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Impact of colored noise in pulse amplitude measurements: a time-domain1
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Abstract6

In particle detectors, pulse shaping is the process of changing the waveform of the pulses in order to maximize7

the signal to noise ratio. This shaping usually only takes into account white, pink (flicker) and red (brownian)8

noise. In this paper, a generalization of noise indexes as a function to an arbitrary fβ noise type, where β is9

a real number, is presented. This generalization has been created using the differintegral operator, defined10

in Fractional Calculus. These formulas are used to calculate the Equivalent Noise Change (ENC) in detector11

particle systems.12
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1. Introduction14

In spectroscopy systems, pulse shaping plays a crucial role in noise filtering. In order to analyze different15

shaping modes, Goulding [1] and Radeka [2] defined the noise indexes of shapers (also called “form factors”16

in [3]) as parameters proportional to the contribution of a specific noise type. These parameters only depend17

on the pulse shape and its duration. A different noise index has to be calculated for each different “color of18

noise”. In a signal with components at all frequencies and a power spectral density per unit of bandwidth19

proportional to fβ , the color is given by the β value. For instance, the spectral density of white noise is flat20

(β = 0), while pink (flicker) noise has β = −1 and red (brownian) noise has β = −2.21

In this paper, all the noise spectral densities are referred to the preamplifier output. Goulding [1]22

calculated the noise indexes for voltage (white) and current (red) noise at this point of the circuit. In [4]23

the f−1 (pink) noise index using the concept of 1/2-derivative developed in Fractional Calculus [5] was also24

introduced. A strength of noise indexes is that they are calculated in time-domain directly whereas other25

methods that use Fourier Transforms are less intuitive and more complex to carry out. The first conclusion26

taken from the noise indexes is that the contribution from red noise increases with shaping time whereas27
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the white noise contribution decreases. The f−1 noise does not depend on the shaping time. Fig. 1 shows28

a typical example of ENC at shaper output vs. shaping time in presence of red and white noise.29
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Figure 1: Equivalent noise charge vs. shaping time. Changing the red noise (β = −2) or, as in this case, white noise (β = 0)

contribution shifts the noise minimum. Increased voltage noise is shown as an example. (Figure reproduced from [3]) with

permission.

Until now, noise analysis have been performed just for white, pink and red noise (e.g. [6]), which are30

proportional to f−2, f−1 and f0 respectively. However, in particle detectors, noise distribution is often more31

complex. In fact, the most common noise in particle detectors has a continuous range from f−0.5 to f−2
32

[7, 8]. In this paper, a generalization of the noise indexes using differintegrals is proposed with the aim of33

covering a continuous desired range, instead of using only discrete values such as f−2, f−1 or f0. With this34

generalization, shapers can be analyzed more deeply.35

In principle, this analysis can be used to obtain the generalized noise parameters of a shaper. This36

analysis can be used individually, or as a cost function of an automated algorithm to find the optimal37

shaping. Moreover, this method also allows analyzing a shaper, provided by optimization algorithms, to38

find the predominant noise type present in the system, and then try to mitigate it. There is extensive39

material published on optimal pulse shaping synthesis (e.g. [9–12]).40

Finally, we would like to clarify that this paper focuses on noise impact measurement, but does not focus41

on selecting the most suitable pulse shape for a given spectroscopy system or particle detector; instead, in42

this paper we describe a method to analyze the relative noise performance of pulse-shaping systems.43
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2. Differintegrals44

Whenever a function W (t) is derived n (positive integer) times or integrated −n times, we can replace n45

for a real number α. If α > 0, W (α)(t) is the α fractional derivative of W (t). Otherwise, W (α)(t) is the −αth
46

fractional integral. Differintegrals are a combined fractional differentiation/integration operator. Therefore,47

W (α)(t) is the Differintegral operator [5] applied to W (t). Actually, α can be also a imaginary number [13]48

leading to complex-order derivatives. However, for our purposes, it is sufficient that α be a real number.49

In literature, there are several definitions of fractional derivative and integral [14]. Thus, to define the50

differintegral operator, it must be defined first fractional derivatives and integrals separately.51

On one hand, the classical form of fractional integral is the Riemann–Liouville definition:

Jαf(t) :=
1

Γ(α)

∫ t

0

(t− τ)
α−1

f(τ) dτ (1)

where α is a real positive number, Γ is the Gamma Function and J is the Riemann–Liouville integral52

operator.53

On the other hand, the definition of Riemann–Liouville fractional derivative is based in the previous

formula and is given by:

Dαf(t) :=
1

Γ(n− α)

dn

dtn

(
∫ t

0

(t− τ)
n−α−1

f(τ) dτ

)

(2)

where n is an integer number. This equation is the cornerstone of fractional calculus.54

Although both operators are linear, J commutes (i.e. JαJβf(t) = JβJαf(t)). However, D does not55

commute for non-integer numbers, that is JαDαf(t) 6= DαJαf(t). In addition Dαk for any constant k is not56

always equal to 0. To solve these drawbacks, alternative definitions for fractional derivatives were proposed.57

One of the most popular is the Caputo derivative, also based in Eq. (1):58

Dα
c f(t) := J⌈α⌉−αD⌈α⌉f(t) (3)

where ⌈α⌉ is the ceiling function, which provides the smallest integer greater than or equal to α. Then, in59

this case, the value of D⌈α⌉f(t) is a derivative of integer value. This new operator is linear and commutes,60

that is JαDα
c f(t) = Dα

c J
αf(t), and Dα

c k = 0 for any constant k. Both operators, J and Dc form the61

differintegral operator. However, both J and Dc are complex to calculate by means of numerical methods.62

To approximate the value of the differintegral, instead of J andDc operators, in this paper and henceforth63

we are going to use the Grünwald–Letnikov definition given by:64

f (α)(t) = lim
h→0

1

hα

k
∑

j=0

(−1)
j

(

α

j

)

f(kh− jh) (4)

This formula is easily implemented using numerical methods [16] compared to (1) and (3) and it has65

been used in another works related to filters and numerical calculus (e.g. [17]).66
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3. Generalization of the ENC Formula67

As a starting point, we are going to use the ENC formula presented in [3, 8] because it is necessary to68

know the noise indexes to be calculated. The ENC formula is:69

Q2
n = i2nFiτs + v2nFv

C2

τs
+ FvfAfC

2 (5)

where Qn is the ENC in Coulombs, τs is the total shaping time and C is the equivalent detector capacitance.70

Fv, Fi, and Fvf are the noise indexes for f0-noise, f−2-noise and f−1-noise, respectively; in this nomencla-71

ture, they are dimensionless. in is the current noise spectral density measured in A/
√
Hz, vn is the voltage72

noise spectral density measured in V/
√
Hz, Af is the f−1-noise spectral density coefficient measured in V2.73

The f−1-noise spectral density vnf is equal to:74

vnf =

√

Af

f
[V/

√
Hz] (6)

Others nomenclatures different than the one proposed in [3] such as [8, 15] are equivalent. The Eq. (5)75

is applicable to both analog and digital shapers.76

The value of Fi and Fv are:77

Fi =
1

2τs

∫ ∞

−∞

W 2(t) dt (7)

Fv =
τs
2

∫ ∞

−∞

(W ′(t))
2
dt (8)

where for time-invariant pulse shaping W (t) is the system’s impulse response for a short input pulse with78

the peak output signal normalized to unity. For time-variant systems (e.g. gated integrators), W (t) can be79

also easily calculated according to the method described in [1]. An alternative notation of these last two80

formulas can be found in the same reference.81

The expression for Fvf can be deduced from [4, 15] and is equal to:

Fvf =
1

2

∫ ∞

−∞

(

W (1/2)(t)
)2

dt (9)

where W (1/2)(t) is the 1/2-derivative of W (t). It must be taken into account that the calculus of the 1/2-82

derivative in time domain is equivalent to multiply by
√
s in Laplace domain. There are several methods83

(analytical and numerical) to calculate the fractional derivatives [5]. One of the simplest for 1/2-derivative84

calculation was proposed in [4]:85

W (1/2)(t) =
1√
πt

∗W ′(t), ∀t > 0 (10)
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These three formulas could be generalized in a continuous noise index:86

F (β) =
1

2
τβ+1
s

∫ ∞

−∞

(

W (1+ β

2
)(t)

)2

dt (11)

Note that F (0) = Fv, F (−1) = Fvf and F (−2) = Fi. Thus, in line with the formulas of [15], the87

following generalization of (5) is proposed:88

Q2
n =

∫ ∞

−∞

C2v2n(β)F (β)τ−β−1
s dβ (12)

where v2n(β) is the converted voltage noise spectral density. Specific values for this parameter are:89

v2n(0) = v2n [V2/Hz]

v2n(−1) = Af [V2]

v2n(−2) = Ai ≡ (in/C)
2
[V2 ·Hz]

This last formula is also applicable when we want to to translate current noise spectral densities to90

voltage.91

If only specific types of noise (i.e. β values) are considered, Eq. (12) can be simplified as follows:92

Q2
n =

∑

i

C2v2ni
(β)Fi(β)τ

−β−1
s (13)

where i indicates the noise type considered.93

Notice that, according to Eq. (11) for all the values of β, except β = −1, the value of F (β) depends on94

τs. Thus, when τs is changed, the total noise can go through a minimum, where the main noise contributions95

are equal. Thus, the contribution from noise whose β < −1 increases with shaping time whereas the noise96

whose β > −1 decreases with increasing shaping time. f−1 noise does not depends on the shaping because97

β = −1. This allows to adjust the shaping time to shift the noise minimum as shown in example of Fig. 2.98

It can be seen in both Fig. 1 and Fig. 2, that noises with β > −1 dominate at short shaping times,99

whereas at long shaping times, β < −1 noises takes over. This fact is shown in Fig. 3 where Qn vs. shaping100

time for several β noise contribution is presented. In Fig. 3 β = −2 and β = 0, corresponding to red and101

white noise respectively, are highlighted.102

4. Noise curves of CR–(RC)n shapers103

To test the behavior of Eq. (11), the value of F (β) has been calculated for one of the most common104

analog shapers: CR–(RC)n. The differintegrals for F (β) was obtained using the function gdiff presented in105

[16] that implements the Grünwald–Letnikov Method, presented in Section 2.106
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Figure 2: Equivalent noise charge vs. shaping time for arbitrary β noise contribution. In this case β = 3 and β = −2.5. As in

Fig. 1 changing the noise contribution shifts the noise minimum.
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Fig. 4 depicts F (β) for CR shaping. This type of shaping generates the following decreasing exponential107

function when a particle is detected:108

x(t) = A exp

(−t

τ1

)

(14)

where A is the pulse height and τ1 = CR is the decay constant. The anomalously high value of τ1 has been109

chosen to show the figure as clearly as possible. Otherwise the F (β) values for red noise would be negligible110
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with respect to blue or vice versa.111

We can see that for β < 2 the value of F (β) is dramatically increased due to the pulse duration that112

implies a high τ1. Also, for a noise spectrum of β ≈ −0.3 the effect of increasing τ1 has almost no effect on113

F (β).114
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Figure 4: Continuous noise index of the shapers for CR shaping for several τ1.

Fig. 5 shows the value of F (β), in this case, for CR–RC shaping. This type of shaping generates the115

following pulse when a particle is detected:116

x(t) = A
−t

τ1 − τ2

(

exp

(−t

τ1

)

− exp

(−t

τ2

))

(15)

where τ2 = RC is the decay constant at the second state of the shaper. The height of each shaper was117

normalized, so that every x(t) has the same height.118

Fig. 6 depicts the value of F (β) for the CR–(RC)n (n from 0 to 5) shapers. For simplicity, the same τ119

was set in all the stages of each shaper. Thus, the following pulse is generated:120

x(t) =
A

n!

(

t

τ

)n

exp

(−t

τ

)

(16)

The height of each shaper has also been normalized, so that every shaper has the same height. Obviously,121

the duration of each pulse is variable depending on n. Again, this high value was chosen to show the figure122

as clearly as possible.123

According to Section 3, when the value of τ decreases, F (β > −1) increases while F (β < −1) decreases,124

as if a rotation around the F (β = −1) axis is involved. For β < −2, all values of N(β) are ∞ in the three125
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figures. As it can be noted in Fig. 6, the effect of increasing τ1 or τ2 for noises of β ≈ −1 does not have any126

effect on F (β).127

5. Noise curves of the most common optimal digital shapers128

In Fig. 7 the normalized impulse response of some of the most common optimal digital shapers: (1)129

optimal for white noise; (2) optimal for f−1-noise [19]; (3) optimal for f−2-noise; (4) optimal for f−3-noise130

(1/f current noise) [9] are presented.131
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The value of F (β) for these shapers is shown in Fig. 8. The differintegrals for F (β) were also obtained132

using the function gdiff. In this figure, F (β) was calculated for a τs =5 s (0.1 s/sample). As in previous133

section, this anomalously high value of τs was chosen so that the values of F (β) were more legible. For a134

given value of τs, Shaper 1 has the minimum F for β = 0, Shaper 2 has the minimum F for β = −1, Shaper135

3 has the minimum F for β = −2 and Shaper 4 has the minimum F for β = −3. These values, marked with136

a black square (�) are optimal for each noise type.137
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Figure 8: Continuous noise index of the shapers of Fig. 7.

In Fig. 8 the F (β) values for β < −2 are not drawn because they tend to ∞ for all shapers except for 4.138

This is because the shaper 4 output provides values below zero that allow the 1/2-integral (β = −3 in Eq.139
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(11)) return to 0. This is required so that F (β) < ∞. In the same way, for bipolar shapers with equal area140

above and below zero, F (−4) < ∞ because the integral of (11) returns to 0. Such observations are not as141

easy to perform when working in the frequency domain. It is also important to take into account that most142

detectors nowadays have negligible values for fβ-noise, β < −2.143

6. Conclusion144

A generalization of noise indexes in function to an arbitrary fβ noise, where β is a real number, has145

been presented. Thus, with this new continuous noise index, shapers can be analyzed more deeply allowing146

to choose a better shaping system for a given particle detector. The simplicity of resolution calculations147

using the presented method has been demonstrated here. These formulas may also be applied to measure148

the ENC (i.e. signal/noise ratio) in other disciplines which involved transients processing.149
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