

Document downloaded from the institutional repository of the University of Alcala: <u>http://dspace.uah.es/dspace/</u>

This is a pre-peer reviewed version of the following article:

Salazar-Tortosa, D. et al., 2018, "The "isohydric trap": A proposed feedback between water shortage, stomatal regulation, and nutrient acquisition drives differential growth and survival of European pines under climatic dryness", *Global Change Biology*, vol. 24, no. 9, pp. 4069-4083.

Which has been published in final form at http://dx.doi.org/10.1111/gcb.14311

© 2018 Wiley

This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

This work is licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

1	Title: The "isohydric trap": a proposed feedback between water shortage, stomatal
2	regulation and nutrient acquisition drives differential growth and survival of European
3	pines under climatic dryness
4	Running head: Climate-induced nutrient imbalance in pines
5	
6	List of authors: Salazar-Tortosa D ¹ , Castro J ¹ , Villar-Salvador P ² , Viñegla B ³ , Matías
7	L^3 , Michelsen A^4 , Rubio de Casas R^1 , Querejeta JI^5
8	
9	Institution:
10	1. Departamento de Ecología, Facultad de Ciencias, Universidad de Granada. Av.
11	Fuentenueva SN. 18071, Granada, Spain.
12	2. Forest Ecology and Restoration Group, Departamento de Ciencias de la Vida,
13	Universidad de Alcalá, P.O. Box 20, 28805, Alcalá de Henares, Madrid, Spain.
14	3. Departamento de Biología Animal, Biología Vegetal y Ecología, Facultad de
15	Ciencias Experimentales, Universidad de Jaén. Campus Las Lagunillas SN. 23009,
16	Jaén, Spain.
17	4. Terrestrial Ecology Section, Department of Biology, University of Copenhagen,
18	Universitetsparken 15, 2100, Copenhagen Ø, Denmark.
19	5. Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus
20	Universitario de Espinardo, P.O. Box 164, 30100, Murcia, Spain.
21	
22	Corresponding author: D. Salazar-Tortosa, e-mail: dsalazar@ugr.es, Tel: +34
23	958241000 ext. 20007, Fax: +34 958246166.
24	
25	Keywords: Climatic change, hotter drought, stable isotopes, nutrients, stoichiometry,
26	stomatal behaviour, water use efficiency
27	
28	Type of paper: Primary Research Articles

29 Abstract

30	Climatic dryness imposes limitations on vascular plant growth by reducing stomatal
31	conductance, thereby decreasing CO ₂ uptake and transpiration. Given that transpiration-
32	driven water flow is required for nutrient uptake, climatic stress-induced nutrient deficit
33	could be a key mechanism for decreased plant performance under prolonged drought.
34	We propose the existence of an "isohydric trap", a dryness-induced detrimental
35	feedback leading to nutrient deficit and stoichiometry imbalance in strict isohydric
36	species. We tested this framework in a common garden experiment with 840 individuals
37	of four ecologically-contrasting European pines (Pinus halepensis, P. nigra, P.
38	sylvestris, and P. uncinata) at a site with high temperature and low soil water
39	availability. We measured growth, survival, photochemical efficiency, stem water
40	potentials, leaf isotopic composition (δ^{13} C, δ^{18} O), and nutrient concentrations (C, N, P,
41	K, Zn, Cu). After two years, the Mediterranean species Pinus halepensis showed lower
42	δ^{18} O and higher δ^{13} C values than the other species, indicating higher time-integrated
43	transpiration and water-use efficiency (WUE), along with lower predawn and midday
44	water potentials, higher photochemical efficiency, higher leaf P and K concentrations,
45	more balanced N:P and N:K ratios, and much greater dry-biomass (up to 63-fold) and
46	survival (100%). Conversely, the more mesic mountain pine species showed higher leaf
47	$\delta^{18}O$ and lower $\delta^{13}C,$ indicating lower transpiration and WUE, higher water potentials,
48	severe P and K deficiencies and N:P and N:K imbalances, and poorer photochemical
49	efficiency, growth, and survival. These results support our hypothesis that vascular
50	plant species with tight stomatal regulation of transpiration can become trapped in a
51	feedback cycle of nutrient deficit and imbalance that exacerbates the detrimental
52	impacts of climatic dryness on performance. This overlooked feedback mechanism may
53	hamper the ability of isohydric species to respond to ongoing global change, by

54	aggravating the interactive impacts of stoichiometric imbalance and water stress caused
55	by anthropogenic N deposition and hotter droughts, respectively.

56

57 Introduction

Plant survival and performance is determined largely by soil water availability, since 58 59 water is a major limiting resource for primary production in many regions (Adams et 60 al., 2017; Cramer & Hoffman, 2015; Lawlor & Cornic, 2002). The responses of plant 61 species and individuals to water shortage span a variety of mechanisms that either tend to increase water uptake (e.g. enhanced root growth) or reduce water loss (e.g. stomatal 62 63 closure). Stomatal regulation is the quickest mechanism to cope with drought, leading to 64 two contrasting strategies termed anisohydry and isohydry, characterized by relaxed vs. tight stomatal control of transpiration in response to decreases in plant water potential 65 66 (Moran, Lauder, Musser, Stathos, & Shu, 2017; Tardieu & Simonneau, 1998; but see Martínez-Vilalta & Garcia-Forner, 2017). These strategies are clearly the opposite 67 extremes of a continuous ecophysiological gradient (Klein, 2014) but, overall, the 68 degree of stomatal regulation of transpiration is currently considered a key functional 69 70 trait that explains not only individual plant response to drought, but also forest 71 persistence under current and future climatic conditions (McDowell et al., 2011). 72 Although the role of stomatal control as a key mechanism in the regulation of 73 plant carbon balance and hydraulic functioning under drought and heat stress has been 74 the focus of much research attention in recent years (Garcia-Forner, Biel, Savé, & 75 Martínez-Vilalta, 2016; Martínez-Vilalta & Garcia-Forner, 2017; McDowell et al., 76 2013), less attention has been paid to plant nutrient dynamics as a potential key factor 77 influencing plant survival and growth under conditions of prolonged climatic dryness (Gessler, Schaub, & McDowell, 2017; Hartmann et al., 2018). Nutrient availability and 78

79	plant nutrient status influence forest productivity through photosynthetic, allocation,
80	and stoichiometric effects (Marschner, Kirkby, & Cakmak, 1996; Sardans & Peñuelas,
81	2012). Drought decreases soil nutrient availability for plants due to reduced ion
82	mobility and microbial activity, which can lead to impairment of the plant's nutrient
83	status and growth (Kreuzwieser & Gessler, 2010). Plant nutrient acquisition from the
84	soil is tightly linked to water uptake and movement in soils, as plants rapidly deplete
85	nutrients from the rhizosphere, which must be replenished by dissolved nutrients carried
86	in the transpiration-driven mass flow of water to plant roots (Cabrera-Bosquet, Sánchez,
87	& Araus, 2009; Lambers, Chapin, & Pons, 2008; Voltas, Romagosa, Muñoz, & Araus,
88	1998). Plant nutrient uptake is therefore heavily dependent on the existence of a
89	negative water potential gradient from the soil to the roots that is driven by leaf
90	transpiration (Lambers, Chapin, & Pons, 2008). Furthermore, plants need to maintain
91	particular nutrient stoichiometric relations in their tissues for proper ecophysiological
92	functioning (Güsewell, 2004; Koerselman & Meuleman, 1996; Marschner et al., 1996;
93	Sardans & Peñuelas, 2012). Given that nutrient mobility in the soil matrix may differ by
94	several orders of magnitude among various essential macro- and micronutrients
95	(Lambers et al., 2008), environmental conditions of dryness forcing stomatal closure
96	may severely impair the nutrient balance and stoichiometric ratios of plant tissues.
97	Thus, the interplay and interdependence between plant water relations, nutrient status
98	and stoichiometric relations should be considered a potential important mechanism
99	contributing to plant mortality or reduced performance in models that seek to predict the
100	impact of drier climatic conditions on plant communities.

Here, we propose the existence of an "isohydric trap" that occurs when vascular
plant species with a strict isohydric behaviour fall under prolonged climatic dryness
conditions, leading to a detrimental feedback loop between water stress, tight stomatal

104	control, and nutrient uptake and status that can be detrimental to plant physiological
105	functioning including growth and survival (Figure 1). In this conceptual model, strict
106	isohydric species exhibit early and prolonged stomatal closure under dry conditions
107	(Klein, 2014; Moran et al., 2017), thereby drastically reducing cumulative transpiration,
108	and hence mass flow of water and in-solution nutrients to roots. As a result, nutrient
109	uptake decreases and plants become prone to macro- and micronutrient deficiency and
110	stoichiometric imbalance, which in turn further decreases stomatal conductance and
111	carbon assimilation through reductions in photochemical efficiency and water use
112	efficiency (Figure 1; blue arrow). These feedbacks eventually decrease carbon
113	availability for supporting root and ectomycorrhizal activity and growth, further
114	reducing the capacity for plant water and nutrient uptake (León-Sánchez et al., 2017)
115	and thereby further impairing the plant's ability to cope with prolonged climatic dryness
116	(Figure 1; green arrow).

In this study, we seek to demonstrate that the detrimental impact of this 117 "isohydric trap" on plant nutrient status and stoichiometry is a key mechanism behind 118 the response of drought-sensitive plant species to prolonged climatic dryness. To test 119 this theoretical framework, we conducted a two-year common garden experiment where 120 juveniles of four pine species with contrasting ecological niche and ecophysiological 121 122 behaviour were grown under the same xeric environmental conditions. Plants were monitored for survival and growth, along with photochemical efficiency, water 123 potential, leaf nutrient concentrations, and leaf δ^{18} O and δ^{13} C signatures, which were 124 used as surrogates of time-integrated stomatal conductance and water use efficiency, 125 respectively. We predicted that exposure to prolonged climatic dryness will impose 126 strong constraints on cumulative transpiration and nutrient uptake in pine species with 127 128 strict isohydric behaviour. Due to the tight coupling between water and nutrient uptake

129	by roots, reduced transpiration will hamper the mass flow and diffusion of nutrients to
130	roots and the uptake of dissolved nutrients, eventually leading to nutrient deficiency and
131	severe N:P:K stoichiometric imbalance. This will hinder plant carbon balance,
132	transpiration and water use efficiency, ultimately leading to decreased growth and
133	survival. In contrast, drought-tolerant pine species with less strict stomatal control of
134	transpiration will escape this "isohydric trap" by allowing water potential to drop while
135	maintaining greater stomatal aperture and transpiration under prolonged drought stress,
136	which will allow greater nutrient uptake and a more balanced plant nutrient status and
137	stoichiometry. We seek to expand current knowledge on plant responses to increasing
138	frequency of hotter droughts (Allen, Breshears, & McDowell, 2015) by examining the
139	importance of drought-induced nutrient starvation and stoichiometric imbalance, which
140	to-date has been largely overlooked or underestimated in both conceptual and empirical
141	models of plant responses to climate change (Gessler et al., 2017).

142

143 Material and methods

144 Species and plant material

145 The studied species were *Pinus halepensis* Mill., *P. nigra* Arnold, *P. sylvestris* L., and

146 *P. uncinata* Ram. These species are native in Europe, altogether cover a wide

147 geographic range across the continent (*circa* 30% of its forest area; Köble & Seufert,

148 2001) and segregate clearly along aridity gradients in the order *P. halepensis* > *P. nigra*

149 > P. sylvestris > P. uncinata, whereas their resistance to cold stress follows the opposite

- trend (Fernández-Pérez, Villar-Salvador, Martínez-Vilalta, Toca, & Zavala, 2018; Ruiz
- de la Torre, 2006; Tapias, Climent, Pardos, & Gil, 2004). *Pinus halepensis* is widely
- distributed throughout the Mediterranean basin from sea level to 1200 m a.s.l., *P. nigra*
- from 800 to 2000 m a.s.l. (Mediterranean and Alpine distribution), *P. sylvestris* from

154	1000 to 2100 m a.s.l. (Boreo-Alpine/Eurosiberian distribution), and P. uncinata is
155	distributed from 1400 to 2200 m a.s.l. in the Alps, Pyrenees, and other high Iberian
156	mountains (Richardson 2000; altitudinal ranges for Southern Europe). In general, pines
157	are considered isohydric species compared to other taxa such as oaks or junipers
158	(Meinzer, Woodruff, Marias, Mcculloh, & Sevanto, 2014; Zweifel, Steppe, & Sterck,
159	2007). However, several evidences support that there is a gradient in stomatal behaviour
160	in response to water stress among the studied species. First, these species show
161	differences in the regulation of plant water potential, which is associated with stomatal
162	control (Klein, 2014; Sperry, Hacke, Oren, & Comstock, 2002; Tardieu & Simonneau,
163	1998), with <i>P. halepensis</i> reaching the lowest water potentials, followed by <i>P. nigra</i> , <i>P.</i>
164	sylvestris and P. uncinata (Choat et al., 2012; Matías, Castro, Villar-Salvador, Quero, &
165	Jump, 2017; Oliet, Planelles, López Arias, & Artero, 2002). Second, leaf-level
166	measurements suggest the existence of large interspecific differences in stomatal
167	sensitivity to low plant water potentials, with P. halepensis showing the lowest water
168	potentials at stomatal closure, followed by P. nigra and P. sylvestris (Martin-StPaul,
169	Delzon, & Cochard, 2017). Finally, previous measurements at whole-plant level in the
170	study site showed that P. halepensis exhibits less tight stomatal control and higher
171	transpiration rates under dry conditions than P. nigra and P. sylvestris (Salazar-Tortosa
172	et al., 2018). Therefore, we may assume that the studied species can be ordered along an
173	iso-anisohydry gradient from P. uncinata (most isohydric), P. sylvestris, P. nigra to P.
174	halepensis (most anisohydric).
175	Seeds of the four species were collected when ripe from certified provenance
176	regions of the Iberian Peninsula (Appendix S1, Table S1). The seeds were stored under
177	cold, dry conditions until sowing. Seeding was done in winter 2012 using 300-mL

plastic containers filled with fertilized peat (White 420 F6 Kekkilä, Finland; pH 4.7)

179	containing 0.8-1 kg/m ³ of a slow-release fertilizer NPK 16-10-20. They were initially
180	grown in a greenhouse of the Centro Nacional de Recursos Genéticos Forestales "El
181	Serranillo" (Guadalajara, Spain, 40° 39' 56.14" N, 3° 10' 15.20" W) to avoid frost
182	damage. In mid-May 2012, the seedlings were moved outdoors and cultivated under
183	optimal forest nursery conditions until 15 February 2013, when they were transferred to
184	the common garden site. Nutrient content and isotopic composition at the time of
185	transplanting indicates that seedlings had not been subjected to any water or nutrient
186	stress during the nursery stage (Appendix S1, Table S1).
187	
188	Study site and experimental design
189	The common garden experiment was conducted at the "Huerta de La Paloma" farm (37°
190	10' 03.43" N, 3° 36' 57.80" W; Granada, Southern Spain), a flat (slope ca. 2%),
191	agricultural terrain at 649 m a.s.l. The climate is Mediterranean with hot, dry summers
192	and precipitation concentrated in autumn and spring. The mean annual rainfall is
193	394 \pm 38 L m ² y ⁻¹ and the mean annual temperature is 15.3 \pm 0.1°C, with a mean
194	maximum of the hottest month of 35.7±0.2°C and a mean minimum of the coldest
195	month of -0.1±0.2°C (period 2006-2015; climatic data from a meteorological station
196	located 1.5 km away at IFAPA Research Field Station). These climatic conditions can
197	be regarded as dry and hot for P. nigra, P. sylvestris and P. uncinata when compared to
198	the prevailing climatic conditions in their native ranges (Christensen, 1987; Enescu, de
199	Rigo, Caudullo, Mauri, & Houston-Durrant, 2016; Houston-Durrant, de Rigo, &
200	Caudullo, 2016), whereas they fall within the optimal ecological range of <i>P. halepensis</i>
201	(Mauri, Di Leo, de Rigo, & Caudullo, 2016). The soil is deep with a loamy texture, and
202	average values of 44.8% sand, 41.8% silt, and 13.3% clay, and a soil water content of
203	13% at wilting point and 33% at field capacity (-1.5 and -0.033 MPa, respectively;

204	means for the profile down to 1 m deep; no marked horizons in soil profile; analyses
205	done in the Laboratorio Agroalimentario de la Junta de Andalucía, Atarfe, Granada,
206	official laboratory for the Regional Agricultural Service). The soil-nutrient content at 0-
207	15 cm depth (N, P and K) showed adequate values for plant growth (Appendix S1,
208	Table S2).
209	On 15 February 2013, the one-year-old seedlings grown under nursery
210	conditions were transplanted to the common garden site using a randomized-block
211	design. Three blocks of 500 m^2 were located side by side, separated by 2.5 m. In each
212	block, we planted a total of 70 individuals of each species (70 x 3 blocks x 4 species =
213	840 seedlings in total). Within each block, seedlings were regularly planted at 1.25-m
214	distance from each other, and individuals of each pine species where distributed
215	randomly within the planting scheme. Weeds were removed manually and with a
216	cultivator as needed to prevent competition. We did not find any competition effect
217	from neighbours on either survival or growth ($P > 0.53$ in both cases; Appendix S1,
218	Table S3). The initial size of each seedling (length of the leader shoot and stem-root
219	collar diameter) was measured just after planting as a baseline for aboveground growth
220	estimations (Appendix S1, Table S1). Soil-water content was measured regularly
221	throughout the summers (June-September) at 10, 20, 30, 40, 60, and 100 cm depth using
222	a PR-2/6 Soil Moisture Profile Probe (Delta T, Cambridge, UK). Water content in the
223	soil profile remained above the permanent wilting point throughout the hot, dry
224	(summer) season (Appendix S1, Table S4).
225	
226	Seedling survival and growth

Survival was monitored eight times from 13 June 2013 to 9 September 2014. Seedlinggrowth was measured non-destructively for all the plants in September 2013 and 2014,

229 considering leader shoot length and stem diameter (increment relative to initial values measured after planting). Stem volume was calculated for each year assuming a conical 230 shape for the stem, with basal diameter given by the average of two perpendicular 231 measurements at the root collar and height given by the maximum height of the leader 232 shoot. Growth patterns for both years were similar and hence only the data from 2014 233 234 are reported. In the third year (September 2015), height, stem-root collar diameter, and 235 fresh weight were measured in a random subsample of five pines per species and block (P. uncinata not included due to small sample size; 45 pines in total). Survival was not 236 237 monitored in the third growing season of the experiment, given that a destructive harvesting of seedlings was performed the previous year for leaf isotopic and nutrient 238 239 analyses (see below), and thus the remaining plants might not represent a random sample for this variable. 240

241

242 *Physiological variables*

243 The effective photochemical quantum yield of photosystem II (Y(II), termed quantum yield from now on), relative electron transport rate (rETR), photochemical quenching 244 (qP), non-photochemical quenching (qN), maximum photochemical efficiency of 245 photosystem II (F_v/F_m), and leaf-water potential (Ψ) were measured for a subsample of 246 nine randomly selected seedlings per species and block in July of 2014. Quantum yield, 247 248 qP, and qN were measured by means of a portable junior PAM fluorometer (Heinz Walz GmbH Germany), and rETR was calculated by means of the following equation 249 250 (Schreiber, 2004):

251

252
$$rETR = PAR \times ETR$$
-Factor $\times P_{PSII}/P_{PPS} \times Y(II)$,

253

254	where PAR is the photosynthetically active radiation during the measurements; ETR-
255	Factor is the absorptance of photons by photosynthetic pigments which is considered to
256	be 0.84 as a reasonable match to the average absorptance in the visible range (400-700
257	nm); P_{PSII}/P_{PPS} is the ratio between the photons absorbed by PS II and photons absorbed
258	by photosynthetic pigments, with a value of 0.5 assuming only linear electron transport,
259	that is, equal transfer rates through PS I and PS II, and comparable photochemical
260	quantum yields of PS I and PS II under strongly light-limiting conditions; and Y(II) is
261	the effective photochemical quantum yield of PS II, as described above.
262	The F_v/F_m was measured at predawn and midday using a portable fluorometer
263	(FMS2, Hansatech Instruments, UK). Plant water potential (Ψ) was also measured at
264	predawn and midday (except for <i>P. uncinata</i> which was only measured at predawn due
265	to the low number of surviving individuals) with a pressure chamber (SKPM 1400,
266	Skye Instruments, UK). Measurements were made in lateral branches in most cases.
267	Photosynthetic fluorescence parameters were always measured between 12:00 and
268	16:00 h (solar time), except F_v/F_m predawn measurements.
269	
270	Leaf isotopic composition

We used leaf δ^{13} C and δ^{18} O as time-integrated proxy measures of intrinsic water-use 271 efficiency (iWUE, which is the ratio between net photosynthetic rate and stomatal 272 conductance; Farquhar et al., 1989) and stomatal conductance, respectively (Barbour, 273 274 2007; Farquhar et al., 2007). Given that all the target pine species had very similar 275 needle size and morphology and were exposed to the same environmental conditions in the common garden (including air temperature, vapour-pressure deficit, and soil-276 moisture content), we assume that interspecific differences in leaf δ^{18} O should primarily 277 reflect differences in time-integrated cumulative transpiration derived from species-278

specific patterns of stomatal regulation of leaf-gas exchange (Barbour, 2007; Farquhar 279 et al., 2007). Likewise, we assume that interspecific differences in leaf δ^{13} C should 280 primarily reflect differences in iWUE, rather than differences in irradiance or soil-water 281 282 availability (as these were the same across species; Dawson et al., 2002; Farquhar et al., 1989). 283 Both $\delta^{18}O$ and $\delta^{13}C$ were measured on fully expanded leaves harvested in late 284 285 August 2014 (thus after two growing seasons in the field) from 15 individuals per 286 species and replication block (thus totalling 45 individuals per species); in the case of P. uncinata we could only sample 13 individuals due to low survival rate. We harvested 287 pine needles produced during the current year 2014, discarding those from previous 288 289 year cohorts to minimize potential legacy effects from the nursery. The pine individuals 290 were sampled randomly, although we disregarded those with clear symptoms of decay 291 (close to death) and those previously used to monitor physiological performance in 292 order to avoid any bias due to experimental manipulation (e.g. increased physiological 293 stress after cutting of branches for water-potential measurements in the previous month). After harvesting the needles for isotopic and nutrient analysis, the whole-294 295 aboveground biomass of the plant was harvested for dry-biomass production

296 measurement. Samples were oven dried at 60 °C until constant weight and afterwards

297

individual were added together for the statistical analyses of aboveground dry-biomassproduction.

the two weights (leaves used for isotopic analysis plus the rest of the plant) of each

The subsample of pine needles used for isotopic analyses was finely ground to a
fine powder with a ball mill. For leaf δ¹³C, we used 4 mg weighed in tin capsules.
Samples were analysed using an Isoprime isotope ratio mass spectrometer (IRMS;
Isoprime Ltd, Cheadle Hulme, Stockport, UK) coupled to a CN elemental analyser (EA;

304	Eurovector, Pavia, Italy) with continuous flow, at the Department of Biology,
305	University of Copenhagen. For foliar δ^{18} O analyses, 0.7-0.8 mg were weighed in silver
306	capsules and analysed at the Stable Isotope Facility of the University of California at
307	Davis (USA). A Heckatech HT Oxygen Analyzer interfaced to a PDZ Europa 20-20
308	isotope ratio mass spectrometer (Sercon, Cheshire, UK) was used following the method
309	described in Kornexl, Gehre, Höfling, & Werner (1999). Leaf samples were
310	decomposed in a glassy carbon reactor at 1400°C to CO and H_2O , and oxygen was
311	analysed as CO. We expressed the isotopic composition of the samples in delta notation
312	as:
313	

314
$$\delta^{xx} = \left(\frac{R_{samp}}{R_{stand}} - 1\right) * 1000$$

315

where ^{xx}E is the heavy isotope which is compared to the lighter one; R refers to the
molar ratio of the heavy to the light isotope (i.e. ¹³C:¹²C or ¹⁸O:¹⁶O); "samp" refers to
the sample; and "stand" refers to an international standard (V-PDB for C and V-SMOW
for O). International and internal standards were used for validating the quality and
precision of isotopic analyses.

321

322 *Nutrient analysis*

323 The concentrations of several essential macro- and micronutrients (C, N, P, K, Zn, and

324 Cu) were measured on the same finely ground leaf samples used for isotopic analyses.

Foliar C and N concentrations were measured with a CN elemental analyser as

described above. Leaf K, P, Cu and Zn concentrations were measured by inductively

327 coupled plasma emission spectrometry using a Perkin-Elmer 5500 ICP.

329 *Data analysis*

330	Analyses were performed using R, version 3.3.2 (R Core Team, 2016). We explored
331	different approaches to control for spurious statistical effects induced by spatial
332	heterogeneity. Note that the number of blocks is too low to consider this variable a
333	random factor in a standard mixed-model approach (random factors need to have at
334	least five levels; Crawley, 2002). Therefore, we controlled for spatial heterogeneity
335	including the number of columns and rows as continuous variables in linear models
336	(Appendix S2). Differences across species for all the variables measured, in any case,
337	followed similar patterns whatever the model used.
338	Differences in seedling survival were estimated with a Cox regression model
339	using the survival R package (Therneau, 2015; Therneau & Grambsch, 2000). The rest
340	of response variables (growth, physiological variables, leaf isotopic composition and
341	nutrient concentrations) were analysed with linear models. Significant differences
342	between species were tested using Tukey's test. The stem-volume increment was used
343	as a proxy of overall plant growth because it exhibited a close correlation with both
344	plant height (P \leq 0.001; $\rho \geq$ 0.8 in all species) and stem diameter (P \leq 0.001; $\rho \geq$ 0.6 in all
345	species).

346

347 **Results**

348 *Demography*

Across species, a total of 627 (74.7%) seedlings survived after two growing seasons.

Survival rate differed among species (P < 2.2e-16), with an overall value of 100^{a} %

for *P. halepensis*, 92.9^{b} % for *P. nigra*, 80^{c} % for *P. sylvestris*, and 25.8^{d} % for *P*.

352 uncinata (different superscript letters indicate significant differences among species, P

353 < 0.05 after Tukey's multiple comparison).

354	Growth (stem-volume increment) after two growing seasons also differed
355	greatly among species ($P < 2.2e-16$), with a much higher value for <i>P. halepensis</i>
356	$(223.14\pm11.47^{a} \text{ cm}^{3})$, followed by <i>P. nigra</i> $(9.41\pm0.48^{b} \text{ cm}^{3})$, <i>P. sylvestris</i> (5.06 ± 0.29^{c})
357	cm ³), and <i>P. uncinata</i> (2.91±0.43 ^d cm ³). Interspecific differences in growth increased
358	even further after the third growing season (September 2015), with mean stem volume
359	of 3000.56 ± 330.25^{a} , 45.26 ± 5.90^{b} , and 16.50 ± 2.20^{c} cm ³ , and mean fresh weight of
360	11723±700 ^a , 322±4 ^b , and 110±14 ^c g for <i>P. halepensis</i> , <i>P. nigra</i> , and <i>P. sylvestris</i> ,
361	respectively. Pinus uncinata was not sampled in 2015 due to the small number of
362	surviving individuals, but their size was visually the lowest of all the species. See
363	Appendix S1, Table S5 for species mean values of stem-root collar and leader shoot
364	height in both years.
365	
366	Physiological variables
367	Overall, there were large differences in physiological parameters between P. halepensis
368	and the rest of the species, with P. uncinata in particular showing the poorest

369 performance under the common garden conditions (Table 1). *Pinus halepensis* showed

370 significantly lower predawn and mid-day stem water potentials than the other species

during the summer dry season (Table 1), indicating a more anisohydric behaviour.

372 *Pinus halepensis* also showed the highest values for most photochemical parameters

including predawn and midday F_v/F_m , quantum yield, rETR, and photochemical

374 quenching, as well as the lowest values of non-photochemical quenching (although

375 without statistically significant differences from *P. nigra* and/or *P. sylvestris* for the

latter two variables). On the contrary, *P. uncinata* showed the lowest values for most of

377 these photochemical parameters, with significant differences from the rest of species for

quantum yield and rETR but without significant differences from *P. nigra* and/or *P.*

sylvestris for the remaining fluorescence variables (Table 1).

- 380
- 381 *Leaf isotopic composition and nutrient concentrations*
- Mean leaf δ^{13} C values differed significantly among pine species (Table 2), with *P*.
- 383 *halepensis* showing the highest value (indicative of higher time-integrated water use
- efficiency), followed by *P. sylvestris*, *P. nigra* and *P. uncinata*. There were also large
- differences in mean leaf δ^{18} O values among species, with *P. halepensis* showing the
- lowest mean value by far (indicative of higher stomatal conductance and cumulative
- transpiration), followed by *P. nigra*, *P. sylvestris*, and *P. uncinata* (Table 2).
- 388 Leaf N concentration differed only slightly among pine species, with values
- ranging from 12.8 mg g^{-1} for *P. nigra* to 18.3 mg g^{-1} for *P. sylvestris* (Table 2). In
- contrast, leaf P, K, Cu and Zn concentrations differed sharply among species, with P.
- 391 *halepensis* showing about 2-fold (P), 1.7-fold (K), 1.5-fold (Zn) and 1.8-fold (Cu)
- higher mean concentrations than the other species (Table 2). As a result, mean foliar
- N:P and N:K ratios were over 2-fold lower in *P. halepensis* than in the other pine
- species (Table 2). Leaf C:N ratios were less variable across species and ranged from
- 395 26.5 in *P. sylvestris* to 35.6 in *P. nigra*.
- 396 The dry-biomass of pines harvested for isotopic analysis followed the same
- trend described above for shoot volume and fresh weight after three years: 660.9 ± 32.2
- for *P. halepensis*, 32.0±2.0 for *P. nigra*, 19.2±1.1 for *P. sylvestris* and 10.4±1.6 g for *P.*
- 399 uncinata.
- 400
- 401 Relationships among plant response variables across and within species
- 402 Across pine species, leaf δ^{18} O was strongly negatively correlated with aboveground
- 403 biomass and leaf P, K, Cu, and Zn concentrations (Figure 2), while it was positively

404	associated with leaf N and N:P ratio (Figure 3), overall indicating increased nutrient
405	status, stoichiometric balance and growth with increasing time-integrated stomatal
406	conductance and transpiration. Conversely, leaf $\delta^{13}C$ exhibited strong positive
407	correlations with biomass production and leaf P, K, Cu, and Zn concentrations across
408	species, indicating increasing water use efficiency with increasing leaf nutrient status
409	and growth. Leaf $\delta^{13}C$ was negatively associated with N:P ratios, but was unrelated to
410	leaf N concentration across species. Interestingly, leaf $\delta^{13}C$ and $\delta^{18}O$ were negatively
411	associated with each other across all four pine species ($\rho = -0.48$; P = 1.70E-09), which
412	suggests that interspecific variation in δ^{13} C was primarily driven by variation in
413	photosynthesis (rather than in stomatal conductance).
414	Similar correlation patterns were found also at the within-species level for <i>P</i> .
415	nigra and P. sylvestris: aboveground biomass and stem volume increment were
416	positively associated with leaf P concentration and negatively associated with leaf δ^{18} O,
417	N, and N:P in at least one of the two species (Appendix S1, Figure S1). Similarly, leaf
418	δ^{13} C was positively correlated with leaf P and Cu concentrations and negatively
419	associated with N:P ratio. Leaf $\delta^{18}O$ was negatively associated with leaf P, Cu, and Zn
420	concentrations and positively correlated with N:P ratio in one or the two species
421	(Appendix S1, Figure S2).
422	Plant water potentials and photochemical fluorescence variables were also
423	significantly correlated with leaf nutrients and isotopes across species. Mean midday
424	water potential was negatively associated with mean leaf K concentration
425	($\rho = -0.991$; P = 0.0088). Mean leaf Zn concentration was positively associated with
426	mean quantum yield ($\rho = 0.968$; P = 0.032) and predawn F _v /F _m ($\rho = 0.994$; P = 0.0063),
427	while it was negatively associated with qN ($\rho = -0.984$; P = 0.016), which overall
428	suggests increased photochemical performance with increased leaf Zn status across

species. In addition, mean leaf δ^{13} C was positively correlated with mean quantum yield and predawn F_v/F_m, and was negatively associated with qN (Figure 5), which suggests increased water use efficiency with increased photochemical efficiency across species. Finally, mean leaf δ^{18} O was negatively associated with mean quantum yield, predawn F_v/F_m and rETR (and positively with mean qN), thus revealing an improved photochemical efficiency with increasing stomatal conductance and cumulative transpiration across species (Figure 6).

436

437 Discussion

438 We found that the thermophilous, drought-tolerant pine species *P. halepensis* exhibited 439 100% survival and far greater growth than the other more drought-sensitive mountain 440 pine species evaluated in the common garden experiment. Unsurprisingly, pine species 441 originating from wetter and cooler habitats such as *P. uncinata* and, to a lesser extent, *P.* svlvestris, showed the poorest growth and survival under the xeric common garden 442 443 conditions. These results are expected according to the contrasting ecological requirements of each species and the relatively warm and dry climatic conditions at the 444 445 study site. However, our study provides insights into the physiological mechanisms 446 underlying the contrasting responses among pine species, and supports the contention 447 that the tight stomatal regulation typical of drought-sensitive mountain pine species makes them fall into an "isohydric trap", in which high stomatal sensitivity to soil water 448 449 shortage and high atmospheric evaporative demand trigger stomatal closure and lead to a detrimental feedback loop that eventually causes severe nutrient starvation and 450 451 stoichiometric imbalance under prolonged dry conditions (Figure 1). The large interspecific differences in leaf isotopic ratios and stem water potential 452 indicate that pine species differ in stomatal control under prolonged climatic dryness. 453

454	According to the dual isotope conceptual model (Grams, Kozovits, Häberle, Matyssek,
455	& Dawson, 2007; Scheidegger, Saurer, Bahn, & Siegwolf, 2000), the combination of
456	high $\delta^{18}O$ and low $\delta^{13}C$ values in the drought-sensitive mountain pine species
457	(compared to P. halepensis) indicates low time-integrated stomatal conductance and
458	water use efficiency, as well as low photosynthesis rates (Querejeta, Allen, Caravaca, &
459	Roldán, 2006), which is consistent with the poor growth of these species. This
460	interpretation of isotope data is in strong agreement with gas exchange measurements
461	conducted at whole plant level with transient-state closed chambers in the same
462	common garden experiment, which showed higher stomatal conductance and
463	transpiration, photosynthetic rates and water use efficiency in <i>P. halepensis</i> than in the
464	other pine species during the dry season (Salazar-Tortosa et al., 2018). Furthermore, the
465	potential influence of the use of different water sources among species can be discarded
466	as the lower predawn water potential of P. halepensis compared to other species would
467	be incompatible with the alternative explanation that it was using a more $\delta^{18}O$ depleted
468	source water stored in deeper, wetter soil layers (Nardini et al., 2016; Voltas,
469	Lucabaugh, Chambel, & Ferrio, 2015; West et al., 2012).
470	The combination of high predawn and midday stem water potentials at the peak
471	of the dry season with low stomatal conductance and cumulative transpiration (inferred
472	from high leaf δ^{18} O values) indicates a typical isohydric behaviour (Martínez-Vilalta &
473	Garcia-Forner, 2017) in P. nigra, P. sylvestris and P. uncinata. Under low water
474	availability and high temperature and evaporative demand conditions, plants with
475	isohydric behaviour close their stomata early to maintain relatively high water potentials
476	and prevent dehydration (Klein, 2014; McDowell et al., 2008; Tardieu & Simonneau,
477	1998). Ultimately, this reduction of cumulative transpiration negatively affects the
478	plant's nutrient status given the importance of active transpiration flux along the soil-

479	plant-air continuum for effective soil nutrient uptake in drying soil (Cramer et al., 2009;
480	Lambers et al., 2008; Rouphael et al., 2012; Sardans, Peñuelas, Prieto, & Estiarte, 2008;
481	Sardans, Peñuelas, Coll, Vayreda, & Rivas-Ubach, 2012). The strong negative
482	correlations between leaf $\delta^{18}O$ (proxy of stomatal conductance) and foliar P, K, Cu, Zn
483	concentrations and positive correlation of leaf $\delta^{18}O$ with N:P and N:K ratios across
484	species (as well as within species for P and N:P; Figure 3, Appendix S1 Figure S2)
485	indicate that soil nutrient uptake was severely constrained by low cumulative
486	transpiration in the drought-sensitive mountain pine species under prolonged dryness,
487	relative to P. halepensis.
488	Stomatal conductance and transpiration will determine the rate of water
489	extraction from soil, so that species with higher transpiration rates will deplete
490	rhizosphere soil water faster and will hence experience greater reductions in predawn
491	water potentials during dry periods (Martínez-Vilalta & Garcia-Forner, 2017), as found
492	in <i>P. halepensis</i> . This ability to allow water potentials to drop while sustaining high
493	stomatal aperture and conductance (i.e. a more anisohydric strategy) may have enabled
494	P. halepensis to continue extracting water and dissolved nutrients from soil during
495	prolonged dry periods. A recent study has also reported strong negative correlations
496	between leaf δ^{18} O and foliar nutrient concentrations across contrasting plant species
497	exposed to the same environmental conditions, suggesting a heavy dependence of plant
498	nutrient uptake and status on stomatal conductance and cumulative transpiration (Prieto,
499	Querejeta, Segrestin, Volaire, & Roumet, 2017). Nitrogen, by contrast, did not seem to
500	be involved in the observed pattern, as this nutrient was negatively associated with
501	biomass and positively associated with δ^{18} O (Figure 2, 3, Appendix S1 Figure S1),
502	which suggests that the interspecific differences in leaf N concentration were mainly a
503	consequence of differential growth dilution effects (Sabaté & Gracia, 1994) and not of

504	stomatal behaviour. In addition, the species with lower growth (P. sylvestris and P.
505	uncinata) could have constitutively high leaf N as supported by higher N concentration
506	for P. uncinata at nursery, and by previous studies for P. sylvestris (Sardans et al.,
507	2011).
508	The unusually high leaf N:P and N:K ratios found in the more drought sensitive,
509	mountain pine species are indicative of strong P and K limitation of growth (Güsewell,
510	2004; Lawniczak, Güsewell, & Verhoeven, 2009; See Table 2 for a comparison with
511	reference values of each species). The severe nutrient deficit and imbalance observed in
512	these drought-sensitive pine species appeared to be a direct consequence of climatic
513	drought stress, as seedling nutrient status was optimal at the beginning of the
514	experiment across species (Appendix S1, Table S1), and given that the soil at the
515	common garden site was not deficient in any nutrient (Appendix S1, Table S2). Indeed,
516	soil nutrient availability in this fertile agricultural field was sufficient to support a
517	balanced leaf stoichiometry with optimal N:P ratios and vigorous biomass growth in P.
518	halepensis. Despite much larger growth-dilution effects, leaf P, K, Zn and Cu
519	concentrations were higher and N:P and N:K ratios were much lower in P. halepensis
520	than in the other species, indicating that severe nutrient starvation and stoichiometric
521	imbalance in the other species was largely the result of climatic stress, rather than the
522	result of low soil nutrient availability "per se". Deficiency of P, K, Zn, and Cu and
523	severe N:P:K stoichiometric imbalance can impair photosynthesis, transpiration (Figure
524	1; blue arrow), water-use efficiency and growth, as reported in this study (see also
525	Güsewell, 2004; Sardans & Peñuelas, 2015; Talbott & Zeiger, 1996). This idea is
526	supported by the strong correlations of leaf nutrient concentrations and stoichiometric
527	ratios with both leaf $\delta^{18}O$ and $\delta^{13}C$ ratios and with above ground biomass across and
528	within species (Figures 2, 3, 4, Appendix S1, Figures S1, S2). We also found a negative

association between leaf K concentration and water potential across species, which may 529 be explained by the major role that K plays in drought tolerance (Rivas-Ubach, Sardans, 530 Perez-Trujillo, Estiarte, & Penuelas, 2012; Sardans & Peñuelas, 2015). 531 532 The rather extreme N:P:K stoichiometric imbalance observed in the droughtsensitive mountain pine species may be explained by differences in mobility and 533 534 availability in the soil solution among nutrients, given that PO_4^- and K^+ have diffusion 535 coefficients that are lower by orders of magnitude than that of NO_3^- (Lambers et al., 536 2008; Marschner & Rengel, 2012). Our study suggests that uptake of nutrients with limited mobility and diffusion rates in soil (e.g. phosphate, potassium, zinc, copper) 537 538 may be particularly vulnerable to severe decreases in transpiration and mass flow to roots, compared to highly mobile nutrients like nitrate (Rengel & Marschner, 2005). 539 Besides, atmospheric deposition is several orders of magnitude higher for N than for 540 541 other nutrients (Peñuelas, Sardans, Rivas-Ubach, & Janssens, 2012), which may also lead to higher foliar N uptake. Therefore, in a global scenario of climate warming 542 combined with increasing rates of anthropogenic N deposition (Güsewell, 2004; Jonard 543 et al., 2015) we should expect plant P status (along with K and micronutrients like Cu or 544 545 Zn) to be particularly vulnerable to decreases in transpiration fluxes during prolonged periods of climatic dryness, whereas plant N status may be less responsive. In addition, 546 547 the reduced carbon assimilation exhibited by drought-sensitive mountain pine species at 548 the common garden site (Salazar-Tortosa et al., 2018) could lead to low carbon 549 availability to support the growth and activity of fine roots and ectomycorrhizal (EMF) fungi (Gessler et al., 2017; Matías et al., 2017; Moran et al., 2017). This could hamper 550 even more the assimilation of low mobility nutrients, whose absorption has high energy 551 552 and carbon costs such as the production of extramatrical EMF mycelium, the secretion of phosphatases and organic acids by roots and mycorrhizae for solubilisation and 553

554	mineralization of inorganic and organic P, or rhizosphere priming effects (Achat,
555	Augusto, Gallet-Budynek, & Loustau, 2016; Kreuzwieser & Gessler, 2010). Moreover,
556	limited carbohydrate availability and transfer to roots could also constrain the supply of
557	energy and carbon skeletons for nutrient assimilation (Kreuzwieser & Gessler, 2010).
558	Soil moisture content remained above the permanent wilting point throughout
559	the summer dry period in both years of the experiment (Appendix S1, Table S4), which
560	suggests that high temperature and evaporative demand may have also been key drivers
561	of the contrasting responses observed among pine species (McDowell et al., 2015;
562	McDowell & Allen, 2015; Salazar-Tortosa et al., 2018; Williams et al., 2013). In fact,
563	mean summer temperature at the common garden site was considerably higher than that
564	experienced by the mountain pine species in their original habitat (P. nigra, P.
565	sylvestris, and P. uncinata). Heat stress can limit stomatal conductance, as plants close
566	their stomata to prevent excessive transpiration and water loss when atmospheric
567	demand for water increases with rising temperatures (Novick et al., 2016; Urban,
568	Ingwers, McGuire, & Teskey, 2017; Zhang, Wollenweber, Jiang, Liu, & Zhao, 2008).
569	Stomatal closure in response to heat and drought stress reduces evaporative leaf cooling
570	(Cook, Dixon, & Leopold, 1964), which may favour heat-induced damage of the
571	photosynthetic machinery that decreases photochemical efficiency (Sharkey, 2005).
572	Lower predawn F_v/F_m values as well as larger predawn F_v/F_m vs. midday F_v/F_m
573	differences in mountain pine species (compared to P. halepensis) support the idea that
574	heat stress in combination with high light levels led to both chronic photoinhibition as
575	well as reversible reduced photochemical efficiency during the hottest time of the day in
576	summer (Table 1). Moreover, the detrimental impacts of the combination of high
577	temperatures and drought stress on leaf photochemical efficiency and carboxylation
578	capacity were likely compounded by the effects of macro- and micronutrient deficiency

579	and stoichiometric imbalance in mountain pine species (Cakmak, 2005; Casimiro,
580	Barroso, & Pais, 1990; Eller, Jensen, & Reisdorff, 2016), which may explain the
581	association of low photochemical efficiency (as indicated by low rETR, quantum yield
582	and predawn F_v/F_m and high qN) with low cumulative transpiration (high $\delta^{18}O$) and
583	water use efficiency (low δ^{13} C) across species (Figures 5, 6). Overall, the results of this
584	study suggest that intensified drought stress from higher air temperaturesthe "hotter
585	drought" effect (Allen et al., 2015) — might lead to severe nutrient deficit,
586	stoichiometric imbalance, and photosynthetic impairment mediated by reduced
587	cumulative transpiration in drought-sensitive species.
588	In summary, we found that the degree of stomatal regulation of transpiration is
589	tightly linked to plant nutrient status and stoichiometry under dry conditions, and that
590	reduced nutrient uptake is a key mechanism to consider when assessing poor plant
591	growth and survival under prolonged climatic dryness. We propose the existence of a
592	detrimental feedback loop leading to severe P and K starvation and N:P:K imbalance in
593	strictly isohydric vascular plants undergoing prolonged drought stress, such as some of
594	our study pine species. These drought-sensitive species close their stomata at relatively
595	high soil and plant water potentials, and thus are not able to maintain adequate
596	transpiration and nutrient uptake during prolonged drought periods, which leads to
597	severe nutrient imbalance that might exacerbate and accelerate the onset of carbon
598	starvation, hydraulic failure, phloem dysfunction, and their multiple interplays
599	(McDowell et al., 2011; Sala, Piper, & Hoch, 2010; Sevanto, McDowell, Dickman,
600	Pangle, & Pockman, 2014; Zwieniecki & Holbrook, 2009). In contrast, relatively
601	drought-tolerant plant species with a more anisohydric behaviour such as P. halepensis
602	can maintain open stomata and transpiration at comparatively lower soil and plant water
603	potentials, thereby escaping this detrimental feedback and avoiding nutrient deficit and

604	imbalance. This study highlights the intimate interplay and interdependence between
605	stomatal regulation, transpiration, carbon assimilation and nutrient status in the response
606	of vascular plants to long periods of climatic dryness (Gessler et al., 2017). We
607	advocate consideration of this proposed conceptual framework (Fig. 1) in order to better
608	understand and predict the impacts of ongoing global change on the performance and
609	survival of pines and other plant species with tight stomatal regulation and strict
610	isohydric behaviour, with special attention to the role of macronutrients with low
611	mobility in soil, such as P and K.
612	
613	Acknowledgements
613 614	Acknowledgements This work was supported by the projects ECOLPIN (AGL2011-24296), CGL2013-
613 614 615	Acknowledgements This work was supported by the projects ECOLPIN (AGL2011-24296), CGL2013- 48753-R, the network REMEDINAL 3 (S2013/MAE-2719) of the CAM, by FPU
613 614 615 616	Acknowledgements This work was supported by the projects ECOLPIN (AGL2011-24296), CGL2013- 48753-R, the network REMEDINAL 3 (S2013/MAE-2719) of the CAM, by FPU (FPU13/03410) and Juan de la Cierva (FPDI-2013-15867) fellowships from the Spanish
613 614 615 616 617	Acknowledgements This work was supported by the projects ECOLPIN (AGL2011-24296), CGL2013- 48753-R, the network REMEDINAL 3 (S2013/MAE-2719) of the CAM, by FPU (FPU13/03410) and Juan de la Cierva (FPDI-2013-15867) fellowships from the Spanish Ministry of Education, Culture and Sport to DS and LM, respectively, and by a grant
613 614 615 616 617 618	Acknowledgements This work was supported by the projects ECOLPIN (AGL2011-24296), CGL2013- 48753-R, the network REMEDINAL 3 (S2013/MAE-2719) of the CAM, by FPU (FPU13/03410) and Juan de la Cierva (FPDI-2013-15867) fellowships from the Spanish Ministry of Education, Culture and Sport to DS and LM, respectively, and by a grant from IES Abroad. We are also grateful to the Centro Nacional de Recursos Genéticos
 613 614 615 616 617 618 619 	Acknowledgements This work was supported by the projects ECOLPIN (AGL2011-24296), CGL2013- 48753-R, the network REMEDINAL 3 (S2013/MAE-2719) of the CAM, by FPU (FPU13/03410) and Juan de la Cierva (FPDI-2013-15867) fellowships from the Spanish Ministry of Education, Culture and Sport to DS and LM, respectively, and by a grant from IES Abroad. We are also grateful to the Centro Nacional de Recursos Genéticos Forestales 'El Serranillo' (MAGRAMA) for cultivating the plants during the nursery
 613 614 615 616 617 618 619 620 	Acknowledgements This work was supported by the projects ECOLPIN (AGL2011-24296), CGL2013- 48753-R, the network REMEDINAL 3 (S2013/MAE-2719) of the CAM, by FPU (FPU13/03410) and Juan de la Cierva (FPDI-2013-15867) fellowships from the Spanish Ministry of Education, Culture and Sport to DS and LM, respectively, and by a grant from IES Abroad. We are also grateful to the Centro Nacional de Recursos Genéticos Forestales 'El Serranillo' (MAGRAMA) for cultivating the plants during the nursery stage. Craig D. Allen and five anonymous reviewers provided insightful comments that

622 Bibliography

623 624 625 626	 Achat, D. L., Augusto, L., Gallet-Budynek, A., & Loustau, D. (2016). Future challenges in coupled C–N–P cycle models for terrestrial ecosystems under global change: a review. <i>Biogeochemistry</i>, 131, 173–202. https://doi.org/10.1007/s10533-016-0274-9
627 628 629 630	Adams, H. D., Zeppel, M. J. B., Anderegg, W. R. L., Hartmann, H., Landhäusser, S. M., Tissue, D. T., McDowell, N. G. (2017). A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. <i>Nature Ecology & Evolution</i> , 1, 1285–1291. https://doi.org/10.1038/s41559-017-0248-x
631 632 633	Allen, C. D., Breshears, D. D., & McDowell, N. G. (2015). On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. <i>Ecosphere</i> , 6, 129. https://doi.org/10.1890/ES15-00203.1
634 635	Barbour, M. M. (2007). Stable oxygen isotope composition of plant tissue: a review. <i>Functional Plant Biology</i> , <i>34</i> , 83–94. https://doi.org/10.1071/FP06228
636 637 638	 Cabrera-Bosquet, L., Sánchez, C., & Araus, J. L. (2009). Oxygen isotope enrichment (δ¹⁸O) reflects yield potential and drought resistance in maize. <i>Plant, Cell and Environment</i>, 32, 1487–1499. https://doi.org/10.1111/j.1365-3040.2009.02013.x
639 640 641	Cakmak, I. (2005). The role of potassium in alleviating detrimental effects of abiotic stresses in plants. <i>Journal of Plant Nutrition and Soil Science</i> , <i>168</i> , 521–530. https://doi.org/10.1002/jpln.200420485
642 643 644	Casimiro, A., Barroso, J., & Pais, M. S. (1990). Effect of copper deficiency on photosynthetic electron transport in wheat plants. <i>Physiologia Plantarum</i> , 459– 464.
645 646 647	 Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., Zanne, A. E. (2012). Global convergence in the vulnerability of forests to drought. <i>Nature</i>, 491, 752–5. https://doi.org/10.1038/nature11688
648 649 650	Christensen, K. lb. (1987). Taxonomic revision of the <i>Pinus mugo</i> complex and <i>P. rhaetica</i> (<i>P. mugo sylvestris</i>) (Pinaceae). <i>Nordic Journal of Botany</i> , <i>7</i> , 383–408. https://doi.org/10.1111/j.1756-1051.1987.tb00958.x
651 652	Cook, G. D., Dixon, J. R., & Leopold, A. C. (1964). Transpiration: Its Effects on Plant Leaf Temperature. <i>Science</i> , <i>144</i> , 546–547.
653 654 655	Cramer, M. D., Hawkins, HJ., & Verboom, G. A. (2009). The importance of nutritional regulation of plant water flux. <i>Oecologia</i> , 161, 15–24. https://doi.org/10.1007/s00442-009-1364-3
656 657 658	Cramer, M. D., & Hoffman, M. T. (2015). The consequences of precipitation seasonality for mediterranean-ecosystem vegetation of South Africa. <i>PLoS ONE</i> , 10, 1–21. https://doi.org/10.1371/journal.pone.0144512
659 660	Crawley, M. J. (2002). Statistical Computing: An Introduction to Data Analysis using S- PLUS. John Wiley & Sons, Ltd.

Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H., & Tu, K. P. (2002).

662 663	Stable Isotopes in Plant Ecology. <i>Annual Review of Ecology and Systematics</i> , 33, 507–559. https://doi.org/10.1146/annurev.ecolsys.33.020602.095451
664 665 666	Eller, F., Jensen, K., & Reisdorff, C. (2016). Nighttime stomatal conductance differs with nutrient availability in two temperate floodplain tree species. <i>Tree Physiology</i> , 1–13. https://doi.org/10.1093/treephys/tpw113
667 668 669 670	 Enescu, C. M., de Rigo, D., Caudullo, G., Mauri, A., & Houston-Durrant, T. (2016). <i>Pinus nigra</i> in Europe: distribution, habitat, usage and threats. In J. San-Miguel-Ayanz, D. de Rigo, G. Caudullo, T. Houston-Durrant, & A. Mauri (Eds.), <i>European Atlas of Forest Tree Species</i>. Off. EU, Luxembourg.
671 672	Farquhar, G. D., Cernusak, L. a, & Barnes, B. (2007). Heavy water fractionation during transpiration. <i>Plant Physiology</i> , 143, 11–18. https://doi.org/10.1104/pp.106.093278
673 674 675 676	 Farquhar, G. D., Ehleringer, J. R., & Hubick, K. T. (1989). Carbon Isotope Discrimination and Photosynthesis. <i>Annual Review of Plant Physiology and Plant</i> <i>Molecular Biology</i>, 40, 503–537. https://doi.org/10.1146/annurev.pp.40.060189.002443
677 678 679 680 681	Fernández-Pérez, L., Villar-Salvador, P., Martínez-Vilalta, J., Toca, A., & Zavala, M. A. (2018). Distribution of pines in the Iberian Peninsula agrees with species differences in foliage frost tolerance, not with vulnerability to freezing-induced xylem embolism. <i>Tree Physiology</i> , in press. https://doi.org/10.1093/treephys/tpx171
682 683 684	Garcia-Forner, N., Biel, C., Savé, R., & Martínez-Vilalta, J. (2016). Isohydric species are not necessarily more carbon limited than anisohydric species during drought. <i>Tree Physiology</i> , 1–15.
685 686 687	Gessler, A., Schaub, M., & McDowell, N. G. (2017). The role of nutrients in drought- induced tree mortality and recovery. <i>New Phytologist</i> , <i>214</i> , 513–520. https://doi.org/10.1111/nph.14340
688 689 690 691	Grams, T. E. E., Kozovits, A. R., Häberle, K. H., Matyssek, R., & Dawson, T. E. (2007). Combining δ^{13} C and δ^{18} O analyses to unravel competition, CO2 and O3 effects on the physiological performance of different-aged trees. <i>Plant, Cell and Environment, 30</i> , 1023–1034. https://doi.org/10.1111/j.1365-3040.2007.01696.x
692 693	Güsewell, S. (2004). N : P Ratios in Terrestrial Plants: Variation and Functional Significance. <i>New Phytologist</i> , 164, 243–266.
694 695 696 697	Hartmann, H., Moura, C. F., Anderegg, W. R. L., Ruehr, N. K., Salmon, Y., Allen, C. D., O'Brien, M. (2018). Research frontiers for improving our understanding of drought-induced tree and forest mortality. <i>New Phytologist</i> , 218, 15–28. https://doi.org/10.1111/nph.15048
698 699 700 701	 Houston-Durrant, T., de Rigo, D., & Caudullo, G. (2016). <i>Pinus sylvestris</i> in Europe: distribution, habitat, usage and threats. In J. San-Miguel-Ayanz, D. de Rigo, G. Caudullo, T. Houston-Durrant, & A. Mauri (Eds.), <i>European Atlas of Forest Tree Species</i>. Off. EU, Luxembourg.
702 703	Jonard, M., Fürst, A., Verstraeten, A., Thimonier, A., Timmermann, V., Potočić, N., Rautio, P. (2015). Tree mineral nutrition is deteriorating in Europe. <i>Global Change</i>

704	<i>Biology</i> , 21, 418–430. https://doi.org/10.1111/gcb.12657
705 706 707	Klein, T. (2014). The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. <i>Functional Ecology</i> , <i>28</i> , 1313–1320. https://doi.org/10.1111/1365-2435.12289
708	Köble, R., & Seufert, G. (2001). Novel maps for forest tree species in Europe. In
709	<i>Proceedings of the 8th European Symposium on the Physico-Chemical Behaviour</i>
710	<i>of Air Pollutants: "A Changing Atmosphere!"</i> Torino (IT).
711	Koerselman, W., & Meuleman, A. F. M. (1996). The vegetation N:P ratio: a new tool to
712	detect the nature of nutrient limitation. <i>Journal of Applied Ecology</i> , 33, 1441–
713	1450. https://doi.org/10.2307/2404783
714 715 716 717	 Kornexl, B. E., Gehre, M., Höfling, R., & Werner, R. A. (1999). On-line δ¹⁸O measurement of organic and inorganic substances. <i>Rapid Communications in Mass Spectrometry</i>, <i>13</i>, 1685–1693. https://doi.org/10.1002/(SICI)1097-0231(19990830)13:16<1685::AID-RCM699>3.0.CO;2-9
718	Kreuzwieser, J., & Gessler, A. (2010). Global climate change and tree nutrition:
719	Influence of water availability. <i>Tree Physiology</i> , 30, 1221–1234.
720	https://doi.org/10.1093/treephys/tpq055
721	Lambers, H., Chapin, F. S., & Pons, T. L. (2008). Mineral Nutrition. In T. L. Pons
722	(Ed.), <i>Plant Physiological Ecology</i> (2nd ed, pp. 255–320). New York, NY:
723	Springer New York. https://doi.org/10.1007/978-0-387-78341-3_9
724 725 726	Lawlor, D. W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. <i>Plant, Cell & Environment</i> , 25, 275–294. https://doi.org/10.1046/j.0016-8025.2001.00814.x
727	Lawniczak, A. E., Güsewell, S., & Verhoeven, J. T. A. (2009). Effect of N:K supply
728	ratios on the performance of three grass species from herbaceous wetlands. <i>Basic</i>
729	and Applied Ecology, 10, 715–725. https://doi.org/10.1016/j.baae.2009.05.004
730	León-Sánchez, L., Nicolás, E., Goberna, M., Prieto, I., Maestre, F. T., & Querejeta, J. I.
731	(2017). Poor plant performance under simulated climate change is linked to
732	mycorrhizal responses in a semiarid shrubland. <i>Journal of Ecology</i> ,
733	https://doi.org/10.1111/1365-2745.12888. https://doi.org/10.1111/1365-
734	2745.12888
735	Marschner, H., Kirkby, E. a, & Cakmak, I. (1996). Effect of mineral nutritional status
736	on shoot-root partitioning of photoassimilates and cycling of mineral nutrients.
737	<i>Journal of Experimental Botany</i> , 47, 1255–1263.
738	https://doi.org/10.1093/jxb/47.Special_Issue.1255
739 740 741	 Marschner, P., & Rengel, Z. (2012). Nutrient Availability in Soils. In P. Marschner (Ed.), <i>Marschner's Mineral Nutrition of Higher Plants: Third Edition</i> (pp. 315–330). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-384905-2.00012-1
742 743 744	Martin-StPaul, N., Delzon, S., & Cochard, H. (2017). Plant resistance to drought depends on early stomatal closure. <i>Ecology Letters</i> , 1–23. https://doi.org/10.1111/ele.12851

745	Martínez-Vilalta, J., & Garcia-Forner, N. (2017). Water potential regulation, stomatal
746	behaviour and hydraulic transport under drought: Deconstructing the
747	iso/anisohydric concept. <i>Plant Cell and Environment</i> , 40, 962–976.
748	https://doi.org/10.1111/pce.12846
749	Matías, L., Castro, J., Villar-Salvador, P., Quero, J. L., & Jump, A. S. (2017).
750	Differential impact of hotter drought on seedling performance of five ecologically
751	distinct pine species. <i>Plant Ecology</i> , 1–12. https://doi.org/10.1007/s11258-016-
752	0677-7
753 754 755 756	 Mauri, A., Di Leo, M., de Rigo, D., & Caudullo, G. (2016). <i>Pinus halepensis</i> and <i>Pinus brutia</i> in Europe: distribution, habitat, usage and threats. In J. San-Miguel-Ayanz, D. de Rigo, G. Caudullo, T. Houston-Durrant, & A. Mauri (Eds.), <i>European Atlas of Forest Tree Species</i>. Off. EU, Luxembourg.
757	McDowell, N., Beerling, D. J., Breshears, D. D., Fisher, R. A., Raffa, K. F., & Stitt, M.
758	(2011). The interdependence of mechanisms underlying climate-driven vegetation
759	mortality. <i>Trends in Ecology and Evolution</i> , <i>26</i> , 523–532.
760	https://doi.org/10.1016/j.tree.2011.06.003
761	McDowell, N., Fisher, R. A., Xu, C., Domec, J. C., Hölttä, T., Mackay, D. S.,
762	Pockman, W. T. (2013). Evaluating theories of drought-induced vegetation
763	mortality using a multimodel-experiment framework. <i>New Phytologist</i> , 200, 304–
764	321. https://doi.org/10.1111/nph.12465
765	McDowell, N. G., & Allen, C. D. (2015). Darcy's law predicts widespread forest
766	mortality under climate warming. <i>Nature Climate Change</i> , 5, 669–672.
767	https://doi.org/10.1038/nclimate2641
768	McDowell, N. G., Williams, A. P., Xu, C., Pockman, W. T., Dickman, L. T., Sevanto,
769	S., Koven, C. (2015). Multi-scale predictions of massive conifer mortality due
770	to chronic temperature rise. <i>Nature Climate Change</i> , <i>6</i> , 295–300.
771	https://doi.org/10.1038/nclimate2873
772	McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T.,
773	Yepez, E. A. (2008). Mechanisms of plant survival and mortality during drought:
774	why do some plants survive while others succumb to drought? <i>New Phytologist</i> ,
775	<i>178</i> , 719–739. https://doi.org/10.1111/j.1469-8137.2008.02436.x
776	Meinzer, F. C., Woodruff, D. R., Marias, D. E., Mcculloh, K. A., & Sevanto, S. (2014).
777	Dynamics of leaf water relations components in co-occurring iso- and anisohydric
778	conifer species. <i>Plant, Cell and Environment</i> , 2577–2586.
779	https://doi.org/10.1111/pce.12327
780	Moran, E., Lauder, J., Musser, C., Stathos, A., & Shu, M. (2017). The genetics of
781	drought tolerance in conifers. <i>New Phytologist</i> , 216.
782	https://doi.org/10.1111/nph.14774
783 784 785 786	Nardini, A., Casolo, V., Dal Borgo, A., Savi, T., Stenni, B., Bertoncin, P., McDowell, N. G. (2016). Rooting depth, water relations and non-structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought. <i>Plant Cell and Environment</i> , <i>39</i> , 618–627. https://doi.org/10.1111/noc.12646

787 https://doi.org/10.1111/pce.12646

788	Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., Oishi, A. C.,
789	Phillips, R. P. (2016). The increasing importance of atmospheric demand for
790	ecosystem water and carbon fluxes. <i>Nature Climate Change</i> , <i>6</i> , 1023–1027.
791	https://doi.org/10.1038/nclimate3114
792 793 794 795	Oliet, J., Planelles, R., López Arias, M., & Artero, F. (2002). Soil water content and water relations in planted and naturally regenerated <i>Pinus halepensis</i> Mill. seedlings during the first year in semiarid conditions. <i>New Forests</i> , <i>23</i> , 31–44. https://doi.org/10.1023/A:1015668815037
796	Peñuelas, J., Sardans, J., Rivas-Ubach, A., & Janssens, I. A. (2012). The human-
797	induced imbalance between C, N and P in Earth's life system. <i>Global Change</i>
798	<i>Biology</i> , 18, 3–6. https://doi.org/10.1111/j.1365-2486.2011.02568.x
799	Prieto, I., Querejeta, J. I., Segrestin, J., Volaire, F., & Roumet, C. (2017). Leaf carbon
800	and oxygen isotopes are coordinated with the leaf economics spectrum in
801	Mediterranean rangeland species. <i>Functional Ecology</i> .
802	https://doi.org/doi:10.1111/1365-2435.13025
803 804 805 806	Querejeta, J. I., Allen, M. F., Caravaca, F., & Roldán, A. (2006). Differential modulation of host plant δ^{13} C and δ^{18} O by native and nonnative arbuscular mycorrhizal fungi in a semiarid environment. <i>The New Phytologist</i> , <i>169</i> , 379–387. https://doi.org/10.1111/j.1469-8137.2005.01599.x
807	R Core Team. (2016). R: A Language and Environment for Statistical Computing.
808	Retrieved from https://www.r-project.org/
809	Rengel, Z., & Marschner, P. (2005). Nutrient availability and management in the
810	rhizosphere: Exploiting genotypic differences. <i>New Phytologist</i> , 168, 305–312.
811	https://doi.org/10.1111/j.1469-8137.2005.01558.x
812 813	Richardson, D. M. (2000). <i>Ecology and Biogeography of</i> Pinus . Cambridge University Press.
814	Rivas-Ubach, A., Sardans, J., Perez-Trujillo, M., Estiarte, M., & Penuelas, J. (2012).
815	Strong relationship between elemental stoichiometry and metabolome in plants.
816	<i>Proceedings of the National Academy of Sciences</i> , 109, 4181–4186.
817	https://doi.org/10.1073/pnas.1116092109
818	Rouphael, Y., Cardarelli, M., Schwarz, D., Franken, P., & Colla, G. (2012). Effects of
819	Drought on Nutrient Uptake and Assimilation in Vegetable Crops. In <i>Plant</i>
820	<i>Responses to Drought Stress</i> (pp. 171–195). Berlin, Heidelberg: Springer Berlin
821	Heidelberg. https://doi.org/10.1007/978-3-642-32653-0_7
822 823	Rühl, E. H. (1992). Effect of K supply and relative humidity on ion uptake and distribution on two grapevine rootstock varieties. <i>Vitis</i> , <i>31</i> , 23–33.
824 825	Ruiz de la Torre, J. (2006). <i>Flora mayor</i> . Madrid, Spain: Organismo Autónomo Parques Nacionales, Dirección General para la Biodiversidad.
826 827 828	Sabaté, S., & Gracia, C. A. (1994). Canopy nutrient content of a Quercus ilex L. forest: fertilization and irrigation effects. <i>Forest Ecology and Management</i> , 68, 31–37. https://doi.org/10.1016/0378-1127(94)90135-X

829 830	Sala, A., Piper, F., & Hoch, G. (2010). Physiological mechanisms of drought-induced tree mortality are far from being resolved. <i>New Phytologist</i> , <i>186</i> , 274–281.
831	Salazar-Tortosa, D., Castro, J., Rubio de Casas, R., Viñegla, B., Sánchez-Cañete, E., &
832	Villar-Salvador, P. (2018). Gas exchange at whole plant level shows that a less
833	conservative water use is linked to a higher performance in three ecologically
834	distinct pine species. <i>Environmental Research Letters</i> , in press.
835	https://doi.org/10.1088/1748-9326/aab18f
836	Sardans, J., & Peñuelas, J. (2012). The Role of Plants in the Effects of Global Change
837	on Nutrient Availability and Stoichiometry in the Plant-Soil System. <i>Plant</i>
838	<i>Physiology</i> , 160, 1741–1761. https://doi.org/10.1104/pp.112.208785
839	Sardans, J., & Peñuelas, J. (2015). Potassium : a neglected nutrient in global change.
840	Global Ecology and Biogeography, 24, 261–275.
841	https://doi.org/10.1111/geb.12259
842	Sardans, J., Peñuelas, J., Coll, M., Vayreda, J., & Rivas-Ubach, A. (2012).
843	Stoichiometry of potassium is largely determined by water availability and growth
844	in Catalonian forests. <i>Functional Ecology</i> , 26, 1077–1089.
845	https://doi.org/10.1111/j.1365-2435.2012.02023.x
846	Sardans, J., Peñuelas, J., Prieto, P., & Estiarte, M. (2008). Changes in Ca, Fe, Mg, Mo,
847	Na, and S content in a Mediterranean shrubland under warming and drought.
848	<i>Journal of Geophysical Research: Biogeosciences</i> , 113, 1–11.
849	https://doi.org/10.1029/2008JG000795
850	Sardans, J., Rivas-Ubach, A., & Peñuelas, J. (2011). Factors affecting nutrient
851	concentration and stoichiometry of forest trees in Catalonia (NE Spain). Forest
852	Ecology and Management, 262, 2024–2034.
853	https://doi.org/10.1016/j.foreco.2011.08.019
854	Scheidegger, Y., Saurer, M., Bahn, M., & Siegwolf, R. (2000). Linking Stable Oxygen
855	and Carbon Isotopes with Stomatal Conductance and Photosynthetic Capacity : A
856	Conceptual Model. <i>Oecologia</i> , 125, 350–357.
857	https://doi.org/10.1007/S004420000466
858	Schreiber, U. (2004). Pulse-Amplitude-Modulation (PAM) Fluorometry and Saturation
859	Pulse Method: An Overview. In G. C. Papageorgiou & Govindjee (Eds.), Advances
860	in Photosynthesis and Respiration (pp. 279–319). Dordrecht: Springer
861	Netherlands. https://doi.org/10.1007/978-1-4020-3218-9_11
862	Sevanto, S., McDowell, N. G., Dickman, L. T., Pangle, R., & Pockman, W. T. (2014).
863	How do trees die? A test of the hydraulic failure and carbon starvation hypotheses.
864	<i>Plant, Cell and Environment</i> , 37, 153–161. https://doi.org/10.1111/pce.12141
865 866 867 868	Sharkey, T. D. (2005). Effects of moderate heat stress on photosynthesis: Importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. <i>Plant, Cell and Environment, 28</i> , 269–277. https://doi.org/10.1111/j.1365-3040.2005.01324.x
869 870	Sperry, J. S., Hacke, U. G., Oren, R., & Comstock, J. P. (2002). Water deficits and hydraulic limits to leaf water supply. <i>Plant, Cell and Environment</i> , 25, 251–263.

871	https://doi.org/10.1046/j.0016-8025.2001.00799.x
872	Talbott, L. D., & Zeiger, E. (1996). Central Roles for Potassium and Sucrose in Guard-
873	Cell Osmoregulation. <i>Plant Physiology</i> , 111, 1051–1057.
874	https://doi.org/111/4/1051 [pii]
875	Tapias, R., Climent, J., Pardos, J. A., & Gil, L. (2004). Life histories of Mediterranean
876	pines. <i>Plant Ecology</i> , 171, 53–68.
877	https://doi.org/10.1023/B:VEGE.0000029383.72609.f0
878	Tardieu, F., & Simonneau, T. (1998). Variability among species of stomatal control
879	under fluctuating soil water status and evaporative demand: modelling isohydric
880	and anisohydric behaviours. <i>Journal of Experimental Botany</i> , 49, 419–432.
881	https://doi.org/10.1093/jxb/49.Special_Issue.419
882	Therneau, T. M. (2015). A Package for Survival Analysis in S. Retrieved from url:
883	http://CRAN.R-project.org/package=survival
884 885	Therneau, T. M., & Grambsch, P. M. (2000). <i>Modeling Survival Data: Extending the Cox Model</i> . New York: Springer.
886 887 888 888	Urban, J., Ingwers, M. W., McGuire, M. A., & Teskey, R. O. (2017). Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in <i>Pinus taeda</i> and <i>Populus deltoides x nigra. Journal of Experimental Botany</i> , 68, 1757–1767. https://doi.org/10.1093/jxb/erx052
890 891 892	Voltas, J., Lucabaugh, D., Chambel, M. R., & Ferrio, J. P. (2015). Intraspecific variation in the use of water sources by the circum-Mediterranean conifer <i>Pinus halepensis</i> . <i>The New Phytologist</i> , <i>208</i> , 1031–41. https://doi.org/10.1111/nph.13569
893	Voltas, J., Romagosa, I., Muñoz, P., & Araus, J. L. (1998). Mineral accumulation,
894	carbon isotope discrimination and indirect selection for grain yield in two-rowed
895	barley grown under semiarid conditions. <i>European Journal of Agronomy</i> , 9, 147–
896	155. https://doi.org/10.1016/S1161-0301(98)00032-X
897 898 899 900	West, A. G., Dawson, T. E., February, E. C., Midgley, G. F., Bond, W. J., & Aston, T. L. (2012). Diverse functional responses to drought in a Mediterranean-type shrubland in South Africa. <i>New Phytologist</i> , <i>195</i> , 396–407. https://doi.org/10.1111/j.1469-8137.2012.04170.x
901	Williams, A. P., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A., Meko,
902	D. M., McDowell, N. G. (2013). Temperature as a potent driver of regional
903	forest drought stress and tree mortality. <i>Nature Climate Change</i> , <i>3</i> , 292–297.
904	https://doi.org/10.1038/nclimate1693
905	Zhang, X., Wollenweber, B., Jiang, D., Liu, F., & Zhao, J. (2008). Water deficits and
906	heat shock effects on photosynthesis of a transgenic <i>Arabidopsis thaliana</i>
907	constitutively expressing ABP9, a bZIP transcription factor. <i>Journal of</i>
908	<i>Experimental Botany</i> , 59, 839–848. https://doi.org/10.1093/jxb/erm364
909 910 911	Zweifel, R., Steppe, K., & Sterck, F. J. (2007). Stomatal regulation by microclimate and tree water relations : interpreting ecophysiological field data with a hydraulic plant model, <i>58</i> , 2113–2131. https://doi.org/10.1093/jxb/erm050

912 913 914	Zwieniecki, M. A., & Holbrook, N. M. (2009). Confronting Maxwell's demon: biophysics of xylem embolism repair. <i>Trends in Plant Science</i> , 14, 530–534. https://doi.org/10.1016/j.tplants.2009.07.002
915	
916	
917	
918	
919	
920	
921	
922	
923	
924	
925	
926	
927	
928	
929	
930	
931	
932	
933	
934	
935	
936	
937	
938	
939	
940	
941	

942 *Tables*

Table 1 Mean values ± SE of physiological variables measured in the four target pine

species during mid-summer (dry season) of the second year after planting. F and P

- values of the "species" factor are shown for each variable. Significant p values are
- 946 indicated in bold, while differences between species (P < 0.05 after Tukey's multiple
- 947 comparison) are shown with different superscripts.

	Species						
Variables	Sample size	P. halepensis	P. nigra	P. sylvestris	P. uncinata	F	Pr(>F)
Predawn Water Potential (MPa)	71	-1.26±0.05 ^b	-0.86±0.03ª	-0.87±0.04 ^a	-	43.9	2.63E-11
Midday Water Potential (MPa)	131	-2.37±0.04 ^b	-1.88±0.05 ^a	-1.84±0.04 ^a	-1.92±0.04 ^a	30.6	6.46E-14
$\begin{array}{c} \mbox{Predawn fluorescence} \\ (F_v\!/F_m) \end{array}$	132	0.8709±0.0024 ^a	0.839±0.005 ^b	0.836±0.006 ^b	0.825±0.006 ^b	17.2	5.17E-09
$\begin{array}{c} \mbox{Midday fluorescence} \\ \mbox{(}F_{\rm v}\!/F_{\rm m}\mbox{)} \end{array}$	132	0.796±0.007 ^a	0.685 ± 0.017^{bc}	0.721±0.017 ^b	0.657±0.022 ^c	16.3	1.34E-08
Yield	127	$0.688{\pm}0.005^{a}$	0.599±0.017 ^b	0.598±0.017 ^b	0.545 ± 0.024^{b}	22.1	7.35E-11
rETR (μ M e/m ² s)	127	455.0±10.0 ^a	396.1±13.3 ^b	384.9±13.7 ^b	324.4±15.9°	17.7	3.85E-09
Photochemical quenching	125	0.972±0.003 ^a	$0.968{\pm}0.004^{ab}$	0.958±0.005 ^{ab}	0.953±0.005 ^b	3.6	1.66E-02
Non-Photochemical quenching	126	$0.044{\pm}0.006^{b}$	$0.067 {\pm} 0.010^{ab}$	$0.071 {\pm} 0.009^{ab}$	0.083±0.013ª	3.2	2.53E-02

948

949

950

951

953	Table 2 Mean values \pm SE of leaf isotopic composition, nutrient concentrations and
954	stoichiometric ratios measured in the four target pine species in mid-summer (dry
955	season) of the second year after planting. F and P values of the "species" factor are
956	shown for each variable. Significant p-values are indicated in bold, while differences
957	between species (P \leq 0.05 after Tukey's multiple comparison) are shown with different
958	superscripts. As a reference, macronutrient concentration and stoichiometric ratios
959	observed in natural populations of the studied species in Northeast of the Iberian
960	Peninsula are shown in brackets (data obtained from Sardans, Rivas-Ubach, &

961 Peñuelas, 2011).

Species							
Variables	Sample size	P. halepensis	P. nigra	P. sylvestris	P. uncinata	F	Pr(>F)
Foliar δ^{13} C (‰)	186	-25.50±0.09 ^a	-27.68±0.17 ^b	-27.50±0.16 ^b	-28.38±0.32 ^b	60.8	< 2.2E-16
Foliar δ^{18} O (‰)	186	26.72 ± 0.11^{d}	28.59±0.17 ^c	29.55±0.18 ^b	30.12±0.3 ^a	97.3	< 2.2E-16
Nitrogen (mg g ⁻¹)	181	14.3±0.3 ^b (10.6±0.1)	12.8±0.3 ^c (9.4±0.09)	18.3±0.7 ^a (11.9±0.1)	16.5±0.8 ^{ab} (9.7±0.15)	26.8	1.06E-13
Phosphorus (mg g ⁻¹)	185	0.85±0.03 ^a (0.80±0.01)	0.37±0.02 ^c (0.83±0.01)	0.43±0.02 ^b (1.10±0.01)	0.49±0.03 ^{bc} 0.92±0.01)	122	< 2.2E-16
Potassium (mg g ⁻¹)	186	4.74±0.14 ^a (4.00±0.05)	2.95±0.10 ^b (4.44±0.08)	2.57±0.12 ^c (5.55±0.09)	2.83±0.21 ^{bc} (4.16±0.10)	58.4	< 2E-16
Zinc (ppm)	185	18.8±0.5 ^a	13.6±0.8 ^b	12.3±0.7 ^b	11.3±1.3 ^b	19.1	2.17E-10
Copper (ppm)	184	3.09±0.08 ^a	1.53±0.07 ^b	1.69±0.08 ^b	1.95±0.20 ^b	74.2	< 2.2E-16
C:N ratio	186	31.4±0.7 ^b (52.2±0.5)	35.62±0.81 ^a (57.3±0.6)	26.5±0.7 ^c (45.0±0.3)	27.96±1.16 ^{bc} (55.6±0.8)	27	8.56E-14
N:P ratio	180	17.5±0.6° (14.9±1.1)	36.6±1.5 ^b (11.8±0.2)	46.4±2.7 ^a (11.4±0.1)	35.4±2.7 ^{ab} (10.5±0.2)	99	< 2.2E-16
N:K ratio	181	3.13±0.12 ^c (3.00±0.07)	4.59±0.20 ^b (2.55±0.07)	7.84±0.50 ^a (2.63±0.07)	6.20±0.50 ^a (2.70±0.12)	62.1	< 2.2E-16

962

963

965 *Figure captions*

966	Figure 1 Proposed "isohydric trap" conceptual model of reduced plant physiological
967	performance and growth under hotter drought, in which vascular plants with a strong
968	stomatal regulation of transpiration undergo early and prolonged closure of the stomata
969	under heat and drought stress. This strict isohydric behaviour triggers a series of
970	physiological changes that culminate in severe nutrient imbalance and a reduction of the
971	capacity to cope with further drought stress, thereby becoming a feedback to in earlier
972	stomatal closure under a subsequent event of water stress (the "isohydric trap"). Sub-
973	loops are shown with arrows of different colours: i) Transpiration-nutrient loop in blue;
974	ii) Transpiration-root growth loop in green.

975

976 Figure 2 Spearman's rank coefficients (ρ) for the correlations of pine sapling growth

977 after two years with leaf δ^{18} O, δ^{13} C and nutrient concentration across species.

978 Significant associations are indicated with asterisks (* for P < 0.05 and ** for P < 0.01).

979

Figure 3 Correlations between leaf nutrient concentrations and foliar δ^{18} O (proxy of stomatal conductance) across species. Spearman's rank correlation coefficients along with p and S value are shown for each correlation. Abbreviations: H = *P. halepensis*, N = *P. nigra*, S = *P. sylvestris*, U = *P. uncinata*.

984

Figure 4 Correlations between foliar δ^{13} C (proxy of water-use efficiency) and leaf

986 nutrient concentrations across pine species. Spearman's rank correlation

Global Change Biology

9	87	coefficients together with p and S value are shown for each correlation. Species
9	88	abbreviations as in Figure 3.
9	89	
9	90	Figure 5 Correlation between mean values per species of leaf δ^{13} C (proxy of water-use
9	91	efficiency) with photosynthetic fluorescence parameters across pine species. Pearson's
9	92	correlation coefficients along with p and t value are shown for each correlation. Error
9	93	bars for both axes represent \pm SE. Species abbreviations as in Figure 3. Variables
9	94	abbreviations: Yield = Quantum yield, qN = Non-photochemical quenching.
9	95	
9	96	Figure 6 Correlation between mean values per species of leaf δ^{18} O (proxy of stomatal
9	97	conductance) with photosynthetic fluorescence parameters across pine species.
9	98	Pearson's correlation coefficients together with p and t value are shown for each
9	99	correlation. Error bars for both axes represent ±SE. Species abbreviations as in Figure 3.
10	00	Variables abbreviations: Yield = Quantum yield, rETR = relative electron transport rate,

qN = Non-photochemical quenching.1001

0.90

