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Abstract 29 

Climatic dryness imposes limitations on vascular plant growth by reducing stomatal 30 

conductance, thereby decreasing CO2 uptake and transpiration. Given that transpiration-31 

driven water flow is required for nutrient uptake, climatic stress-induced nutrient deficit 32 

could be a key mechanism for decreased plant performance under prolonged drought. 33 

We propose the existence of an “isohydric trap”, a dryness-induced detrimental 34 

feedback leading to nutrient deficit and stoichiometry imbalance in strict isohydric 35 

species. We tested this framework in a common garden experiment with 840 individuals 36 

of four ecologically-contrasting European pines (Pinus halepensis, P. nigra, P. 37 

sylvestris, and P. uncinata) at a site with high temperature and low soil water 38 

availability. We measured growth, survival, photochemical efficiency, stem water 39 

potentials, leaf isotopic composition (δ
13

C, δ
18

O), and nutrient concentrations (C, N, P, 40 

K, Zn, Cu). After two years, the Mediterranean species Pinus halepensis showed lower 41 

δ
18

O and higher δ
13

C values than the other species, indicating higher time-integrated 42 

transpiration and water-use efficiency (WUE), along with lower predawn and midday 43 

water potentials, higher photochemical efficiency, higher leaf P and K concentrations, 44 

more balanced N:P and N:K ratios, and much greater dry-biomass (up to 63-fold) and 45 

survival (100%). Conversely, the more mesic mountain pine species showed higher leaf 46 

δ
18

O and lower δ
13

C, indicating lower transpiration and WUE, higher water potentials, 47 

severe P and K deficiencies and N:P and N:K imbalances, and poorer photochemical 48 

efficiency, growth, and survival. These results support our hypothesis that vascular 49 

plant species with tight stomatal regulation of transpiration can become trapped in a 50 

feedback cycle of nutrient deficit and imbalance that exacerbates the detrimental 51 

impacts of climatic dryness on performance. This overlooked feedback mechanism may 52 

hamper the ability of isohydric species to respond to ongoing global change, by 53 
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aggravating the interactive impacts of stoichiometric imbalance and water stress caused 54 

by anthropogenic N deposition and hotter droughts, respectively. 55 

 56 

Introduction 57 

Plant survival and performance is determined largely by soil water availability, since 58 

water is a major limiting resource for primary production in many regions (Adams et 59 

al., 2017; Cramer & Hoffman, 2015; Lawlor & Cornic, 2002). The responses of plant 60 

species and individuals to water shortage span a variety of mechanisms that either tend 61 

to increase water uptake (e.g. enhanced root growth) or reduce water loss (e.g. stomatal 62 

closure). Stomatal regulation is the quickest mechanism to cope with drought, leading to 63 

two contrasting strategies termed anisohydry and isohydry, characterized by relaxed vs. 64 

tight stomatal control of transpiration in response to decreases in plant water potential 65 

(Moran, Lauder, Musser, Stathos, & Shu, 2017; Tardieu & Simonneau, 1998; but see 66 

Martínez-Vilalta & Garcia-Forner, 2017). These strategies are clearly the opposite 67 

extremes of a continuous ecophysiological gradient (Klein, 2014) but, overall, the 68 

degree of stomatal regulation of transpiration is currently considered a key functional 69 

trait that explains not only individual plant response to drought, but also forest 70 

persistence under current and future climatic conditions (McDowell et al., 2011).  71 

 Although the role of stomatal control as a key mechanism in the regulation of 72 

plant carbon balance and hydraulic functioning under drought and heat stress has been 73 

the focus of much research attention in recent years (Garcia-Forner, Biel, Savé, & 74 

Martínez-Vilalta, 2016; Martínez-Vilalta & Garcia-Forner, 2017; McDowell et al., 75 

2013), less attention has been paid to plant nutrient dynamics as a potential key factor 76 

influencing plant survival and growth under conditions of prolonged climatic dryness 77 

(Gessler, Schaub, & McDowell, 2017; Hartmann et al., 2018). Nutrient availability and 78 
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plant nutrient status influence forest productivity through photosynthetic, allocation, 79 

and stoichiometric effects (Marschner, Kirkby, & Cakmak, 1996; Sardans & Peñuelas, 80 

2012). Drought decreases soil nutrient availability for plants due to reduced ion 81 

mobility and microbial activity, which can lead to impairment of the plant’s nutrient 82 

status and growth (Kreuzwieser & Gessler, 2010). Plant nutrient acquisition from the 83 

soil is tightly linked to water uptake and movement in soils, as plants rapidly deplete 84 

nutrients from the rhizosphere, which must be replenished by dissolved nutrients carried 85 

in the transpiration-driven mass flow of water to plant roots (Cabrera-Bosquet, Sánchez, 86 

& Araus, 2009; Lambers, Chapin, & Pons, 2008; Voltas, Romagosa, Muñoz, & Araus, 87 

1998). Plant nutrient uptake is therefore heavily dependent on the existence of a 88 

negative water potential gradient from the soil to the roots that is driven by leaf 89 

transpiration (Lambers, Chapin, & Pons, 2008). Furthermore, plants need to maintain 90 

particular nutrient stoichiometric relations in their tissues for proper ecophysiological 91 

functioning (Güsewell, 2004; Koerselman & Meuleman, 1996; Marschner et al., 1996; 92 

Sardans & Peñuelas, 2012). Given that nutrient mobility in the soil matrix may differ by 93 

several orders of magnitude among various essential macro- and micronutrients 94 

(Lambers et al., 2008), environmental conditions of dryness forcing stomatal closure 95 

may severely impair the nutrient balance and stoichiometric ratios of plant tissues. 96 

Thus, the interplay and interdependence between plant water relations, nutrient status 97 

and stoichiometric relations should be considered a potential important mechanism 98 

contributing to plant mortality or reduced performance in models that seek to predict the 99 

impact of drier climatic conditions on plant communities.  100 

Here, we propose the existence of an “isohydric trap” that occurs when vascular 101 

plant species with a strict isohydric behaviour fall under prolonged climatic dryness 102 

conditions, leading to a detrimental feedback loop between water stress, tight stomatal 103 
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control, and nutrient uptake and status that can be detrimental to plant physiological 104 

functioning including growth and survival (Figure 1). In this conceptual model, strict 105 

isohydric species exhibit early and prolonged stomatal closure under dry conditions 106 

(Klein, 2014; Moran et al., 2017), thereby drastically reducing cumulative transpiration, 107 

and hence mass flow of water and in-solution nutrients to roots. As a result, nutrient 108 

uptake decreases and plants become prone to macro- and micronutrient deficiency and 109 

stoichiometric imbalance, which in turn further decreases stomatal conductance and 110 

carbon assimilation through reductions in photochemical efficiency and water use 111 

efficiency (Figure 1; blue arrow). These feedbacks eventually decrease carbon 112 

availability for supporting root and ectomycorrhizal activity and growth, further 113 

reducing the capacity for plant water and nutrient uptake (León-Sánchez et al., 2017) 114 

and thereby further impairing the plant’s ability to cope with prolonged climatic dryness 115 

(Figure 1; green arrow).  116 

In this study, we seek to demonstrate that the detrimental impact of this 117 

“isohydric trap” on plant nutrient status and stoichiometry is a key mechanism behind 118 

the response of drought-sensitive plant species to prolonged climatic dryness. To test 119 

this theoretical framework, we conducted a two-year common garden experiment where 120 

juveniles of four pine species with contrasting ecological niche and ecophysiological 121 

behaviour were grown under the same xeric environmental conditions. Plants were 122 

monitored for survival and growth, along with photochemical efficiency, water 123 

potential, leaf nutrient concentrations, and leaf δ
18

O and δ
13

C signatures, which were 124 

used as surrogates of time-integrated stomatal conductance and water use efficiency, 125 

respectively. We predicted that exposure to prolonged climatic dryness will impose 126 

strong constraints on cumulative transpiration and nutrient uptake in pine species with 127 

strict isohydric behaviour. Due to the tight coupling between water and nutrient uptake 128 
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by roots, reduced transpiration will hamper the mass flow and diffusion of nutrients to 129 

roots and the uptake of dissolved nutrients, eventually leading to nutrient deficiency and 130 

severe N:P:K stoichiometric imbalance. This will hinder plant carbon balance, 131 

transpiration and water use efficiency, ultimately leading to decreased growth and 132 

survival. In contrast, drought-tolerant pine species with less strict stomatal control of 133 

transpiration will escape this “isohydric trap” by allowing water potential to drop while 134 

maintaining greater stomatal aperture and transpiration under prolonged drought stress, 135 

which will allow greater nutrient uptake and a more balanced plant nutrient status and 136 

stoichiometry. We seek to expand current knowledge on plant responses to increasing 137 

frequency of hotter droughts (Allen, Breshears, & McDowell, 2015) by examining the 138 

importance of drought-induced nutrient starvation and stoichiometric imbalance, which 139 

to-date has been largely overlooked or underestimated in both conceptual and empirical 140 

models of plant responses to climate change (Gessler et al., 2017).  141 

 142 

Material and methods 143 

Species and plant material 144 

The studied species were Pinus halepensis Mill., P. nigra Arnold, P. sylvestris L., and 145 

P. uncinata Ram. These species are native in Europe, altogether cover a wide 146 

geographic range across the continent (circa 30% of its forest area; Köble & Seufert, 147 

2001) and segregate clearly along aridity gradients in the order P. halepensis > P. nigra 148 

> P. sylvestris > P. uncinata, whereas their resistance to cold stress follows the opposite 149 

trend (Fernández-Pérez, Villar-Salvador, Martínez-Vilalta, Toca, & Zavala, 2018;  Ruiz 150 

de la Torre, 2006; Tapias, Climent, Pardos, & Gil, 2004). Pinus halepensis is widely 151 

distributed throughout the Mediterranean basin from sea level to 1200 m a.s.l., P. nigra 152 

from 800 to 2000 m a.s.l. (Mediterranean and Alpine distribution), P. sylvestris from 153 
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1000 to 2100 m a.s.l. (Boreo-Alpine/Eurosiberian distribution), and P. uncinata is 154 

distributed from 1400 to 2200 m a.s.l. in the Alps, Pyrenees, and other high Iberian 155 

mountains (Richardson 2000; altitudinal ranges for Southern Europe). In general, pines 156 

are considered isohydric species compared to other taxa such as oaks or junipers 157 

(Meinzer, Woodruff, Marias, Mcculloh, & Sevanto, 2014; Zweifel, Steppe, & Sterck, 158 

2007). However, several evidences support that there is a gradient in stomatal behaviour 159 

in response to water stress among the studied species. First, these species show 160 

differences in the regulation of plant water potential, which is associated with stomatal 161 

control (Klein, 2014; Sperry, Hacke, Oren, & Comstock, 2002; Tardieu & Simonneau, 162 

1998), with P. halepensis reaching the lowest water potentials, followed by P. nigra, P. 163 

sylvestris and P. uncinata (Choat et al., 2012; Matías, Castro, Villar-Salvador, Quero, & 164 

Jump, 2017; Oliet, Planelles, López Arias, & Artero, 2002). Second, leaf-level 165 

measurements suggest the existence of large interspecific differences in stomatal 166 

sensitivity to low plant water potentials, with P. halepensis showing the lowest water 167 

potentials at stomatal closure, followed by P. nigra and P. sylvestris (Martin-StPaul, 168 

Delzon, & Cochard, 2017). Finally, previous measurements at whole-plant level in the 169 

study site showed that P. halepensis exhibits less tight stomatal control and higher 170 

transpiration rates under dry conditions than P. nigra and P. sylvestris (Salazar-Tortosa 171 

et al., 2018). Therefore, we may assume that the studied species can be ordered along an 172 

iso-anisohydry gradient from P. uncinata (most isohydric), P. sylvestris, P. nigra to P. 173 

halepensis (most anisohydric). 174 

Seeds of the four species were collected when ripe from certified provenance 175 

regions of the Iberian Peninsula (Appendix S1, Table S1). The seeds were stored under 176 

cold, dry conditions until sowing. Seeding was done in winter 2012 using 300-mL 177 

plastic containers filled with fertilized peat (White 420 F6 Kekkilä, Finland; pH 4.7) 178 
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containing 0.8-1 kg/m
3
 of a slow-release fertilizer NPK 16-10-20. They were initially 179 

grown in a greenhouse of the Centro Nacional de Recursos Genéticos Forestales “El 180 

Serranillo” (Guadalajara, Spain, 40° 39' 56.14" N, 3° 10' 15.20" W) to avoid frost 181 

damage. In mid-May 2012, the seedlings were moved outdoors and cultivated under 182 

optimal forest nursery conditions until 15 February 2013, when they were transferred to 183 

the common garden site. Nutrient content and isotopic composition at the time of 184 

transplanting indicates that seedlings had not been subjected to any water or nutrient 185 

stress during the nursery stage (Appendix S1, Table S1). 186 

 187 

Study site and experimental design 188 

The common garden experiment was conducted at the “Huerta de La Paloma” farm (37º 189 

10' 03.43'' N, 3º 36' 57.80'' W; Granada, Southern Spain), a flat (slope ca. 2%), 190 

agricultural terrain at 649 m a.s.l. The climate is Mediterranean with hot, dry summers 191 

and precipitation concentrated in autumn and spring. The mean annual rainfall is 192 

394±38 L m
2
 y

-1
 and the mean annual temperature is 15.3±0.1ºC, with a mean 193 

maximum of the hottest month of 35.7±0.2ºC and a mean minimum of the coldest 194 

month of -0.1±0.2ºC (period 2006-2015; climatic data from a meteorological station 195 

located 1.5 km away at IFAPA Research Field Station). These climatic conditions can 196 

be regarded as dry and hot for P. nigra, P. sylvestris and P. uncinata when compared to 197 

the prevailing climatic conditions in their native ranges (Christensen, 1987; Enescu, de 198 

Rigo, Caudullo, Mauri, & Houston-Durrant, 2016; Houston-Durrant, de Rigo, & 199 

Caudullo, 2016), whereas they fall within the optimal ecological range of P. halepensis 200 

(Mauri, Di Leo, de Rigo, & Caudullo, 2016). The soil is deep with a loamy texture, and 201 

average values of 44.8% sand, 41.8% silt, and 13.3% clay, and a soil water content of 202 

13% at wilting point and 33% at field capacity (-1.5 and -0.033 MPa, respectively; 203 
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means for the profile down to 1 m deep; no marked horizons in soil profile; analyses 204 

done in the Laboratorio Agroalimentario de la Junta de Andalucía, Atarfe, Granada, 205 

official laboratory for the Regional Agricultural Service). The soil-nutrient content at 0-206 

15 cm depth (N, P and K) showed adequate values for plant growth (Appendix S1, 207 

Table S2). 208 

  On 15 February 2013, the one-year-old seedlings grown under nursery 209 

conditions were transplanted to the common garden site using a randomized-block 210 

design. Three blocks of 500 m
2
 were located side by side, separated by 2.5 m. In each 211 

block, we planted a total of 70 individuals of each species (70 x 3 blocks x 4 species = 212 

840 seedlings in total). Within each block, seedlings were regularly planted at 1.25-m 213 

distance from each other, and individuals of each pine species where distributed 214 

randomly within the planting scheme. Weeds were removed manually and with a 215 

cultivator as needed to prevent competition. We did not find any competition effect 216 

from neighbours on either survival or growth (P > 0.53 in both cases; Appendix S1, 217 

Table S3). The initial size of each seedling (length of the leader shoot and stem-root 218 

collar diameter) was measured just after planting as a baseline for aboveground growth 219 

estimations (Appendix S1, Table S1). Soil-water content was measured regularly 220 

throughout the summers (June-September) at 10, 20, 30, 40, 60, and 100 cm depth using 221 

a PR-2/6 Soil Moisture Profile Probe (Delta T, Cambridge, UK). Water content in the 222 

soil profile remained above the permanent wilting point throughout the hot, dry 223 

(summer) season (Appendix S1, Table S4). 224 

 225 

Seedling survival and growth 226 

Survival was monitored eight times from 13 June 2013 to 9 September 2014. Seedling 227 

growth was measured non-destructively for all the plants in September 2013 and 2014, 228 
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considering leader shoot length and stem diameter (increment relative to initial values 229 

measured after planting). Stem volume was calculated for each year assuming a conical 230 

shape for the stem, with basal diameter given by the average of two perpendicular 231 

measurements at the root collar and height given by the maximum height of the leader 232 

shoot. Growth patterns for both years were similar and hence only the data from 2014 233 

are reported. In the third year (September 2015), height, stem-root collar diameter, and 234 

fresh weight were measured in a random subsample of five pines per species and block 235 

(P. uncinata not included due to small sample size; 45 pines in total). Survival was not 236 

monitored in the third growing season of the experiment, given that a destructive 237 

harvesting of seedlings was performed the previous year for leaf isotopic and nutrient 238 

analyses (see below), and thus the remaining plants might not represent a random 239 

sample for this variable. 240 

 241 

Physiological variables  242 

The effective photochemical quantum yield of photosystem II (Y(II), termed quantum 243 

yield from now on), relative electron transport rate (rETR), photochemical quenching 244 

(qP), non-photochemical quenching (qN), maximum photochemical efficiency of 245 

photosystem II (Fv/Fm), and leaf-water potential (Ψ) were measured for a subsample of 246 

nine randomly selected seedlings per species and block in July of 2014. Quantum yield, 247 

qP, and qN were measured by means of a portable junior PAM fluorometer (Heinz 248 

Walz GmbH Germany), and rETR was calculated by means of the following equation 249 

(Schreiber, 2004): 250 

 251 

rETR = PAR x ETR-Factor x PPSII/PPPS x Y(II), 252 

 253 
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where PAR is the photosynthetically active radiation during the measurements; ETR-254 

Factor is the absorptance of photons by photosynthetic pigments which is considered to 255 

be 0.84 as a reasonable match to the average absorptance in the visible range (400-700 256 

nm); PPSII/PPPS is the ratio between the photons absorbed by PS II and photons absorbed 257 

by photosynthetic pigments, with a value of 0.5 assuming only linear electron transport, 258 

that is, equal transfer rates through PS I and PS II, and comparable photochemical 259 

quantum yields of PS I and PS II under strongly light-limiting conditions; and Y(II) is 260 

the effective photochemical quantum yield of PS II, as described above. 261 

The Fv/Fm was measured at predawn and midday using a portable fluorometer 262 

(FMS2, Hansatech Instruments, UK). Plant water potential (Ψ) was also measured at 263 

predawn and midday (except for P. uncinata  which was only measured at predawn due 264 

to the low number of surviving individuals) with a pressure chamber (SKPM 1400, 265 

Skye Instruments, UK). Measurements were made in lateral branches in most cases. 266 

Photosynthetic fluorescence parameters were always measured between 12:00 and 267 

16:00 h (solar time), except Fv/Fm predawn measurements.  268 

 269 

Leaf isotopic composition 270 

We used leaf δ
13

C and δ
18

O as time-integrated proxy measures of intrinsic water-use 271 

efficiency (iWUE, which is the ratio between net photosynthetic rate and stomatal 272 

conductance; Farquhar et al., 1989) and stomatal conductance, respectively (Barbour, 273 

2007; Farquhar et al., 2007). Given that all the target pine species had very similar 274 

needle size and morphology and were exposed to the same environmental conditions in 275 

the common garden (including air temperature, vapour-pressure deficit, and soil-276 

moisture content), we assume that interspecific differences in leaf δ
18

O should primarily 277 

reflect differences in time-integrated cumulative transpiration derived from species-278 
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specific patterns of stomatal regulation of leaf-gas exchange (Barbour, 2007; Farquhar 279 

et al., 2007). Likewise, we assume that interspecific differences in leaf δ
13

C should 280 

primarily reflect differences in iWUE, rather than differences in irradiance or soil-water 281 

availability (as these were the same across species; Dawson et al., 2002; Farquhar et al., 282 

1989). 283 

 Both δ
18

O and δ
13

C were measured on fully expanded leaves harvested in late 284 

August 2014 (thus after two growing seasons in the field) from 15 individuals per 285 

species and replication block (thus totalling 45 individuals per species); in the case of P. 286 

uncinata we could only sample 13 individuals due to low survival rate. We harvested 287 

pine needles produced during the current year 2014, discarding those from previous 288 

year cohorts to minimize potential legacy effects from the nursery. The pine individuals 289 

were sampled randomly, although we disregarded those with clear symptoms of decay 290 

(close to death) and those previously used to monitor physiological performance in 291 

order to avoid any bias due to experimental manipulation (e.g. increased physiological 292 

stress after cutting of branches for water-potential measurements in the previous 293 

month). After harvesting the needles for isotopic and nutrient analysis, the whole-294 

aboveground biomass of the plant was harvested for dry-biomass production 295 

measurement. Samples were oven dried at 60 ºC until constant weight and afterwards 296 

the two weights (leaves used for isotopic analysis plus the rest of the plant) of each 297 

individual were added together for the statistical analyses of aboveground dry-biomass 298 

production.  299 

 The subsample of pine needles used for isotopic analyses was finely ground to a 300 

fine powder with a ball mill. For leaf δ
13

C, we used 4 mg weighed in tin capsules. 301 

Samples were analysed using an Isoprime isotope ratio mass spectrometer (IRMS; 302 

Isoprime Ltd, Cheadle Hulme, Stockport, UK) coupled to a CN elemental analyser (EA; 303 
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Eurovector, Pavia, Italy) with continuous flow, at the Department of Biology, 304 

University of Copenhagen. For foliar δ
18

O analyses, 0.7-0.8 mg were weighed in silver 305 

capsules and analysed at the Stable Isotope Facility of the University of California at 306 

Davis (USA). A Heckatech HT Oxygen Analyzer interfaced to a PDZ Europa 20-20 307 

isotope ratio mass spectrometer (Sercon, Cheshire, UK) was used following the method 308 

described in Kornexl, Gehre, Höfling, & Werner (1999). Leaf samples were 309 

decomposed in a glassy carbon reactor at 1400°C to CO and H2O, and oxygen was 310 

analysed as CO. We expressed the isotopic composition of the samples in delta notation 311 

as: 312 

 313 

        δ�� = �����	
��
���

− 1� ∗ 1000	 314 

 315 

where 
xx

E is the heavy isotope which is compared to the lighter one; R refers to the 316 

molar ratio of the heavy to the light isotope (i.e. 
13

C:
12

C or 
18

O:
16

O); “samp” refers to 317 

the sample; and “stand” refers to an international standard (V-PDB for C and V-SMOW 318 

for O). International and internal standards were used for validating the quality and 319 

precision of isotopic analyses.  320 

 321 

Nutrient analysis 322 

The concentrations of several essential macro- and micronutrients (C, N, P, K, Zn, and 323 

Cu) were measured on the same finely ground leaf samples used for isotopic analyses. 324 

Foliar C and N concentrations were measured with a CN elemental analyser as 325 

described above. Leaf K, P, Cu and Zn concentrations were measured by inductively 326 

coupled plasma emission spectrometry using a Perkin-Elmer 5500 ICP. 327 

 328 
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Data analysis 329 

Analyses were performed using R, version 3.3.2 (R Core Team, 2016). We explored 330 

different approaches to control for spurious statistical effects induced by spatial 331 

heterogeneity. Note that the number of blocks is too low to consider this variable a 332 

random factor in a standard mixed-model approach (random factors need to have at 333 

least five levels; Crawley, 2002). Therefore, we controlled for spatial heterogeneity 334 

including the number of columns and rows as continuous variables in linear models 335 

(Appendix S2). Differences across species for all the variables measured, in any case, 336 

followed similar patterns whatever the model used.  337 

Differences in seedling survival were estimated with a Cox regression model 338 

using the survival R package (Therneau, 2015; Therneau & Grambsch, 2000). The rest 339 

of response variables (growth, physiological variables, leaf isotopic composition and 340 

nutrient concentrations) were analysed with linear models. Significant differences 341 

between species were tested using Tukey’s test. The stem-volume increment was used 342 

as a proxy of overall plant growth because it exhibited a close correlation with both 343 

plant height (P≤0.001; ρ≥0.8 in all species) and stem diameter (P≤0.001; ρ ≥0.6 in all 344 

species).  345 

 346 

Results 347 

Demography 348 

Across species, a total of 627 (74.7%) seedlings survived after two growing seasons. 349 

Survival rate differed among species (P < 2.2e-16), with an overall value of 100
a
 % 350 

for P. halepensis, 92.9
b
 % for P. nigra, 80

c
 % for P. sylvestris, and 25.8

d
 % for P. 351 

uncinata (different superscript letters indicate significant differences among species, P 352 

< 0.05 after Tukey’s multiple comparison).  353 
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Growth (stem-volume increment) after two growing seasons also differed 354 

greatly among species (P < 2.2e-16), with a much higher value for P. halepensis 355 

(223.14±11.47
a 
cm

3
), followed by P. nigra (9.41±0.48

b 
cm

3
), P. sylvestris (5.06±0.29

c 
356 

cm
3
), and P. uncinata (2.91±0.43

d
 cm

3
). Interspecific differences in growth increased 357 

even further after the third growing season (September 2015), with mean stem volume 358 

of 3000.56±330.25
a
, 45.26±5.90

b
, and 16.50±2.20

c
 cm

3
, and mean fresh weight of 359 

11723±700
a
, 322±4

b
, and 110±14

c
 g for P. halepensis, P. nigra, and P. sylvestris, 360 

respectively. Pinus uncinata was not sampled in 2015 due to the small number of 361 

surviving individuals, but their size was visually the lowest of all the species. See 362 

Appendix S1, Table S5 for species mean values of stem-root collar and leader shoot 363 

height in both years. 364 

 365 

Physiological variables  366 

Overall, there were large differences in physiological parameters between P. halepensis 367 

and the rest of the species, with P. uncinata in particular showing the poorest 368 

performance under the common garden conditions (Table 1).  Pinus halepensis showed 369 

significantly lower predawn and mid-day stem water potentials than the other species 370 

during the summer dry season (Table 1), indicating a more anisohydric behaviour.  371 

Pinus halepensis also showed the highest values for most photochemical parameters 372 

including predawn and midday Fv/Fm, quantum yield, rETR, and photochemical 373 

quenching, as well as the lowest values of non-photochemical quenching (although 374 

without statistically significant differences from P. nigra and/or P. sylvestris for the 375 

latter two variables). On the contrary, P. uncinata showed the lowest values for most of 376 

these photochemical parameters, with significant differences from the rest of species for 377 

quantum yield and rETR but without significant differences from P. nigra and/or P. 378 
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sylvestris for the remaining fluorescence variables (Table 1). 379 

 380 

Leaf isotopic composition and nutrient concentrations  381 

Mean leaf δ
13

C values differed significantly among pine species (Table 2), with P. 382 

halepensis showing the highest value (indicative of higher time-integrated water use 383 

efficiency), followed by P. sylvestris, P. nigra and P. uncinata. There were also large 384 

differences in mean leaf δ
18

O values among species, with P. halepensis showing the 385 

lowest mean value by far (indicative of higher stomatal conductance and cumulative 386 

transpiration), followed by P. nigra, P. sylvestris, and P. uncinata (Table 2).  387 

 Leaf N concentration differed only slightly among pine species, with values 388 

ranging from 12.8 mg g
-1

 for P. nigra to 18.3 mg g
-1

 for P. sylvestris (Table 2). In 389 

contrast, leaf P, K, Cu and Zn concentrations differed sharply among species, with P. 390 

halepensis showing about 2-fold (P), 1.7-fold (K), 1.5-fold (Zn) and 1.8-fold (Cu) 391 

higher mean concentrations than the other species (Table 2). As a result, mean foliar 392 

N:P and N:K ratios were over 2-fold lower in P. halepensis than in the other pine 393 

species (Table 2). Leaf C:N ratios were less variable across species and ranged from 394 

26.5 in P. sylvestris to 35.6 in P. nigra. 395 

 The dry-biomass of pines harvested for isotopic analysis followed the same 396 

trend described above for shoot volume and fresh weight after three years: 660.9±32.2 397 

for P. halepensis, 32.0±2.0 for P. nigra, 19.2±1.1 for P. sylvestris and 10.4±1.6 g for P. 398 

uncinata.  399 

 400 

Relationships among plant response variables across and within species 401 

Across pine species, leaf δ
18

O was strongly negatively correlated with aboveground 402 

biomass and leaf P, K, Cu, and Zn concentrations (Figure 2), while it was positively 403 
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associated with leaf N and N:P ratio (Figure 3), overall indicating increased nutrient 404 

status, stoichiometric balance and growth with increasing time-integrated stomatal 405 

conductance and transpiration. Conversely, leaf δ
13

C exhibited strong positive 406 

correlations with biomass production and leaf P, K, Cu, and Zn concentrations across 407 

species, indicating increasing water use efficiency with increasing leaf nutrient status 408 

and growth. Leaf δ
13

C was negatively associated with N:P ratios, but was unrelated to 409 

leaf N concentration across species. Interestingly, leaf δ
13

C and δ
18

O were negatively 410 

associated with each other across all four pine species (ρ = -0.48; P = 1.70E-09), which 411 

suggests that interspecific variation in δ
13

C was primarily driven by variation in 412 

photosynthesis (rather than in stomatal conductance).  413 

Similar correlation patterns were found also at the within-species level for P. 414 

nigra and P. sylvestris: aboveground biomass and stem volume increment were 415 

positively associated with leaf P concentration and negatively associated with leaf δ
18

O, 416 

N, and N:P in at least one of the two species (Appendix S1, Figure S1). Similarly, leaf 417 

δ
13

C was positively correlated with leaf P and Cu concentrations and negatively 418 

associated with N:P ratio. Leaf δ
18

O was negatively associated with leaf P, Cu, and Zn 419 

concentrations and positively correlated with N:P ratio in one or the two species 420 

(Appendix S1, Figure S2).  421 

 Plant water potentials and photochemical fluorescence variables were also 422 

significantly correlated with leaf nutrients and isotopes across species. Mean midday 423 

water potential was negatively associated with mean leaf K concentration 424 

(ρ = −0.991; P = 0.0088). Mean leaf Zn concentration was positively associated with 425 

mean quantum yield (ρ = 0.968; P = 0.032) and predawn Fv/Fm (ρ = 0.994; P = 0.0063), 426 

while it was negatively associated with qN (ρ = −0.984; P = 0.016), which overall 427 

suggests increased photochemical performance with increased leaf Zn status across 428 
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species. In addition, mean leaf δ
13

C was positively correlated with mean quantum yield 429 

and predawn Fv/Fm, and was negatively associated with qN (Figure 5), which suggests 430 

increased water use efficiency with increased photochemical efficiency across species. 431 

Finally, mean leaf δ
18

O was negatively associated with mean quantum yield, predawn 432 

Fv/Fm and rETR (and positively with mean qN), thus revealing an improved 433 

photochemical efficiency with increasing stomatal conductance and cumulative 434 

transpiration across species (Figure 6). 435 

 436 

Discussion 437 

We found that the thermophilous, drought-tolerant pine species P. halepensis exhibited 438 

100% survival and far greater growth than the other more drought-sensitive mountain 439 

pine species evaluated in the common garden experiment. Unsurprisingly, pine species 440 

originating from wetter and cooler habitats such as P. uncinata and, to a lesser extent, P. 441 

sylvestris, showed the poorest growth and survival under the xeric common garden 442 

conditions. These results are expected according to the contrasting ecological 443 

requirements of each species and the relatively warm and dry climatic conditions at the 444 

study site. However, our study provides insights into the physiological mechanisms 445 

underlying the contrasting responses among pine species, and supports the contention 446 

that the tight stomatal regulation typical of drought-sensitive mountain pine species 447 

makes them fall into an “isohydric trap”, in which high stomatal sensitivity to soil water 448 

shortage and high atmospheric evaporative demand trigger stomatal closure and lead to 449 

a detrimental feedback loop that eventually causes severe nutrient starvation and 450 

stoichiometric imbalance under prolonged dry conditions (Figure 1).  451 

The large interspecific differences in leaf isotopic ratios and stem water potential 452 

indicate that pine species differ in stomatal control under prolonged climatic dryness. 453 
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According to the dual isotope conceptual model (Grams, Kozovits, Häberle, Matyssek, 454 

& Dawson, 2007; Scheidegger, Saurer, Bahn, & Siegwolf, 2000), the combination of 455 

high δ
18

O and low δ
13

C values in the drought-sensitive mountain pine species 456 

(compared to P. halepensis) indicates low time-integrated stomatal conductance and 457 

water use efficiency, as well as low photosynthesis rates (Querejeta, Allen, Caravaca, & 458 

Roldán, 2006), which is consistent with the poor growth of these species. This 459 

interpretation of isotope data is in strong agreement with gas exchange measurements 460 

conducted at whole plant level with transient-state closed chambers in the same 461 

common garden experiment, which showed higher stomatal conductance and 462 

transpiration, photosynthetic rates and water use efficiency in P. halepensis than in the 463 

other pine species during the dry season (Salazar-Tortosa et al., 2018). Furthermore, the 464 

potential influence of the use of different water sources among species can be discarded 465 

as the lower predawn water potential of P. halepensis compared to other species would 466 

be incompatible with the alternative explanation that it was using a more δ
18

O depleted 467 

source water stored in deeper, wetter soil layers (Nardini et al., 2016; Voltas, 468 

Lucabaugh, Chambel, & Ferrio, 2015; West et al., 2012). 469 

  The combination of high predawn and midday stem water potentials at the peak 470 

of the dry season with low stomatal conductance and cumulative transpiration (inferred 471 

from high leaf δ
18

O values) indicates a typical isohydric behaviour (Martínez-Vilalta & 472 

Garcia-Forner, 2017) in P. nigra, P. sylvestris and P. uncinata. Under low water 473 

availability and high temperature and evaporative demand conditions, plants with 474 

isohydric behaviour close their stomata early to maintain relatively high water potentials 475 

and prevent dehydration (Klein, 2014; McDowell et al., 2008; Tardieu & Simonneau, 476 

1998). Ultimately, this reduction of cumulative transpiration negatively affects the 477 

plant’s nutrient status given the importance of active transpiration flux along the soil-478 
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plant-air continuum for effective soil nutrient uptake in drying soil (Cramer et al., 2009; 479 

Lambers et al., 2008; Rouphael et al., 2012; Sardans, Peñuelas, Prieto, & Estiarte, 2008; 480 

Sardans, Peñuelas, Coll, Vayreda, & Rivas-Ubach, 2012). The strong negative 481 

correlations between leaf δ
18

O (proxy of stomatal conductance) and foliar P, K, Cu, Zn 482 

concentrations and positive correlation of leaf δ
18

O with N:P and N:K ratios across 483 

species (as well as within species for P and N:P; Figure 3, Appendix S1 Figure S2) 484 

indicate that soil nutrient uptake was severely constrained by low cumulative 485 

transpiration in the drought-sensitive mountain pine species under prolonged dryness, 486 

relative to P. halepensis.  487 

Stomatal conductance and transpiration will determine the rate of water 488 

extraction from soil, so that species with higher transpiration rates will deplete 489 

rhizosphere soil water faster and will hence experience greater reductions in predawn 490 

water potentials during dry periods (Martínez-Vilalta & Garcia-Forner, 2017), as found 491 

in P. halepensis. This ability to allow water potentials to drop while sustaining high 492 

stomatal aperture and conductance (i.e. a more anisohydric strategy) may have enabled 493 

P. halepensis to continue extracting water and dissolved nutrients from soil during 494 

prolonged dry periods. A recent study has also reported strong negative correlations 495 

between leaf δ
18

O and foliar nutrient concentrations across contrasting plant species 496 

exposed to the same environmental conditions, suggesting a heavy dependence of plant 497 

nutrient uptake and status on stomatal conductance and cumulative transpiration (Prieto, 498 

Querejeta, Segrestin, Volaire, & Roumet, 2017). Nitrogen, by contrast, did not seem to 499 

be involved in the observed pattern, as this nutrient was negatively associated with 500 

biomass and positively associated with δ
18

O (Figure 2, 3, Appendix S1 Figure S1), 501 

which suggests that the interspecific differences in leaf N concentration were mainly a 502 

consequence of differential growth dilution effects (Sabaté & Gracia, 1994) and not of 503 
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stomatal behaviour. In addition, the species with lower growth (P. sylvestris and P. 504 

uncinata) could have constitutively high leaf N as supported by higher N concentration 505 

for P. uncinata at nursery, and by previous studies for P. sylvestris (Sardans et al., 506 

2011). 507 

The unusually high leaf N:P and N:K ratios found in the more drought sensitive, 508 

mountain pine species are indicative of strong P and K limitation of growth (Güsewell, 509 

2004; Lawniczak, Güsewell, & Verhoeven, 2009; See Table 2 for a comparison with 510 

reference values of each species). The severe nutrient deficit and imbalance observed in 511 

these drought-sensitive pine species appeared to be a direct consequence of climatic 512 

drought stress, as seedling nutrient status was optimal at the beginning of the 513 

experiment across species (Appendix S1, Table S1), and given that the soil at the 514 

common garden site was not deficient in any nutrient (Appendix S1, Table S2). Indeed, 515 

soil nutrient availability in this fertile agricultural field was sufficient to support a 516 

balanced leaf stoichiometry with optimal N:P ratios and vigorous biomass growth in P. 517 

halepensis. Despite much larger growth-dilution effects, leaf P, K, Zn and Cu 518 

concentrations were higher and N:P and N:K ratios were much lower in P. halepensis 519 

than in the other species, indicating that severe nutrient starvation and stoichiometric 520 

imbalance in the other species was largely the result of climatic stress, rather than the 521 

result of low soil nutrient availability “per se”. Deficiency of P, K, Zn, and Cu and 522 

severe N:P:K stoichiometric imbalance can impair photosynthesis, transpiration (Figure 523 

1; blue arrow), water-use efficiency and growth, as reported in this study (see also 524 

Güsewell, 2004; Sardans & Peñuelas, 2015; Talbott & Zeiger, 1996). This idea is 525 

supported by the strong correlations of leaf nutrient concentrations and stoichiometric 526 

ratios with both leaf δ
18

O and δ
13

C ratios and with aboveground biomass across and 527 

within species (Figures 2, 3, 4, Appendix S1, Figures S1, S2).  We also found a negative 528 
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association between leaf K concentration and water potential across species, which may 529 

be explained by the major role that K plays in drought tolerance (Rivas-Ubach, Sardans, 530 

Perez-Trujillo, Estiarte, & Penuelas, 2012; Sardans & Peñuelas, 2015).  531 

The rather extreme N:P:K stoichiometric imbalance observed in the drought-532 

sensitive mountain pine species may be explained by differences in mobility and 533 

availability in the soil solution among nutrients, given that PO4
--
 and K

+
 have diffusion 534 

coefficients that are lower by orders of magnitude than that of NO3
-  

(Lambers et al., 535 

2008; Marschner & Rengel, 2012). Our study suggests that uptake of nutrients with 536 

limited mobility and diffusion rates in soil (e.g. phosphate, potassium, zinc, copper) 537 

may be particularly vulnerable to severe decreases in transpiration and mass flow to 538 

roots, compared to highly mobile nutrients like nitrate (Rengel & Marschner, 2005). 539 

Besides, atmospheric deposition is several orders of magnitude higher for N than for 540 

other nutrients (Peñuelas, Sardans, Rivas-Ubach, & Janssens, 2012), which may also 541 

lead to higher foliar N uptake. Therefore, in a global scenario of climate warming 542 

combined with increasing rates of anthropogenic N deposition (Güsewell, 2004; Jonard 543 

et al., 2015) we should expect plant P status (along with K and micronutrients like Cu or 544 

Zn) to be particularly vulnerable to decreases in transpiration fluxes during prolonged 545 

periods of climatic dryness, whereas plant N status may be less responsive.  In addition, 546 

the reduced carbon assimilation exhibited by drought-sensitive mountain pine species at 547 

the common garden site (Salazar-Tortosa et al., 2018) could lead to low carbon 548 

availability to support the growth and activity of fine roots and ectomycorrhizal (EMF) 549 

fungi (Gessler et al., 2017; Matías et al., 2017; Moran et al., 2017). This could hamper 550 

even more the assimilation of low mobility nutrients, whose absorption has high energy 551 

and carbon costs such as the production of extramatrical EMF mycelium, the secretion 552 

of phosphatases and organic acids by roots and mycorrhizae for solubilisation and 553 
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mineralization of inorganic and organic P, or rhizosphere priming effects (Achat, 554 

Augusto, Gallet-Budynek, & Loustau, 2016; Kreuzwieser & Gessler, 2010). Moreover, 555 

limited carbohydrate availability and transfer to roots could also constrain the supply of 556 

energy and carbon skeletons for nutrient assimilation (Kreuzwieser & Gessler, 2010).   557 

Soil moisture content remained above the permanent wilting point throughout 558 

the summer dry period in both years of the experiment (Appendix S1, Table S4), which 559 

suggests that high temperature and evaporative demand may have also been key drivers 560 

of the contrasting responses observed among pine species (McDowell et al., 2015; 561 

McDowell & Allen, 2015; Salazar-Tortosa et al., 2018; Williams et al., 2013). In fact, 562 

mean summer temperature at the common garden site was considerably higher than that 563 

experienced by the mountain pine species in their original habitat (P. nigra, P. 564 

sylvestris, and P. uncinata). Heat stress can limit stomatal conductance, as plants close 565 

their stomata to prevent excessive transpiration and water loss when atmospheric 566 

demand for water increases with rising temperatures (Novick et al., 2016; Urban, 567 

Ingwers, McGuire, & Teskey, 2017; Zhang, Wollenweber, Jiang, Liu, & Zhao, 2008). 568 

Stomatal closure in response to heat and drought stress reduces evaporative leaf cooling 569 

(Cook, Dixon, & Leopold, 1964), which may favour heat-induced damage of the 570 

photosynthetic machinery that decreases photochemical efficiency (Sharkey, 2005). 571 

Lower predawn Fv/Fm values as well as larger predawn Fv/Fm vs. midday Fv/Fm 572 

differences in mountain pine species (compared to P. halepensis) support the idea that 573 

heat stress in combination with high light levels led to both chronic photoinhibition as 574 

well as reversible reduced photochemical efficiency during the hottest time of the day in 575 

summer (Table 1). Moreover, the detrimental impacts of the combination of high 576 

temperatures and drought stress on leaf photochemical efficiency and carboxylation 577 

capacity were likely compounded by the effects of macro- and micronutrient deficiency 578 
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and stoichiometric imbalance in mountain pine species (Cakmak, 2005; Casimiro, 579 

Barroso, & Pais, 1990; Eller, Jensen, & Reisdorff, 2016), which may explain the 580 

association of low photochemical  efficiency (as indicated by low rETR, quantum yield 581 

and predawn Fv/Fm and high qN) with low cumulative transpiration (high δ
18

O) and 582 

water use efficiency (low δ
13

C) across species (Figures 5, 6). Overall, the results of this 583 

study suggest that intensified drought stress from higher air temperatures —the “hotter 584 

drought” effect (Allen et al., 2015)— might lead to severe nutrient deficit, 585 

stoichiometric imbalance, and photosynthetic impairment mediated by reduced 586 

cumulative transpiration in drought-sensitive species. 587 

In summary, we found that the degree of stomatal regulation of transpiration is 588 

tightly linked to plant nutrient status and stoichiometry under dry conditions, and that 589 

reduced nutrient uptake is a key mechanism to consider when assessing poor plant 590 

growth and survival under prolonged climatic dryness. We propose the existence of a 591 

detrimental feedback loop leading to severe P and K starvation and N:P:K imbalance in 592 

strictly isohydric vascular plants undergoing prolonged drought stress, such as some of 593 

our study pine species. These drought-sensitive species close their stomata at relatively 594 

high soil and plant water potentials, and thus are not able to maintain adequate 595 

transpiration and nutrient uptake during prolonged drought periods, which leads to 596 

severe nutrient imbalance that might exacerbate and accelerate the onset of carbon 597 

starvation, hydraulic failure, phloem dysfunction, and their multiple interplays 598 

(McDowell et al., 2011; Sala, Piper, & Hoch, 2010; Sevanto, McDowell, Dickman, 599 

Pangle, & Pockman, 2014; Zwieniecki & Holbrook, 2009). In contrast, relatively 600 

drought-tolerant plant species with a more anisohydric behaviour such as P. halepensis 601 

can maintain open stomata and transpiration at comparatively lower soil and plant water 602 

potentials, thereby escaping this detrimental feedback and avoiding nutrient deficit and 603 
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imbalance. This study highlights the intimate interplay and interdependence between 604 

stomatal regulation, transpiration, carbon assimilation and nutrient status in the response 605 

of vascular plants to long periods of climatic dryness (Gessler et al., 2017). We 606 

advocate consideration of this proposed conceptual framework (Fig. 1) in order to better 607 

understand and predict the impacts of ongoing global change on the performance and 608 

survival of pines and other plant species with tight stomatal regulation and strict 609 

isohydric behaviour, with special attention to the role of macronutrients with low 610 

mobility in soil, such as P and K. 611 
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Tables 942 

Table 1 Mean values ± SE of physiological variables measured in the four target pine 943 

species during mid-summer (dry season) of the second year after planting. F and P 944 

values of the “species” factor are shown for each variable. Significant p values are 945 

indicated in bold, while differences between species (P < 0.05 after Tukey’s multiple 946 

comparison) are shown with different superscripts.  947 

    Species     

Variables  
Sample 

size 
P. halepensis P. nigra  P. sylvestris P. uncinata F Pr(>F) 

Predawn Water 

Potential (MPa) 
71 -1.26±0.05b -0.86±0.03a -0.87±0.04a - 43.9 2.63E-11 

Midday Water 
Potential (MPa) 

131 -2.37±0.04
b
 -1.88±0.05

a
 -1.84±0.04

a
 -1.92±0.04

a
 30.6 6.46E-14 

Predawn fluorescence 

(Fv/Fm) 
132 0.8709±0.0024a 0.839±0.005b 0.836±0.006b 0.825±0.006b 17.2 5.17E-09 

Midday fluorescence 
(Fv/Fm) 

132 0.796±0.007
a
 0.685±0.017

bc
 0.721±0.017

b
 0.657±0.022

c
 16.3 1.34E-08 

Yield 127 0.688±0.005a 0.599±0.017b 0.598±0.017b 0.545±0.024b 22.1 7.35E-11 

rETR (µM e/m
2
s) 127 455.0±10.0

a
 396.1±13.3

b
 384.9±13.7

b
 324.4±15.9

c
 17.7 3.85E-09 

Photochemical 

quenching 
125 0.972±0.003a 0.968±0.004ab 0.958±0.005ab 0.953±0.005b 3.6 1.66E-02 

Non-Photochemical 

quenching 
126 0.044±0.006

b
 0.067±0.010

ab
 0.071±0.009

ab
 0.083±0.013

a
 3.2 2.53E-02 

 948 

 949 

 950 

 951 

 952 
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Table 2 Mean values ± SE of leaf isotopic composition, nutrient concentrations and 953 

stoichiometric ratios measured in the four target pine species in mid-summer (dry 954 

season) of the second year after planting. F and P values of the “species” factor are 955 

shown for each variable. Significant p-values are indicated in bold, while differences 956 

between species (P < 0.05 after Tukey’s multiple comparison) are shown with different 957 

superscripts. As a reference, macronutrient concentration and stoichiometric ratios 958 

observed in natural populations of the studied species in Northeast of the Iberian 959 

Peninsula are shown in brackets (data obtained from Sardans, Rivas-Ubach, & 960 

Peñuelas, 2011). 961 

    Species     

Variables  
Sample 

size 
P. halepensis P. nigra  P. sylvestris P. uncinata F Pr(>F) 

Foliar δ
13

C (‰) 186 -25.50±0.09
a
 -27.68±0.17

b
  -27.50±0.16

b
 -28.38±0.32

b
 60.8 < 2.2E-16 

Foliar δ
18

O (‰) 186 26.72±0.11
d
 28.59±0.17

c
  29.55±0.18

b
 30.12±0.3

a
 97.3 < 2.2E-16 

Nitrogen (mg g
-1

) 181 
14.3±0.3b 12.8±0.3c 18.3±0.7a 16.5±0.8ab 

26.8 1.06E-13 
(10.6±0.1) (9.4±0.09) (11.9±0.1) (9.7±0.15) 

        

Phosphorus (mg g
-1

) 185 
0.85±0.03a 0.37±0.02c  0.43±0.02b 0.49±0.03bc 

122 < 2.2E-16 
(0.80±0.01) (0.83±0.01) (1.10±0.01) 0.92±0.01) 

        

Potassium (mg g
-1

) 186 
4.74±0.14a 2.95±0.10b  2.57±0.12c 2.83±0.21bc 

58.4 < 2E-16 
(4.00±0.05) (4.44±0.08) (5.55±0.09) (4.16±0.10) 

Zinc (ppm) 185 18.8±0.5
a
 13.6±0.8

b
  12.3±0.7

b
 11.3±1.3

b
 19.1 2.17E-10 

Copper (ppm) 184 3.09±0.08
a
 1.53±0.07

b
  1.69±0.08

b
 1.95±0.20

b
 74.2 < 2.2E-16 

C:N ratio 186 
31.4±0.7b 35.62±0.81a  26.5±0.7c 27.96±1.16bc 

27 8.56E-14 
(52.2±0.5) (57.3±0.6) (45.0±0.3) (55.6±0.8) 

        

N:P ratio 180 
17.5±0.6c 36.6±1.5b  46.4±2.7a 35.4±2.7ab 

99 < 2.2E-16  
(14.9±1.1) (11.8±0.2) (11.4±0.1) (10.5±0.2) 

        

N:K ratio 181 
3.13±0.12c 4.59±0.20b  7.84±0.50a 6.20±0.50a 

62.1 < 2.2E-16  
(3.00±0.07) (2.55±0.07) (2.63±0.07) (2.70±0.12) 

 962 

 963 

 964 
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Figure captions 965 

Figure 1 Proposed “isohydric trap” conceptual model of reduced plant physiological 966 

performance and growth under hotter drought, in which vascular plants with a strong 967 

stomatal regulation of transpiration undergo early and prolonged closure of the stomata 968 

under heat and drought stress. This strict isohydric behaviour triggers a series of 969 

physiological changes that culminate in severe nutrient imbalance and a reduction of the 970 

capacity to cope with further drought stress, thereby becoming a feedback to in earlier 971 

stomatal closure under a subsequent event of water stress (the “isohydric trap”). Sub-972 

loops are shown with arrows of different colours: i) Transpiration-nutrient loop in blue; 973 

ii) Transpiration-root growth loop in green. 974 

 975 

Figure 2 Spearman’s rank coefficients (ρ) for the correlations of pine sapling growth 976 

after two years with leaf δ
18

O, δ
13

C and nutrient concentration across species. 977 

Significant associations are indicated with asterisks (* for P < 0.05 and ** for P < 0.01).  978 

 979 

Figure 3 Correlations between leaf nutrient concentrations and foliar δ
18

O (proxy of 980 

stomatal conductance) across species. Spearman’s rank correlation coefficients along 981 

with p and S value are shown for each correlation. Abbreviations: H = P. halepensis, N 982 

= P. nigra, S = P. sylvestris, U = P. uncinata. 983 

 984 

Figure 4 Correlations between foliar δ
13

C (proxy of water-use efficiency) and leaf 985 

nutrient concentrations across pine species. Spearman’s rank correlation 986 
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coefficients together with p and S value are shown for each correlation. Species 987 

abbreviations as in Figure 3.  988 

 989 

Figure 5 Correlation between mean values per species of leaf δ
13

C (proxy of water-use 990 

efficiency) with photosynthetic fluorescence parameters across pine species. Pearson’s 991 

correlation coefficients along with p and t value are shown for each correlation. Error 992 

bars for both axes represent ±SE. Species abbreviations as in Figure 3. Variables 993 

abbreviations: Yield = Quantum yield, qN = Non-photochemical quenching. 994 

 995 

Figure 6 Correlation between mean values per species of leaf δ
18

O (proxy of stomatal 996 

conductance) with photosynthetic fluorescence parameters across pine species. 997 

Pearson’s correlation coefficients together with p and t value are shown for each 998 

correlation. Error bars for both axes represent ±SE. Species abbreviations as in Figure 3. 999 

Variables abbreviations: Yield = Quantum yield, rETR = relative electron transport rate, 1000 

qN = Non-photochemical quenching.  1001 
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