coefficients:

SNR (f) = SR +
K∑

k=1

Lk (f)Bk (3.1)

where SNR ∈ R3×P is the (time-varying) shape for frame f , where P is the number

of points of the considered shape. SR ∈ R3×P is the average rigid shape, L (f) ∈ RK

are the K deformation weights for frame f , and K is the number of basis shapes. The

basis shapes B ∈ R3K×P are fixed for the whole sequence and are assumed to be known,

normally learned in an initial set-up from a set of 3D training data.

Each point i of the non-rigid shape SNR is transformed from world to camera coordi-

nates as

Xi =
(
xi yi zi

)T
= [R|T ] ∗ SNRi

(3.2)

The camera extrinsic parameters are represented by the 4 × 3 transformation matrix
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[R|T ] ∈ SE(3) , where R ∈ R3×3 specifies camera rotation, and T ∈ R3 is the camera

translation vector. Points transformed in the camera coordinates are projected with

perspective projection as:

US
i =


 ui

vi


 =


 u0

v0


+ α


 fu 0

0 fv






xi/zi

yi/zi


 (3.3)

US ∈ R2×P represents the set of shape points, (u0, v0)
T are the camera center coordi-

nates, (fu, fv) the focal length, known from the prior calibration process, and α the radial

distortion function, described in [Klein and Murray, 2007].

3.1.1 Measurement model / data association

The measurement model is based on the detection of sparse features in the image us-

ing state-of-the-art feature detectors such as the FAST [Rosten and Drummond, 2006]

detector. The most challenging task in the tracking is the association between detected

features and projected shape points. In order to address this task, the initial non-rigid

shape is used as a template.

The points of the model (SNR) are projected onto the image plane, and a Delaunay

triangulation is computed using CGAL library [CGAL, 2007] with these projections, re-

sulting in a set of connected vertices vi. Feature points will not match the vertices of the

model, but can be expressed using barycentric coordinates. A detected point U
′

i = (u
′

iv
′

i)
T

has barycentric coordinates (ai, bi, ci) computed as in [Moreno-Noguer and Porta, 2011]:




ai

bi

ci


 = pinv


 vi,1x vi,2x vi,3x

vi,1y vi,2y vi,3y


 ∗


 u

′

i

v
′

i


 (3.4)

Where pinv(·) is the matrix pseudo-inverse. In order to better explain the association,

it is represented in Fig. 3.2. A triangle of the mesh generated by the triangulation from

the model points is represented in the black points, whereas a detected point in the image

is represented in red and each of the elements are included in the representation.

Figure 3.2: Tracking data association from detected points (red) with model points in mesh (black)
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Using the barycentric coordinates we can define a set of interpolated basis in world

coordinates, B
′

, such that the 3D position of a feature point X
′

i relates to the model basis

shapes as:

X
′

i = aiXv1 + biXv2 + ciXv3 (3.5)

X
′

i =
∑

k

Lk (aiBv1k + biBv2k + ciBv3k) =
∑

k

LkB
′

ik (3.6)

where X
′

i is the interpolated point corresponding to the detected point U
′

i .

Xv1, Xv2, Xv3 are the 3D coordinates of the 2D associated coordinates vertices

(vi,1, vi,2, vi,3) and (Bv1k, Bv2k, Bv3k) are k-th bases of each of the vertices of the trian-

gle.

Equation 3.6 shows the duality of working with model or detected points and interpo-

lated 3D points, once the data association is set.

3.1.2 Feature matching

The quality of the feature matches between the reference image and the rest of the im-

ages of the sequence have an impact on the performance results, although a compromise

between accuracy and processing time is required not to introduce high delays in the

processing pipeline, which could be critical when processing real time sequences.

Two different feature matching methods are studied. The first one is based on PTAM

matching and the FAST method and presented in [Bronte et al., 2014]. This is considered

as the baseline for the comparison. A second approach based on different state-of-the-art

visual descriptors is presented and adapted to work inside the PTAM method.

3.1.2.1 PTAM based matching approach

Feature points detected in the image (U
′

) from FAST [Rosten and Drummond, 2006]

correspond to the vertices of B
′

(the interpolated bases) because they are easier to track

than the points given by the known basis shapes model (B). This soft constraint applied

to the detected points provides flexibility to the tracking and facilitates the matching of

the points among frames, as there is no need to look strictly for features near the initial

model points, but we use directly the detected points.

The detected features points on a frame are matched with those detected in the previous

frame by using an algorithm similar to the one used in PTAM [Klein and Murray, 2007].

However, the following modifications are needed to deal with non-rigid features:

• First, an affine warping is applied (based on point, patch and pose), like in [Klein

and Murray, 2007]. Most of the nearly rigid points will be found using this approach.
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• If this matching fails, it is usually due to deformations in the search area. In this case,

a multilevel correlation-based approach is performed. The feature in the previous

frame is looked up and matched in the top level of the current frame pyramid,

and refined by matching it in the lower pyramid levels. Matching is discarded if

correlation is too low or if displacement is too large. Married matching (current with

respect to previous frame) is applied to discard false positives. More information of

this method can be found in [Bronte et al., 2014]

This matching approach could fail for points with high deformed texture. The effect

of these points is mitigated by using all available matches of the model estimation in the

calculation of the deformation coefficients. This approach does not work for points that

move far away from frame to frame (when the searching area is broad), as the matching

quality can be low and it can lead to errors in the next estimation stages.

3.1.2.2 Descriptor based matching approach

The detection and matching layer is substituted by descriptor based features implemented

in OpenCV [Itseez, 2015]. Some of them are directly available, like KAZE [Alcantar-

illa et al., 2012], AKAZE [Alcantarilla et al., 2013], ORB [Rublee et al., 2011], BRISK

[Leutenegger et al., 2011], and others are not directly included but can be accessed as

third party software for research purposes, like SIFT [Lowe, 2004] and SURF [Bay et al.,

2006]. Binary descriptors are preferred for a real-time implementation as they are faster

than the classical ones.

Once the features are detected and described, they must be matched among frames.

Several matching algorithms are used such as: bruteforce, L1, L2 and Hamming distance.

Even though these techniques are reliable enough, some matches could be inexact.

Matches are searched inside a circular area defined in the image domain. The criterion

we follow is to select matches of minimum descriptor distance that don’t violate the

maximum radius condition. The radius parameter is configurable, then, it can be tuned

if the number of tracking failures is high.

Feature descriptors, such as SIFT or KAZE are not completely affine invariant and

thus can fail with high deformations. Specialized feature descriptors exist for deformable

registration, such in [Joseph Tan et al., 2014,Simo-Sierra et al., 2015]. We assume in this

thesis that strong deformations are not present, so these options are not considered in

this work.

3.1.3 Motion model

In order to improve convergence in the tracking, a linear motion model of the camera is

computed. The pose is updated using the following motion model:
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velt = β/2 (velt−1 + µ)

[̂R|T ]
t

= exp (velt△t) [R|T ]t−1
(3.7)

where velt is the camera speed at frame t calculated using the ESM homography

between frames [Benhimane and Malis, 2007], β is the factor that modules the influence of

vel on the update, and µ is the camera motion vector. The choice of the selected algorithm

comes from the original PTAM tracking in [Klein and Murray, 2007]. It assumes a fixed

shape, which can be acceptable for our proposal because we donÂ´t need an accurate

model.

3.1.4 E-M optimization

Several estimation methods implement an Expectation-Maximization (EM) approach to

compute deformation weights, keeping the camera parameters fixed and vice-versa, like

in [Torresani et al., 2003,Torresani et al., 2008,Dellaert, 2002,Agudo et al., 2014].

The Maximum Likehood Estimation (MLE) function is defined as,

fMLE

(
U

′

, µ, L,B
′

, SR

)
∝
∑

i

∣∣∣U
′

i − proj
(
X

′

i

)∣∣∣
2

(3.8)

The parameters we want to estimate are the camera pose vector µ = (φxφyφztxtytz)

composed by the angles and the translations in the 3 axes, and the shape coefficient vector

L for each frame.

We minimize Eq. (3.8) w.r.t. the state vector θ =
[
µ L

]
, formed by 6 +K compo-

nents of pose and deformation weights. We assume B
′

, SR and K fixed.

We run a maximum of 10 EM iterations per frame, alternating between camera pose

and deformation coefficients optimization. The current number of iterations depends on

the RMS reprojection error. If the error is not significantly reduced between frames the

process is stopped. If the error increases, the whole optimization algorithm is applied

and, if the error continues increasing, the estimation is stopped. The best solution for the

state vector is kept for the next frame. Each estimation is performed by Weighted Least

Squares (WLS) minimization of (3.8).

3.1.4.1 E-Step. Deformation estimation

In this step, the goal is to estimate the set of K deformation coefficients to improve the

posterior pose estimation. A preliminary set of coefficients is computed with the current

estimation of µt−1, SR and B
′

.

The E-step computes the lower bound for the observed data likelihood fMLE given the

previous (t− 1) state vector. The M-step will find the best camera pose given L. The
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bound is obtained by minimizing the reprojection error over the current set of coefficients

L, and taking into account the motion model:

eL
i =


 u

′

i

v
′

i


− proj

(
[̂R|T ]

t∑

k

Lt−1
k B

′

k,i

)
(3.9)

Where Lt−1 is the current value for the coefficients, eL
p the reprojection error for each

point p in the current frame. We weight the observed points using the Tuckey bi-weight M-

estimator function [Tukey, 1960] of the reprojection error, with a median-based estimation

of the standard deviation, in the same way that the proposed in [Klein and Murray,

2007]. The M-estimator reduces outlier and noise influence on the results, weighting each

measurement depending on its reprojection error. Only the detected points from the

matching are taken into account.

To compute the deformation weights, starting from Eq. (3.3), each 2D measurement

is undistorted, and project the 3D shape on the image plane. For the orthographic case,

the 2D camera coordinates are approximated to the first 2 transformed coordinates, and

the following expression is valid:

proj

(
∑

k

LkB
′

k

)
=
∑

k

Lkproj
(
B

′

k

)
(3.10)

However, for the case of perspective projection, Eq. (3.10) is not valid because pro-

jected points depend also on the depth, as shown in Fig. 2.11 in Chapter 2, which shows

a comparative between the two projections. To compute the coefficients, we start from

Eq. (3.2) and Eq. (3.3), expanding the projection function we reach:




λu

λv

λ


 =




fu

(∑
k Lk~rxB

′

k + tx
)

+ u0λ

fv

(∑
k Lk~ryB

′

k + ty
)

+ v0λ
∑

k Lk~rzB
′

k + tz


 (3.11)

where R =
(
~rx ~ry ~rz

)T
, T =

(
tx ty tz

)T
are the camera pose and λ the projection

scale.

By grouping the terms Lk and writing the system in a Linear Least Squares (LLS)

form Ax = C, where x = L, ∆up = up − u0, and ∆vp = vp − v0, we obtain:

A =




(∆u1~rz − fu~rx)B
′

11 · · · (∆u1~rz − fu~rx)B
′

1K

(∆v1~rz − fv~ry)B
′

11 · · · (∆v1~rz − fv~ry)B
′

1K

· · · · · · · · ·
(∆uP~rz − fu~rx)B

′

P 1 · · · (∆uP~rz − fu~rx)B
′

P K

(∆vP~rz − fv~ry)B
′

P 1 · · · (∆vP~rz − fv~ry)B
′

P K




(3.12)
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C =




futx − tz∆u1

fvty − tz∆v1

...

futx − tz∆uP

fvty − tz∆vP




(3.13)

Appendix C details how to obtain A (Eq. 3.12) and C (Eq. 3.13) from Eqs. (3.1), (3.2)

and (3.3).

In the case that an average shape is given for the first frame (SR), this will help to

improve the algorithm convergence, describing it as a function of the original basis shapes:

SR =
∑

k

LRk
Bk (3.14)

where LR ∈ RK is the vector of coefficients that describe the average rigid shape. Com-

puting the transformation LNR = L− LR, we remove the rigid shape influence.

If the previous condition does not hold, the rigid shape must be introduced in the

deduction of the matrices A and C, as the 3D model and then the projection equation

needs to be adapted. A matrix remains the same as in Eq. (3.12), but C gets more

complex, as indicated in Eq. (3.15).

C =




futx − tz∆u1 + SR,1 (fu
−→rx − −→rz ∆u1)

fvty − tz∆v1 + SR,1 (fv
−→ry − −→rz ∆v1)

...

futx − tz∆uP + SR,P (fu
−→rx − −→rz ∆uP )

fvty − tz∆vP + SR,P (fv
−→ry − −→rz ∆vP )




(3.15)

For more details about the whole deduction process we remit the readers to Appendix

C.

3.1.4.2 M-Step, Pose estimation

In this step, we compute the camera pose by maximizing the likelihood shown in Eq.

(3.8) of the observed data.

The maximum likelihood pose is estimated while keeping the 3D shape fixed, again

minimizing the reprojection error:

eµ
i =


 u

′

i

v
′

i


− proj

(
exp

(
µt
)

[̂R|T ]
t∑

k

Lt
kB

′

k

)
(3.16)

Eq. (3.16) is similar to Eq. (3.9), but in this case we search for the minimum w.r.t. µ

instead of L.
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We compute the µ update in the same way as it’s done in [Klein and Murray,

2007, Klein, 2006], as it will be explained below. Similarly to the E-step, the missing

correspondences are taken out from the pose estimation on the current frame.

Since the pose parameters are not linear, this time the estimation cannot be done in

closed form. Instead it is based on several steps of gradient descent, for which the pose

update with respect to the error must be obtained. To that end, Eq. 3.3 is decomposed

in several matrices to facilitate the derivation of the expression using the chain rule.


 u

′

i

v
′

i


 =


 fu 0 u0

0 fv v0







A1

A2

1


 (3.17)

where Ai are intermediate matrices that will be further defined.

Then the rest of the matrices are concatenated to form the projection expression:


 A1

A2


 =

r̃

r


 C1

C2


 (3.18)


 C1

C2


 =




xc

zc

yc

zc


 (3.19)

r =
√
C2

1 + C2
2 , r̃ = r − β1r

3 − β2r
5 (3.20)

β1and β2 are distortion coefficients previously computed from camera calibration.

(xc, yc, zc) are the 3D points in the camera coordinates.

B̂ =
r̃

r
⇒

 A1

A2


 = B̂


 C1

C2


 (3.21)

Then, the Jacobians for each of the matrices are defined as follows:

JA =




∂u
∂A1

∂u
∂A2

∂v
∂A1

∂v
∂A2


 =


 fu 0

0 fv


 (3.22)

JB̂ =
(

∂B̂
∂C1

∂B̂
∂C2

)
=


 −2β1C1 − β2 (4C3

1 + 4C1C
2
2)

−2β1C2 − β2 (4C3
2 + 4C2C

2
1)




T

(3.23)

JC =




∂A1

∂C1

∂A1

∂C2

∂A2

∂C1

∂A2

∂C2


 =


 B̂ 0

0 B̂


+


 C1

C2


 JB̂ (3.24)

JD =




∂C1

∂xc

∂C1

∂yc

∂C1

∂zc

∂C2

∂xc

∂C2

∂yc

∂C2

∂zc


 =




1
zc

0 −xc

z2
c

0 1
zc

−yc

z2
c


 (3.25)
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∂Xc

∂µp

= GpECWXW (3.26)

with p ∈ 1 . . . 6 denoting the pose degrees of freedom and Gp the generation matrix of the

SE(3) Lie group:

G1 =




0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0



, G2 =




0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0



, G3 =




0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0




G4 =




0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0



, G5 =




0 0 −1 0

0 0 0 0

1 0 0 0

0 0 0 0



, G6 =




0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0




(3.27)

and, ECW is the pose matrix:

ECW |4x4 =


 R T

01x3 1


 (3.28)

with R the 3 × 3 rotation matrix and T the 3 × 1 translation vector. Therefore, the final

expression for the error derivatives with respect to the pose parameters is:

∂eµ
i

∂µp

∣∣∣∣∣
2x1

= JAJC


JD

0

0


GpECWXW (3.29)

Some of the Jacobians can be grouped and computed in advance:

Jcam|2x2 = JA|2x2 JC |2x2 (3.30)

Therefore,

∂eµ
i

∂µp

∣∣∣∣∣
2x6

= Jcam|2x2


JDi

|2x3

0

0


 Gp|4x4,p=1..6 ECW |4x4 XW |4x1 (3.31)

This Jacobian is computed for each point X
′

i in world coordinates (XW ) and then inserted

into a WLS minimizer together with a M-estimator, for a convenient weight estimator for

outlier rejection.

Once the update µ for the pose is obtained, as the pose belongs to the SE(3) Lie group,

the pose is then updated as:

E
′

CW = exp (µ)ECW (3.32)
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3.1.5 Priors

In order to improve the method, we include regularization and smooth priors in the

optimization. We call them tracking priors and they allow us to obtain better 3D error

and serve to smooth the solutions of pose and shape along the sequence.

After a revision of the related works, we found out that the more suitable priors for

this tracking problem are temporal and shape smoothness, as they are easily adapted to

a least squares minimization scheme in the E-step.

Other more complex priors were considered, such as the isometric prior. We discarded

them as they generate non-convex costs which don’t fit well in our EM approach. Isom-

etry is also a strong prior that cannot be used for some objects that undergo elastic

deformations. We refer the readers to Appendix B for more details.

The consequence of including the priors is the modification of the error function to

be minimized. Instead of relying only on the 2D reprojection error, the cost includes the

following terms:

E = Edata + ρtempEtemp + ρshapeEshape (3.33)

where Edata is the 2D reprojection error described in Eq.(3.8), Etemp imposes temporal

smoothness and Eshape is an extra restriction of the shape, to not deviate its shape from

the original one (spatial smoothness).

Now, each of the terms is explicitly defined:

Edata =
P∑

i=1

∥∥∥U
′

i − proj
(
X

′

i

)∥∥∥ (3.34)

Etemp =
P∑

i=1

∥∥∥X
′

i(f) −X
′

i (f − 1)
∥∥∥ (3.35)

Eshape =
P∑

i=1

∥∥∥Xi(f) − X̂i (f)
∥∥∥ (3.36)

where ρtemp represents the weight for temporal smoothness and ρshape is the weight for

shape smoothness.

In Etemp imposes a temporal dependence between the current 3D shape with respect

to previous time Xi (f − 1).

The expression of Eshape forces the current shape Xi(f) to be closer to the shape X̂i,

obtained by predicting each node of the mesh using its neighbors:

X̂i (f) =
∑

k,m,n∈ℵ(X̂i)
αiXk + βiXl + γiXm (3.37)
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where αi, βi and γi are the barycentric coordinates of vertex i in the mesh with respect

to three neighboring vertices Xk, Xl and Xm. Note that the barycentric coordinates are

computed using the reference shape. This term imposes spatial smoothness by penalizing

shapes with points that do not agree with their neighbors. Eq. (3.33) can be optimized in

the E-step with linear least squares. We refer the reader to Appendix B for more details.

3.1.6 Tracking recovery

This procedure is inherited from the original PTAM tracking algorithm, which is described

in the active search algorithm presented in [Williams et al., 2007]. The algorithm was

introduced before PTAM was released, so it was integrated and tested in monoSLAM

[Davison et al., 2007].

In the original PTAM method, tracking recovery mode is outside the normal operation.

It is applied when the underlying map is considered good (i.e. it is not rejected by the

Sparse Bundle Adjustment (SBA) implemented in the mapping thread), but the tracking

is lost in several consecutive frames.

There are very few approaches that implement recovery strategies for live tracking

on NRSfM / SfT systems, presumably because a good tracking is assumed, and as a

consequence the matching is not considered a problem. Although we consider tracking

recovery procedures are important in real tracking systems to maintain them stable.

Tracking performance is assessed from the amount of tracks correctly matched among

the visible ones. When the number of tracks detected with respect to the ones found in

the image is low for a certain number of consecutive frames (3 by default), a recovering

procedure is started to find out a pose correction that better match the points.

When a tracking loss is detected, the active search algorithm is started. It consists

of estimating a 2D rotation between the latest correct frame feature patches (stored on

the map) and the current frame feature patches. The estimated 2D rotation is then

upgraded to a 3D rotation and the current pose is updated to carry on with the tracking

estimations. If this procedure is not successful in the current frame, it is repeated in the

following frames until a successful rotation gets enough matches. As stated, this process

assumes rigid scenarios. If a successful rotation has been found, normal tracking follows

this recovery procedure.

However, the active search recovery must be revisited for the non-rigid scenarios. The

closed-form of estimating the pose makes the shape of the object is also affected over the

frames, as the deformation coefficient estimation step relies on having a good estimation

of the pose. If the rotation abruptly changes from frame to frame, the shape will abruptly

change to adapt it to this rotation change. In the results section 3.2.2.3.4 we study the

impact of changing or not the shape during the re-localization scenario during the active

search.
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This leads to abrupt shape changes during the frames where a re-localization is done,

as the changes are high and non-linear in all the parameters, trying to match quickly

the highest number of features as possible. Therefore, the application of time smoothness

priors in this case is not useful, as it lowers the convergence speed, having in mind that the

main target of a recovery procedure is to get back to a normal state as soon as possible.

3.2 Results

Firstly, a general overview of the performance metrics is described, after that a revision

of the different datasets used for the assessment of the algorithm are presented, as well

as a detailed report of the results for each of the sequences.

3.2.1 Performance metrics

The metric used to evaluate the performance of our proposal for different test sequences

(motion captured or synthetically generated) is depicted in this section. After a sequence

is processed by the algorithm, the output results are post-processed to compare the per-

formance of the algorithm with the ground truth. The way that the motion capture and

synthetically generated sequences are adapted to serve as inputs of the system is also

explained.

The fundamental equations to evaluate the error of the output estimations are the

following ones:

2D error:

2D err (px) =
1
F

F∑

f=1

√∑
p ‖xest (f, p) − xgt (f, p)‖2

2√∑
p ‖xgt (f, p)‖2

2

max (xgt) (3.38)

where F is the number of frames of the sequences, P is the number of points, xest =

(uest, vest) are the re-projected features on the image and the xgt = (ugt, vgt) the ground

truth in image coordinates.

3D error:

3D err (%) =
1
F

F∑

f=1

√∑
p ‖Sest (f, p) − Sgt (f, p)‖2

2√∑
p ‖Sgt (f, p)‖2

2

∗ 100 (3.39)

being Sest = (Xest, Yest, Zest) the estimated 3D shape , and Sgt = (Xgt, Ygt, Zgt) the

ground truth shape.

translation error:
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t error (%) =
1
F

√∑
f ‖Test (f) − Tgt (f)‖2

2√∑
f ‖Tgt (f)‖2

2

∗ 100 (3.40)

in which Test = (test,x, test,y, test,z) is the estimated translation vector and Tgt =

(tgt,x, tgt,y, tgt,z) the ground truth camera translation vector.

rotation error:

rot error (%) =
1
F

√∑
f ‖Θest (f) − Θgt (f)‖2

√∑
f ‖Θgt (f)‖2

∗ 100 (3.41)

where the Θest = (θest,x, θest,y, θest,z) corresponds to the estimated 3 rotation angles,

and Θgt = (θgt,x, θgt,y, θgt,z) the ground truth rotations.

The 2D reprojection error and the 3D reconstruction error were used in [Paladini et al.,

2010]. Following a similar criteria, two new equations are applied for the rest of the state

vector parameters such as the rotation angles and the translation vector coordinates.

Even though global errors are calculated this way, those expressions do not work prop-

erly for analysis over time, in this case a per frame error is more useful than its mean.

In order to obtain the 3D error, before applying Eq. 3.39, a previous Procrustes

analysis [Gower and Dijksterhuis, 2004] is done to rotate and scale the shapes for a correct

comparison, and also to do the comparison in the same conditions as other works on the

state-of-the-art as [Paladini et al., 2009, Paladini et al., 2010]. Unless it was explicitly

indicated, Procrustes shape alignment is applied to compare the shapes.

The number of bases considered for all the experiments are at most K = 15, unless

indicated. It is usually considered that the optimum number of bases is the one that

allocates at least the 85% of the total deformation energy obtained from the Principal

Component Analisys (PCA) decomposition of the shape matrix. Not all the state-of-

the-art methods reaches this ideal rank, and a high number of bases could lead to over-

fitting when dealing to real data, not to mention the memory and computational costs for

handling a large number of bases. These are the main reasons why a fixed value (unless

specified) of bases is set in this Thesis.

In order to handle the data from motion captured datasets, which involves the absence

of any kind of visual information, a special version of the tracking thread was developed,

to accept as input text files containing the point projections for each frame, the 3D bases,

the pose initialization, the visibility masks, etc.

• The ground truth points are projected using the perspective camera as shown in

Eq.(3.3), choosing a point of view far enough to see all the sequence points in an

approximately frontal view for all the frames.
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• Afterwards, the mean is taken out from the 3D and then they are rearranged so as to

have a F × 3P shape, being F the number of frames and frames and P the number

of points.

The mean 3D shape is also saved to disk, to be loaded afterwards by the tracking

algorithm.

S − S0 =




x1,1 y1,1 z1,1 · · · x1,P y1,P z1,P

...
...

...
...

...
...

...

xF,1 yF,1 zF,1 · · · xF,P yF,P zF,P


 = UDV (3.42)

PCA is applied to this matrix and the most relevant components are taken, which

are 15, as indicated before. For these experiments 15 bases are more than enough

to cover more than the 85% of the deformation energy, which is computed from the

trace of matrix D as follows:

Dnormalized =
diag(D)
∑
diag(D)

(3.43)

Dcummulated[i] =
i∑

j=0

Dnormalized[j]∀i (3.44)

In each of the analyzed sequences, (unless is derived from an other), the deformation

energy analysis will be given at the beginning of each section.

In order to better clarify this point, no Procrustes is applied before the factorization.

From the SVD factorization, the approximation to the metric projection matrix

chosen is the
√
D, so the coefficients (L = U

√
D) and the bases (B =

√
DV ) are

obtained. As D is diagonal it does not need to be transposed. After being reduced

to the first K components, the vectorization operation is reverted, to have the bases

in a 3K × P format, ready to be loaded as a model.

To perform a thorough comparison and simulate real tracking conditions for these

datasets, an increasing noise strength, σ = [0, 1, 2, 3, 4] and outlier percentage, outl =

[0, 5, 10, 20, 30, 40]% is added to the set of points, as similarly done by [Moreno-Noguer

and Porta, 2011]. With this setup, an initial evaluation of the behavior of the algo-

rithm robustness to these conditions is performed. The introduced noise follows a normal

distribution N (0, σ2). The outliers are introduced in random points in the percentage

indicated, and for those points both spacial directions are randomly deviated 20 pixels. It

is also introduced the visibility as a variable to analyze algorithm robustness. To do that

a set of files including randomly distributed visibility masks in an increasing percentage

are generated. These are very important parameters to take into account for the rendered

experiments.
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All the experiments were computed using a i7 laptop with 8 virtual core processor

at 2.4 GHz, with 8GB RAM. The algorithm is implemented in c++, runs on Ubuntu

Linux, using CGAL, OpenMP, OpenCV and PTAM derived libraries. The experiments

for , [Torresani et al., 2008], [Paladini et al., 2009], [Paladini et al., 2010] and [Gotardo

and Martinez, 2011] are run with the default parameters set in the examples of the

corresponding papers. We set the motion movement constant, β, to 0.9.

In order to be fair, as the presented approach is model based, it should be compared

with other model-based / SfT approaches of the state of the art, like [Moreno-Noguer

et al., 2009], [Chhatkuli et al., 2014b] and other approaches based on templates. In the

results comparison tables we show this parameter for fair comparison.

3.2.2 Sequences

A general overview of the algorithm is presented on the easier sequences, getting higher

analysis over more difficult ones. On motion captured datasets we start evaluating the

tracking assuming the matching is perfect, after that, the results are re-evaluated for

tracking degenerations such as visibility, noise, outliers, and incomplete bases. Neither

priors nor recovery are applicable.

For real images, all the addressed conditions have to be met at the same time, as a

real matching algorithm must be handled for each frame, so there is no need to evaluate

them separately.

3.2.2.1 CMUface Sequence

This motion captured sequence represents a moving head turning and talking. The CMU-

face sequence was proposed by [Paladini et al., 2010]. It contains 40 points in 316 frames

projected in a 640x480 image.

It is checked by using 15 bases, which is corresponded to a deformation energy of

95.8%, complying with the assumption of a standard PCA decomposition.

3.2.2.1.1 Performance evaluation based on perfect matching

First of all, some screenshots of the sequence are shown in Fig. 3.3. The white points

correspond to the input tracks and the red points to the projection of the estimated 3D

shape for the current frame. As there are no imperfections added to the tracking, it is

hard to find the red points most of the times. The first iterations of the algorithm are

enough to fit the shape and the pose of the current frame.
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f=1 f=100

f=200 f=300

Figure 3.3: CMUface sequence snapshots for certain frames

Some 3D reconstructions compared to the ground truth for some frames are depicted

in Fig. 3.4. In this case, there are no noise and outliers present on the tracking. There

is also no additional relative movement outside the modeled one between the object and

the camera. The ground truth points are represented in blue and the red circles are the

reconstructions. It can be seen, there are very few occasions where the blue points get

out of the red circles on the reconstructions for the presented frames. This dispersion is

greater as the depth gets further.

The relative movement between the camera and the object can be seen in Fig. 3.5. It

can be deduced that, for this case, the relative movement between them is insignificant,

or the reference system is joint. It contrasts to what it can be seen on Fig. 3.3 that for

frames #200 and #300 there exist some rotation of the head.

The absence of relative motion can be explained as even though pose change do not ap-

pear small, when the model was generated, no Procrustes was applied before generating

the bases. As consequence, the inner rotations were modeled as part of the deforma-

tions in the bases. If Procrustes had been applied, rotations would have been estimated.

Therefore, the rotation and translation estimation can not be compared exactly against
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the ground truth. However, considering deviations are small we have carried out the

evaluation of these parameters.

The performance of the tracking in terms of reprojection and 3D reconstruction is

shown in Fig. 3.6. It can be seen, for ideal tracking conditions, that the algorithm

presents low 2D and 3D errors for this sequence. The reasons could be that the complexity

of the sequence is not very high as the only deformation is located in the mouth when

the person is talking, remaining the rest of the parts of the sequence rigid, although the

different depths of the face makes the perspective reconstruction challenging because it is

affected by this parameter.

f=1 f=100

f=200 f=300

Figure 3.4: CMUface sequence reconstruction examples without any tracking degradation effects. In
blue the ground truth and red the estimated shape.
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Figure 3.5: Trajectory estimation for CMUface sequence when no tracking degradation is added. The
relative movement between the camera and the object is barely static, as it can be seen in the

reconstruction.

Figure 3.6: Representation of the errors over time for CMUface sequence. At the left the 2D
reprojection error and at the right the 3D reconstruction error.
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3.2.2.1.2 Performance evaluation based on visibility degradation

After the analysis with a perfect matching along the sequence, condition that most

state-of-the-art works related to NRSfM / SfT assume, some degradation is included

to evaluate its robustness against different real factors. In this section the visibility is

evaluated. A visibility mask is randomly generated for each of the tracks of each of the

frames, in a given percentage and then the whole sequence is evaluated.

vis f=1 f=100 f=200 f=300

100%

87%

50%

30%

Figure 3.7: CMUface sequence screenshots for visibility experiments

Some screenshots of the experiments are shown in Fig. 3.7. As in Fig. 3.3, the white

points are the visible points, the hidden points are not rendered, and the red points are

the projections of the estimated 3D model computed for the current frame.

The results in Fig. 3.7 are shown in a grid, ordered in frames per columns and visibility

per rows. It can be seen that for the same frame, the reconstructions are similar for more of

the visibility degradation cases but for the lowest visibility cases precision is compromised,

as expected.
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Figure 3.8: CMUface sequence error results for visibility degradation on tracking. Left top subfigure
depicts the variation of the reprojection error. Top right the same with the 3D reconstruction error.

Bottom left shows the rotation error evolution and in the bottom right the translation error.

Some results on a range from 5% to 100% of visibility are presented in Fig. 3.8. The

evolution of the errors give an idea of the minimum percentage of points visible to perform

correct estimations. It must be also noted that this sequence only has 45 points, which

limits the analysis range until 20% (9 points). Lower values would yield no significantly

values or wrong estimations, as the number of points to perform the estimation are not

significant, as it can be seen in the reprojection and rotation errors below the 20%.

The experiments performed here were repeated 10 times, so as to refine the results and

provide averaged values. In the current case, it can be seen that a minimum reprojection

error can be set until 50% visibility which means at least 20 points must be visible for this

sequence, whereas for an accurate 3D reconstruction, the minimum set of available points

should be 67%, which means for this sequence, at least 27. It must be also remarked that

the non-visible points are randomly generated, which means that real occlusions due to

face turns similar to full visibility are not correctly modelled.

Finally, for a visibility rate higher than 67%, the results are similar to full visibility.

The mean reprojection error is about 0.2 pixels and the reconstruction error about 1%,

which are the value that yields the perfect tracking, as seen in Fig. 3.6. The translation

and rotation errors are about 0%.

The big impact on the reconstruction will be given when certain areas on an image get

occluded (face turning simulation), so not a proper model on that area would be estimated

and the 3D reconstruction performance would be significantly lowered.
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3.2.2.1.3 Performance evaluation based on noise and outliers

Other causes of degradation on the tracking are the noise on the measurements and

the presence of the outliers on the matching process that are not removed by the rejection

algorithms. Hereafter, the robustness analysis against these factors is performed.

How the sequence is prepared to perform the experiments was explained in 3.2.1. In

this section, random noise and outliers are added to the tracks in the indicated parameter:

σ for noise std deviation and o for outlier percentage.

Some, screenshots of the sequence are shown in Fig. 3.9, in which the white points are

the input tracks (including noise and outliers) and red points are the 3D estimation for

projected on the image the current frame.

f=1 f=100 f=200 f=300

σ = 0
o = 0

σ = 0
o = 40%

σ = 4
o = 0

σ = 4
o = 40%

Figure 3.9: CMUface sequence screenshots for noise and outlier experiments

The summary of the results after the processing is depicted in Fig. 3.10. Several

parameters combination are evaluated in a representative range to get conclusions.

It can be observed that the estimations are stable with an outlier rate of the 20% for

both the reprojection and 3D reconstruction error for the least noisy measurements. For

higher values the error grows up exponentially.
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The effect of adding noise to the measurement, when no outliers are added makes the

error increment almost linear, as the separation between traces is almost maintained. As

the outlier percentage grows up, the separation between traces is wider so the influence

of these two parameters is mixed in the estimation.

With respect to the rotation subfigure it can be seen that it is a bit more mixed up

than the rest of the figures. Even though the experiment was repeated 10 times, more

repetitions would be needed to get smooth results. Even so, a similar trend to the rest

of the error traces can be seen. Regarding the translation, the trend is similar to the

reprojection and reconstruction errors, although it presents a very low value of error.

Figure 3.10: Noise and outliers results for CMUface sequence. Left-top sub-figure depicts the variation
with the percentage of outlier points of the reprojection error, each trace corresponds to a different
noise σ level. Top-right shows the same with the 3D reconstruction error. Bottom-left shows the

dependence of the rotation error and, in the bottom-right with the translation error.

3.2.2.1.4 Performance evaluation based on the number of bases

A fixed number of bases has been taken for all the experiments (K = 15), although it

is also interesting an analysis using a different number of bases to observe its trend.

To carry out the proposed tests, we use the tracks without degradation (perfect track-

ing) and 7, 15 and 30 bases are used.

With this setup, the results are shown in Table 3.1.
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#Bases(K) 2D error (pix) 3D error(%) rot. error(%) trans. error(%)

7 0.59 1.67 0.45 0.0075
15 0.26 1.01 0.04 0.0038
30 0.14 0.71 0.0251 0.0022

Table 3.1: CMUface sequence error comparison with the number of bases, for 7, 15 and 30.

As expected, with perfect tracks, as the bases increases the error decreases for all the

parameters evaluated. In addition, the processing time improves as the number of bases

are reduced, as well as the memory used.

To confirm the results depicted in the Table 3.1, the Fig. 3.11 illustrates the error

analysis over time.

Figure 3.11: CMUFace sequence Error over time varying the number of bases. The four error figures are
shown. Top left shows the 2D reprojection error. The top-right shows the 3D reconstruction error. The

bottom left shows the rotation error and the bottom right shows the translation error

3.2.2.1.5 Comparison with other methods of the state-of-the-art

In Table 3.2 a summary of results against other state-of-the-art algorithms for sparse

proposal is shown, depicting total and per frame processing time, 3D accuracy, 2D error,

T. error, rot. error and rank. Our proposal gets the best 3D accuracy and reprojection

error. The results are obtaining for perfect tracking in order to keep the same conditions

that our competitors.
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The methods were run by using their own source code, and tested on the same hard-

ware. The type of perspective projection were selected according to the requirement of

each method.

If the algorithm is not able of reaching the maximum rank up to 15, the maximum

reached on the experiment is indicated.

Method 2D err(px) 3D err(%) rank Tproc (fps) model proc type

[Paladini et al., 2010] 1.06 3.18 8 (max) 14 min (0.37) auto seq
[Gotardo and Martinez, 2011] 0.6 3.19 - 43 seg (7.35) auto batch

[Torresani et al., 2008] 6.42 / 32.39 9.9 / 56.06 5 / 15 78 / 606 seg (4.05/0.52) auto batch
[Paladini et al., 2009] 1.06 2.43 12 13 seg (24.3) auto barch

Our method 0.26 1.01 15 4.5 seg (69.78) priory seq

Table 3.2: CMUface sequence results summary. Some results comparing different state-of-the-art
methods against the presented one is depicted

This sequence is ideal to a first test as it contains few points and results are fast to

obtain in order to be compared with the state-of-the-art algorithms publicly available.

Deformations presented on the sequence are not very challenging as they are only due to

the mouth opening and closing, but they are combined with translations and rotations of

the face over time.

It could seem unfair comparing a model-based / SfT approach, as is our tracking

proposal, with pure NRSfM algorithms, but similar comparisons are performed on state-

of-the-art papers that tackle this problem.

3.2.2.2 Flag Sequence

In this sequence a motion captured flag is bending with the wind. This sequence was intro-

duced in [White et al., 2007]. Deformations are significant which makes this a challenging

dataset. Moreover, the amount of points in the sequence (540 in 450 frames projected in

a 640x480 image) is significantly higher than in other data sets, which implies a challenge

to algorithms when matrix factorization takes place. In order to solve this problem some

works are tested with a reduced amount of points.

The procedure to extract the input data to our algorithm is the same as the one used

for the CMUface sequence.

Following a similar guideline as in the previous section, some screenshots of the se-

quence are firstly shown in Fig. 3.12. It can be seen that the reconstructions are not as

exact as the ones in the CMUface sequence, although for most of the tracks the error is

low. The deformation energy kept by the first 15 bases (K = 15) is this time 87.33%,

which follows the imposed criteria of keeping the 85% of the deformation energy.
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f=1 f=100

f=200 f=300

Figure 3.12: Flag sequence snapshots for certain frames

3.2.2.2.1 Performance evaluation based on perfect matching

The 3D reconstruction results without any degradation on the matching are shown in

Fig. 3.13. They are compared with the ground truth, which are represented in blue whilst

the reconstruction result is represented in red. Two views are shown to better view the

3D reconstruction. It is important to remark that the shapes are aligned using Procrustes

to have a proper comparison, as other related works do. For most of the frames, the

reconstruction seems very accurate. The one with more error is seen in frame #200, on

one of the corners, which corresponds to one of the most moving cases, which has not

been properly modeled.

The trajectory reconstruction is shown in Fig. 3.14. It can be seen that the relative

movement between the camera and the object is almost inexistent, or, as indicated in the

previous sequence, it is integrated on the bases on the factorization.

The reprojection and 3D reconstruction errors over time are presented in Fig. 3.15.

This time the reprojection and the 3D reconstruction error are higher than for the CM-

Uface sequence. Due to the 15 selected bases represent a deformation energy lower than



68 Chapter 3. Real-Time Model-Based Non-Rigid Tracking

for the former sequence. For a perfect matching, increasing the number of bases would

minimize these errors. However, this trend is not met when real matching features are

used.

f=1 f=100

f=200 f=300

Figure 3.13: Flag sequence reconstruction examples without any tracking degradation effects
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Figure 3.14: Trajectory estimation for Flag sequence without tracking degradation. The camera is
barely static, as it can be seen in the reconstruction.

Figure 3.15: Flag sequence representation of the errors over time. At the left the reprojection error and
at the right the 3D reconstruction error
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3.2.2.2.2 Performance evaluation based on visibility degradation

As previously done for the CMUface sequence, the not detection of features is simulated

by generating visibility masks and loading them from a file. These masks are generated

according to a percentage, depending on the quality of the matching to be simulated for

each frame. The visibility distribution of the masks for each point and among frames is

completely random.

For this sequence, some of the screenshots of the different trials with variations on the

visibility percentage per rows can be seen in Fig. 3.16.

vis f=1 f=100 f=200 f=300

100%

87%

50%

30%

Figure 3.16: Flag sequence screenshots for visibility experiments

Some results within a range from 5% to 100% of visibility are shown in Fig. 3.17. As in

the previous section, the four set of errors are presented, i.e. reprojection, reconstruction,

rotation and translation. As the amount of points in this sequence is great compared

to the CMUface, the error values are maintained stable from 10%, which means around

54 points, which appear to be enough to model the sequence with randomly distributed

visibility masks and 15 bases. It has to be also noted that the visibility is modeled
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randomly instead of being fixed in an area for a certain time, which could also affect the

experiment.

Figure 3.17: Flag sequence results for visibility degradation on tracking. Left-top subfigure depicts the
variation with the percentage of visible points of the reprojection error. Top-right the same with the 3D

reconstruction error. Bottom-left shows the dependence of the rotation error and in the bottom-right
with the translation error.

3.2.2.2.3 Performance evaluation based on noise and outliers

Similarly to the previous sequence test, robustness analysis due to outliers and noise is

performed to get closer to real condition. Some screenshots of the experiments are shown

in Fig. 3.18.

It can be seen that, even though the measurements used in the tracking algorithm are

not so good, the approximate reconstructed shape is accordingly approximated. These

screenshots are shown to have a first idea about what degradation the system can afford.

Different values for noise and outliers have been evaluated, as commented in section

3.2.1. A study for these parameters is carried out, repeating the experiments 10 times

and taking the average values. Their results are shown in Fig. 3.19. It can be seen

in both Figs. (3.18 and 3.19), that the reprojection error is not incremented so much,

and the gap is approximately preserved among approaches. With respect to the 3D

reconstruction error, for σ = 0 to 2 start about 2.6% and then all are growing up. The
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3D reconstruction error shows a compensation of the effects of noise on 2D tracks for low

noise levels. Unfortunately, it does not happen with outliers.

The rest of the error figures (rotation and translation) are stable within a range of

0.2-0.8% for rotation and 0.15-1.1% for translation, appearing the traces mixed up.

f=1 f=100 f=200 f=300

σ = 0
o = 0

σ = 0
o = 40%

σ = 4
o = 0

σ = 4
o = 40%

Figure 3.18: Flag sequence screenshots for noise and outlier experiments

3.2.2.2.4 Performance evaluation based on the number of bases

As previously was done in the CMUface sequence, the dependence of the accuracy

results with the number of bases is checked for the Flag sequence. For that purpose, a

test using tracks without degradation and with 7, 15 and 30 bases is deployed.

With this setup, the results are shown in Table 3.3.

As expected, with perfect tracks, as the number of bases increase the error decrease.

To confirm the results depicted in the Table 3.3, the Fig. 3.20 illustrates the analysis

over time.
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Figure 3.19: Flag sequence results for noise and outliers degradation on tracking. Left top subfigure
depicts the variation with the o percentage of outlier points of the reprojection error, each trace

corresponds to a different noise σ level. Top right the same with the 3D reconstruction error. Bottom
left shows the dependence of the rotation error and in the bottom right with the translation error.

#Bases(K) 2D error (pix) 3D error(%) rot. error(%) trans. error(%)

7 3.62 3.21 0.53 1.89
15 2 2.63 0.23 0.61
30 1.18 1.93 0.07 0.23

Table 3.3: Flag sequence error comparison with the number of bases, for 7, 15 and 30.

3.2.2.2.5 Comparison with other methods of the state-of-the-art

Table 3.4 shows a summary of results among most representative methods of the state-

of-the-art with sparse models. Processing time for the whole sequence, 3D accuracy, 2D

error, rank, modelling type (auto / priori) and procedure type (batch / sequential) are

depicted. Even though our proposal does not get the best 3D accuracy, neither the best

reprojection error for this sequence (although they are very close to the best), it gets the

best computation times, reaching the best trade off between performance and processing

time.

Algorithms where the processing times are not available like [Vicente and Agapito,

2012], [Russell et al., 2014], etc., is due to processing time is not priority in their analysis.

Batch algorithms implemented in Matlab like [Paladini et al., 2009,Paladini et al., 2010,
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Figure 3.20: Flag sequence error over time varying the number of bases. The four error figures are
shown. Top left shows the 2D reprojection error. The top-right shows the 3D reconstruction error. The

bottom left shows the rotation error and the bottom right shows the translation error

Torresani et al., 2008,Dai et al., 2012,Lee et al., 2016,Gotardo and Martinez, 2011] take

more time than those developed in c++ language, like [Agudo et al., 2016a,Agudo et al.,

2014].

Looking at the processing times in Table 3.4, it gives an idea of the data set complexity,

even if most of the approaches are implemented in Matlab. This table shows that current

solutions based on model-free methods (NRSfM) cannot recover a fully correct 3D shape

for the flag sequence with a non-normalized error, unless the approach is piecewise (we

recommended the readers a review of [Lee et al., 2016]) as the problem is highly ill-

posed, and its manifold dimensionality very high. As our method is model-based, it is

quite faster than model-free approaches, reaching 90 fps, which is compatible with the

real-time constraint. It must be noted this time is reached without visual information

processing, as in the rest of evaluated proposals.

The main problem of [Paladini et al., 2010] is that tries to model the object with a

1-rank shape for each frame, so 3 bases are needed for each frame. There is a need of a

frequent re-factorization of the bases, which finally leads to over-fitting, causing high 3D

error reconstruction due to the model fits the noise.

The trials of [Dai et al., 2012, Lee et al., 2016] did not finish to process the sequence

after the referred time. For the methods where the source code is available [Paladini

et al., 2009,Paladini et al., 2010,Gotardo and Martinez, 2011,Lee et al., 2016,Dai et al.,

2012,Torresani et al., 2008], the algorithm is run, the processing time is measured in the
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same hardware conditions, and the rank, if available is indicated, as well as the obtained

error parameters. For the rest of the methods the results are extracted from [Lee et al.,

2016] paper (check footnote 11).

Method 2D error (px) 3D error (%) rank tproc / fps model proc. type

[Paladini et al., 2010] 6.14 91.65 7 (max) 20 min / 0.37 auto seq
[Gotardo and Martinez, 2011] 29.79 66.65 / 16.091 - 36 min / 0.21 auto batch

[Torresani et al., 2008] 11.65 15.59 / 13.251 4 10 h / 0.01 auto batch
[Paladini et al., 2009] 1.9 29.724 / 17.611 9 19 seg / 23.68 auto batch

[Vicente and Agapito, 2012] - 1.79 - - auto batch
[Russell et al., 2011] - 1.29 / 3.25 1 - auto batch

[Lee et al., 2016] ~2 3.8 - »28h auto batch
[Dai et al., 2012] - 17.411 - »16h auto batch

[Agudo et al., 2014] -
3.28(10)
2.81(40)

10-40
19.5 init
1.53(10)f
2.28(40)f

seg auto seq

Our approach 2 2.63 15 5 seg / 90 priory seq

Table 3.4: Flag sequence results summary. Some results comparing several state-of-the-art algorithms
and the presented one is depicted

3.2.2.3 Rendered Flag sequence

The flag sequence depicted in the previous tests is interpolated to get a dense sequence

and then is rendered using orthographic projection, as presented in [Garg et al., 2011]. As

our model-based tracking works on perspective projection, this sequence was re-rendered

with perspective projection. This sequence is reconstructed for all the 450 original frames,

instead of the 60 first presented in [Bronte et al., 2014]

This sequence was chosen in other works [Garg et al., 2011,Paladini, 2011,Garg et al.,

2013,Agudo et al., 2014,Bronte et al., 2014] as it consists of a set of images and a dense

3D ground truth to evaluate the performance of tracking methods. It is useful for our

experiments because, even though our tracking is sparse, the ground truth is appropriate

to perform a thorough comparison among different methods.

In contrast to the guideline followed in the previous experiments, as there are several

tracking proposals involved (PTAM based and descriptor based), the organization of the

point will be different.

First of all, some frames of the sequences without processing are shown in Fig. 3.21

together with screenshots of the tracking operation using the different tracking proposals.

The detected points are shown in magenta, the matched points in red and the mesh model

is overlaid in cyan, to give an idea of the the tracking performance.

1In [Lee et al., 2016], the authors report other values of 3D reconstruction methods [Gotardo and Martinez, 2011,Torresani
et al., 2008,Paladini et al., 2009,Dai et al., 2012]. They claim they tuned the setup to be optimal, but they neither specify
how long do the experiments took nor the setup of their trials nor the configuration parameters
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Desc. f=1 f=100 f=200 f=300 f=400

Input

IROS

KAZE

AKAZE

ORB

BRISK

SURF

SIFT

Figure 3.21: Rendered flag sequence screenshots
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3.2.2.3.1 Visual descriptor evaluation

Except the proposal labeled as IROS, all the rest screenshots, related to feature descrip-

tors, are displayed with the Brutefore matching included in OpenCV. On the benchmark

shown in Fig. 3.23, the rest of the matching variants implemented in OpenCV are used

(L1, L2, Hamming distance).

The frames are organized on columns, whereas the descriptor types are on rows. The

IROS uses the PTAM-based pyramidal descriptor proposal modified by the authors, as

was presented in [Bronte et al., 2014]. The rest of rows shows the type of feature descriptor

used in the detection step. Depending on the type of descriptor the distribution of the

points are more or less homogeneous, stable, repetitive, etc, because it depends on the

characteristics of each of the features.

The IROS is prone to lose a track when the movement on certain points is higher than

30 pixels (which happens on the lower parts of the waving flag). The matching position

is not reliable for points very far from the previous frame points, whereas feature based

matching is more reliable. This can be easily seen in the frame #200 of the Fig. 3.21,

when comparing the IROS with the rest of approaches. The model representation (in

cyan) is much adjusted in the feature based proposals than in the IROS proposal.

Depending on the selected feature, some areas are not properly covered whereas other

features are more uniformly distributed on the image. The features are configured to

be as fast as possible, which could lead to a penalty in the quality of points detection,

because we are looking for a compromise between quality and execution time.

Reconstruction results are provided in Fig. 3.22. For each of the frames two views of

the 3D reconstruction are given. Similarly to the previous figure, in the columns are given

the frames and in the rows the descriptors. It can be seen that in frame #200 and #300

there are some accuracy problems for most of the proposed descriptor. This is due to the

sequence presents very abrupt movements combined with an interval of possible tracking

losses.

The more uniformly the area is covered, the best the reconstruction will be, therefore

better distributed descriptors are preferred against the ones that are very concentrated in

an area. This is one of the weak points of some feature-based tracking algorithms.

The projection of the model on the screenshots figure (Fig. 3.21) in cyan and the

reconstruction results shown in Fig. 3.22 can vary, because the shape in the latest figure is

obtained applying Procrustes alignment between the ground truth and the reconstruction.

Even with this alignment, there are some intrinsic errors due to the NRSfM / SfT problem

is intrinsically ill-posed when no-priors are applied to better conform the problem.
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Desc. f=1 f=100 f=200 f=300 f=400

IROS

KAZE

AKAZE

ORB

BRISK

SURF

SIFT

Figure 3.22: Rendered flag sequence reconstruction results compared with ground truth for the different
descriptors
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In order to have a general performance overview for all the possible descriptors, a

benchmark is tackled in the Table 3.5. This comparative includes number of points, the

descriptor the matching technique, processing time (for the whole sequence and fps), 2D

error, 3D error, rotation error and translation error.

Descriptor Matcher 2D error(px) 3D error(%) rot error(%) t. error(%) tp (s/fps) map Pts

PTAM PTAM 40.12 104.54 54.51 99.97 102 / 4.4 350

IROS PTAM-like 9.51 16.65 4.24 2.56 26 / 17.3 972
AKAZE BruteForce 5.68 12.42 2.86 2.41 27 / 16.6 607
BRISK BruteForce 5.98 14.27 3.45 2.47 56 / 8 1000
ORB BruteForce 5.67 12.71 4.0 2.52 29 / 15.5 1000

KAZE BruteForce 5.55 13.12 4.01 2.37 49 / 9.2 347
SIFT BruteForce 5.27 12.04 3.80 2.39 87 / 5.2 892
SURF BruteForce 5.4 14.11 3.91 2.6 29 / 15.5 650

Table 3.5: Rendered flag sequence descriptor results comparative. As a references, PTAM original
algorithm, the PTAM-based tracking and the descriptor based results are presented.

A similar benchmark but including the type of matching used for each of the feature

descriptors is shown in Fig. 3.23. This studies the influence of the matching method on

the error metrics. For binary descriptors such as AKAZE, ORB, and BRISK the use of

Hamming distance slightly improves the results of 2D reprojection and 3D reconstruction,

errors having no effect or getting worse results for rotation and translation errors. Using

the rest of the metrics, results are similar for all the errors except some few cases.

It can be seen on Fig. 3.23 that the best method for the reprojection error is not

necessary the best for the reconstruction error, as we said before. SIFT gets the best

marks for both error estimations and matching algorithms, although the second best is

not the same in both figures. For the other two errors is among the best.

AKAZE performs almost as well as SURF in 2D reprojection error, is almost as good

as SIFT in 3D reconstruction error, and for the rest of the errors gets also good marks.

Looking at the Table 3.5 it can be seen that is one of the fastest approaches, so it is a

good candidate for a final robust implementation.

Regarding this table, it can be seen that the fastest approaches are IROS, AKAZE,

ORB and SURF and the ones that handle the most points are IROS, BRISK, ORB and

SIFT. Remember that state-of-the-art approaches are only capable of working with a

very little amount of points obtained an from interpolated model. In this case all the

detected points are used to perform the estimation. It is important to remark that most

of the reported time is consumed by the feature detection algorithm. The timing show the

influence of the visual processing, comparing the reported results for the Flag sequence

in Table 3.4 for the case where the visual detection stage is not applied.

The sequence trajectory reconstruction is depicted in Fig. 3.24. It is rendered with

the camera fixed, but the dense ground truth comes with a little movement, which is
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shown in Fig. 3.24, which confirms that the estimation of the pose works jointly with

the deformation estimation. Due to this camera pose cannot be directly evaluated, we

consider the camera reference static and compare results against this static reference.

Figure 3.23: Rendered flag sequence rank based on the error results of the different descriptor methods.
Top left reprojection error, top right 3D reconstruction error, bottom left rotation error, bottom left

translation error.

(a) (b)

Figure 3.24: Trajectory estimation for Rendered flag sequence. SIFT descriptor example. (a) the
reconstructed trajectory. (b) The average displacement extracted from the ground truth of the

sequence, i.e. an intrinsic translation which evidences a relative movement between the camera and the
object position.
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3.2.2.3.2 Performance evaluation based on time and shape priors

Working with real images increase uncertainty in the estimations. In order to reduce

the effects of ambiguities on the estimation, get more accurate 3D estimations, avoid

flickering due to erroneous estimations, etc, priors must be added. Due to the nature of our

optimization proposal (linear and split), time and shape smoothness can be implemented.

To improve results, the priors are included, in 3 levels (low, medium and high). Low

means the effect of the prior is almost unnoticeable, using the medium value, the effect is

not so high, and a high value makes the shape rigid for both priors.

Only the SIFT descriptor is chosen, as it is a reference on the state-of-the-art has ob-

tained the best performance results in our previous tests, and its working is similar for the

rest of the descriptors. Then, the results are compared against the IROS approach be-

cause this use other tracking strategy and serves as a base, bring our first implementation

[Bronte et al., 2014].

Snapshots for different priors are shown in Fig. 3.25 for the IROS tracking, and in

Fig. 3.26 for the SIFT feature-based tracking. The corresponding reconstruction results

are shown in Fig. 3.27 and Fig 3.28 respectively. As in previous figures, the frames are

distributed in columns whereas the priors are specified in rows. The first row represents

the experiment with no prior. The 3 rows below show the tests for time smoothness priors

(low, medium ,high), and the last 3 rows the tests for the shape smoothness prior (low,

medium, high).

The behavior for the highest priors for both tracking approaches are similar, and can

be checked on frame #200. The prior makes the shape rigid over time so the pose is the

only parameter that is adjusted in the sequence. A more detailed study will be addressed

on the temporal analysis of the sequence.

Some of the beneficial effects of priors can be seen in different frames. For the frame

#100, compared with the first row, priors have the effect of reducing dispersion in the

reconstructed corners of the flag. For higher deformations, as the presented in #200,

it can be seen that dispersion is compensated, although not completely corrected. The

effects are less noticeable for SIFT-based tracking than for IROS based tracking, because

prior feature-based tracking quality is higher than for the IROS tracking, making that

the improvement margin for the first case was lower.
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prior val f=1 f=100 f=200 f=300 f=400

none 0

time 1e5

time 1e6

time 1e9

shape 1e4

shape 1e5

shape 1e9

Figure 3.25: Rendered flag sequence screenshots when priors are applied for IROS-based tracking
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prior val f=1 f=100 f=200 f=300 f=400

none 0

time 1e5

time 1e6

time 1e9

shape 1e4

shape 1.5e5

shape 1e9

Figure 3.26: Rendered flag sequence screenshots when priors are applied for SIFT descriptor
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prior val f=1 f=100 f=200 f=300 f=400

none 0

time 1e5

time 1e6

time 1e9

shape 1e4

shape 1e5

shape 1e9

Figure 3.27: Rendered flag sequence reconstruction results compared with ground truth for the IROS

descriptors
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prior val f=1 f=100 f=200 f=300 f=400

none 0

time 1e5

time 1e6

time 1e9

shape 1e4

shape 1.5e5

shape 1e9

Figure 3.28: Rendered flag sequence reconstruction results compared with ground truth for the SIFT
descriptors
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After 3D reconstructions and 2D projections have been studies, a temporal analysis of

the tracking for both prior regarding the baseline without priors is carried out.

The first evaluated prior is time smoothness depicting all the errors shown in Figs.

3.29, 3.30, 3.31 and 3.32, which correspond to reprojection, 3D reconstruction, rotation

and translation errors. The figures are divided in 2 parts: The upper part corresponds to

the IROS tracking whereas the lower part corresponds to the SIFT tracking.

In Fig. 3.29 the reprojection errors are presented for the different priors, each in one

trace. The blue trace represents the result with no priors. In terms of error, the cyan

and red traces are always close to the blue trace and the green one presents a high error

for both approaches, except when the tracking is lost, as an excessive value of the prior

makes the shape so rigid. The cyan trace, as expected, has little effect in the reprojection

error, as the regulator value is low. The red trace has a slightly higher reprojection

error although in general terms it is maintained along the sequence. Therefore, for the

reconstruction error, the prior does not imply an improvement.

The beneficial effect of the prior is seen in the 3D reconstruction, in Fig. 3.30. For

both approaches, when the prior is applied, even for little values, the 3D reconstruction

error is reduced when the great peaks appear.

The best option is the red level for both approaches, because the increment in the

reprojection error is little and the improvement in the 3D reconstruction error is great

with respect to the blue trace (no priors applied). The effect is even more noticeable when

the tracking is better comparing the IROS and SIFT approaches.

Having a look at rotation and translation errors shown in Figs. (3.31 and 3.32), it

can be seen that the highest prior (green trace) is the one that most error gets in several

time slots of the sequence. With respect to the rest of the approaches, the error follows

a similar trend as we explained above.

The results of the temporal analysis for the shape smoothness prior are depicted in

Fig. 3.33 (reprojection), Fig. 3.34 (3D reconstruction), Fig. 3.35 (rotation) and Fig. 3.36

(translation). A similar conclusion as the temporal smoothness prior can be extracted for

a time analysis of the shape smoothness prior. The trace in red, meaning an intermediate

value of the prior, reflects an equilibrium between reprojection and reconstruction errors,

for both matching methods (IROS and SIFT-based).
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Figure 3.29: Rendered flag sequence reprojection error results over time when time smoothness
prior is applied for both descriptor types. From top to bottom: IROS, SIFT.

Figure 3.30: Rendered flag sequence 3D reconstruction error results over time when time
smoothness prior is applied for both descriptor types. From top to bottom: IROS, SIFT.
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Figure 3.31: Rendered flag sequence rotation error results over time when time smoothness prior
is applied for both descriptor types. From top to bottom: IROS, SIFT.

Figure 3.32: Rendered flag sequence translation error results over time when time smoothness
prior is applied for both descriptor types. From top to bottom: IROS, SIFT.
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Figure 3.33: Rendered flag sequence reprojection error results over time when shape smoothness
prior is applied for both descriptor types. From top to bottom: IROS, SIFT.

Figure 3.34: Rendered flag sequence temporal 3D reconstruction error results when shape
smoothness prior is applied for both descriptor types. From top to bottom: IROS, SIFT.
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Figure 3.35: Rendered flag sequence rotation error results over time when shape smoothness prior
is applied for both descriptor types. From top to bottom: IROS, SIFT.

Figure 3.36: Rendered flag sequence translation error results over time when shape smoothness
prior is applied for both descriptor types. From top to bottom: IROS, SIFT.
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Trajectory examples for both tracking approaches and different priors are depicted in

Fig. 3.37 regarding the no priors option. The priors level are represented in columns

whereas in rows are represented the descriptor, prior type and the trajectory results. For

the ’none’ prior results are placed in the ’med’ column to be centered in the figure.

It can be clearly seen that the highest priors affect the estimated trajectory on the

depth and the dispersion in the other 2 axes. This is due to the prior is so high that

the shape cannot deform itself, so the estimator tries to compensate the error only by

variations of the pose, as any Structure from Motion (SfM) system would do in the same

conditions.

On the IROS proposal, the trajectories for low priors do not improve a lot the esti-

mation or even get it worse, as in the shape prior. For the SIFT proposal the trajectory

estimation does not vary so much when the low and medium priors are applied.

To sum up, the errors reached after applying different priors are depicted in Table 3.6.

The best results for each prior are marked in bold, which could not be the best for each

column but is a compromise solution, among all the parameters involved on it.

Desc. prior type value 2D error(px) 3D error(%) rot error(%) t. error(%)

PTAM none 0 40.12 104.54 54.51 99.97

Point-wise
Perfect

Matching
none 0 2 2.63 0.23 0.61

IROS none 0 10.36 16.66 4.1 2.81
IROS time 1e5 8.92 13.38 4.07 2.67
IROS time 1e6 9.76 12.42 4.23 2.90
IROS time 1e9 14.37 12.04 3.00 9.29
IROS shape 1e4 24.05 18.31 3.98 6.62
IROS shape 1e5 9.38 9.54 2.96 3.01
IROS shape 1e9 11.62 6.2 5.76 2.66
IROS both 1e5/1e5 8.72 8.95 3.60 2.45

SIFT none 0 5.27 12.04 3.81 2.39
SIFT time 1e5 5.29 9.93 3.71 2.41
SIFT time 1e6 5.64 6.79 2.48 2.66
SIFT time 1e9 6.79 6.51 6.95 2.95
SIFT shape 1e4 5.18 8.48 3.45 2.41
SIFT shape 1.5e5 5.45 6.56 2.26 2.64
SIFT shape 1e9 6.80 6.2 7.44 2.86
SIFT both 1e5/1.5e5 5.48 6.46 2.05 2.57

Table 3.6: Results summary for different prior types and the influence of the descriptor type used

PTAM results are included so to have a rigid method as reference that applies visual

processing with rigid SfM. On the other hand, just on the row below, the results from the

(point wise) Flag sequence with perfect matching (Table 3.4) are copied, to check how

important is the influence of the visual processing on the results.
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Desc. prior low med high

IROS none

IROS time

IROS shape

SIFT none

SIFT time

SIFT shape

Figure 3.37: Trajectory representation for Rendered flag sequence for different time and shape priors
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As far as the authors knowledge there are no SfT publications including results with

this dataset.

The difference between IROS and SIFT approaches is easy to explain. Tracking quality

is decisive to get accurate results, as the 2D reprojection error is about 5 pixels lower for

SIFT before priors application, the 3D reconstruction error is about 4% lower (16 to 12)

before priors and after priors it is reduced an additional 3% with respect to the best mark

(9 to 6).

The processing time due to the priors is not included on the table, because it does not

add a substantial change.

3.2.2.3.3 Performance evaluation based on the number of bases

As it is done previously with the other datasets, the influence of the number of bases

with the estimation accuracy is tested for real conditions. To separate the evaluation of

this parameter from other source of error, no priors are added.

First we show the results in Table 3.7. It can be seen the trend, unlike the previous

sequences with ideal matching, is reversed, as with IROS based tracking the best results

are obtained with 7 bases and the best 3D results are also obtained for SIFT for 7 bases.

Matching #Bases 2D error (pix) 3D error (%) rot err (%) trans err (%)

IROS 7 8.83 9.19 2.94 2.56
IROS 15 9.81 16.91 4.99 2.57
IROS 30 13.2 34.23 5.77 2.61

SIFT 7 5.76 6.53 2.65 3
SIFT 15 5.6 12.26 3.91 2.52
SIFT 30 5.23 17.91 5.19 2.41

Table 3.7: Rendered flag sequence performance vs the number of bases for IROS and SIFT-based
tracking

Figs. 3.38, 3.39, 3.40 and 3.41 show the reprojection, reconstruction, rotation and

translation error results of applying the tracking for 7, 15 and 30 bases.

Fig. 3.38 depicts the reprojection error for both tracking proposals. There is no

difference among the different traces for SIFT-based tracking except for the peaks. The

estimations using 7 bases are smoother. As the number of bases increments, the number

of peaks is higher. Regarding the IROS -based tracking, the difference among traces is

more evident due to the poorer tracking quality. In the middle the loss graph could be

found (topic addressed in the following section). Similarly to the SIFT-based tracking,
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the traces are very similar, although the one with 30 bases is, without doubt the worst

one. When the tracking is stable there are little differences between 7 and 15 bases.

The differences are clearer analyzing the 3D error, in Fig. 3.39. The trend is, as the

number of bases increases, the error also increases for both tracking systems. This trend

is also followed in the rotation (Fig. 3.40) and translation (Fig. 3.41) errors.

Even the matching filters outliers, noise and considers visibility, it cannot filter all of

them completely, and the model estimation algorithm tries to match this source of error

with shape and pose changes. The more degrees of freedom added the worse, as the

algorithm has more degrees of freedom to choose when modeling the error.

We can conclude that, with bad quality tracking the trend is reversed. Regarding a

high quality matching, like SIFT, adding more degrees of freedom affects positively the 2D

error and the translation errors, but the 3D estimation and rotation errors are degraded.

The number of bases should be enough to proper model the deformation but not too

low that the model is not complete. That is the reason because 15 bases were chosen as

optimum in this thesis.

Figure 3.38: Flag sequence 2D reprojection error over time varying the number of bases for IROS and
SIFT tracking.
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Figure 3.39: Rendered flag sequence 3D reconstruction error over time varying the number of bases for
IROS and SIFT tracking.

Figure 3.40: Rendered flag sequence rotation error over time varying the number of bases for IROS and
SIFT tracking.
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Figure 3.41: Rendered flag sequence translation error over time varying the number of bases for IROS

and SIFT tracking.

3.2.2.3.4 Performance evaluation based on tracking loss recovery

Real tracking systems have to face loses in a natural way and after its detection, then

a re-localization must be carried out. On a rigid system as PTAM, the only parameter to

be varied is the pose, as the map is static. PTAM implements the active re-localization

algorithm described in [Williams et al., 2007], which looks for 2D correspondences on the

the image and actively tries to find a rotation with the currently feature points found on

the image that best adapts the map points.

The active search algorithm is designed for rigid map scenarios, assuming the map

static. In this section we test what happens if this algorithm is executed with a non-

rigid sequence. The reconstructed shape before the tracking gets lost can be inexact,

so it can be convenient to change not only the pose, but also the shape. Another more

conservative approach can be preserve the non-rigid shape and run the standard active

search algorithm for only the pose.

To check these approaches, the following setup is proposed:

1. The IROS tracking is tested as we present in [Bronte et al., 2014]. As mentioned

before, this tracking procedure has the limitation of not correctly detecting points
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further than 30 pixels. To fair comparison, the SIFT tracking searching area is

limited to 30 pixels.

2. Regarding the global configuration, the tracking quality thresholds have been chosen

to have enough number of points to start the active search algorithm and to have

enough intervals of lost tracking for both approaches.

3. The tracking is considered lost if the sufficient amount of track with respect (15% in

our case) the total are not detected in 3 consecutive frames. The transition between

the states lost and recovered is immediate. Once the amount of visible tracks is above

the threshold, the tracking is considered recovered.

In the top subfigure of Fig. 3.42 the tracking quality of the system is shown as a

binary signal (tracking OK, tracking loss). The first row represents the SIFT tracking

only varying the pose, the second varying pose and shape, the third the IROS varying

pose and the forth varying pose and shape. The quality signal for the SIFT approaches

(the first 2 rows) are identical, tracking loss are higher for IROS approach than for SIFT

one.

In Fig. 3.42 the methods are compared for easier temporal comparison. We can

conclude that both approaches are the same for SIFT (first row). Varying the shape and

the pose has a positive effect on IROS tracking (second row). SIFT vs IROS comparison

(third and fourth rows) shows that SIFT works better for both pose and pose+shape

cases.

Focusing on the behavior over time and how it affects the errors, results are shown in

Figs. 3.43 (reprojection), 3.44 (reconstruction), 3.45 (rotation) and 3.46 (translation) and

tracking recovery has been added. The tracks are divided in section depending on the

tracking quality (OK vs loss). For the tracking loss sections, pose recovery is drawn in

red and pose and shape recovery in magenta. For the tracking ok sections it is necessary

then to distinguish between the two recovery options because the tracking is different

depending of the recovery applied in the previous tracking loss sections. If pose recovery

has been applied the track is drawn in blue and if pose and shape was the option the

track is drawn in green. The tracking with no recovery in the whole sequence is drawn in

black.

Regarding the 2D reprojection error (Fig. 3.43), when the tracking is good there is

not a high difference between the two proposals (blue and green) except for error peaks

(in blue) that are produced because an inadequate shape from the previous loss sections

is some trying to be rotated. For tracking loss section (red and magenta) errors are

higher. Among the two, the best option is the pose and shape update. In the comparison

SIFT vs IROS the former one gets less errors. SIFT gives good enough results without

applying the recovery, similar to the ones obtained applying it with shape and pose. IROS

approach needs any of the methods, preferably the pose and shape one, as, otherwise the
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drift is accumulated.

Looking at the good tracking sections, for SIFT, there is no difference among the

3 proposals. With respect to the 3D error it can be seen that there is also not drift

accumulated. Regarding the IROS approach, it can be seen that the reprojection error

coming from pose (blue) is better than pose and shape (green). With respect to the 3D

error, the pose and shape approach is much oscillating, but it gets faster lower values than

the blue trace. Not applying recovery on IROS is crucial as the drift is accumulated in

both 2D and 3D errors.

The last aspect of tracking recovery is the pose, composed of rotation (Fig. 3.45) and

translation (Fig. 3.46). The recovery options taken in the tracking loss sections affects

the evolution of these parameters. For rotation each option gives different evolution but

the mean error gives more or less constant and in the same magnitude order than for no

recovery option. The translation is less affected by the recovery option reaching a light

improving for the only pose update regarding the no recovery option. The effect is higher

in IROS than in SIFT.

We can conclude that, if the tracking algorithm is limited, such as in the IROS ap-

proach, it is recommended to change both the shape and the pose during the active search

phase in a recovery process. If the tracking provides enough quality, as the presented in

SIFT, the procedure can be disabled or, in the worst cases, the shape does not need to be

changed, which results in an speed-up the computation time, as the shape does not need

to be re-estimated.

As a final note we indicate that the algorithm has been applied to the Rendered flag

sequence results by default so as to obtain a stable tracking with IROS to be able to

compare with the rest of descriptors.
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Figure 3.42: Rendered flag sequence analysis of temporal tracking quality for different descriptors. At
the top, the absolute tracking quality values. At the bottom, the relative values, comparing a method

against others
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Figure 3.43: Rendered flag sequence temporal 2D error analysis for tracking loss. The first subfigure
depicts the 2D reprojection error for the SIFT approach and the second one for the IROS approach.

The losses are indicated with a different color: red (pose updated only) and magenta (pose and shape
are updated).

Figure 3.44: Rendered flag sequence temporal 3D reconstruction error analysis for tracking loss. The
first subfigure depicts the 3D reconstruction error for the SIFT approach and the second one for the

IROS approach. The losses are indicated with a different color: red (pose updated only) and magenta
(pose and shape are updated).
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Figure 3.45: Rendered flag sequence rotation error analysis for tracking loss and different descriptors.
The first subfigure depicts the rotation error for the SIFT approach and the second one for the IROS

tracking based approach. The losses are indicated with a different color for each of the approaches
compared, red (pose updated only) and magenta (pose and shape are updated).

Figure 3.46: Rendered flag sequence translation error analysis for tracking loss and different descriptors.
The first subfigure depicts the translation error for the SIFT approach and the second one for the IROS

tracking based approach. The losses are indicated with a different color for each of the approaches
compared, red (pose updated only) and magenta (pose and shape are updated).
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3.3 Conclusions

This chapter has presented a real-time model-based deformable reconstruction algorithm.

It holds a good trade-off between speed and quality. The presented approach uses as

base PTAM, a well known SfM approach of the state-of-the-art for rigid objects able of

processing its tracking and mapping threads in real time. We have proposed bypassing

the mapping thread to insert a non-rigid model and adapting the tracking processing for

non-rigid objects, maintaining the real-time constrain.

Our tracking proposal has been demonstrated to be comparable in accuracy to some

of the most representative NRSfM current works when run on the same conditions, and it

has successfully been scaled to deal with challenges as visibility, outliers and noise, which

are not tackled by majority of the state-of-the-art references because they assume the

tracking is solved.

Furthermore, to improve estimations over real images, the visual processing of the

tracking thread was improved by adding feature descriptors. SIFT has demonstrated to

be the best descriptor in terms of reprojection and 3D reconstruction error, although it is

very slow to comply with real-time constraints. Therefore, AKAZE was chosen because

it is the second best candidate in error performance and the first one in processing times.

Spatial and temporal smoothness is also tested. A combination of the two priors helps

to reduce the flickering, which is noticeable on the 3D reconstruction error, and also

stabilizes the estimated trajectory.

Our tracking algorithm provides a relocalization procedure in case the tracking gets

lost, in the same way that PTAM does for rigid objects. From the authors knowledge,

this is the first time that a recovery strategy is used for non-rigid tracking. It has been

demonstrated that for tracking loss periods, changing the shape during the active search

relocalization can be useful for a faster recovery, providing better performance.



Chapter 4

Sequential keyframe-Based

Non-Rigid Mapping

As was mentioned in Chapter 2, the main drawbacks of existing statistics-based Non-Rigid

Structure from Motion (NRSfM) method are their sensitivity to outliers and missing data

and their high computational complexity.

This chapter proposes a sequential NRSfM solution that is able to cope with real data-

association and outliers. In addiction, it has computational complexity compatible with

real-time without the need of a GPU. The proposed method is based on the Parallel

Tracking And Mapping (PTAM) philosophy of dividing the problem into two parallel

processes:

1. Tracking thread: given a shape model, this process computes the deformed pose of

the object on each new frame of the sequence. It is based on the tracking method

described in Chapter 3 and it’s able of performing data association, detecting missing

data and identifying outliers.

2. Mapping thread: takes a window of keyframes, selected from the Tracking thread,

and computes a new shape basis. This process use a batch NRSfM solution for

updating the shape-model from keyframes.

Dividing NRSfM into parallel tracking and mapping has several advantages:

• The tracking thread is fast, robust and keeps the reconstruction and camera pose up

to date.

• Reprojection error in tracking is a cue to detect new keyframes. They represent

novelty that should be included in the shape model.

• Outliers can be labeled as missing data on each keyframe. This is important as most

of NRSfM methods are not resistant to outliers but some of them decently cope with

missing data.
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• The mapping thread is invoked only when not modelled deformations are detected.

This keeps the number of keyframes small and under control. Model refinement is

thus not growing exponentially with time. We use [Paladini et al., 2009] as the base

of this method.

4.1 General architecture

The general architecture of state-of-the-art rigid Structure from Motion (SfM) systems,

such as PTAM [Klein and Murray, 2007], Dense Tracking And Mapping (DTAM) [New-

combe et al., 2011b], Kinect-Fusion [Newcombe et al., 2011a], Dynamic Fusion [Newcombe

et al., 2015], and other similar SfM approaches, decouples mapping from tracking.

In our proposal, the mapping thread is based on a batch NRSfM solution that takes

as inputs a set of keyframes, selected from the tracking thread, and provides the new

low-rank shape model, needed for reconstruction in the tracking thread.

The general architecture of the mapping thread is shown in Fig. 4.1.

Figure 4.1: Architecture of the main mapping thread modules

The tracking thread block was detailed in chapter 3, in Fig. 3.1. The pipeline of the

mapping thread consists of the following steps:

• The mapping thread has a queue of keyframes to be processed, which is updated

from the tracking thread when the reprojection error is above a threshold. When the

queue has enough keyframes NRSfM is invoked.

• As our NRSfM core works with the orthographic camera, image points in the

keyframes are normalized with the average depth of the shape in the camera’s ref-

erence, computed from the tracking solution (weak perspective). This correction is

important as in the perspective camera the object has different scales for different
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average depths whereas in the orthographic camera the average depth is not recov-

erable.

• The tracking thread detects outliers and handles missing data. This information is

included in the queue of keyframes. In batch NRSfM methods, outliers are problem-

atic. We mark them as missing data before invoking the batch NRSfM core.

• The NRSfM algorithm is run using the points included in the keyframes as inputs

excluding outliers. It returns the reconstructed shape of the object on each keyframe.

• The new shape basis is constructed by using Principal Component Analisys (PCA).

Shape coefficients and camera pose are updated in the keyframes and the new basis

are sent to the tracking thread.

This pipeline strategy does not imply any blocking of the tracking thread that keeps

computing the reconstruction while the result of the mapping is completed.

This approach is inspired in the sequential part of [Paladini et al., 2010], but the main

difference is that not all the frames are exhaustively evaluated, but only the acquired

keyframes from the tracking. Our approach also allows not to be stuck to a fixed /

incorrect / degenerated deformation model, very common in sequential methods such as

[Paladini et al., 2010].

The changes due to a single keyframe addition are low although among several

keyframes they are enough to provide a noticeable correction on the model for unseen

deformations. In addition, computing model updates in sets of keyframes instead of do-

ing it each time a keyframe is added, reduces CPU load of the mapping thread.

To sum it up, a pseudo algorithm of the mapping thread is depicted in Algorithm 4.1.

4.2 Sequential modeling validation proposal

In our proposal, the selected NRSfM algorithm to compute the new bases from the incom-

ing tracks is Metric Projection (MP) [Paladini et al., 2009]. Despite not being the best

state-of-the-art algorithm nowadays, it is fast and copes with missing data. Processing

time can be improved as the method can be easily parallelized.

This NRSfM algorithm works with the orthographic camera while our system and

the tracking thread assumes the perspective camera. As mentioned before, a solution

to alleviate this problem is to normalize the image coordinates using the scene’s average

depth, recovering approximated image coordinates of the orthographic camera.

This is equivalent of using the weak-perspective camera model, where the points are

projected with the orthographic camera at the plane z = zmean, where zmean is the scene’s

average depth in the camera reference. This plane is then projected with the perspective
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Input: Pose, rigid shape, initial set of deformation bases

Output: Improved deformation bases, 3D reconstruction and pose for each frame
Initialize the algorithm giving the initial set of bases, a rigid shape, and the initial pose pose;
start the tracking process;
start the mapping thread;
tracking thread();
while not at the end of the sequence do

Map Tracking();
Measure reprojection error;
if repr err > threshold then

send keyframe to Mapping thread;

mapping thread();
while not Stop do

check keyframe Queue;
if There are enough keyframes on the Queue to update the whole map then

correct the tracks with weak perspective projection approximation;
compile visibility and outlier information from each point;
call NRSfM core algorithm;
compute normalized bases from reconstructed shapes;
update shared memory with the tracking data;
correct keyframes poses and coefficients of the whole map;

Algorithm 4.1: Pseudo algorithm for the proposed NRSfM update proposal

camera. This is an affine projection model that accounts for the scale change that is

visible when the objects are placed at different depths from the camera.

The perspective camera projects a point with coordinates (x, y, z) in the camera refer-

ence as follows:
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where α, fu, fv, u0 and v0 are the intrinsic parameters. In the weak-perspective camera

the same point is obtained as follows:

U =


 u

v


 =


 u0

v0


+ α


 fu 0

0 fv






x
zmean

y
zmean


 (4.2)

where zmean depends on the scene. Given image points whose projection can be approxi-

mated with the weak-perspective camera, the following transformation gives a new set of

image points compatible with the orthographic camera:

U ′ =


 x

y


 =




(u−u0)∗zmean

α∗fv

(v−v0)∗zmean

α∗fv


 (4.3)

When the shapes are computed using orthographic based algorithms the size of the

retrieved shapes are given up to scale. Therefore, the 3D bases are normalized so each of

the shapes has a norm equal to 1 when they are loaded or modified by the re-computation,

so to preserve the sizes of the estimations on the tracking.
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An aspect that must be taken into account for real operation is that, when the bases

are re-estimated, the set of keyframes stored in the map must be re-computed, that is the

set of coefficients must be recomputed and also the set of poses (the NRSfM algorithms

also provide this information even working with orthographic projection).

The orthographic projection matrix lies on the Stiefel manifold1. The full 3D rotation

matrix is reconstructed by the cross product of the two rows of the Stiefel matrix (if

the K−1 intrinsics matrix has not been previously taken out). An approximation of

the translation vector is retrieved, although the depth must be corrected with the weak

perspective projection with Weighted Least Squares (WLS).

4.3 Results

4.3.1 Experiment setup

In order to validate our proposal, we test the update of the shape-model to unseen de-

formations. Further implementation is needed to combine the mapping strategy with the

tracking thread in a real application. The following procedure is performed.

The Flag sequence is divided into 8 equal slots. Our algorithm starts from a known but

reduced model, obtained form a small number of frames, which is not likely to be valid

for all the sequence, as it does not contain many of the deformations that will appear in

future frames.

The initial pose is the ground truth. The rigid shape is the usually given one from

the point-wise Flag sequence and the base shape are composed by the first slot of the

sequence reduced by a subsampling of 1/5, giving the shapes of the frames 1, 5, 10, 15,

20, 25, 30, 35, 40, 45, 50 and 55. With this, a simulation of the minimum keyframe

insertion interval on the mapping thread is set with a minimum interval of 5 keyframes

(150 ms sampling time in a 30 ms real time). This also assumes that the tracking thread

detected a reprojection error above the minimum defined. With this setup the keyframe

queue size is set to 12.

The sparse ground truth shapes of the gridded 540 points are projected with the ground

truth object pose with perspective projection, simulating the tracks obtained for those

frames. Then, the weak perspective tracks are computed using the average depth of the

ground truth shapes for those shapes. After that, and assuming all the tracks are visible

for all the points, MP is run with the weak perspective tracks, obtaining the shapes for all

the depicted frames. Finally, the bases are computed with the maximum rank indicated

by the MP algorithm. If the algorithm does not converge due to singular matrices found

1From [Paladini et al., 2012]: The Stiefel manifold Vk,m may be viewed as the collection of all mxk matrices whose
columns form an orthogonal set. More precisely, the (real) Stiefel manifold Vk,m, is the collection of all ordered sets of k

orthonormal vectors in Euclidean space Rm
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during the factorization of the algorithm, the rank is lowered. For this case, the rank had

to be lowered to 6 bases.

Using this setup, without any optimization, using 450 points, 12 frames and no missing

data, the algorithms takes seconds to compute the whole set of bases. It is important to

remark that no extra iterations are needed to improve the result as we have not missing

data. The initialization step, the need of more iterations and more frames is an important

factor to take into account.

With this setup, the tracking thread starts and the data association is performed on

the provided input data, to transform the input gridded data to data directly related to

the detected ones by means of the estimation of the barycentric coordinates, as explained

in section 3.1.1. Once the association is done, it will be preserved and further used for

the rest of the iterations (on the real operation, this association does not change and the

points remain the same for all the sequence).

After the tracking algorithm yields its results, they are gathered and compared with

the ground truth. The tracking data is retrieved and part of the process on the first step

is followed, although the data source changes.

As the tracks are directly retrieved and aligned from the tracking, they do not need

to be projected, but they are directly related to the 3D points. The weak perspective

correction is again performed, but using the estimated 3D data from the tracking, just

for the evaluated keyframes.

The visibility mask is filled up from the visibility flags and the outlier information of

the tracking. To do the merging of the visibility information (visible=1) with the outliers

(outl = 1), the outlier logic must be inverted, MD = vis & ~outl.

The MP algorithm is run again with this information and the bases are computed

as in the previous step. Note that this time the shape is recovered from the bases that

have already been interpolated, so the aspect is not the grid-like as the point wise Flag

sequence. A sparse point cloud set of points, based on the detected ones on the first

frame, is created as the data association was already performed on the tracking thread.

In order not to alter the normal initialization and data association of the tracking,

and most important, to make both initialization ways compatible, as the data structure

changes (from a gridded-like to a point to point one), an index guided setup is performed

between the interpolated data and the gridded one. A look up table containing the indices

of the interpolated points is stored and loaded when this direct assignment is done to the

bases.

To preserve the data association in all the trials, the algorithm is run from the beginning

all the time, so as to obtain exactly the same points on the first reference frame. With

this strategy, the same 3D reference points can be obtained for all the trials and the test

conditions can start in the same way, doing that the comparison can be performed also

in the same way.
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Even if it could seem the same approach, regarding the part that is running in the

tracking thread, with respect to the initialization step, it is decided to move a step forward

to be closer to any standard NRSfM approaches. The detected points by the tracking are

the ones used to generate the bases, instead of the previously seen in chapter 3 where the

grid-like shapes come from the ground truth.

It must to be pointed out that this interpolation directly depends on the type of feature

used on the experiment, i.e. SIFT, SURF, KAZE, etc, as the feature points detected by

each algorithm are different and have different properties. For the current setup we have

chosen KAZE for its repetitiveness and stability, although any of the well known feature

point descriptors could have been used for this experiment. AKAZE was first tested, but

there were certain areas that were not fully covered by the features, so KAZE was finally

chosen instead.

The minimum keyframe interval was 5 frames and the error threshold was low enough

to accept all the frames into the mapping thread. This first approach was carried out

because the tracking thread is implemented in c++, but MP code is available in Matlab.

A more realistic implementation will require to improve these figures. For live tests the

whole code should be compiled in c++ and integrated on the mapping thread.

When the missing data is included in the estimation with MP, the bases computation

takes about two minutes for the longest trial (90 frames, 350 points). It is 4 times

longer compared to the the results obtained when the model was obtained using ideal

conditions. This difference is due to the needed iterations on the optimization process,

not in the amount of data to process (number of points and frames).

4.3.2 Test Sequence: Rendered flag sequence

The baseline to compare the results is generated with a model using MP algorithm from

a set of synthetically projected set of all frames with the ground truth tracks of all the

frames with the weak perspective corrected tracks, and generating the bases by using

PCA. The rigid shape used to perform the initial data association is the usual gridded

one. The proposal includes visibility and the outlier information merged to the missing

data matrix of the MP algorithm. The tracks are the extracted ones directly compiled

from the tracking thread.

The initial phase is carried out when the model used from the ground truth (gridded

model) is used from frames 1 to 56 (the first slot of the sequence). The results from the

baseline vs from the first created model with the first interval are depicted in Fig. 4.2,

(the first two rows) for frames 1, 25 and 50.

The 3D reconstructions are depicted for the baseline and the reduced set of the bases

on the first two rows of Fig. 4.6, for the same frames.

The rest of the sequence is analyzed, for the frames 60 and so on, for the baseline and
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the generated bases, the screenshots are shown in Figs. 4.2, 4.3, 4.4 and 4.5. The 3D

reconstructions for the rest of the sequence are analyzed for each of the intervals on each

of the rows on Figs. 4.6, 4.7, 4.8 and 4.9

On Figs. 4.10, 4.11 4.12 and 4.13, the results over time are presented. The first blue

trace represents the first generated model performance against the baseline. The results

of the dynamically generated models in each time slot are represented in a different color.

The discontinuities are the consequence of the model substitution.

Looking at the evolution of the 2D reprojection error (Fig. 4.10), the performance is

similar, or sometimes better, compared to the baseline model. Regarding the 3D recon-

struction error, the general trend is similar, although it depends on the time slot evaluated

the error is greater or lower. During the 5th interval, the 3D reprojection error rises for

both baseline and our approach, but the presented approach is more sensitive to this

circumstance. Regarding the rest of the errors, a similar trend can be observed, being

improved all the intervals the rotation error and most of them on the translation errors

(except 7th and 8th).

The transition time, time where the new bases are being computed on the mapping

thread, is not considered in the NRSfM process because it depends on the implementation

and the selected algorithm. As the sampling time was also emulated, the substitution time

was considered 0. As soon as the interval finishes, the new bases are available and the

computation are performed with the new ones.
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step trial f=1 f=25 f=50

1 base

1 vis+out

f=60 f=85 f=110

2 base

2 vis+out

Figure 4.2: Screenshots for flag sequence processing (first fourth)
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step trial f=115 f=140 f=165

3 base

3 vis+out

f=170 f=195 f=220

4 base

4 vis+out

Figure 4.3: Screenshots for flag sequence processing (second fourth)
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step trial f=230 f=255 f=280

5 base

5 vis+outl

f=285 f=310 f=335

6 base

6 vis+out

Figure 4.4: Screenshots for flag sequence processing (third fourth)
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step trial f=340 f=365 f=390

7 base

7 vis+out

f=395 f=420 f=445

8 base

8 vis+out

Figure 4.5: Screenshots for flag sequence processing (four fourth)
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step trial f=1 f=25 f=50

1 base

1 vis+out

f=60 f=85 f=110

2 base

2 vis+out

Figure 4.6: 3D reconstruction representations for flag sequence (first fourth)
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step trial f=115 f=140 f=165

3 base

3 vis+out

f=170 f=195 f=220

4 base

4 vis+out

Figure 4.7: 3D reconstruction representations for flag sequence (second fourth)
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step trial f=230 f=255 f=280

5 base

5 vis+out

f=285 f=310 f=335

6 base

6 vis+out

Figure 4.8: 3D reconstruction representations for flag sequence (third fourth)
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step trial f=340 f=365 f=390

7 base

7 vis+out

f=395 f=420 f=445

8 base

8 vis+out

Figure 4.9: 3D reconstruction representations for flag sequence (four fourth)
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Figure 4.10: 2D reprojection error over time for visibility and outlier rejection when regenerating the
bases. The approach taking into account visibility and outliers is shown compared to the baseline

Figure 4.11: 3D reconstruction error over time for visibility and outlier rejection when regenerating the
bases. Top subfigure, the approach taking into account visibility and outliers with the normalized 3D
error. Bottom subfigure, the approach taking into account visibility and outliers without normalizing

the 3D error
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Figure 4.12: rotation error over time for visibility and outlier rejection when regenerating the bases.
The approach taking into account visibility and outliers is shown

Figure 4.13: Translation error over time for visibility and outlier rejection when regenerating the bases.
The approach taking into account visibility and outliers is shown



4.4 Conclusions 121

4.4 Conclusions

Regarding the sequential approach based on keyframes instead of doing a per frame re-

construction, it has been shown that similar results are obtained with the chosen baseline

algorithm in the experimental results MP and the keyframe based one even the amount of

information is substantially reduced because only some frames are taken for incrementing

the base.

It has also been demonstrated that the efficient filtering of missing data using the

information provided from the tracking thread is useful to obtain similar results as the

getting with the ideal model.

Our proposal has been tested and checked that the coefficient upgrade after deformation

base update is correctly performed for all the map keyframes.

Separating the tracking and the mapping processes in two threads makes the mapping

so flexible that the NRSfM algorithm could be changed without a great impact in the

rest of the system architecture except for the introduced processing delays inherent to the

algorithm.





Chapter 5

Conclusions and Future Works

This thesis has contributed Non-Rigid Structure from Motion (NRSfM) research line

accomplishing the task of reaching an implementation ready for real-time processing at

the same time that obtains a good trade-off between processing time and reconstruction

quality.

The proposal relies on a well known state-of-the-art Structure from Motion (SfM)

algorithm, as is Parallel Tracking And Mapping (PTAM), which presents a parallel ar-

chitecture to get a map and a camera pose tracking efficiently for rigid objects. We

have modified the tracking thread of PTAM to do it compatible with non-rigid objects,

holding its real-time constraints, over real images. The mapping thread has been sub-

stituted for a NRSfM method. The state-of-the-art methods focused on NRSfM opt for

batch or sequential approaches but based on mono-threaded implementations, which are

not scalable and very sensitive to outliers and missing data. We propose a sequential

keyframe-based NRSfM solution able to cope with real data-association and outliers and

with a computational complexity compatible with real-time.

5.1 Conclusions and contributions

In the next paragraphs we sum it up the main conclusions and contributions extracted

from the two threads of our NRSfM system: tracking and mapping. First, we focus on the

conclusions and contributions regarding the tracking of the non-rigid objects, assuming

the model is known and fixed.

• The presented algorithm is able of performing a real-time tracking for non-rigid

objects and supposes a good trade-off between speed and reconstruction quality

regarding other approaches of the state-of-the-art.

• The full state estimation can be performed in an alternating scheme using an

Expectation-Maximization (EM) algorithm, first computing the shape deformation
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coefficients in closed form fixing the pose, and then computing the pose assuming

the shape as rigid. This strategy decouples the estimation in two parts, easing im-

plementation and improving convergence time, which contributes to the real-time

constraint.

• Our proposal has successfully been scaled to deal with real visual processing chal-

lenges as visibility, outliers and noise handling, which only a few state-of-the-art

works face, as most of them assume an ideal tracking of features.

• Unlike [Agudo et al., 2016a], in which only tens of points are handled due to real-time

restrictions, this proposal scales to hundreds of points.

• We have faced detection strategies on real images. A comparison among different

feature detectors of the state-of-the-art has been carried out. SIFT has demonstrated

to be the best descriptor in terms of reprojection and 3D reconstruction error, al-

though it is very slow to comply with real-time constraints, so the detector chosen

for our proposal has been AKAZE because it is much faster and its errors are similar

to SIFT.

• It has also been shown the importance to have features uniformly distributed on the

image, instead of having many but concentrated ones in certain areas. If some areas

completely lack of feature points, this area has no reference points so it will not be

properly reconstructed.

• Validation results have been given by using the following databases: CMUface [Pal-

adini et al., 2010], Flag [White et al., 2007] and Rendered flag sequence [Garg et al.,

2011] with a special focus on the last one, as it is a full rendered sequence with a full

dense ground truth behind against the results could be compared with.

• In order to reduce the inherent ambiguities of the NRSfM technique and make the

tracking thread compatible with it, a some information was introduced in the es-

timator in the form of time and shape priors. These help to reduce the flickering,

which is noticeable on the 3D reconstruction error, and also stabilizes the estimated

trajectory.

• Most of the state-of-the-art proposals work with projection orthographic. Our algo-

rithm handles perspective projection, so it is able of reducing the ambiguities that

the orthographic projection approaches have to face regarding the problem of depth

estimation.

• The PTAM re-localization algorithm is analyzed for non-rigid sequences even though

the active search [Williams et al., 2007] was developed for rigid objects. It has been

demonstrated that, the best recovery is the based in pose and shape update, although

for high quality tracking features a pose update is enough in case it is needed.
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• In order to obtain good results, a good initialization of the tracking thread is funda-

mental, otherwise, the algorithm will do its best effort until it gets lost. This is the

main reason why a mapping thread working in parallel that continually optimizes

the map will give a good initialization to the tracking thread and will do the whole

system works properly.

Hereafter, the main conclusions and contributions regarding the sequential map esti-

mation and update of the mapping thread are summarized:

• The substitution of the Sparse Bundle Adjustment (SBA) technique based on the

simplified version of the sparse Levenberg-Marquard (LM) in [Hartley and Zisserman,

2004] and used for PTAM, by a batch NRSfM algorithm, running in a sequential

way with a set of keyframes has been validated, getting similar results as the original

approach that take that all the frames, but in our case we reach a better time

performance.

• The chosen NRSfM core algorithm, Metric Projection (MP), is able to reject the

missing data and outliers natively during the optimization process. The obtained

performance can be comparable with the baseline. Even though inputs are not ideal,

the updated bases have quality enough to be used by the tracking process to maintain

the whole system stable.

• With the presented approach, the mapping is able to adapt to changes in the de-

formation model for deformations that have not seen before, being the new bases

updated and sending to the tracking thread.

As a main conclusion of the system as a whole, both subsystems working together

make the whole NRSfM system more stable, scalable and adaptable to changes. In this

way, we present an sparse NRSfM proposal, based on PTAM method but adapted to not-

rigid objects, which supposes a good trade-off between reconstruction error and processing

time, being compatible for real-time applications.

5.2 Future Works

This section depicts future works derived from the conclusions and contributions of this

Thesis. As in the previous section, a similar division between tracking and mapping is

carried out.

First, we review the main works to be done for the tracking thread:

• Other binary type of features such as LDB [Yang and Cheng, 2013], or any other

existing ones, apart from the tested, should also be tested to check if the performance

is increased without penalty in the rest of the parameters.
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• Extra optimizations on the tracking thread code for real images are needed, re-

dundancy checking and other careful procedures must be carried out to reduce the

amount of necessary processing and get a frame rate of 30 and even 60 fps for VGA

at the same time that thousands points are handled on the map with the minimum

impact on estimation quality.

• Performance tests with dense deformation bases should be carried out.

• DaLI features [Simo-Sierra et al., 2015] can be integrated if extreme deformations

are foreseen to be present, although its impact on real-time performance should also

be considered.

Regarding the mapping we propose the following future works:

• The full automatic initialization is an important problem that must be tackled. The

initial rigid shape, camera pose and initial set of “accurate” deformation bases must

be computed by an initialization process in an automatic way.

The initial rigid model can be estimated by a rigid factorization given by [Marques

and Costeira, 2008], as already was successfully used by [Paladini et al., 2010,Agudo

and Moreno-Noguer, 2015a]. A stereo pair initialization with deformable tracks gives

very frequent loses, as many of the trails do not follow the same epipolar line, so many

of times those trails are rejected. Even though [Marques and Costeira, 2008] works

with orthographic projection, an upgrade could be performed to obtain the equivalent

perspective pose. Once the rigid shape is estimated, the deformation shapes could

be estimated from the given tracks using exhaustive evaluation of a batch NRSfM

approach.

• Factorization-based algorithms are not fully adapted to outliers rejection. This prob-

lem could be avoided on the tracking thread not evaluating the affected points, al-

though, for factorization algorithms all the points must be available. Therefore, there

should be some robust factorization on the mapping thread to filter or reconstruct

the scene avoiding the missing data or outliers.

• In order to speed up the processing of batch algorithms, following a similar approach

to local SBA, we propose to go deeper into the sliding window scheme to update the

bases.

• To implement real applications with our method, further code optimization will be

necessary, cleaning up interdependencies, adaptations, libraries, redundancies, etc,

as a previous step for an integration on an embedded platform such as NDK (Native

Development Kit, for Android platforms).

• The mapping must be able to grow the area is being reconstructed, as it does PTAM

when the camera explores a new area. As we use a keyframe-based approach, not
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being limited to the reference frame, a strategy as the original PTAM can be followed.

This leads to an approach similar to [Fayad et al., 2010, Russell et al., 2011] but

expanded to the camera poses, not only to the local patches inside the frame. A

similar problem was already faced by PTAM when the keyframes have points in

common before discovering new areas.

• The mapping must be able to control the growing of the number of estimated bases,

refactoring them to a lower number when they overtake a certain threshold. After this

refactoring process, the coefficients of each frame on the map should be recomputed

to be adapted to the new set of bases.
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Appendix A

Translation-size ambiguity study

For the rigid case this ambiguity can appear because as it is said, the reconstructions are

given up to scale. Actually, there is no certain way to assure the correct dimension of an

object unless a certain reference is given.

Once the size is fixed, for the rigid case, the ambiguity does no longer exists, as there

is no more factors that influence the size of the reconstruction along the time.

However, on the case of the non rigid structure from motion, even though we could

know the object size at the beginning and assuming it has rigid size, if no other prior or

underlying model is assumed that constrain the deformations, the estimations could lead

to incorrect estimations of the translation vector together with the size of the non-rigid

component.

It is actually an effect of the distributive property applied to the shape model and the

projection equation for multiple models.

In [Aanæs and Kahl, 2002] an indication of the metric projection matrix is depicted.

As a result of a factorization, any metric projection matrix G could be put in the middle,

so that the following decomposition can be done:

W = UV = UGG−1V (A.1)

The final result in the reconstruction would be the same. This is valid for orthographic

projection, although it gives an idea of how ambiguous a reconstruction could be.

Many recent works, like [Paladini et al., 2009,Dai et al., 2012,Kong and Lucey, 2016]

have concentrated on computing this metric projection matrix by imposing several con-

strains on the optimization process, so that it could be unique, the rank of the solution

would be minimum, etc.

For the perspective projection the problem still holds, as the orthographic projection

does not take into account the camera-object depth, and the same restrictions can not be

applied, as there is a non-linear dependence on the depth component.
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Therefore, for a perspective projection there is an inherent ambiguity between the size

of the object and the depth that an estimator could obtain out of even if only non-rigid

tracks are provided. The demonstration is as follows:

The projection equation for the rigid case is, in homogeneous coordinates:

U = K [R|T ]


 S

1


 (A.2)

When this equation is extended to the non-rigid domain, the shape term is extended

so as to comply with the linear deformation model, such as:

S = SR + SNR (A.3)

For rigid reconstructions, the rigid term SR is fixed once the scale is fixed and SNR is

zero for all the frames.

For the non-rigid case, the term SNR is not 0 and, if no limits are imposed,

SNR = LB (A.4)

A size change on the object could be interpreted as a change on the scale of the

coefficients. Therefore, to represent this in the previous equations, a scale a could be

introduced in the coefficients,

S
′

NR = aLB (A.5)

Now we demonstrate the same projections could be obtained with SNR and S
′

NR, but

some other parts on the projection equation must change to preserve the final values.

The projection with the original SNR is:

U = K [R|T ]


 (SR + SNR)

1


 = KRSR +KRSNR +KT (A.6)

and the one with S
′

NR = aSNR:

U = K
[
R|T ′

] (
SR + S

′

NR

)
= KRSR +KRS

′

NR +KT
′

(A.7)

U = KRSR +KRaLB +KT
′

(A.8)

As U is the same in both equations,
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aKRLB +KT
′

= KRLB +KT (A.9)

multiplying by the left by K−1

aRLB + T
′

= RLB + T (A.10)

T
′

= T + (1 − a)RLB = T + (1 − a)RSNR (A.11)

If the estimation of the coefficients starts failing in its size, translation could start

failing, compensating the error by the factor indicated previously.

In order to avoid this effect other information apart from just reprojection must be

included on the estimation, as it is not enough to disambiguate among possible solutions,

as already was seen on the priors section on the related works section.





Appendix B

Prior derivation

This appendix shows the derivation of temporal and spatial smoothness priors in our

Model-based deformable reconstruction method described in Chapter 3. These priors are

an important tool to better constrain the solution.

B.1 Temporal smoothness

This prior is usually imposed in the literature to reduce flickering between frames. It is

based on penalizing the difference between the reconstruction solution at current frame

with respect to the reconstruction solution in the last frame.

It can be applied only to the 3D shape as follows:

Etemp =
P∑

i=1

‖Si (f) − Si (f − 1)‖2 (B.1)

Eq. (B.1) is rewritten as:

Etemp =
P∑

i=1

∥∥∥BiL
T (f) − Si (f − 1)

∥∥∥
2

(B.2)

where Bi is the 3xK portion of the basis that corresponds to the i-th point and

L = (l1 · · · lK) are the shape deformation coefficients. Last frame’s shape Si (f − 1) is

considered here known and not dependent on L.

By rewriting Eq. (B.2) into a Linear Least Squares (LLS) system we have:

Etemp = ‖AtempL−Btemp‖2 (B.3)

where:

Atemp =
(
B⊤

1 · · · B⊤
P

)⊤
Btemp =

(
S⊤

1 (f − 1) · · · S⊤
P (f − 1)

)⊤
(B.4)
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Figure B.1: Shape smoothness graphical representation

Eq. (B.4) can be directly included in our reconstruction method as it is quadratic in

the shape deformation parameters L. This means that it becomes a linear equation in

the E-step described in 3, that is solved with LSS.

B.2 Spatial smoothness

Spatial smoothness is based on forcing neighboring relationships between points in the

mesh to be coherent to the mesh at rest. Coherency means here that a point in the shape

is estimated with same coordinates of 3 of his neighbours.

Fig. B.1 shows 4 points that belong to the surface, where Xn is the point of interest

and (Xi, Xj, Xk) are three non-colinear neighbours. Xn can be thus represented by a set

of coordinates (αn, βn, γn) that are obtained as the solution of the following linear system:




Xi,x Xj,x Xk,x

Xi,y Xj,y Xk,y

Xi,z Xj,z Xk,z







αn

βn

γn


 =




Xn,x

Xn,y

Xn,z


 (B.5)

Once each point of the mesh is defined with respect to its neighbours in a reference

shape (for instance the first frame), the shape prior could be defined as:

Eshape =
P∑

n=1

∑

i,j,k∈ℵ(Xn)

‖Xn − (αnXi + βnXj + γnXk)‖2 (B.6)

where ℵ (Xn) means the neighborhood of the point Xn. By substitution of the deformation

parameters in Eq. (B.6) it becomes the following homogeneous quadratic equation:

Eshape = ‖AshapeL‖2 (B.7)

where

Ashape =




B′
1

...

B′
P


 (B.8)
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and

B′
n = Bn − αnBi − βnBj − γnBk (B.9)

B.3 Isometry

Isometry prior, or at least the euclidean relaxation of inextensibility, would have been

the perfect constraint for some of the test sequences, as the surfaces presented comply

with the isometry conditions. The main problem is that the E-step of the presented

minimization algorithm for the tracking solves the shape in closed form and it is based

on LLS, whereas isometry or inextensibility would have required to introduce a fourth

degree equation (due to the distances introduced), as it is the module of the difference of

the distances

Eiso =
P∑

i=1

P∑

j=1,j 6=i

∥∥∥d (Xi, Xj) − d
(
X0

i , X
0
j

)∥∥∥
2

(B.10)

∥∥∥∥‖Xi −Xj‖2 −
∥∥∥X0

i −X0
j

∥∥∥
2
∥∥∥∥

2

=
∥∥∥∥‖L (Bi −Bj)‖2 −

∥∥∥X0
i −X0

j

∥∥∥
2
∥∥∥∥

2

=
∥∥∥∥(Bi −Bj)

T LTL (Bi −Bj) −
(
X0

i −X0
j

)T (
X0

i −X0
j

)∥∥∥∥
2

=
∥∥∥∥(Bi −Bj) (Bi −Bj)

T LTL− (Bi −Bj)
(
X0

i −X0
j

)T (
X0

i −X0
j

)
(Bi −Bj)

−1
∥∥∥∥

2

(B.11)

From the last equation it can be seen that the L term can not be solved linearly, as it is

actually LTL, which means that it can not be minimized via least squares as it introduces

an equation of the form ‖AL2 − C‖2 = 0.

B.4 Aggregation of priors on the tracking solvers

As depicted in Chapter 3, the E-step requires solving the LLS system AL = B with

L =
(
l1 · · · lK

)
and

A =




(∆u1
−→rz − fu

−→rx)B
′

11 · · · (∆u1
−→rz − fu

−→rx)B
′

1K

(∆v1
−→rz − fv

−→ry )B
′

11 · · · (∆v1
−→rz − fv

−→ry )B
′

1K

...
. . .

...

(∆uP
−→rz − fu

−→rx)B
′

P 1 · · · (∆up
−→rz − fu

−→rx)B
′

P K

(∆vP
−→rz − fv

−→ry )B
′

P 1 · · · (∆vp
−→rz − fv

−→ry )B
′

P K




(B.12)

B =




futx − tz∆u1

fvty − tz∆v1

...

futx − tz∆uP

fvty − tz∆vP




(B.13)
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For each point, both the spatial and temporal priors are added on the corresponding

matrix as additional rows in A and B. For instance, if the temporal smoothness prior is

activated, the shape estimation is modified asfollows:

AShape =




(∆u1
−→rz − fu

−→rx)B
′

11 · · · (∆u1
−→rz − fu

−→rx)B
′

1K

(∆v1
−→rz − fv

−→ry )B
′

11 · · · (∆v1
−→rz − fv

−→ry )B
′

1K

B
′

11,x · · · B
′

1K,x

B
′

11,y · · · B
′

1K,y

B
′

11,z · · · B
′

1K,z

...
. . .

...

(∆uP
−→rz − fu

−→rx)B
′

P 1 · · · (∆uP
−→rz − fu

−→rx)B
′

P K

(∆vP
−→rz − fv

−→ry )B
′

P 1 · · · (∆vP
−→rz − fv

−→ry )B
′

P K

B
′

P 1,x · · · · · · B
′

P K,x

B
′

P 1,y · · · · · · B
′

P K,y

B
′

P 1,z · · · · · · B
′

P K,z




(B.14)

Bshape =




futx − tz∆u1

fvty − tz∆v1

S1,x (f − 1)

S1,y (f − 1)

S1,z (f − 1)
...

futx − tz∆uP

fvty − tz∆vP

SP,x (f − 1)

SP,y (f − 1)

SP,z (f − 1)




(B.15)

AshapeL = Bshape (B.16)

L =
(
l1 · · · lK

)T
(B.17)

For simplicity, the product of the M-estimator weight and the prior weight is not indicated

but it affects each of the point rows, depending on the measurement quality and the prior

weight.



Appendix C

Closed form coefficient deduction

On chapter 3 the whole deduction of the closed form matrix was not fully specified. It is

large enough to be included in a chapter, so it is moved to this Appendix.

In case the initial rigid shape can not be described as the sum of the non rigid compo-

nents, an alternative version of the initially proposed method must be given to take out

the influence of the rigid shape out of the projection equations.

It is important to mention that this estimation relies on a pose that is assumed to be

fixed and correct. Otherwise it could yield wrong estimations on the coefficients estimated

with this Weighted Least Squares (WLS) based algorithm.

C.1 Rigid shape is a function of the bases

Given the linear basis deformation model:

SNR = SR +
∑

k

LkBk (C.1)

If possible, it could be considered that the SR could be described as

SR =
∑

k

LRkBk (C.2)

Therefore, the whole shape could be estimated by Lk, instead of dividing the estimation

in two parts, so the model would be:

SNR =
∑

k

LkBk (C.3)

and then, given that the SR is known in advance, the coefficients of the non-rigid part

can be directly estimated by a simple subtraction.
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LNR = L− LR (C.4)

In order to estimate the coefficients in closed form, we depart from the projection

equation and its actual value.

U = K [R|T ]


 SNR

1


 (C.5)




λu

λv

λ


 =




fu 0 u0

0 fv v0

0 0 1







−→rx tx
−→ry ty
−→rz tz






∑

k LkBk

1


 (C.6)

being the matrix R decomposed in its rows (−→rx ,
−→ry ,

−→rz )T and T in its spacial components

tx, ty and tz




λu

λv

λ


 =




fu 0 u0

0 fv v0

0 0 1







−→rx

∑
k LkBk + tx

−→ry

∑
k LkBk + ty

−→rz

∑
k LkBk + tz


 (C.7)




λu

λv

λ


 =




fu (
∑

k Lk
−→rxBk + tx) + u0λ

fv (
∑

k Lk
−→ryBk + ty) + v0λ

∑
k Lk

−→rzBk + tz


 (C.8)

leaving only the Lk at one side of the equation and the rest at the other side for each

side of the terms, like λu, λv, as the only information that provides the last equation

is that lambda is equals to an expression related to the coefficients and the rest of the

variables.

Doing this to the u component:

λu− λu0 = fu

(
∑

k

Lk
−→rxBk + tx

)
(C.9)

∑

k

Lk
−→rzBk (u− u0) + tz (u− u0) = fu

∑

k

Lk
−→rxBk + futx (C.10)

∑

k

Lk
−→rzBk (u− u0) − fu

∑

k

Lk
−→rxBk = futx − tz (u− u0) (C.11)

∑

k

LkBk (−→rz (u− u0) − fu
−→rx) = futx − tz (u− u0) (C.12)

And applying the same to the v component:
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∑

k

LkBk (−→rz (v − v0) − fv
−→ry ) = fvty − tz (v − v0) (C.13)

In a similar manner to the way it was solved the Jacobian of the pose, a WLS is applied

Ax = C, so each point will contribute to these matrix as follows:

A =




(△u1
−→rz − fu

−→rx)B
′

11 · · · (△u1
−→rz − fu

−→rx)B
′

1k

(△v1
−→rz − fv

−→ry )B
′

11 · · · (△v1
−→rz − fv

−→ry )B
′

1k

...
. . .

...

(△up
−→rz − fu

−→rx)B
′

p1 · · · (△up
−→rz − fu

−→rx)B
′

pk

(△vp
−→rz − fv

−→ry )B
′

p1 · · · (△vp
−→rz − fv

−→ry )B
′

pk




(C.14)

C =




futx − tz△u1

fvty − tz△v1

...

futx − tz△up

fvty − tz△vp




(C.15)

being △ui = ui − u0

C.2 Taking into account rigid shape on the estimation

The model equation changes so as to include the rigid shape as a parameter

SNR = SR +
∑

k

LkBk (C.16)

If SR is not expressed as a function of the coefficients, as said in the previous approach,

it is needed to be explicitly included in the equation.

Departing from the projection equations, things parameters change slightly, as follows:




λu

λv

λ


 =




fu 0 u0

0 fv v0

0 0 1







−→rx tx
−→ry ty
−→rz tz





 SR +

∑
k LkBk

1


 (C.17)




λu

λv

λ


 =




fu 0 u0

0 fv v0

0 0 1







−→rx (SR +
∑

k LkBk) + tx
−→ry (SR +

∑
k LkBk) + ty

−→rz (SR +
∑

k LkBk) + tz


 (C.18)




λu

λv

λ


 =




fu (−→rx (SR +
∑

k LkBk) + tx) + u0λ

fv (−→ry (SR +
∑

k LkBk) + ty) + v0λ
−→rz (SR +

∑
k LkBk) + tz


 (C.19)
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Doing the grouping of the coefficients with the u equation:

λu− λu0 = fu

(
−→rx

(
SR +

∑

k

LkBk

)
+ tx

)
(C.20)

(
−→rz

(
SR +

∑

k

LkBk

)
+ tz

)
(u− u0) = fu

(
−→rx

(
SR +

∑

k

LkBk

)
+ tx

)
(C.21)

−→rzSR (u− u0)+(u− u0)
−→rz

∑

k

LkBk +tz (u− u0) = fu
−→rxSR+fu

−→rx

∑

k

LkBk +futx (C.22)

(u− u0)
−→rz

∑

k

LkBk−fu
−→rx

∑

k

LkBk = fu
−→rxSR+futx−tz (u− u0)−−→rzSR (u− u0) (C.23)

∑

k

LkBk ((u− u0)
−→rz − fu

−→rx) = SR (fu
−→rx − −→rz (u− u0)) + futx − tz (u− u0) (C.24)

and the same with the v component:

∑

k

LkBk ((v − v0)
−→rz − fv

−→ry ) = SR (fv
−→ry − −→rz (v − v0)) + fvty − tz (v − v0) (C.25)

Therefore, the system would only change its C matrix, including the SR term, keeping

the matrix A as it was:

C =




futx − tz△u1 + SR,1 (fu
−→rx − −→rz △u1)

fvty − tz△v1 + SR,1 (fv
−→ry − −→rz △v1)

...

futx − tz△up + SR,P (fu
−→rx − −→rz △uP )

fvty − tz△vp + SR,P (fv
−→ry − −→rz △vP )




(C.26)
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