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Abstract

Background: The response of many biomedical systems can be modelled using a linear combination of damped
exponential functions. The approximation parameters, based on equally spaced samples, can be obtained using
Prony’s method and its variants (e.g. the matrix pencil method). This paper provides a tutorial on the main polynomial
Prony and matrix pencil methods and their implementation in MATLAB and analyses how they perform with synthetic
and multifocal visual-evoked potential (mfVEP) signals.
This paper briefly describes the theoretical basis of four polynomial Prony approximation methods: classic, least squares
(LS), total least squares (TLS) and matrix pencil method (MPM). In each of these cases, implementation uses general
MATLAB functions. The features of the various options are tested by approximating a set of synthetic mathematical
functions and evaluating filtering performance in the Prony domain when applied to mfVEP signals to improve
diagnosis of patients with multiple sclerosis (MS).

Results: The code implemented does not achieve 100%-correct signal approximation and, of the methods tested,
LS and MPM perform best. When filtering mfVEP records in the Prony domain, the value of the area under the
receiver-operating-characteristic (ROC) curve is 0.7055 compared with 0.6538 obtained with the usual filtering
method used for this type of signal (discrete Fourier transform low-pass filter with a cut-off frequency of 35 Hz).

Conclusions: This paper reviews Prony’s method in relation to signal filtering and approximation, provides the
MATLAB code needed to implement the classic, LS, TLS and MPM methods, and tests their performance in biomedical
signal filtering and function approximation. It emphasizes the importance of improving the computational methods
used to implement the various methods described above.

Keywords: Prony’s method, Matrix pencil, Least squares, Total least squares, Multifocal evoked visual potentials,
Multiple sclerosis

Background
Prony’s method
In 1795, Gaspard de Prony [1] proposed a method to ex-
plain the expansion of gases as a linear sum of damped
complex exponentials of signals that are uniformly sam-
pled. Prony’s method approximates a sequence of N = 2p
equally spaced samples to a linear combination of p
complex exponential functions with differing amplitudes,
damping factors, frequencies and phase angles. The
main contribution of this classic method is that it

converts a non-linear approximation of exponential
sums by solving a set of linear equations and a
root-finding problem.
The conventional or polynomial Prony method

consists of setting out an autoregressive model of
order p that assumes that the value of sampled data
x[n] depends linearly on the preceding p values in
x. Solving this linear system of equations obtains
the coefficients of the characteristic or Prony poly-
nomial φ(z). The roots of this polynomial yield two
of the parameters of the solution (damping factors
and frequency) and provide a second system of
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equations to calculate the amplitude and phase of
the p functions.
Prony’s original method exactly matched the curve

of p exponential terms to a dataset of N = 2p ele-
ments. When N > 2p, the linear systems of equations
are overdetermined and can be approximated by the
least squares (LS) method [2]. The conventional
least-squares method considers that in the linear sys-
tem (A.x ≈ b), only b (observation vector) is contami-
nated by noise, while A (coefficient matrix) is
noise-free. However, generally both matrix A and vec-
tor b are noise-perturbed (in Prony’s method, A and
b share the same data source, see below) and, in this
case, the total least-squares technique (TLS) [3] can
be more advantageous.
In some cases, a problem with the Prony polyno-

mial method is that it can be numerically unstable
because of the steps that comprise the algorithm:
solving an ill-conditioned matrix equation and finding
the roots of a polynomial. When the number of expo-
nentials is relatively high, the sensitivity of roots of
the characteristic polynomial to perturbations of their
coefficient is likewise high [4] and Prony’s method
may be unstable.
Another alternative is to use the matrix pencil

method (MPM). Although similar to Prony’s method, it
consists of solving an eigenvalue problem rather than
following the conventional two-step Prony method. It
has been found through perturbation analysis and simu-
lation that for signals with unknown damping factors
the MPM is less sensitive to noise than the polynomial
method [5].
In recent years, and due to advances in computing

systems, Prony’s method has been successfully applied
in various engineering sectors, such as electric power
quality analysis [6], materials science [7], antennae [8],
etc. In the biomedical field, the classic Prony method
is used in [9] to process multifocal visual-evoked po-
tentials (mfVEPs) to diagnose the early stages of
multiple sclerosis (MS). The LS Prony method is used
in [10] to estimate the parameters of the single
event-related potential; the TLS is used in [11] to dis-
criminate between three cardiac problems, and the
MPM is used in [12–14].
Various programming languages are widely used in

the scientific field. These languages include Python,
a free and open-source high-level programming
language [15, 16], and MATLAB®, a proprietary
product.
MATLAB® is user-friendly and needs practically no

formal programming knowledge [17]. As it imple-
ments a wide number and variety of functions
(statistics, neural networks, graphics, wavelets, etc.), it
is widely accepted as a development platform for

numerical software by a significant portion of the
computational science and engineering community
[18–20]. Its open availability ensures reproducibility
and knowledge exchange.

Objectives
This paper presents a tutorial on implementation in
MATLAB of two families of Prony methods: the
polynomial method (classic and extended — LS and
TLS) and the matrix pencil method. It presents an
overview of the mathematical bases of each method
and implements them in MATLAB using the func-
tions directly available. The results produced by the
different methods when approximating synthetic sig-
nals are obtained and filtering of mfVEP records is
implemented in the Prony domain. The Discussion
section provides information on possible ways of
mitigating the ill-conditioning problems associated
with several of the resolution phases of the Prony
methods.

Implementation
Polynomial method
A data sequence x[n] (n = 1,…N) can be represented by
the sum of p complex parameters (order p) according to
the following expression:

x n½ � ¼
Xp
k¼1

Ake
jθk � e αkþ j2π f kð ÞTs n−1ð Þ

¼
Xp
k¼1

hk � z n−1ð Þ
k ð1Þ

Approximation of signal x[n] occurs in p compo-
nents, in which Ak is the initial amplitude in the
same units as x[n], αk is the damping factor in sec-
onds−1, fk is the frequency in Hertz, TS is the sam-
pling period (in seconds) of signal x[n] and θk is the
initial phase in radians. Therefore, signal x[n] is char-
acterized by the parameters Ak, αk, fk and θk (k =
1,…,p). hk is the time-independent component and zk
is an exponential and time-dependent component
(poles).
Equation 1 is the expression of the general solu-

tion of a homogeneous linear difference equation, if
the p roots are different [21]. In order to find that
equation we have to construct its characteristic
equation, which is

φ zð Þ ¼
Yp
k¼1

z−zkð Þ ¼
Xp
k¼0

a k½ �zp−k ; a 0½ � ¼ 1

ð2Þ
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where the characteristic roots are the parameters zk in
Eq. 1.
Demonstration of the Prony approximation method is

found in [22]. Practical implementation requires per-
formance of the following steps:
Step 1: Solve the linear prediction model constructed

by the observed dataset and the obtained coefficients (a
[1]…a[p]) of the characteristic polynomial. An autore-
gressive model of order p considers that the value of
x[n] depends linearly on the preceding p values in x.
Equation 1 can be rewritten as a linear prediction model
according to the matrix system Tpxp.apx1 = − xpx1:

x p½ � x p−1½ � ⋯ x 1½ �
x pþ 1½ � x p½ � ⋯ x 2½ �

⋮ ⋮ ⋱ ⋮
x 2p−1½ � x 2p−2½ � ⋯ x p½ �

0
BB@

1
CCA

a 1½ �
a 2½ �
⋮

a p½ �

0
BB@

1
CCA

¼ −

x pþ 1½ �
x pþ 2½ �

⋮
x 2p½ �

0
BB@

1
CCA ð3Þ

Where.
a: Linear prediction coefficients vector.
x: Observation vector.
T: Forward linear prediction matrix (a square Toeplitz

matrix).
Solving this linear system (3) reveals that the values of

a are the coefficients of the characteristic or Prony poly-
nomial φ(z).
Step 2: Find the roots of the characteristic or Prony

polynomial formed from the linear prediction
coefficients.
Solving an equation in finite differences is achieved by

finding the roots of the characteristic polynomial. As
vector a is known from (3), the roots zk of the polyno-
mial φ(z) can be computed to obtain the damping factor
(αk) and frequency (fk).

αk ¼ ln zkj j
Ts

ð4Þ

f k ¼
tan−1

Im zkð Þ
Re zkð Þ

� �
2πTs

ð5Þ

Step 3: Solve the original set of linear equations to
yield the estimates of the exponential amplitude and si-
nusoidal phase.
First, the initial system of equations (Zpxp.hpx1 = xpx1)

is solved:

z01 z02 ⋯ z0p
z11 z12 ⋯ z1p
⋮ ⋮ ⋱ ⋮

zp−11 zp−12 ⋯ zp−1p

0
BB@

1
CCA

h1
h2
⋮
hP

0
BB@

1
CCA ¼

x 1½ �
x 2½ �
⋮

x p½ �

0
BB@

1
CCA ð6Þ

The hk values yield the amplitude (Ak) and phase (θk):

Ak ¼ hkj j ð7Þ

θk ¼ tan−1
Im hkð Þ
Re hkð Þ

� �
ð8Þ

The classic Prony method (N = 2p) obtains an exact fit
between the sampled data points and the exponentials if
matrices T and Z are non-singular. However, in many
practical cases N > 2p and, in this situation, both systems
are overdetermined (more equations than unknowns)
and can be approximated using the LS or TLS methods.

Least squares
In general, given the overdetermined linear system:
A x ≈ b with A ∈ ℂmxn, b ∈ ℂmx1, x ∈ ℂnx1, m > n; being A
the data matrix and b the observation vector, the least
squares solution xLS is given by the normal equation:

xLS ¼ AHA
� �−1

AH b ¼ Aþ b ð9Þ

H represents the Hermitian conjugate of a matrix and
A+ is the Moore–Penrose pseudoinverse matrix of A. In
practice, the normal equation is rarely used, as methods
based on QR decomposition or singular value decom-
position (SVD), among others, are preferable.

Total least squares
Solution of the system A x ≈ b by the total least-squares
method is a generalization of the LS approximation
method when the data matrix A and observation vector
b are contaminated with noise. In Prony’s method, eqs. 3
and 6 are constructed from the measured signals. The
basic total least-squares algorithm is [3]:
C≔ [A : b], matrix A augmented (expansion by col-

umns) by vector b (C ∈ ℂmx(n + 1)). SVD of C matrix is
then performed:

C ¼ UΣVH ð10Þ

The matrices Um×m (left singular vector matrix) and
V(n + 1) × (n + 1) (right singular vector matrix) are orthonor-
mal (UHU =UUH = Im, VHV =VVH = In + 1) and Σm× (n

+ 1) = diag(σ1, σ2,…σmin {m, n + 1})) being σ1 ≥ σ2… ≥
σmin {m, n + 1} the singular values of C.
The structure of V is as follows:
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V ¼
v1:1 ⋯ v1; nþ1ð Þ
⋮ ⋱ ⋮

v nþ1ð Þ;1 ⋯ v nþ1ð Þ; nþ1ð Þ

2
4

3
5 ð11Þ

The TLS solution exists if v(n + 1), ( n + 1) ≠ 0 [23] and,
moreover it is unique if σn ≠ σn + 1:

xTLS ¼ −
1

v nþ1ð Þ; nþ1ð Þ
v1; nþ1ð Þ; v2; nþ1ð Þ ⋯ vn; nþ1ð Þ
� �T

ð12Þ

Algorithms in which the solution does not exist or is
not unique are considered in detail in [24].

Implementation in MATLAB of the polynomial method
The code presented was developed and tested under
MATLAB R2016b. Code 1 presents implementation in
MATLAB of a function to perform the Prony approxi-
mation using the three polynomial methods mentioned
above. The function is defined as follows:
function [Amp,alpha,freq,theta] = polynomial_-

method (x,p,Ts,method)
The sampled data are given in vector x; p is the num-

ber of terms to obtain in the approximation, Ts is the
sampling time of the signal and classic, LS or TLS indi-
cates the method used to solve the problem. The func-
tion returns the parameters (Amp, alpha, freq, theta)
resulting from the approximation.
First, the sample length is obtained (N= length(x))

and consistency between the parameter method, p and
the sample data length is checked.
Step 1.
Coding the linear system of Eq. 2 takes into account

that the MATLAB function T = toeplitz(c,r) creates
non-symmetrical Toeplitz matrix T (dimensions p × p
under the classic method and (N − p) × p under the over-
determined methods), having c as its first column and r
as its first row, achieved by the following instruction:
T = toeplitz (x(p:N-1), x(p:-1:1));
The solution of this system of eqs. (T.a = −x) for the

classic and LS methods is obtained in MATLAB using
the matrix left division (also known as backslash) oper-
ator. If T is square and if it is invertible, the backslash
operator solves the linear equations using the QR
method. With an overdetermined system, LS should be
used. The backslash operator is a collection of algo-
rithms used to solve a linear system [25], selected ac-
cording to the characteristics of matrix T. Taking into
account that vector x is a matrix column:
a = − T \ x(p + 1:N);
In the case of the TLS option, the function a =

tls(T,-x(p + 1:N)); is called (Code 2).
Step 2.
The p roots of the polynomial are now obtained:

zp þ a 1½ �zp−1 þ…þ a p½ � ¼ 0

The MATLAB instruction r = roots(c) returns a col-
umn vector whose elements are the roots of the polyno-
mial c. Row vector c contains the coefficients of a
polynomial, ordered in descending powers. If c has n + 1
components, the polynomial it represents is c1s

n +… +
cns + cn + 1.
The input vector for the roots function must be a row

vector and must contain the element a[0] = 1, which was
not obtained in the previous solution. Its implementa-
tion is therefore.
c = transpose([1; a]);
r = roots(c);
Based on r, and having defined the acquisition period

Ts, it is possible to find the values of the damping factor
(αk) and frequency (fk):
alpha = log(abs(r))/Ts;
freq = atan2(imag(r),real(r))/(2*pi*Ts);
log is the Napierian logarithm and atan2 returns the

four-quadrant inverse tangent.
Step 3: Obtain complex parameters hkfrom roots zk.
The number of equations (len_vandermonde)

employed for the solution is set (p in classic and N in
overdetermined systems) and the data matrix for the sys-
tem of equations is constructed (6):
Z = zeros(len_vandermonde,p);
for i = 1:length(r).
Z(:,i) = transpose(r(i).^(0:len_vandermonde-1));
End
Finally, the following is solved:
h = Z \ x(1:len_vandermonde);
In the case of the TLS option, the function h = tls(Z,

x(1: len_vandermonde)); (Code 2) is called. In the TLS
algorithm, SVD is used. The infinite values therefore
have to be converted into maximum representative
values beforehand otherwise the SVD function will yield
an error.
The solutions yield the initial amplitude (Ak) and ini-

tial phase (θk) values:
Amp = abs(h);
theta = atan2(imag(h),real(h));
The function that solves a linear system using the TLS

method (Code 2) receives as arguments matrices A and
b, which define the linear system to solve: Function x =
tls(A,b). The number of columns in matrix A is ob-
tained ([~,n] = size(A);) and augmented matrix C (C
= [A b]) is constructed while matrix V of the SVD de-
composition is obtained via the instruction [~,~,V] =
svd(C); the TLS solution (if it exists) is obtained by ap-
plying the formula (12) to matrix V.
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Matrix pencil method
Steps 1 and 2 of the polynomial method yield the roots
of the characteristic polynomial that coincide with the
signal poles zk. An alternative solution is to use the
MPM to find zk directly by solving a generalized eigen-
value problem.
In general, given two matrices Y1 ∈ ℂ

mxn, Y2 ∈ ℂ
mxn,

the set of matrices of the form Y2 − λY1 (λ ∈ ℂ) is a
matrix pencil [26].
In our case, to implement MPM a rectangular

Hankel matrix Y is formed from the signal (x[n],
n = 1,…N), where, in this method, p is the pencil
parameter:

Y ¼
x 1½ � x 2½ � ⋯ x p½ � x pþ 1½ �
x 2½ � x 3½ � ⋯ x pþ 1½ � x pþ 2½ �
⋮ ⋮ ⋱ ⋮ ⋮

x N−p½ � x N−pþ 1½ � ⋯ x N−1½ � x N½ �

0
BB@

1
CCA

N−pð Þ� pþ1ð Þ

ð13Þ

This matrix is used to create matrices Y1 and Y2.
Y1 is constructed by eliminating the last column of Y
while Y2 is constructed by eliminating the first
column of Y:

Y1 ¼
x 1½ � x 2½ � ⋯ x p½ �
x 2½ � x 3½ � ⋯ x pþ 1½ �
⋮ ⋮ ⋱ ⋮

x N−p½ � x N−pþ 1½ � ⋯ x N−1½ �

0
BB@

1
CCA

N−pð Þ�p

ð14Þ

Y2 ¼
x 2½ � ⋯ x p½ � x pþ 1½ �
x 3½ � ⋯ x pþ 1½ � x pþ 2½ �
⋮ ⋱ ⋮ ⋮

x N−pþ 1½ � ⋯ x N−1½ � x N½ �

0
BB@

1
CCA

N−pð Þ�p

ð15Þ
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Where M is the real number of poles of function
x[n], if M ≤ p ≤ (N −M) is fulfilled, the poles zk (k =
1,….p) are the generalized eigenvalues of the matrix
pencil Y2 − λY1 [27]; matrices Y1 and Y2 are
ill-conditioned and therefore the QZ-algorithm is
not stable enough to yield the generalized eigen-
values [5]. It is more efficient to obtain the values
of zk from the following expression:

zk¼eigenvalues Yþ
1 Y2

� � ð16Þ

Where Yþ
1 is the Moore–Penrose pseudoinverse

matrix of Y1, defined as:

Yþ
1 ¼ YH

1 Y1
� �−1

YH
1 ð17Þ

The values zk yield the parameters αk and frequency fk
(Equations 5 and 6); The final step coincides with Step 3
of the Prony polynomial method: solving the system
Zpxp.hpx1 = xpx1 and obtaining Ak and θk (Equations 8
and 9).
Coding of the MPM in MATLAB is done in Code 3,

the function call being.
Function [Amp,alpha,freq,theta] =matrix_pencil

(x,p,Ts)
The first step is to obtain the matrix Y then, based on

that, matrices Y1 and Y2. To achieve this, the following
instruction is employed:
Y = hankel (x(1:end-p), x(end-p:end));
To obtain Y1, the last column is eliminated.
Y1 = Y (:,1:end-1);
To obtain Y2, the first column is eliminated.
Y2 = Y (:,2:end);
The eigenvalues are obtained (Equation 16).
l = eig (pinv(Y1)*Y2);
eig (A) is a function that returns the eigenvalues of

A while pinv(A) yields the Moore–Penrose pseu-
doinverse matrix of A which, in this case, corre-
sponds to the expression in Equation 17.
The frequency (fk) and damping factor (αk) values

are obtained from the eigenvalues in the same way
as the roots are obtained in the polynomial
method:
alpha = log(abs(l))/Ts;
freq = atan2(imag(l),real(l))/(2*pi*Ts);
To calculate the initial amplitude and phase values (Ak

and θk), the steps followed are exactly the same as in the
polynomial method.

Results
The methods described are applied in two situations: a)
approximation of synthetic signals and b) filtering of
mfVEP signals.

Synthetic functions
1 000 Functions are generated (gi[n]) with N = 1 024
points each (i = 1, …1 000; n = 0, …1 023), according to
the following expression

gi n½ � ¼
X9
k¼0

Ak :e
αk :n:TS : cos 2:π: f k :n:TS þ θk

� � ð18Þ

The parameters of the functions have a uniform
random distribution at the following intervals: Ak ∈ [1,
10]; αk ∈ [0, −4], fk ∈ [1, 31], fi ≠ fj; θk ∈ [−π, π] and
f0 = 0.
Due to the possible existence of numerical errors in

the computational approximation of the functions it
is advisable to evaluate the error between the original
function (gi[n]) and its approximation ( egi ) using
Prony’s method. The precision of the approximation
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obtained from the normalized root-mean-square error
is used:

G ¼ 1−
∥gi½n�−ggi½n�∥
∥gi½n�− gi ∥

ð19Þ

‖.‖ indicates the 2-norm and �gi is the mean of the ref-
erence signal.
If for a certain function G ≥ 0.60 is fulfilled, the ap-

proximation is considered correct. Table 1 shows the
number of functions correctly approximated by the
Prony LS, Prony TLS and MPM methods and for the
two different parameters (N, p).
None of the methods implemented works 100% cor-

rectly (G ≥ 0.60 for the 1000 gi[n] functions in all the
situations tested). If the mean number of functions
well-approximated by each method is considered, the
best result is obtained with MPM (MPM ¼ 999:55 )
and the worst is obtained with TLS (TLS ¼ 677:39 ).
The LS method yields the correct approximation in
60.52% of cases, the TLS method in 2.63% of cases
and the MPM method in 92.10% of cases tested in
this experiment.
In general, the results obtained using LS and

MPM are very similar, as the MATLAB roots(·)
function generates the companion matrix of the
polynomial and uses the QR-algorithm to obtain its
eigenvalues.
Figure 1 shows the roots obtained using the LS

and MPM methods for one of the gi[n] signals (N =
256, p = 30). The correct number of roots for signal
gi[n] is M = 19; in both examples, p = 30 roots are
obtained, though with the MPM method 12 roots
are equal to 0. This is because in the LS method the
range of the companion matrix is always equal to p
and, consequently, p roots are obtained. In the MPM
method, the range of matrix ðYþ

1 Y2Þ is less than or
equal to p ( r ¼ rankðYþ

1 Y2Þ≤p ) and r roots other
than zero and (p-r) roots equal to 0 are obtained
[5]. In the example shown, r = 18 is fulfilled. The dif-
ferences in the results between the two methods are
evident in Step 3 and are due to computational
errors.

mfVEP filtering
The mfVEP technique [28] can be used to obtain the elec-
trophysiological response of the primary visual cortex to
stimuli produced in a large number (e.g. 60) of sectors of
the visual field. Generation of the visual stimulus is gov-
erned by the same pseudorandom sequence [29] used to

Table 1 Result of approximation of synthetic functions

Number of functions gi[n] correctly approximated

N p LS TLS MPM

1024 30 902 811 990

40 868 499 1000

50 826 499 1000

100 997 322 1000

150 1000 315 1000

200 1000 375 1000

250 1000 358 1000

300 1000 288 1000

400 1000 224 1000

500 999 137 1000

512 30 941 741 1000

40 974 660 1000

50 996 682 1000

60 999 618 1000

70 1000 544 1000

100 1000 565 1000

150 1000 622 1000

200 1000 579 1000

220 1000 517 1000

250 999 516 1000

256 30 984 909 1000

40 998 872 1000

50 998 855 1000

60 1000 826 1000

70 1000 778 1000

80 1000 862 1000

90 1000 827 1000

100 1000 758 1000

110 1000 733 1000

120 996 758 1000

128 20 994 995 994

30 1000 960 1000

40 1000 956 1000

50 1000 931 1000

60 1000 910 1000

64 20 1000 1000 999

25 1000 969 1000

30 1000 970 1000

Average value per
method

LS ¼ 986:08 TLS ¼ 677:39 MPM ¼ 999:55
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separate the individual responses of each sector from
the continual EEG recording obtained using elec-
trodes. Analysis of mfVEP signals is employed in
diagnosis and study of patients with glaucoma, ambly-
opia, nerve optic drusses, optic neuritis, multiple
sclerosis and other pathologies.
The aim of this test is to evaluate whether mfVEP

signal filtering in the Prony domain improves the
separation between the signals of control subjects
and the signals of patients with MS. It uses the
signal-to-noise ratio (SNR) of the records as the par-
ameter. The discrimination factor is evaluated using
the area under the ROC curve (AUC). The results
achieved by applying the conventional method to
mfVEP records are then compared: signals filtered
using the discrete Fourier transform (DFT) between
0 and 35 Hz and the signals filtered in the Prony
domain.
This experiment uses a database of mfVEP signals

captured from 28 patients (age 34.39 ± 10.09 years, 7
males and 21 females) diagnosed with MS according
to the McDonald criteria; the signals were obtained
from 44 eyes in 22 control subjects (age 30.20 ± 7.55
years, 10 males and 12 females) with normal oph-
thalmologic and neurological examination results.
The study protocol adhered to the tenets of the
Declaration of Helsinki and was approved by the
local Institutional Review Board (Comité de Ética en
Investigación Clínica del Hospital Universitario

Príncipe de Asturias, Alcalá de Henares, Spain).
Written informed consent was obtained from all
participants.
mfVEP signals were recorded monocularly with

VERIS software 5.9 (Electro-Diagnostic Imaging, Inc.,
Redwood City, CA). The visual stimulus was a scaled
dartboard with a diameter of 44.5 degrees, containing
60 sectors, each with 16 alternating checks. The lumi-
nance for the white and black checks were 200 and <
3 cd/m2, respectively. The checks in each sector were
reversed in contrast using a pseudorandom sequence
(m-sequence) at a frame rate of 75 Hz.
The mfVEP signals were obtained using gold cup

electrodes (impedance < 2 KΩ). The reference elec-
trode was positioned on the inion (ER) and the
ground electrode on the forehead. The active elec-
trodes were placed 4 cm above the inion (EA) and 1
cm above and 4 cm either side of the inion (EB,
EC). The difference between the signals of the ac-
tive electrodes was used to obtain channels CH1 =
EA-ER, CH2 = EB-ER and CH3 = EC-ER. Three add-
itional derived channels were obtained (CH4 =
CH1-CH2, CH5 = CH1-CH3, CH6 = CH2-CH3).
Therefore, the data from 6 channels were proc-
essed. In the analogue phase, the signals were amp-
lified at a gain of 105 at a bandwidth between 3
and 100 Hz. The sampling frequency was 1200 Hz,
obtaining 600 samples in each recording (length
500 ms).
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Fig. 1 Poles obtained using the polynomial (LS) and MPM methods
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The conventional signal-processing method consists
of bandpass filtering between 0 and 35 Hz using the
fast Fourier transform; these signals are denominated
XDFT.
One method for determining the intensity of the

mfVEP records is to use the signal-to-noise ratio, de-
fined by the following expression:

SNR ¼ RMS45−150 ms

mean RMS325−430 msð Þ ; ð20Þ

In an mfVEP, the physiological response to the
stimulus presents in the 45–150 ms interval (signal
window) following onset. In the 325–430 ms interval
(noise window) only noise is considered to be re-
corded. RMS45–150 ms and RMS325 − 430 ms are the
root mean square (RMS) amplitudes in the signal
window and noise window, respectively.
Signal processing using Prony’s method is carried out

in the following steps:
1. The Prony approximation is obtained (XLS, XTLS,

XMPM, with p = 250, N = 600) for the XDFT signals. The
number of MS signals is NMS = 20,160 (28 × 2 × 60 × 6)
and the number of control signals is NCONTROL = 15,840
(22 × 2 × 60 × 6).
2. Correct approximation of the XDFT signal is checked

against the expression shown in Equation 19 and consid-
ering G ≥ 0.45. Figure 2 shows an example of a signal ap-
proximated using the LS method.
3. The correctly approximated signals are

bandpass-filtered in the Prony domain, selecting the 10
lowest-frequency components. The MATLAB code is
shown in Code 4. Figure 3 shows an example of a fil-
tered signal.
4. The SNR value of the XDFT and Prony-filtered sig-

nals (XLS_F, XTLS_F, XMPM_F) is obtained and the discrim-
ination value between the signals of subjects with MS
and control subjects is calculated.
Similar to the case of the synthetic signals, the LS

method only correctly approximated a low percent-
age of records (48.79% of the control records and
42.90% of the MS records) (Table 2). The LS and
MPM methods yielded the same results, achieving
correct approximation in over 99% of cases. The sig-
nal intensity value in the control subjects is greater
than in the subjects with MS. Filtering the signals
using the conventional method yields an AUC value
of 0.6538; using the TLS method yields practically
the same result (AUC = 0.6472) while using the LS
and MPM methods yields a value of 0.7055. This ex-
ample shows that filtering in the Prony domain can
increase the capacity to discriminate between the

signals of control subjects and those of patients with
MS.
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Discussion
In this paper we have used general MATLAB functions
to implement the principal methods of function approxi-
mation based on the linear combination of exponentials:
the polynomial Prony method (classic, LS and TLS) and
the matrix pencil method. In the polynomial method,
signal poles (frequencies and damping factors) are found
as roots of a polynomial while the MPM obtains the
poles by finding the eigenvalues of a matrix pencil.

Currently, the most common method is Fourier ana-
lysis, which represents a signal as a summation of con-
tinuous undamped sinusoidal functions with frequency
and integer times the fundamental frequency (har-
monics). In contrast, the p components of a Prony series
may be complex exponentials. In general, the Prony
spectrum will be non-uniformly spaced in the frequency
scale (as it is one of the estimated parameters), depend-
ing on the observed data [30].
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Fig. 2 Example of approximation of an mfVEP signal using Prony’s method (LS)
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Prony modelling produces higher frequency resolution
than DFT methods due to its reliance on autoregressive
modelling [31]. Another advantage is that it is a natural
transformation for impulse responses since it uses
damped sinusoids as a basis and therefore representation
is efficient in terms of the number of coefficients re-
quired [32].
Not all mathematical signals can be approximated

using Prony’s method [33] and computational finite
arithmetic also generates errors. Consequently, the results
of computational implementation of the Prony methods
depend on the characteristics and number of points of the
signal to be interpolated, on the p number of functions
and on the use of computational procedures not suscep-
tible to ill-conditioning issues. Furthermore, these poten-
tially ill-conditioned operations are concatenated, thereby
increasing the instability issues. For example, since the
second step of Prony’s method is an ill-conditioned prob-
lem and round-off errors must exist for the linear predic-
tion parameters to be computed in the first step, the
estimation of zk in the second step of Prony’s method can
contain significant error [34].
In our experimental approximation of synthetic func-

tions, the best result was obtained using the MPM and
LS methods, while the effectiveness of the TLS method
was shown to be highly dependent on the number of
points and on the p number of functions (Table 1). In
some cases, when the number of exponentials is rela-
tively high, the sensitivity of roots of the characteristic
polynomial to perturbations of their coefficient is like-
wise high [4] and Prony’s method may be unstable.
In a second experiment, we low-pass-filtered mfVEP

signals in the Prony domain in order to evaluate the im-
provement in the capacity to discriminate between sig-
nals of control subjects and those of MS patients.
Selecting the first 10 components of each record reveals
that the AUC value between the signals of healthy sub-
jects and those of MS subjects increases by between
0.3% and 4.7% depending on the method compared. The
smallest improvement was obtained with the TLS
method and the greatest improvement with the LS and
MPM methods.
Coding in MATLAB used the functions directly avail-

able in this programming language. However, these evi-
dently have their computational limitations and could be

replaced with better alternatives. Various aspects that
could improve the code presented in this paper are dis-
cussed below.

Solution of linear systems
Solution of the linear systems using the classic and LS
methods was implemented with the MATLAB mldivide
(\) operator. Although the mldivide operator is valid for
most cases (it selects between the LU, Cholesky, LDLT
or QR-factorization methods, among others, depending
on the characteristics of matrix A [35]), it may be more
efficient to implement other algorithms.
The numerical stability of the solution in linear algebra

may be evaluated by the condition number and the nu-
merical rank of matrix A. The condition number is de-
fined as: k2ðAÞ ¼ σmax

σmin
; a low condition number usually

means that the system is well-conditioned. The rank (r)
of a matrix is the number of linear independent rows (or
columns) (r ≤min {m, n}) and is equal to the number of
singular values (σi) in the matrix other than zero. When
r =min {m, n} the matrix has full range, otherwise it is
rank-deficient. If A is nearly rank-deficient (σmin is
small), then the solution x is ill-conditioned and possibly
very large. A more robust solution to obtain the effective
rank may be to evaluate the number of singular values
of AAH or AHA above a specified tolerance. Analysing
the condition number and the rank of a matrix may
make it possible to select the best method for system
solution.

Least squares
In general, although the normal equation is the fastest
method it is not used to solve systems by LS as it yields
worse numerical results than other methods. In the nor-
mal equation, accuracy depends on k2ðAAHÞ ¼ k22ðAÞ, al-
though this method may be used if A is well-conditioned
[36]. If A is rank-deficient, then x = A\B is not necessarily
the minimum norm solution. The more computationally
expensive x = pinv(A)*B computes the minimum norm
least-squares solution. Specifically, the function pinv(A,
tol) returns the Moore–Penrose pseudoinverse, obtained
by SVD decomposition where the values above tolerance
(tol) are set to zero; this may be adapted to an
ill-conditioned problem (A is not of full rank). Another

Table 2 Results of filtering mfVEP signals (N = 600, p = 250, Ts = 1/1200 s)

Well-approximated control signals (%) Well-approximated MS signals
(%)

SNRCONTROLS SNRMS AUC

DFT – – 3.59 ± 2.89 2.44 ± 2.11 0.6538

LS 99.57% 99.91% 4.95 ± 4.19 2.85 ± 2.49 0.7055

TLS 48.79% 42.90% 3.65 ± 2.89 2.54 ± 2.24 0.6472

MPM 99.57% 99.91% 4.95 ± 4.19 2.85 ± 2.49 0.7055
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option to obtain the Moore–Penrose pseudoinverse is
proposed in [37], which makes use of QR-factorization
and an algorithm based on a reverse order law for general-
ized inverse matrices; this method was later refined in
[38]. An iterative solution to obtain the Moore–Penrose
pseudoinverse was published in [39].

TLS
The TLS method implemented is the one that yielded
the worst computational performance. This method per-
forms SVD of the augmented matrix C≔ [A : b]; If C is
rank-deficient or nearly rank-deficient (its singular
values decay gradually), it may be advisable to truncate
its small singular values [40]. [41] presents basic infor-
mation, references and applications for the TLS method.
In [42], an interactive method is proposed which com-
bines orthogonal projections to a sequence of general-
ized Krylov subspaces of increasing dimensions and
Newton’s method. The introduction to [43] presents
various alternatives to obtaining the solution using the
TLS method and the authors present a solution based
on randomized algorithms.

Roots
Numerical solution of a polynomial is a classic problem
in mathematical research [44]. Methods available with
which to obtain the roots of a polynomial include
Laguerre [45], Bairstow, Græffe and Müller, Horner, Jen-
kins and Traub, and Newton [46], etc., with differing
performances in terms of accuracy, convergence and
speed. The code presented uses the roots() function used
by the QR-algorithm on the balanced Frobenius com-
panion matrix to compute its eigenvalues.

Eigenvalues and SVD
The eigenvalues of a square matrix A are the roots of its
characteristic polynomial det(A − λI) = 0. However, sin-
gular values of A are non-negative square roots of eigen-
values of (ATA), meaning that both methods are related.
The general idea is to diagonalize the target matrix as
the values of the diagonal are the eigenvalues. All
methods to solve the eigenvalue problem are of an itera-
tive nature [47]. The built-in MATLAB function eig(A)
uses the generalized Schur decomposition method (im-
plemented via the QR-algorithm or its variants), which
consists of interactively obtaining an upper triangular
matrix U, in which the values of its diagonal are the ei-
genvalues of A. The QR-algorithm can be adapted to
small or moderately large non-symmetrical eigenvalue
problems [48]. For large matrices, [49] provides possible
alternatives.

Prony-like methods
Other modifications have been made to the Prony
method, generally with the intention of improving its
numerical stability. If any of the parameters of equation
(1) are known, the Prony method makes it easier to find
a robust solution. In the polynomial method, small varia-
tions in the coefficients of equation (2) due to signal
noise can result in large variations in its zeros and, con-
sequently, the frequencies of the approximation will vary
greatly. Parametric spectral estimation techniques, such
as MUSIC (MUltiple SIgnal Classification) [50], ESPRIT
(Estimation of Signal Parameters via Rotational Invari-
ance Techniques) [51] or fast ESPRIT [52] offer an alter-
native that in many cases make it possible to obtain
more robust solutions. [53] presents an algorithm for
the factorization of a matrix pencil based on QR decom-
position of a rectangular Hankel matrix, which simplifies
the ESPRIT method.
The NAFASS (Non-orthogonal Amplitude Frequency

Analysis of the Smoothed Signals) approach [54] makes
it possible to obtain the set of frequencies that make up
strongly correlated random sequences with N < 1500.
[55] presents the physical interpretation of the Prony de-
composition as a linear recording of memory effects that
can exist in random sequences in which the Fourier de-
composition is a partial case. [56] improves the NAFASS
method, presenting a linear recurrence expression that
obtains the set of frequencies.
Another way to obtain more robust results is to act

on the signals before obtaining their decomposition in
a Prony series by using pre-filtering [57]. In the
modified instantaneous Prony method [58] the input
data used in an application of speech parameter ex-
traction are those derived from the signal x[n] instead
of adjacent samples.
Applying the Prony method to a time window that

can be moved along the x[n] signal makes it possible
to perform time–frequency analysis. One such
example could be the short-time matrix pencil
method (STMPS) successfully used to obtain anten-
nae responses [59]. The Piecewise Prony Method
[60] essentially consists of dividing the signal to be
interpolated into windows of variable length and
sampling rate.

Conclusions
Decomposition of a signal using Prony’s method can
be considered a generalization of the Fourier decom-
position. Although the method has been known since
1795, its application in engineering has only increased
since about the 1970s as computer use has grown.
This paper has presented the theoretical bases and
their piece-by-piece implementation in MATLAB. It
has also shown some of their limitations and the
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benefit of improving the quality of the mfVEP signals.
With the information provided, readers can begin
practical implementation of the most common Prony
methods, test the reliability of the results and, if ap-
plicable, research other methods more appropriate to
their areas of research.
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