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 Soil properties and food webs showed large differences between crop types 
 Soil food webs were generally degraded, but olive groves were better preserved than 

vineyards
 Microfaunal food webs differed little between organic and conventional fields
 In semi-arid conditions, organic farming induced little soil improvement 
 Active soil conservation practices are required to increase soil quality
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11 ABSTRACT

12 Soil food webs, which are responsible for relevant ecological functions in agroecosystems such 

13 as nutrient cycling and pest and disease suppression, represent a crucial aspect of agricultural 

14 sustainability.  We studied soil properties and microfaunal food web diversity and functioning 

15 in six paired organic and conventional fields located in Central Spain to assess the effects of 

16 organic farming on soil diversity and functioning in semi-arid conditions. We hypothesized that 

17 organic farming may enhance functioning of soil food webs. Our results showed larger 

18 differences between crop types, namely olive groves and vineyards, than between farming 

19 scheme, i.e. organic and conventional fields, and few benefits of organic farming in terms of 

20 soil fertility. Soil properties (total N, C, and P, available P and K, electrical conductivity, NH4
+, 

21 NO3
-, soil moisture, pH) tended to present higher values in vineyards than in olive groves and 

22 in conventional than in organic fields. Some plant-parasitic nematodes were associated to 

23 organic fields, especially in vineyards, and all soils fell within a degraded soil food web 

24 condition, with low Structure and Enrichment Index values. Nematode metabolic footprints 

mailto:sarasm@inia.es
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25 showed relevant seasonal dynamics, with the more intensive herbivore activity in spring. We 

26 conclude that the lack of conventional pesticides and mineral fertilizers is probably not enough 

27 to improve soil conservation in semi-arid Mediterranean agroecosystems, and thus active soil 

28 conservation practices, as reduced tillage or cover cropping, are required to increase 

29 agroecosystem sustainability.  

30

31 1. Introduction

32 Microfaunal food webs play critical role in soil functioning. Nematodes, the most abundant 

33 metazoan organisms in microfaunal food webs, are relevant components of belowground C 

34 cycling in spite of their low absolute biomass (Pausch et al., 2016). They occupy multiple 

35 positions in the soil food web and present high taxonomic and functional diversity (Ettema, 

36 1998). Among other functions, nematodes participate in nitrogen and carbon mineralization 

37 (Bouwman et al., 1994), the regulation of microbial communities (Villenave et al., 2004), pest 

38 suppression (Steel and Ferris, 2016), and the redistribution of other organisms in the soil 

39 matrix (Knox et al., 2003). Appropriate soil management to enhance soil fauna contribution to 

40 soil functioning and derived ecological services should be promoted to increase agricultural 

41 sustainability.

42 Different management systems intended to reduce soil chemical and physical disturbance may 

43 improve such agricultural sustainability. In this context, organic farming has been under 

44 continuous expansion during the last years in the European Union. The area under organic 

45 farming in Europe has notably increased, with the mean annual growth from 6% (EU-27) to 

46 13% (EU-12) from 2002 to 2013 (European Commission, 2013). In 2015, the eight countries 

47 with largest areas under organic management hold between 0.46 and 1.9 x 106 ha per country. 

48 Among those Spain demonstrates the largest share of and is followed by Italy and France 
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49 (EUROSTAT, 2016a). Nowadays, public concerns on the effects of pesticides on human health 

50 and the environment have increased (Miller, 2013).

51 Several local studies and meta-analyses have shown the value of organic farming for 

52 biodiversity. In their meta-analyses, Bengtsson et al. (2005) and Hole et al. (2005) found that a 

53 number of taxonomic groups (including birds, insects, mammals, and plants) usually show 

54 increased species richness and abundance in organic as compared to conventional farming 

55 systems. Although the effects of organic farming on below-ground diversity has been less 

56 studied, some reports indicate that organic farming increases arbuscular-mycorrhizal fungi 

57 (Verbruggen et al., 2010) and supports higher microbial activity (França et al., 2007). Other 

58 studies, however, have found organic farming to be more effective conserving aboveground 

59 than belowground diversity (Flohre et al., 2011). A comparison of organic and conventional 

60 kiwifruit orchards showed that earthworms were negatively affected by conventional 

61 practices, while mesofauna (enchytraeids, mites, and collembolans) were stimulated by 

62 conventional management (Castro et al., 2015), but reports on the effects of organic farming 

63 on soil diversity under semiarid conditions are scarce. Under semiarid conditions, organic 

64 farming may increase C and N soil pools (Parras-Alcántara et al., 2015), and conversion from 

65 grassland to cultivated organic farming might increase functional microbial diversity (Nautiyal 

66 et al., 2010). 

67 Vineyards and olive orchards are typical semi-arid Mediterranean crops and a major feature of 

68 the heritage in the Mediterranean basin, where they play an important environmental role 

69 fixing soils, maintaining biodiversity, and contributing to producing environmentally rich 

70 landscapes (Biasi et al., 2012). There are generally few studies on soil diversity in these woody 

71 crops, and the effects of different management systems in such diversity and their associated 

72 functions and services have been little addressed.
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73 Among soil organisms, nematodes possess several attributes that make them good indicators. 

74 Nematodes are abundant, ubiquitous and diverse, participate in several soil food web links and 

75 are sensitive to agricultural disturbance (Yeates, 2003). Due to such attributes, multiple 

76 nematode-based indicators have been developed. Besides classical diversity indices, maturity 

77 indices have been used to infer the position of the nematode community along the ecological 

78 succession (Bongers, 1990; Korthals et al., 1996), and soil food web indices are used to infer 

79 food web complexity and main channels of organic matter decomposition (Ferris et al., 2004). 

80 Nematode functional guilds have been shown to reflect soil food web functions in response to, 

81 for example, global change (Cesarz et al., 2015). Nematode metabolic footprints (NMF), 

82 proposed by Ferris (2010), assess the magnitude of nematode contribution to soil functioning 

83 by partitioning the amount of C used by nematodes in production (biomass growth, egg laying) 

84 and lost in respiration. The inference of soil nematode biomass and the partitioning of 

85 nematode C use into such components allow inferring nematode trophic group activity 

86 (herbivores, bacterivores, fungivores, and omnivore/carnivore nematodes) and functional 

87 groups (enrichment, basal, and structure nematode indicators). NMF has been found to be 

88 sensitive to tillage (Zhang et al., 2012), cover cropping (Ferris et al., 2012b), fertilization (Zhang 

89 et al., 2016a), and microclimate variations (Bhusal et al., 2015). The inclusion of inferred 

90 nematode biomass in calculation of nematode-based diversity indices (Ferris and Tuomisto, 

91 2015) open new perspectives in the analyses of the functionality of soil organisms.

92 Spain holds the largest vineyard and olive-growing areas in Europe, with 0.8 and 2.2 x106 ha, 

93 respectively (EUROSTAT, 2016b). Within the country, Castilla-La Mancha, in the South-Central 

94 part of Spain, possesses the largest area of vineyards and the second largest area of olive trees 

95 (MAPAMA, 2017). Here we studied soil properties and nematode food webs in organic and 

96 conventional olive groves and vineyards in South-Central Spain to evaluate 1) nematode 

97 diversity in woody crops under semiarid conditions, and 2) the effects of organic and 

98 conventional practices on soil functioning in such systems. We hypothesized that organic 
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99 agroecosystems harbour a greater nematode diversity, soil food web complexity, and soil 

100 functioning that conventional agroecosystems.

101

102 2. Material and methods

103

104 2.1. Study site

105 The study was carried out in Ciudad Real province (near Valdepeñas, 38° 45’ N - 3° 23’ W, 

106 Castilla-La Mancha region, South-Central Spain). The area has a typical Mediterranean climate 

107 with a mean annual temperature of 15.6 °C and precipitation of 418 mm (MAPAMA, 2017b). 

108 Soils included in the study were classified as calcil cambisols and presented a loam texture 

109 with an average of 20.8% clay, 31.7% silt and 47.5% sand.

110 Three olive growing and three vine growing sites were chosen in the study area. At each site, 

111 two adjacent fields, one conventional and one organic, were selected as representatives of 

112 typical management in the region. If no adjacent fields were available, the organic and 

113 conventional fields at each pair were as nearby as possible (four out of the six pairs were 

114 adjacent or a few meters apart, for the other two maximum distance between paired fields 

115 was 500 m). In total, 12 fields (3 organic and 3 conventional vineyards and 3 organic and 3 

116 conventional olive groves) were included in this study. Each pair of fields was selected to be as 

117 similar as possible to make straightforward comparisons. Location, type of management, field 

118 area, tree density (in the case of olive groves), type of training (in vineyards), and irrigation 

119 systems in the fields are indicated in Table 1. 

120 Field management was quite similar among conventional or organic fields. All conventional 

121 fields were fertilized in spring with mineral fertilizers (NPK 15:15:15), at a rate of 450 kg/ha in 

122 vineyards and 2 kg/tree in olive groves. Chemical weeding with glyphosate at standard 
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123 recommended field doses occurred once a year (January-February) in olive groves and twice a 

124 year (July and August) in vineyards. In conventional vineyards, paclobutrazol was applied 

125 annually as plant growth regulator. Tebuconazole and copper oxychloride were used a 

126 maximum of once a year in vineyards and olive groves, respectively. 

127 Organic fields were all certified and did not use any mineral fertilizer or chemical pesticide. 

128 Sulphur 98.5% was typically used every spring as main fungicide in organic vineyards. In 

129 organic olive groves Bacillus thuringiensis was used to control insect pests when necessary. . 

130 One organic olive grove grew and incorporated a chickpea green manure every three years.

131 Sheep manure was used as soil amendment in all conventional and organic fields every two 

132 years at rates around 5000 kg/ha in vineyards, and every 2-3 years at 3500 kg/ha in olive 

133 groves. All conventional and organic fields were tilled 4-6 times a year at 20-30 cm depth to 

134 control weeds, and the soil was continuously bare in all systems.

135 2.2. Soil sampling

136 In each olive grove, five individual trees were chosen in the central area of each field. Three 

137 subsamples of about 300g of soil were collected around each tree at 1.5m from the tree trunk 

138 and composed into one soil sample. Thus, five composite soil samples were collected from 

139 each field. In the vineyards, five vines were chosen in the central zone of each field and one 

140 composed sample was taken around each plant by collecting three subsamples at 0.5m from 

141 the vine rootstock. When vines were growing in metal espaliers, the subsamples were taken 

142 right below the irrigation line between rootstocks.  

143 The individual subsamples were taken with a shovel at 0-15 cm depth. Soil samplings occurred 

144 in spring and autumn in two consecutive years (May 2013, October 2013, May 2014 and 

145 October 2014). A total of 240 soil samples were collected in this study (12 fields x 5 samples x 4 

146 samplings). Samples were kept at 4ºC until processed. Each composite sample was divided into 
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147 two subsamples: 300g of fresh soil were used for nematode extraction and 500 g were air-

148 dried and used for soil physical-chemical properties. 

149 2.3. Soil properties

150 Total soil C, N, and P, ammonium, nitrate, and bioavailable P and K concentrations, pH, and 

151 electrical conductivity (EC) were measured in all samples. Total organic carbon was determined 

152 by chromic acid digestion (Heanes, 1984). Total N and P were digested and extracted by the 

153 Kjeldahl method (Kjeldahl, 1883). Available phosphorus was determined as Olsen P by the 

154 colorimetric ascorbic acid method described by Watanabe and Olsen (1965). Bioavailable 

155 potassium was extracted with ammonium acetate 1N according to Pratt (1965) and quantified 

156 by an ICP spectrometer (Optima 5300 DV, Perkin Elmer). NH4
+ and NO3

- were extracted in KCl 

157 2M. Soil pH and EC were determined in a 1:5 soil:water solution and measured in a pH-meter 

158 conductimeter. Total C, N, and P, as well as NH4
+ and NO3

-, were then analyzed in a 

159 SkalarSAN++ autoanalyzer in an accredited laboratory in the Rey Juan Carlos University 

160 (Madrid, Spain).

161 2.4. Nematode community analysis

162 Soil nematodes were extracted from 300 g of fresh soil by sieving and Baermann funnel 

163 method (Barker et al., 1985). Nematode abundance was expressed as the number of 

164 individuals per 100 g of dry soil. All nematodes from each sample were counted under a 

165 dissecting microscope, and at least 100 nematodes per sample were identified to genus or 

166 family under the microscope. Nematodes were classified as bacterial feeders, fungal feeders, 

167 plant parasites/herbivores, omnivores and predators (Yeates et al., 1993). They were also 

168 classified according to the colonizer-persister (cp) scale (Bongers, 1990). The cp scale 

169 comprises five groups of nematode families, namely microbial feeders with short life cycles 

170 and high reproduction rates (cp 1 and cp 2) and predators and omnivores with long life cycles, 
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171 low reproduction rates and which are very sensitive to environmental perturbations (cp 4 and 

172 5). Taxa richness (S) was expressed as the average number of taxa in each sample. 

173 The Maturity Index (MI) and the Plant-Parasitic Index (PPI) (Bongers, 1990) were calculated as 

174 a weighted mean of the relative contribution of each cp group to the assemblage of free-living 

175 nematodes (MI) and of herbivore and plant parasitic nematodes (PPI) respectively. In addition, 

176 four soil food web indices (Ferris et al., 2001) were calculated: 1) The Structure Index (SI), a 

177 weighted measure of the proportion of sensitive predator and omnivore nematodes, is a 

178 sensitive indicator of soil food web complexity; 2) The Channel Index (CI), based on the ratio of 

179 fungivore to bacterivore nematodes, is an indicator of the prevalence of organic matter 

180 decomposition mediated by fungi; 3) The Basal Index (BI), based on the abundance of general 

181 opportunistic nematodes, is an indicator of basal, perturbed soil food web condition; and 4) 

182 the Enrichment Index (EI), based on the abundance of enrichment opportunistic nematodes, is 

183 an indicator of rapid, bacterial-mediated organic matter decomposition. The graphical 

184 representation of the SI vs the EI allows for the diagnosis of the soil food web as disturbed, 

185 maturing, structured, or degraded (Ferris et al., 2001).

186 Average nematode taxa biomass was obtained from the NINJA (Nematode Joint Indicator 

187 Analysis) System (https://sieriebriennikov.shinyapps.io/ninja/) (Sieriebriennikov et al., 2014). 

188 Metabolic footprints (Ferris, 2010) are based on the calculation of the lifetime amount of C 

189 used by nematode taxa in growth and egg production and in C losses with respiration. 

190 Metabolic footprints are indicators of the magnitude of ecosystem functions driven by 

191 nematode functional guilds and trophic groups. The Enrichment, Structure, Bacterivore, 

192 Fungivore, Herbivore, Predator, and Omnivore footprints were calculated using the NINJA 

193 internet tool (https://sieriebriennikov.shinyapps.io/ninja/).

194 Radial diagrams, used in agroecological systems as indicator representations of agroecosystem 

195 condition (Altieri, 2002; Stavi et al., 2016) were adapted to represent metabolic footprints and 

https://sieriebriennikov.shinyapps.io/ninja/
https://sieriebriennikov.shinyapps.io/ninja/
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196 the services/disservices associated to their magnitudes (Fig. S1; Sánchez-Moreno and Ferris, in 

197 press). 

198 2.5. Data Analysis

199 Data were log-transformed before the analyses to improve normality. The effects of sampling 

200 date (May 2013, October 2013, June 2014, October 2014), type of crop (olive groves and 

201 vineyards), and management system (organic and conventional) on soil properties and soil 

202 food web attributes were analyzed by Factorial Analyses of Variance (ANOVA). Since 

203 preliminary statistical evaluations showed that the effect of site (each site composed by one 

204 organic and one conventional field, Table 1) was always not significant (p>0.05) it was not 

205 considered in further statistical tests. Principal Component Analysis (PCA) was performed on 

206 nematode taxa abundances and soil samples were plotted on the resulting factors to detect 

207 similarities among soil samples in terms of nematode community composition. Canonical 

208 Analysis of Correspondence (CCA) was used to infer relationships between nematode taxa 

209 abundance and categorical (crop type, management) and continuous (total N, C, and P, 

210 available P and K, electrical conductivity, NH4
+, NO3

-, soil moisture, pH) independent variables. 

211 Only nematode taxa present in more than one sample were subject to multivariate analyses. 

212 Discriminant Analysis was used to ascertain the discrimination ability of soil properties and 

213 food web attributes; the resulting discriminant models were assessed through the p-value 

214 associated to the Wilk’s Lambda, which ranges from 0 (perfect discrimination) to 1 (no 

215 discrimination at all). Resulting Squared Mahalanobis Distances among groups were used to 

216 construct a cluster tree to visualize similarities among field types. All statistical analyses were 

217 performed with the Dell Statistica software package Inc (2016).

218

219 3. Results

220
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221 3.1. Soil properties

222 Results of the factorial ANOVA showed that sampling date and crop type (olive vs vineyard) 

223 significantly affected all soil properties, while the type of system (conventional or organic) 

224 affected all properties except NH4+ and soil moisture (p<0.05, Table S1). The bi-factorial 

225 interactions with sampling date (date x crop, date x system) significantly affected half of the 

226 properties, while crop x system and the interaction of all variables (date x crop x system) have 

227 minor or no effects on soil properties (Table S1). In general, soil properties tended to present 

228 higher values in vineyards than in olive groves and in conventional than in organic fields (Fig. 

229 1).

230 3.2. Microfaunal food webs

231 Forty-three nematode taxa (16 bacterivores, 7 fungivores, 11 herbivores, 3 omnivores, 5 

232 predators, and 1 entomopathogenic nematode) were identified in the study fields (Table 2). 

233 Per trophic group, the most abundant nematode taxa were Acrobeloides (bacterivore), 

234 Aphelenchus, Aphelenchoides, and Tylenchidae (fungivores), Pratylenchus and Paratylenchus 

235 (herbivores), Qudsianematidae (omnivores) and Discolaimus (predators), all being in general 

236 more abundant in olive groves than in vineyards (Table 2). Nematode abundance varied across 

237 sampling dates, type of crop and system (Table 2). Only the date x crop interaction significantly 

238 affected a large number of taxa (Table 2). 

239 Composition of the nematode community differed between olive groves and vineyards and 

240 between organic and conventional vineyards according to the PCA, with smaller differences 

241 between organic and conventional olive groves (Fig. 2). The first two PCA axis explained 11.0% 

242 and 6.2% of composition variation, respectively. 

243 Soil properties affecting nematode abundance that led to differences among the four systems 

244 are summarized in the CCA (Fig. 3). In general, crop type affected nematode abundances to a 
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245 larger extent than management system did. Tylencholaimus, Qudsianematidae, Cervidellus, 

246 Paratylenchus, and Helicotylenchus were associated to higher NH4
+ and NO3

- concentration in 

247 organic fields. Total N and P, soil moisture, and Olsen P were associated with conventional 

248 vineyards and inversely associated with Achromadora, Tylenchorhynchus, and Pratylenchus. 

249 Meloidogyne was associated to vineyards and Acrobeloides, Aphelenchus, and Tylenchidae to 

250 olive groves (Fig. 3).

251 Nematode density and taxa richness were in general low, with a mean nematode density of 

252 342.3 nematodes/100g dry soil, and an average of 10.3 taxa per sample. Nematode abundance 

253 was on average two to three-fold higher in olive groves than in vineyards, regardless of the 

254 type of management (Table 3). Sampling date showed a significant effect on all soil food web 

255 descriptors, while there were several differences between crop types and few between 

256 management systems. The Enrichment Index, indicator of the prevalence of enrichment-

257 opportunistic species, and the Plant-parasitic Index, indicator of nematode pest pressure, were 

258 higher in vineyards than in olive groves (Table 3). Taxa richness, nematode abundance, and the 

259 Basal Index, indicator of perturbed soil food web condition, were higher in olive groves than in 

260 vineyards (Table 3). Only two descriptors varied significantly between systems, with higher 

261 values of the Maturity Index and the Plant-parasitic Index in organic than in conventional fields 

262 (Table 3). The interaction sampling date x crop type and crop x system affected some soil food 

263 web measures, in contrast to the interaction sampling date x management system, which did 

264 not affect the soil food web (Table 3). 

265 3.3. Diagnosis of soil food web function 

266 The graphical diagnosis of soil food web condition deemed the four systems as degraded. The 

267 metabolic footprints varied among crop types and management systems, and vineyards 

268 presented a reduced functionality compared to olive groves (Fig. S2). 
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269 Relevant seasonal variations were found. In May 2013 (Fig. 4) herbivore metabolic footprint 

270 was higher in organic than in conventional systems, influenced by crop (ANOVA F-value = 

271 4.57), management (ANOVA F-value = 4.33), and their interaction (ANOVA F-value = 3.56) (all 

272 p-values <0.05).  All systems presented a low predator footprint, affected by crop type (ANOVA 

273 F-value = 4.50, p<0.05) and crop x system interaction (ANOVA F-value = 4.59, p<0.05). 

274 Bacterivores were more active in conventional than in organic systems (ANOVA F-value = 4.23, 

275 p<0.05).

276 In October 2013 (Fig. 4) the footprint of enrichment indicators (ANOVA F-value = 11.43), 

277 fungivores (ANOVA F-value = 16.38), and bacterivores (ANOVA F-value = 17.90) (all p-values 

278 <0.05) were higher in olive groves than in vineyards. The next spring herbivore pressure was 

279 large again, and footprints of bacterivores (ANOVA F-value = 18.78), fungivores (ANOVA F-

280 value = 42.27), omnivores (ANOVA F-value = 6.59), and structure indicators (ANOVA F-value = 

281 6.89) (all p-values <0.05) were higher in olive groves than in vineyards, while enrichment 

282 indicators responded to crop type (ANOVA F-value = 15.57, p<0.05) and crop x system 

283 interaction (ANOVA F-value = 7.21, p<0.05). At the last sampling date bacterivores (ANOVA F-

284 value = 74.38), fungivores (ANOVA F-value = 33.10), herbivores (ANOVA F-value = 9.72), and 

285 structure indicators (ANOVA F-value = 42.4) (developed larger activity in olive groves than in 

286 vineyards, while fungivores were too more active in organic than in conventional systems 

287 (ANOVA F-value = 5.12) (all p-values <0.05). 

288 Soil properties presented large discrimination capability (Wilks’ Lambda = 0.12, p<0.05), with 

289 all soil properties except total C contributing (p<0.05) to the discrimination power of the 

290 model (Fig. S3).  Nematode taxa also discriminated well among groups (Wilks’ Lambda =0.19, 

291 p<0.05), separating olive groves and vineyards in different clusters, but soil food web indices 

292 discriminated poorly among field types (Wilks’ Lambda =0.86, p<0.05), grouping fields 

293 idiosyncratically (Fig. S3). Metabolic footprints presented higher discrimination ability (Wilks’ 
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294 Lambda = 0.58, p<0.05), and grouping vineyards and olive groves in different clusters (Fig. S3). 

295 All discriminant models showed larger differences between olive groves and vineyards than 

296 between conventional and organic fields.

297

298 4. Discussion

299

300 4.1. Relationship between management type and soil properties

301 Purported benefits of organic agriculture compared to other management practices include 

302 increased soil C and N concentration, soil fertility, water retention, and overall provision of 

303 ecosystem services (Garbach et al., 2017). In contrast to such findings, conventional 

304 management increased soil C, N, P and K stocks in the studied fields, and vineyards presented 

305 higher quantities of nutrients than olive groves. Higher nutrient inputs in the form of mineral 

306 fertilizers in conventional fields may explain the observed differences for N, P and K. However, 

307 since both conventional and organic fields received similar amounts of organic amendments 

308 (manure), detected differences in soil C cannot be explained with our data. In the studied 

309 fields, organic management did not improve soil nutrient condition. Soils in Mediterranean 

310 woody crops commonly present low organic matter levels (Vicente-Vicente et al., 2016), with 

311 typical C contents below 1% in different olive-growing areas in Spain (Álvarez et al., 2007; 

312 Benitez et al., 2006; Gómez et al., 1999; Gómez et al., 2009). In contrast to other studies, 

313 differences between organic and conventional fields in our study related exclusively to the 

314 absence of synthetic pesticides or fertilizers in the fields, but organic management was not 

315 accompanied by any other practice to increase soil protection or soil diversity such as cover 

316 cropping or reducing tillage; thus, the absence of chemical pesticides and fertilizers was not 

317 enough to induce a positive response in soil fertility. In agreement with our results, several 

318 previous studies have shown small differences in soil properties between organic and 
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319 conventional systems, as found in a long-term experiment in Switzerland (Mäder et al., 2002), 

320 and in a multiple comparisong among farms in The Netherlands (van Diepeningen et al., 2006).  

321 4.2. The nematode community response to crop type and soil management

322 Temporal dynamics of the nematode community was obvious during our study. In horticultural 

323 systems, nematode population dynamics are commonly determined by the crop cycle, crop 

324 species, and root condition (Scharroba et al., 2016). In our perennial systems such effects are 

325 probably weaker but still noticeable. Besides, nematode taxa varied more between crops than 

326 between management systems, which barely affected the microfaunal soil food web in our 

327 study. Previous studies, however, have found shifts in nematode community composition 

328 induced by the farming system that exceeded crop-related assemblage shifts (Quist et al., 

329 2016). In our study, nematode taxa driving differences between olives and vineyards, and, to a 

330 smaller extent, between organic and conventional vineyards, were the most common 

331 nematodes, belonging to different trophic groups, and not to the presence or absence of the 

332 scarce ones, hinting the existence of similar ecological niches in different systems and similar 

333 resource availability between systems. 

334 Mineral and organic fertilizers commonly result in clear effects on soil fauna (Zhang et al., 

335 2016b), whereas mineral fertilizers may reduce bacterivore nematodes (Bulluck III, 2002) due 

336 to direct toxicity of nitrogenous solutions (Tenuta and Ferris, 2004). Higher abundance of 

337 microbial-feeding nematodes in olive groves than in vineyards in this study, which cannot be 

338 attributed to soil amendments, might relate to plant-specific attributes such as root exudates, 

339 litter input, and crop-specific management. Root exudates are known to affect soil biota (van 

340 Dam and Bouwmeester, 2016) and to determine, for example, plant-parasitic nematode 

341 infection abilities (Yang et al., 2016). The extent to which such species-specific attributes affect 

342 soil biota under different fertilization regimes is unexplored. 
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343 Microbial feeding nematode taxa showed no clear response to management. Plant-feeding 

344 nematodes, on the contrary, were more abundant in organic than in conventional plots. In 

345 previous studies, we found higher abundance of different bacterivore taxa in organic than in 

346 conventional plots in horticultural systems, in which at least two plant-pathogens were also 

347 enhanced by organic management (Sánchez-Moreno et al., 2009). In contrast, many studies 

348 report a better regulation of plant-parasitic nematodes in organic than in conventional systems 

349 (Briar et al., 2007), as well as higher contribution of bacterivore in detriment of herbivore 

350 nematodes in organic than in conventional plots (Tsiafouli et al., 2007; Benković-Lačić et al., 

351 2016), but such positive effects of organic management in microfaunal soil food webs were not 

352 found in our study. Indeed, although previous studies in horticultural crops reported that 

353 different nematode pathogens may demonstrate contrasting response to organic management 

354 (Clark et al., 1998). Root-hair feeders (Tylenchidae), ectoparasites (Paratylenchus, 

355 Tylenchorhynchus and Xiphinema), and endoparasites (Pratylenchus) showed higher 

356 abundance in organic compared to conventional soils in our study. Consistent patterns, 

357 however, cannot be found in the literature, and while in northern latitudes nematodes seem 

358 to respond positively to organic farming (Mulder et al., 2003), in Mediterranean sites with low 

359 precipitation and soil organic carbon, free-living nematodes did not respond to organic 

360 management, and plant-feeding nematodes might increase in organic fields (Coll et al., 2011). 

361 Also in accordance with our results, some parasitic nematodes as Meloidogyne and 

362 Helicotylenchus were found to be more abundant in organic than in conventional tree crops in 

363 semiarid regions of USA (Pokharel et al., 2015). 

364 4.3. Impact on soil functioning

365 Our results show that soil food web indices and nematode metabolic footprints, although 

366 based on similar theoretical frameworks (Ferris, 2010; Ferris et al., 2001), offer complementary 

367 information. Soil food web indices reflect structural attributes of the nematode community, 
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368 while metabolic reflect the magnitude of the ecological functions performed by nematodes 

369 participating in different ecological functions. In our study, the Structure Index indicated an 

370 overall degraded situation in all fields. Varying nematode biomass across fields, however, led 

371 to different structural metabolic footprints across systems, hinting different ecosystem 

372 functioning. The structure metabolic footprint, an indicator of soil suppressiveness (Steel and 

373 Ferris, 2016) was larger in olive groves than in vineyards. To increase soil suppressiveness, 

374 reducing soil disturbance is mandatory to allow predatory nematodes to survive, while positive 

375 nutrient-mediated bottom-up effects would be required to increase resources available to 

376 higher trophic links to increase their biomass (Ferris et al., 2012a). 

377 Similarly, the Enrichment Index was lower in conventional olive groves than in the other three 

378 systems. The higher metabolic footprints of bacterivores, fungivores, and enrichment 

379 indicators in olive groves indicated higher soil fertility and a larger contribution of nematodes 

380 to nutrient mineralization (Gebremikael et al., 2016) than in vineyards. Higher mineral nitrogen 

381 soil content might be linked to higher biomass of bacterial-feeding, cp-1 nematodes through 

382 increased microbial biomass, and higher nematode biomass might increase soil ammonium 

383 through excretion (Standing et al., 2006; Briar et al., 2007; Sánchez-Moreno et al., 2008) in 

384 organic olive groves. In microcosms, nematodes have been found to increase total mineral 

385 nitrogen up to 32% (Gebremikael et al., 2014). Incorporation of manure or straw into the soil 

386 may induce an increase on nematode biomass compared to mineral fertilizers (Zhang et al., 

387 2016b), as might have happened in organic systems, which presented larger enrichment 

388 footprints in three out of the four sampling dates. 

389 Herbivore pressure was higher in vineyards than in olive groves, and herbivore activity was 

390 higher in the spring than in the fall, probably mediated by climatic conditions and the plant 

391 phenological stage. Herbivore pressure, however, cannot be directly related to plant damage, 

392 since the outcome of herbivory will result from a complex interaction between herbivores, 
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393 natural enemies, and plant condition, and will be greatly affected by soil food web structure 

394 (Macfadyen et al., 2009).

395 4.4. Does organic management improve soil health?

396 Vineyards and olive groves are often established in areas of low productivity and vulnerable 

397 soils. In the fields included in this study, organic management did not result in obvious 

398 improvement of soil quality. Bare soils, continuous tillage operations and few organic 

399 amendments are probably responsible of such lack of improvement (Calabrese et al., 2015; 

400 Fernández-Romero et al., 2016; Laudicina et al., 2016). In a previous study in Southern Spain, 

401 we found that tillage, herbicides, and bare soils depleted soil food webs in olive groves, and 

402 these negative effects affected nematodes in higher trophic links (Sánchez-Moreno et al., 

403 2015). In this study, none of the indicators used clearly discriminated between organic and 

404 conventional systems, and crop-related differences overcome the slight differences found 

405 between management systems. 

406 Other management techniques such as weed mowing, cover cropping, and reduced tillage, 

407 have been shown to improve significantly soil quality, soil diversity, microbial populations, soil 

408 C concentration, and beneficial nematodes in semi-arid conditions (Gómez et al., 2009; 

409 Henneron et al., 2014; Simoes et al., 2014; Moreno and Benitez, 2016). In Southern Europe, 

410 no-till and reduced-till are well established techniques among organic farmers, but green 

411 manures are seldom used (Peigné et al., 2016). Seufert et al. (2017) have recently highlighted 

412 that narrow focus of organic regulations worldwide do not incorporate the original concept of 

413 organic farming as a holistic farming system to improve soil health.

414 Studying the effects of organic management in a wider variety of woody crops and in larger 

415 study area would be necessary to infer to what extent organic farming enhances soil and 

416 ecosystem conditions under semi-arid conditions. A holistic view of organic farming, including 

417 the use of carbon-based amendments, diverse crop rotations, and cover cropping (Reeve et al., 
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418 2016) might be required to benefit from soil and ecosystem health in the form of food. 

419 Preserving and improving agroecosystem health should be considered a priority goal in 

420 landscape management in Southern Europe, since olive orchards and vineyards play a crucial 

421 role in the maintenance of traditional agricultural landscapes together with local identity, 

422 history and economy (Biasi et al., 2012).

423 5. Conclusions

424 The few differences found between the organic and conventional vineyards and olive orchards 

425 included in our study suggest no obvious benefit from organic farming in terms of soil 

426 properties, particularly soil fertility, and soil food web structure. The effects of crop species 

427 was much noticeable than the effects of system management. Of the indicators used, none 

428 was able to discriminate clearly between conventional and organic systems. Differences 

429 among sampling dates indicated strong temporal patterns of nematode community dynamics 

430 in these semiarid perennial crops. In the semi-arid conditions of this study, active soil 

431 protection such as that provided by no-tillage or cover crops are probably needed to obtain 

432 the environmental benefits pursued by organic farming. 
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Figure 1. Continuation

0
15
30
45
60
75

Bioav. P mg/kg

May 13

Bioav. P mg/kg

Oct 13

0
15
30
45
60
75

CONV ORG

June 14

CONV ORG

Oct 14

0

0.1

0.2

0.3

EC µS/cm

May 13
EC µS/cm

Oct 13

0

0.1

0.2

0.3

CONV ORG

June 14

0
5

10
15
20

NH4
+ mg/kg

May 13

NH4
+ mg/kg 

Oct 13

0
10
20
30
40
50

NO3
- mg/kg

May 13

CONV ORG

Oct 14

NO3
- mg/kg

Oct 13

0

5

10

15

20

CONV ORG

June 14

CONV ORG

Oct 14

0
10
20
30
40
50

CONV ORG

June 14

CONV ORG

Oct 14
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Figure legends

Fig. 1. Mean values (±SE) of soil C (g/kg), soil N (mg/kg), soil P (mg/Kg), soil bioavailable K 

(mg/kg), bioavailable P (mg/kg), electrical conductivity (EC, µS/cm), NH4
+ (mg/kg), NO3

-(mg/kg), 

soil moisture (SM, %), and soil pH at four sampling dates (May 2013, October 2013, June 2014, 

October 2014) in conventional (CON) and organic (ORG) vineyards (solid line) and olive groves 

(broken line) . NH4
+ and NO3

- are differently scaled in 2013 and 2014 data to facilitate 

visualization. For statistical comparisons, see Supplementary material (Table S1).

Fig. 2. Ordination of soil samples on the biplot resulting from the Principal Component 

Analyses based on the nematode community composition of soil samples. Samples of the four 

systems are delimited (CONV = Conventional, ORG = Organic) to facilitate interpretation.  

Fig. 3. Results of the Canonical Correspondence Analysis showing the associations between soil 

properties (Ctot = total C, Ntot = total N, Ptpt = total P, Pbio= bioavailable P, K = bioavailable K, 

EC = electrical conductivity, SM = soil moisture, NO3= NO3
-, NH4= NH4

+), crop type (VIN = 

vineyards, OLI = olive groves), and management system (ORG = organic, CONV = conventional), 

and nematode taxa (1: Dauerlarvae, 2: Mesorhabditis, 3: Rhabditis, 4: Panagrolaimus, 5: 

Cervidellus, 6: Acrobeles, 7: Acrobeloides, 8: Metateratocephalus, 9: Plectus, 10: Wilsonema, 

11: Eumonhystera, 12: Chiloplacus, 13: Prismatolaimus, 14: Achromadora, 15: Aphelenchus, 

16: Aphelenchoides, 17: Diphterophora, 18: Tylencholaimus, 19: Tylenchidae, 20: 

Tylenchorhynchus, 21: Paratylenchus, 22: Pratylenchus, 23: Meloidogyne, 24: Helicotylenchus, 

25: Rotylenchus, 26: Trichodorus, 27: Xiphinema, 28: Qudsianematidae, 29: Mesodorylaimus, 

30: Aporcelaimidae, 31: Tripyla, 32: Mylonchulus, 33: Clarkus, 34: Axonchium, 35: Discolaimus, 

36: Aprutides, 37: Alaimus, 38: Steinernema). Only nematode taxa appearing in more than one 

sample were included in the analysis. Percentage of variance explained of independent (soil 

properties, crop type, and management system) and dependent (nematode taxa) variables is 

indicated for each axis.



Fig. 4. Representation of the Herbivore, Omnivore, Structure, Predator, Fungivore, Enrichment, 

and Bacterivore footprints (ln-transformed, mean values) inferred in the four systems (CONV = 

Conventional, ORG = Organic, VINE= Vineyards, OLI = Olive groves) at four different sampling 

dates.



Table S1. Results of the factorial ANOVA (F statistic and p value) showing the significance of the effect 

of date of sampling (May 2013, October 2013, May 2014 and October 2014), crop (olive groves and 

vineyards), system management (organic and conventional) and their interactions on soil properties 

(Bioav. P and K = bioavailable P and K, EC= electrical conductivity, SM= soil moisture). 

 

  Date (D) Crop (C) System (S) D x C C x S D x S D x C x S 

Total C F 16.01 53.80 7.45 14.19 1.90 5.70 2.02 

(mg/kg) p *** *** *** *** ns ** ns 

Total N F 3.76 14.24 6.45 0.77 0.31 0.19 0.86 

(mg/kg) p ** *** ** ns ns ns ns 

Total P F 6.75 38.25 14.19 1.98 0.32 1.35 0.69 

(mg/kg) p *** *** *** ns ns ns ns 

Bioav. P F 11.63 610.44 129.97 3.19 0.62 83.97 1.90 

(mg/kg) p *** *** *** ** ns *** ns 

Bioav. K F 10.73 82.44 197.59 10.14 2.59 40.06 2.16 

(mg/kg) p *** *** *** *** ns *** ns 

NO3
- F 142.44 25.54 39.64 3.88 4.66 13.45 0.82 

(mg/kg) p *** *** *** *** *** *** ns 

NH4
+ F 104.65 15.53 0.21 2.01 2.20 3.75 4.79 

(mg/kg) p *** *** ns ns ns ns ns 

pH F 5.31 39.75 14.30 0.29 0.21 20.64 1.27  
p *** *** *** ns ns *** ns 

EC F 70.74 73.28 21.44 0.51 1.69 1.05 1.95 

µS/cm p *** *** *** ns ns ns ns 

SM F 44.59 242.68 0.40 6.36 0.86 2.71 0.92 

(%) p *** *** ns *** ns ns ns 

 



Fig. S1. Representation in a radial chart of nematode metabolic footprints (Herbivore, Omnivore, 
Structure, Predator, Fungivore, Enrichment, and Bacterivore footprints). The representation of the 
ln-transformed footprints results in a polygon in which the upper part represents the pest pressure 
disservice whereas the right and left parts represent the pest suppression and mineralization 
services, respectively. Thus, the radial representation of nematode metabolic footprints visualizes 
the differences among functional magnitudes of different food web links and the 
services/disservices in which they are involved. An optimal food web, with large magnitudes in the 
pest control and mineralization services and a low pest pressure disservice would present a radial 
diagram with a cup shape. Two hypothetical food webs are represented: the solid line represents a 
food web in which the fast, bacterial-mediated mineralization function and the pest pressure is 
high, and the pest suppression service is weak. The broken line represents a food web in which 
both the mineralization and the pest suppression services are strong and the herbivore pressure is 
low.



Fig. S2. Soil food web diagnosis and Structure and Enrichment Metabolic Footprints of the four 
crop and management systems. SI and EI values are indicated by the point in the center of 
each polygon. Height and width of each polygon represents the magnitude of the Enrichment 
and Structure Metabolic footprints.



Fig. S3. Cluster analysis of the Mahalanobis distances between groups obtained by the Discriminant 
analysis performed on soil properties, nematode taxa, soil food web indices, and metabolic 
footprints. Different letters below each system type indicates significant differences between groups 
detected in the Discriminant analysis.



Table 1. Location, type of management, field size, and type of irrigation of the studied farms. 
No. of trees per hectare (in olive groves) and training system (in vineyards) is indicated.

Olive Location Management ha No. trees/ha Irrigation
38º 49' 19'' N ORG 2.8 50 rainfedSite 1
3º 16' 41'' W CONV 1.4 50 rainfed
38º 49' 19'' N ORG 1.6 70 rainfedSite 2
3º 16' 34'' W CONV 1.6 80 rainfed
38º 48' 48'' ORG 2.7 100 rainfedSite 3
3º 12' 42'' CONV 3.0 100 rainfed

Vineyard Location Management ha Training Irrigation
38º 49' 16'' ORG 2.9 None rainfedSite 1
3º 16' 44'' CONV 3.4 None rainfed

38º 47' 42'' N ORG 1.9 Metal posts irrigatedSite 2
3º 9' 19'' W CONV 2.1 None rainfed

38º 47' 29'' N ORG 4.6 Metal posts irrigatedSite 3
3º 9' 16'' CONV 5.7  None rainfed



Table 2. Significance of the effect of sampling date (D, May 2013, October 2014, June 2014, October 2014), type of crop (C, olive groves or vineyards), 
management system (S, organic or conventional), and their interactions on the abundances (no. of nematodes/100g of dry soil) of nematode taxa found in the 
study area (**=p<0.05, ***=p<0.01). Mean nematode abundance (no. of nematodes / 100g dry soil) at each crop x system interaction is indicated. Trophic group 
of each taxa is shown (Ba=bacterivores, Fu=fungivores, H=herbivores, O=omnivores, P=predators, En=entomopathogen). Numbers within brackets next to 
nematode taxa are for nematode identification in Fig. 3.   

Olive groves Vineyards
T.G. Taxa Date Crop System D x C D x S C x S CONV ORG CONV ORG D xC x S
Ba Mesorhabditis *** 0.54 0.37 0.05 0.20 **
Ba Rhabditis 0.13 0.80 0.83 0.14
Ba Cruznema 0.00 0.00 0.00 0.04
Ba Panagrolaimus *** *** *** 23.99 25.37 18.79 9.35
Ba Cervidellus *** ** 15.12 12.16 8.66 7.46
Ba Acrobeles *** 7.73 7.46 7.93 5.33
Ba Acrobeloides *** *** *** *** 160.09 113.72 36.70 51.77
Ba Metateratocephalus 0.12 0.00 0.02 0.00
Ba Teratocephalus 0.12 0.00 0.00 0.00
Ba Plectus 0.43 1.85 0.43 0.07
Ba Wilsonema 0.25 0.26 0.06 0.16
Ba Eumonhystera 0.25 0.58 0.13 0.07
Ba Chiloplacus 0.17 0.00 0.00 0.00
Ba Prismatolaimus ** ** *** 2.57 3.95 2.05 0.47 **
Ba Achromadora *** *** *** 3.40 1.51 0.00 0.00 **
Ba Alaimus 0.01 0.00 0.02 0.36
Fu Aphelenchus *** *** *** 58.24 77.58 25.75 24.37
Fu Aphelenchoides *** *** *** 86.25 55.11 31.14 38.23 **
Fu Diphterophora ** ** ** 0.06 0.00 0.01 1.05
Fu Tylencholaimus *** *** 0.89 1.51 0.01 0.39



Table 2. Continuation. 

Olive groves Vineyards
T.G. Taxa Date Crop System D x C D x S C x S CONV ORG CONV ORG D xC x S
Fu Tylenchidae *** *** *** 76.72 86.13 29.64 19.09
Fu Aprutides 0.39 0.70 0.00 0.00
Fu Tylolaimophorus 0.00 0.00 0.01 0.00
H Ecphyadophora 0.00 0.00 0.03 0.00
H Tylenchorhynchus *** *** ** *** 5.17 7.49 0.07 0.57
H Paratylenchus *** *** 7.52 21.36 1.79 8.93
H Pratylenchus *** *** ** 26.52 26.75 0.83 15.29
H Meloidogyne *** *** *** 0.17 0.14 3.73 12.49
H Helicotylenchus *** *** *** 9.95 16.13 0.35 1.70
H Rotylenchus *** *** *** 2.72 5.72 0.06 0.38
H Trichodorus 0.10 0.02 0.07 0.00
H Xiphinema *** *** *** *** 0.76 1.23 1.48 7.34 **
H Axonchium 0.09 0.00 0.02 0.04
H Paralongidorus 0.04 0.00 0.00 0.00
O Qudsianematidae *** *** 9.69 12.32 3.00 5.27
O Mesodorylaimus 0.00 0.18 0.00 0.12
O Aporcelaimidae ** *** 0.55 0.06 0.27 0.47 ***
P Tripyla 0.00 0.17 0.00 0.00
P Mylonchulus 0.00 0.14 0.03 0.00
P Clarkus 0.00 0.10 0.00 0.00
P Prionchulus 0.00 0.07 0.00 0.00
P Discolaimus 0.24 0.36 0.11 0.08
En Steinernema 0.00 0.00 0.03 0.00
Ba Dauer 0.33 1.23 1.95 0.62



Table 3. Significance of the effect of sampling date (D, May 2013, October 2014, June 2014, October 2014), type of crop (C, olive groves or vineyards), management system 
(S, organic or conventional), and their interactions on soil food web descriptors (MI= Maturity Index, ∑MI= Sigma Maturity Index, PPI= Plant-Parasitic Index, CI= Channel 
Index, BI= Basal Index, EI= Enrichment Index, SI= Structure Index, Biom= nematode biomass (µg/g soil), Tot= total nematode abundance (No. nematodes/100g dry soil), H’= 
Shannon diversity Index; S= Taxa richness). F-statistic and significance of the p-value is indicated. Mean ± SE nematode community descriptors in the four systems is 
shown. 

Date Crop System D x C D x S C x S Olive groves Vineyards D x C x S
 F p F p F p F p F p F p CONV ORG CONV ORG F p
MI 28.9 <0.01 0.05 ns 1.83 ns 4.44 <0.01 1.46 ns 2.70 ns 2.06±0.02 2.06±0.02 2.03±0.03 2.09±0.03 3.53 <0.05
∑MI 26.3 <0.01 0.96 ns 6.31 <0.05 3.85 <0.05 0.15 ns 4.65 <0.05 2.13±0.02 2.15±0.03 2.11±0.04 2.25±0.5 1.48 ns
PPI 12.18 <0.01 3.89 <0.01 3.96 <0.05 5.76 <0.01 0.87 ns 2.86 ns 2.30±0.03 2.32±0.04 2.34±0.07 2.54±0.08 0.99 ns
CI 12.4 <0.01 2.01 ns 0.05 ns 2.47 ns 1.34 ns 4.46 <0.05 66.2±3.3 60.1±3.3 57.9±3.5 61.2±3.7 3.25 <0.05
BI 8.72 <0.01 7.20 <0.01 0.03 ns 0.21 ns 0.21 ns 8.49 <0.01 53.2±1.9 48.0±1.7 44.4±1.6 48.1±2.0 1.26 <0.05
EI 3.70 <0.01 8.72 <0.01 0.04 ns 2.81 <0.05 0.55 ns 15.23 <0.01 37.1±1.9 43.1±1.7 48.0±1.6 42.0±1.9 2.50 ns
SI 33.9 <0.01 0.39 ns 0.24 ns 2.63 ns 1.00 ns 0.01 ns 19.0±2.3 21.1±2.5 20.1±2.5 22.2±3.2 2.11 ns
Biom. 2.56 <0.01 3.57 ns 2.47 ns 3.02 ns 1.31 ns 2.09 ns 0.22±0.0 0.24±0.0 0.28±0.1 0.79±0.3 1.19 ns
Tot 8.75 <0.01 84.58 <0.01 0.14 ns 10.42 <0.01 1.93 ns 0.55 ns 505.9±50.0 480.6±43.4 170.0±20.8 213.9±21.9 2.41 ns
H' 17.92 <0.01 0.14 ns 0.20 ns 0.07 ns 1.84 ns 8.26 <0.01 1.70±0.04 1.81±0.03 1.81±0.04 1.70±0.04 1.11 ns
S 14.32 <0.01 11.73 <0.01 0.84 ns 5.76 ns 1.53 ns 2.19 ns 10.4±0.3 11.1±0.3 9.9±0.3 9.8±0.03 1.52 ns


