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Resumen 

El objetivo principal de este trabajo, es la implementación de distintos tipos de 

algoritmos SLAM (mapeado y localización simultáneos) de visión monocular en el robot 

aéreo ErleCopter, empleando la plataforma software ROS (Robotic Operating System).  

Para ello se han escogido un conjunto de tres algoritmos ampliamente utilizados en el 

campo de la visión artificial: PTAM, ORB-SLAM y LSD-SLAM. Así se llevará a cabo un 

estudio del funcionamiento de los mismos en el ErleCopter.  

Además empleando dichos algoritmos, y fusionando la información extraída por estos 

con la información de otros sensores presentes en la plataforma robótica, se realizará 

un EKF (Extended Kalman Filter), de forma que podamos predecir la localización del 

robot de una manera más exacta en entornos interiores, ante la ausencia de sistemas 

GPS. 

Para comprobar el funcionamiento del sistema se empleará la plataforma de 

simulación robótica Gazebo. 

Por último se realizarán pruebas con el robot real, de forma que podamos observar y 

extraer conclusiones del funcionamiento de estos algoritmos sobre el propio 

ErleCopter. 

Palabras clave: SLAM, visión, ROS, robótica, EKF, robot aéreo. 
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Abstract 

The main objective of this thesis is the implementation of different SLAM 

(Simultaneous Localization and Mapping) algorithms within the aerial robot 

ErleCopter, using the software platform ROS (Robotic Operating System). 

To do so, a bunch of three widely known and used algorithms in the field of the 

artificial vision have been chosen: PTAM, ORB-SLAM y LSD-SALM.  So a study of the 

performance of such algorithms will be carried out in this way.  

Besides, working with such algorithms and fusing their information with the one 

obtained by other sensors existing within the robotic platform, an EKF (Extended 

Kalman Filter) will be carried out, in order to localize the robot more accurately in 

indoor environments, given the lack of GPS. 

To test the performance of the system, the robotic platform Gazebo will be used in this 

project. 

Finally tests will be made with the real robot, in order to observe and draw conclusions 

from the performance of these algorithms within the ErleCopter itself. 

Key words: SLAM, vision, ROS, robotics, EKF, aerial robot. 
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1.1 UAV’s State of the Art 
 

In this chapter it will be exposed the amount of different projects based on SLAM 

techniques, and of course VSALM techniques will be highlighted. It is important to 

explain how quadcopters and algorithms have been developed in the last years, so the 

importance of this project can be understood. 

Nowadays the main part of the population has the feeling that these vehicles have 

become part of our daily lives, although the fact is that at the beginning these 

quadcopters, now considered robots or even toys were made for war purposes, where 

a particular military area was secured or attack a conflicted area without any human 

help.  

 

Figure 1. 1 Barrucada UAV.[1] 

 

Basically the meaning of these UAV is Unmanned Aerial Vehicle that can be driven by 

both an operator or simply autonomously. For instance, a military aeroplane such as 

the Barrucada or the combat plane Boeing is also considered an UAV. 

 

Figure 1. 2. Military UAV. Boeing.[2] 
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In the last years, given that the technology is moving forward surprisingly fast, there is 

a particular kind of UAV that’s being commercializing, such UAV is a multirotor vehicle 

in which its rotors are contained in the same plane.  Several models can be found in 

the market such as the AR Drone [3] or the Mikrocopter [4] available in different 

versions, with four, six and eight coplanar motors.  

The four motor models are the most used among researchers all over the world, it can 

be seen in a lot of publications made both for visual controllers or proving diverse non-

linear controllers. 

 

Figure 1. 3. AR Drone. Four motor model.[3] 

1.2 Use of cameras 
 

The computer vision field has evolved in last years; nowadays a camera is used not 

only to take pictures or videos within a robotic platform, but to be used as another 

sensor. 

Within this area several techniques have been found, for instance there have been 

different research projects based on the use of one camera on board [5], two cameras 

on board [6] or even the use of cameras out of the platform [7], to localize the robot. 

The use of a camera as a sensor is mostly employed in indoors projects [1] [8] [9]. 

Currently, researchers all around the world are focusing their efforts trying to develop 

autonomous vehicles, so they could fly without any human help, being completely 

precise and accurate. The first researches were made outdoors [10] given the design 

and features of a flying vehicle. Thus the localization of the quadcopter could be 

known at any time.  
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The research path has changed with the study of the indoors localization. Now, we are 

heading to a different line of research, the GPS signal cannot be used in these types of 

projects, so other sensors are needed to localize the robot. Due to the lack of GPS 

signals it is highly needed a sensor fusion such as scan, camera, odometer, etc. 

So we can find lots of research projects trying to control the robot [11], aiming to build 

a map and localize the robotic platform at a time [12]. Most of these projects use 

either the camera or the laser or even both of them. 

That’s why last trends are based on the idea that using  a camera on board, and having 

other sensors included within the platform the problem of localizing and mapping the 

environment in which the robot is moving can be solved at a time. 

These techniques are called SLAM (simultaneous localization and mapping). They came 

up to solve the problem that appears if the map in which the drone is going to involve 

is known. Not always the map can be known beforehand. So using such techniques, a 

robot can be moving in an unknown environment, but it can get enough information to 

localize itself using SLAM algorithms. The more information it gets from the sensors 

the more precise and accurate will be the mapping and the localization. 

 

1.3 The raise of the SLAM techniques 
 

In 1987 at the IEEE International Conference in Robotics and Automation, Randall 

Smith, Matthew Self and Peter Cheeseman presented what is now considered the first 

project that describes the representation for spatial information, called the stochastic 

map [13].  This map contained the estimates of relationships among objects in the 

map, and their uncertainties, given all the available information. The procedures 

provided a general solution to the problem of estimating uncertain relative spatial 

relationships. 

Other pioneering work in this field was conducted by the research group of Hugh F. 

Durrant-Whyte in the early 2000s, which showed that solutions to SLAM exist in the 

infinite data limit [14]. This finding motivated the search for algorithms which are 

computationally tractable and approximate the solution.  
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Figure 1. 4. STABLEY and JUNIOR car [15]. 

One of the projects that brought SLAM to the worldwide attention was the self-driving 

STANLEY and JUNIOR car, which won the DARPA challenge in the 2000s [15]. This 

project was led by Sebastian Thrun at the Stanford University. 

After this first trial, a lot of researchers all over the world focused their efforts in the 

construction and implementation of SLAM techniques within robotics platforms. So in 

this section, we will talk about some related projects that use these SLAM techniques 

for indoor navigation using MAV’s. 

 Autonomous Multi-Floor Indoor Navigation with a computationally 

constrained MAV 

In 2011 at the IEEE International Conference on Robotics and Automation, 

Shaojie Shen, Nathan Michael and Vijay Kumar, presented this project called 

“Autonomous Multi-floor Indoor Navigation with computationally constrained 

MAV” [8] based on a navigation system for indoor environments. 

 

 

Figure 1. 5. Experimental Platform with on board computation [8]. 
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Its objective was to obtain a system capable of perform an autonomous 

navigation in indoor environments, especially in buildings with multiple floors.  

The system consists on a MAV equipped with a scan Hokuyo UTM-30LX, and a 

camera UI-1220SE and an IMU. 

 

On the other hand, the software consists on a SLAM localization module and a 

planification module, which is in charge of the navigation of the MAV. 

 

The localization module based on SLAM, employs a 2.5 D environment model, 

which assumes that the environment is just based on horizontal and vertical 

planes. It employs an ICP (Iterative Closest Point) algorithm to estimate its 

position, using the data from the scan, and fusing them whit the data from the 

IMU. 

 

The navigation module employs a RRT (Rapidly-exploring Random Tree) 

algorithm to generate trajectories allowing the system to achieve the 

objectives, avoiding the presented obstacles. Such trajectories are executed 

using a position control loop, taking the robot as a punctual system that counts 

with an orientation in the plane. 

 

 

Figure 1. 6. Architecture diagram showing the software modules [8]. 

 

 

Figure 1. 7. Map generated by flying [8]. 
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 State Estimation in GPS-Denied Environments Using On board Sensing 

This project was developed by Adam Bry, Abraham Bachrach and Nicholas Roy 

at the Massachusetts Institute of Technology.  

 

 

Figure 1. 8. Fixed wing experimental platform flying indoors [16]. 

 

It was developed in 2012 under the name “State Estimation for Aggressive 

Flight in GPS-Denied Environments Using On board Sensing” [16]. The objective 

of such project was to develop a state estimation method based on an IMU and 

a planar laser range finder, suitable for use in a MAV.  

The system us capable of accurately estimate the state of a MAV in a 3D 

unstructured environment without using an external position system. 

 

The localization algorithm is based on an extension of the Gaussian Particle 

Filter. It also employs an EKF to estimate the state of the MAV. So all in all, this 

project employs two different filters to get the state of the MAV. First of all, it 

employs an EKF for the IMU process model, and the GPF for the laser 

measurement update.  Particle filters are efficient enough for effective use in 

localizing a 2D mobile robot; they require too many particles to be used for the 

estimation of a 3D MAV. Fortunately, the best aspects of both algorithms can 

be obtained, and a significant speedup can be realized by employing a hybrid 

filter that uses an IMU-driven EKF process model with pseudo-measurements 

computed from Gaussian Particle Filter (GPF) laser measurement updates. 
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Figure 1. 9. The trajectory flown by the vehicle is shown by the red, green, and blue axes [16]. 

 

 Monocular Vision SLAM for Indoor Aerial Vehicles 

Developed by Koray Celik, Soon-Jo Chung, Matthew Clausman and Arun 

K.Somani, this project named “Monocular Vision SLAM for Indoor Aerial 

Vehicles” [9], presents a novel indoor navigation and ranging strategy by using 

monocular camera. 

The project addresses to get the localization of a MAV, and the mapping of the 

environment by using a monocular camera of 1 2 inches in size and less than 2 

ounces in mass. The process flow of the proposed method is shown in figure 

1.10. 

 

Figure 1. 10. Block diagram illustrating the operational steps of the monocular vision system [9]. 

This monocular vision SLAM correctly locates and associates landmarks.  
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Figure 1. 11. Experimental results of the proposed ranging and SLAM algorithm [9]. 

A 3D map is also built by the addition of time-varying altitude and wall-

positions, as shown in Fig 1.12. 

 

 

Figure 1. 12. Cartesian (x; y; z) position of the MAV in a hallway [9]. 

The MAV assumes that it is positioned at (0; 0; 0) Cartesian coordinates at the 

start of a mission, with the camera pointed at the positive x axis, therefore, the 

width of the corridor is represented by the y axis. 

 

To get the project done, they used the Saint Vertigo helicopter, one of the 

smallest and fully self-contained autonomous helicopters in the world capable 

of both indoor and outdoor operation. This unit performs all image processing 

and SLAM computations on-board via a 1GHz x86 architecture CPU with SIMD 

instructions, 1GB DDR2 533MHz RAM, 4GB solid-state mass storage, managed 

by a performance tuned Linux kernel. 
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Figure 1. 13. Saint Vertigo, the autonomous MAV helicopter [9]. 

 

In essence, the MAV features two independent computers. The flight computer 

is responsible for flight stabilization, flight automation, and sensory 

management, including but not limited to tracking the time-varying altitude via 

an ultrasonic altimeter. The navigation computer is responsible for higher 

consciousness tasks such as image processing, range measurement, SLAM 

computations, networking, mass-storage, and possibly, path planning. 

 

1.4 Objectives 
 

Using the Erlecopter drone, the implementation of VSLAM techniques in the brain 

of this robot will be carried out. Different state-of-art algorithms will be computed; 

these algorithms are PTAM, LSD-SLAM and ORB-SLAM.  

As a software platform, ROS (Robotic Operational System) and GAZEBO will be 

used, to control and insert all the algorithms that this project will implement. All 

these platforms and algorithms will be far explained within the next chapters.  

Both simulation and the real drone trials will be studied using all the algorithms, 

locating and mapping the environment at a time. The idea is to use this VSLAM 

algorithms indoors having the lack of GPS, fusing the information with other 

sensors like the IMU and the ultrasonic, besides given this information, we will try 

to make the drone work autonomously. As Sergio García Gonzalo [5] did in his 

project, a PID and an EKF filter will be implemented. The main difference with this 

project is the computational system, in [5] the algorithm run in a not embedded 

CPU or brain, while in this project the algorithm will be running in the drone itself, 
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this means that the ErleCopter has a Raspberry Pi embedded in the robot. So there 

is no need to have a wireless connection between the robot and the CPU. 

So now the project is defined: Implementation of VSLAM algorithms in the own 

CPU of the ErleCopter, also designing a PID and inserting an EKF, using GAZEBO for 

the simulation and ROS for both the simulation and the real system. 

Summarizing the key objectives of this project: 

 Study three different vSLAM techniques: PTAM, ORB-LAM and LSD-SLAM. 

 Implement such techniques within the quadcopeter ErleCoper both in the 

simulation and the real drone. 

 Develop an EKF (Extended Kalman Filter) fusing the data from the vSLAM 

techniques and the rest of the sensors. 

 Develop a PID controller for the drone. 

  Test the EKF and the vSLAM algorithms for both the simulation and the real 

quadcopter. 

 

1.5 Work Structure 
 

At this point, it is time to take a look at the structure of this work, so the reader can 

localize itself, making easier the understanding of current document. 

It is based on 9 different chapters, divide as follows: 

 Chapter 1. Introduction: This is the chapter in which we currently are. The 

objectives of this project are explained here, and other subjects like the 

related works, the raise of the slam techniques, or the use of the cameras in 

robotics systems are also explained. 

 Chapter 2. Tools: The reader will deal with the tools employed for this 

project, both hardware and software. 

 Chapter 3. Monocular Visual SLAM: Explanation of the work flow of each of 

the three main algorithms, studying their performance and comparing the 

results. 

 Chapter 4. Extended Kalman Filter: This is the most technical part of the 

project. In this chapter the data from the sensors and the algorithms will be 

fused to develop an EKF to predict the localization of the robot accurately. 

 Chapter 5. PID Controller: Development of a PID to get a better 

performance for the robotic system. 
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 Chapter 6. Conclusions and future work: It deals with the extracted 

conclusions after the ending of the project, the problems that were faced, 

and the future work given the results obtained. 

 Chapter 7. User’s Manual: Instructions and needed applications to 

comprehend the project and its work flow. 

 Chapter 8. Specifications: It contains the specifications of the employed 

tools. 

 Chapter 9. Budget: Budget of the project. 

 Chapter 10. Bibliography: Documentation consulted during the project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 
 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2 
 

 

 

TOOLS 
 

 

 

 

 

 

 

 

 

 

 



36 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 
 

In this chapter the software and hardware tools used to develop the project will be 

defined and explained. 

2.1. Robot Operating System (ROS) 
 

This platform, widely known just as ROS, provides the necessary tools to help us 

developing and creating any robot application. It provides hardware abstraction, 

device drivers, libraries, visualizers, message passing, package management and more.  

ROS is licensed under an open source, BSD license. 

Now, it is very important to describe why ROS is so useful for robotic developers. Here 

we will define a few specific issues in the development of software for robots that ROS 

can help to resolve: 

- Distributed computation. Many modern robot systems rely on software that 

spans many different processes and runs across several different computers. 

- Software reuse. The rapid progress of robotics research has resulted in a 

growing collection of good algorithms for common tasks such as navigation, 

motion planning, mapping, and many others. Of course, the existence of these 

algorithms is only truly useful if there is a way to apply them in new contexts, 

without the need to reimplement each algorithm for each new system. ROS can 

help to prevent this kind of pain in different ways. 

- Rapid testing. One of the reasons that software development for robots is often 

more challenging than other kinds of development is that testing can be time 

consuming and error-prone. Physical robots may not always be available to 

work with, and when they are, the process is sometimes slow and finicky. 

Working with ROS provides two effective workarounds to this problem. 

All of these issues exist in the project that we are describing. So, all in all, we can now 

understand its importance. 

 

Figure 2. 1. ROS Icon  
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For a better understanding it is highly recommended the study of the ROS file system 

level, and the ROS computation graph level: 

ROS file System Level 

Similar to an Operating System, ROS files are organized in a particular way within the 

hard disk. Figure 2.2 shows how the ROS files and folder are organized on the disk: 

 

Figure 2. 2. ROS file System Level. 

Here is a brief explanation of each component belonging to the file system: 

• Packages: Are the most basic unit of the ROS software. Packages are the atomic build 

item and release item in the ROS software.  

• Package manifest: The package manifest file is inside a package that contains 

information about the package such as author, license, dependencies, compilation 

flags, and so on. The package.xml file inside the ROS package is the manifest file of that 

package. 

• Meta packages: The term meta package is used for a group of packages for a special 

purpose 

• Meta packages manifest: Similar to the package manifest, the main differences are 

that it might include packages inside it as runtime dependencies and declare an export 

tag. 

• Messages (.msg): ROS messages are a type of information that is sent from one ROS 

process to the other. The extension of the message file is .msg.  

• Services (.srv): The ROS service is a kind of request/reply interaction between 

processes. The reply and request data types can be defined inside the srv folder inside 

the package (my_package/srv/MyServiceType.srv). 
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 • Repositories: Most of the ROS packages are maintained using a Version Control 

System (VCS) such as Git. The collection of packages that share a common VCS can be 

called repositories.  

 

ROS computation graph level 

The computation in ROS is done using a network of processes called ROS nodes. This 

computation network can be called the computation graph. Its structure is shown in 

figure 2.3. 

 

Figure 2. 3. ROS computation graph Level 

Let´s briefly define each concept of the graph: 

• Nodes: Nodes are the processes that perform computation. In a robot, there will be 

many nodes to perform different kinds of tasks. Using the ROS communication 

methods, it can communicate with each other and exchange data. One of the aims of 

ROS nodes is to build simple processes rather than a large process with all 

functionality.  

• Master: The ROS Master provides name registration and lookup to the rest of the 

nodes. Nodes will not be able to find each other, exchange messages, or invoke 

services without a ROS Master. In a distributed system, we should run the master on 

one computer, and other remote nodes can find each other by communicating with 

this master.  

• Parameter Server: The parameter server allows you to keep the data to be stored in 

a central location. All nodes can access and modify these values. Parameter server is a 

part of ROS Master 
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• Messages: Nodes communicate with each other using messages. Messages are 

simply a data structure containing the typed field, which can hold a set of data and 

that can be sent to another node.  

• Topics: Each message in ROS is transported using named buses called topics. When a 

node sends a message through a topic, then we can say the node is publishing a topic. 

When a node receives a message through a topic, then we can say that the node is 

subscribing to a topic. Each topic has a unique name, and any node can access this 

topic and send data through it as long as they have the right message type.  

• Services: In some robot applications, a publish/subscribe model will not be enough if 

it needs a request/response interaction. The publish/subscribe model is a kind of one-

way transport system and when we work with a distributed system, we might need a 

request/response kind of interaction. ROS Services are used in this case. We can define 

a service definition that contains two parts; one is for requests and the other is for 

responses. Using ROS Services, we can write a server node and client node. The server 

node provides the service under a name, and when the client node sends a request 

message to this server, it will respond and send the result to the client. The client 

might need to wait until the server responds. The ROS service interaction is like a 

remote procedure call.  

• Bags: Bags are a format for saving and playing back ROS message data. Bags are an 

important mechanism for storing data, such as sensor data, which can be difficult to 

collect but is necessary for developing and testing robot algorithms. Bags are very 

useful features when we work with complex robot mechanisms. 

Besides, this project will be developed using as a robot the quadcopter ErleCopter, 

which will be described within this chapter, in the following points. This quadcopeter 

has a raspberry pi, as a brain, with ROS pre-installed in it, so it is far sensible using ROS 

to develop a robot application for it. 

2.2. Gazebo 
 

Gazebo is a simulator system for 3D environments that makes possible the evaluation 

of the behaviour of a robot in a virtual world. It allows, among different options, 

personalize the design of a robot, and create virtual worlds using simply tools like CAD 

or just importing created models. 

Besides, its importance relies on the fact that it’s possible to synchronize this simulator 

with ROS, so the emulated robots can publish information from its sensors in the 

nodes, and also send commands and orders to the robot. 
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Figure 2. 4. Gazebo software platform with a Turtlebot. 

Therefore, a simulation platform is an essential tool in every robotics toolbox. A well-

designed simulator makes it possible to rapidly test algorithms, design robots etc. 

Gazebo offers the ability to accurately and efficiently simulate populations of robots in 

complex indoor and outdoor environments. It is also a very robust physics engine with 

high-quality graphics, and convenient programmatic and graphical interfaces. 

The ErleCopter is currently implemented in Gazebo, so it will make our project simpler, 

given the fact that it is very easy to import the model from the ErleCopter webpage. 

First of all it is needed to configure our environment in our Ubuntu machine, such as 

installing ROS, APM/Ardupilot, creating a workspace… To do so just follow the steps 

uploaded at the Erlerobotics official webpage, which you can access here:  

http://docs.erlerobotics.com/simulation/configuring_your_environment 

Anyway, we will explain all the steps needed to install gazebo and how import the 

model of the Erlecopter to our environment: 

Option 1: Install Gazebo using Ubuntu packages 

Setup your computer to accept software from packages.osrfoundation.org 

sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-stable 
`lsb_release -cs` main" > /etc/apt/sources.list.d/gazebo-stable.list' 

Setup keys 

wget http://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add - 

Install gazebo7 

sudo apt-get update 

http://docs.erlerobotics.com/simulation/configuring_your_environment
http://docs.erlerobotics.com/simulation/configuring_your_environment#option-1-install-gazebo-using-ubuntu-...


42 
 

sudo apt-get remove .*gazebo.* '.*sdformat.*' '.*ignition-math.*' && sudo apt-get update 
&& sudo apt-get install gazebo7 libgazebo7-dev drcsim7 -y 

Option 2: Install Gazebo from source 

Compile the workspace 

Then compile everything together: 

cd ~/simulation/ros_catkin_ws                                                                                                                                                 
catkin_make --pkg mav_msgs mavros_msgs gazebo_msgs                                                                                                        
source devel/setup.bash                                                                                                                                                       
catkin_make -j 4 

Download Gazebo models 

mkdir -p ~/.gazebo/models                                                                                                                                                      
git clone https://github.com/erlerobot/erle_gazebo_models                                                                                                          
mv erle_gazebo_models/* ~/.gazebo/models 

 

 

Figure 2. 5. ErleCopter model in Gazebo downloaded in ErleRobotics. 

 

 

 

http://docs.erlerobotics.com/simulation/configuring_your_environment#option-2-install-gazebo-from-sou-...
http://docs.erlerobotics.com/simulation/configuring_your_environment#compile-the-workspace
https://github.com/erlerobot/erle_gazebo_models
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2.3 ErleCopter  
 

TheErleCopter is the first Linux-Based smart drone that uses robotic frameworks such 

as the described software ROS, and the award winning APM software autopilot to 

achieve different flightmodes. 

Although this quadcopter is ideal for outdoor operations, it is very useful for our 

research. As we said at the beginning of this project, the aim is to implement a VSLAM 

system with an EKF to localize the robot and build a map of the environment. At this 

point, it is important to highlight that this is just half of the work of a bigger project. 

Nicolás Blanco Fernández [17] is developing a similar project, but using a laser instead 

of a camera so the combined job between both projects is the fusion of the 

information obtained from the laser and the camera to minimize the error of the 

location and the accuracy of the built map. Obviously to carry these sensors, mainly 

the laser, we need to handle a weight of, approximately, 2 kilograms. Not all the 

quadcopters that have been already launched at the market fulfil this requirement. 

That’s why the ErleCopter has been chosen, it was designed with a take-off weight of 

up to 2 kilograms. 

 

Figure 2. 6. Hardware parts of the ErleCopter. 
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Table 2. 1. Features of the ErleCopter 

 

2.3.1 Flight modes 
 

It is important to know the different flight modes for the ErleCopter. There are several 

ways to flight. 

The ones that do not require GPS lock are: 

 Stabilize: this mode allows flying the copter manually, but self-levels the roll 

and pitch axis. 

 Alt Hold: the Erle-Copter will maintain a consistent altitude, allowing roll, pitch, 

and yaw to be controlled normally. 

 Acro: this mode uses the RC sticks to control the angular velocity of the copter. 

It is useful for aerobatics such as flips or rolls. 

 Land: Land mode attempts to bring the copter straight down. 

The ones that require GPS lock prior to takeoff are: 

 Loiter: Loiter mode attempts to maintain the current location, heading and 

altitude.  

 RTL (Return-to-Launch): the copter navigates from its current position to hover 

above the home position. 

 Auto: Erle-Copter will follow a pre-programmed mission script stored in the 

autopilot which is made up of navigation commands (i.e. waypoints) and “do” 

commands (i.e. commands that do not affect the location of the copter 

including triggering a camera shutter). 

 Guided: allows the Copter to be dynamically guided to a target location 

wirelessly using a telemetry radio module and ground station application. 
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 Drift: allows the user to fly a multi-copter as if it were a plane with built in 

automatic coordinated turns. 

 PosHold: it is similar to Loiter in that the vehicle maintains a constant location, 

heading, and altitude the difference is that the pilot stick inputs directly control 

the vehicle’s lean angle. 

 Follow Me: the Copter will follow the pilot while moving, using a telemetry 

radio and a ground station. 

 Circle: the vehicle will orbit a point of interest with the nose of the vehicle 

pointed towards the center. 

 

2.3.1.1 Hardware 
 

This section aims the understanding of how the quadcopter is made; figure 2.7 gathers 

all the components that model the quadcopter. 

 

Figure 2. 7. Components that model the ErleCopter. 

 

In figure 2.8, each of these components is briefly defined. 
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Figure 2. 8. Defined components of the ErleCopter. 

2.3.2 Erle-Brain 
 

Drones deployed in real applications have several computational units. Among them 

the Flight Control Unit (FCU) (a computer that provides basic flight controls, and 

companion computer) a computational device in charge of higher level behaviors such 

as image processing or image broadcasting. 

Erle-Brain is an all in one Linux brain for drones that provides FCU capabilities and 

companion computer. Everything in a simple package. 

The Erle- Brain is the artificial brain with which the ErleCopter is made. It includes 

gravity sensors, gyroscopes, and a digital compass. 
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Figure 2. 9. Erlebrain 2 Units. 

Obviously, the communications of the brain are a key part within the whole on board 

unit. These communications are the ones needed to implement all the sensors and the 

codes to develop the project that is being carried out. 

- WiFi: It is highly recommended to use an external Wi-Fi dongle in order to use a 

5GHz bandwidth.  

- Dongle: Using a dongle Wi-Fi we can create a hotspot using the brain. This way, 

there is no need to use wires to connect the device. The Wi-Fi can be used for 

communicate with the ardupilot, transfer files such as logs, plan a mission using 

a GCS (Ground Control Station), enable video streaming, even control the 

drone. 

- Ethernet: An Ethernet wire can be plugged to the Erle-brain to have internet 

access, needed to install new software or access the brain from the local 

network. This allows the communication with other devices. 

- USB: Used to attach the dongle, or to include an external storage. 

- I2C: The ErleBrain contains two I2C bus connectors, which gives access to the 

I2Cbus. In this bus a bunch of different sensors and devices can be connected. 

In this particular an ultrasonic sensor will be plugged to this connector. 

- PWM: It has 12 channels of PWM. Each channel has a 25 mA current sink 

capability a 5V. In these channels, the most typical devices that can be 

connected are: ESCs, servos, gimbal servos… The PWM can be used for 

powering the system. 

- RC Input: This is the radio controller that must be connected to the channel 14. 

- UART: A computer hardware device for asynchronous serial communication in 

which the data format and transmission speeds are configurable. 

- SD Card: The ErleBrain contains one SD Card slot. 
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Figure 2. 10. Communication Units of the ErleBrain 2. 

The points defined above, talk about the basic system. However, the Erlebrain that will 

be used for this project also has a Camera integrated in it. It is an 8MP camera with 

fixed focus lens, 2592 x1944 pixel static images, supports 1080p30, 720p60 and 

640x480p60/90 video record. It will be used to work with the VSLAM algorithms that 

will be described in the following section. 
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3.1. Introduction 
 

Aiming to perform our particular objectives, vSLAM different techniques must be used. 

The importance of these algorithms stands on the fact that, besides the simple 

technical features, it is able to run in real-time.   

In general, the technical difficulty of vSLAM is higher than that of other sensor-based 

SLAMs because cameras can acquire less visual input from a limited field of views 

compared to 360° laser sensing which is typically used in robotics. From such input, 

camera poses need to be continuously estimated and the 3D structure of an unknown 

environment is simultaneously reconstructed. 

Generally, the framework works mainly with three modules as follows: 

1. Initialization 

2. Tracking 

3. Mapping 

To start vSLAM, it is necessary to define a certain coordinate system for camera pose 

estimation and 3D reconstruction in an unknown environment. Therefore, in the 

initialization, the global coordinate system should first be defined, and a part of the 

environment is reconstructed as an initial map in the global coordinate system. After 

the initialization, tracking and mapping are performed to continuously estimate 

camera poses. In the tracking, the reconstructed map is tracked in the image to 

estimate the camera pose of the image with respect to the map. In order to do this, 

2D–3D correspondences between the image and the map are first obtained from 

feature matching or feature tracking in the image. Then, the camera pose is computed 

from the correspondences by solving the perspective problem. It should be noted that 

most of vSLAM algorithms assume that intrinsic camera parameters are calibrated 

beforehand so that they are known. Therefore, a camera pose is normally equivalent 

to extrinsic camera parameters with translation and rotation of the camera in the 

global coordinate system. In the mapping, the map is expanded by computing the 3D 

structure of an environment when the camera observes unknown regions where the 

mapping is not performed before. 

It is also very important to understand that the vSLAM algorithms have two additional 

modules according to the purposes of applications. 

- Relocalization 

- Global map optimization 

The relocalization is required when the tracking fails due to fast camera motion or 

some disturbances. In this case, it is necessary to compute the camera pose with 

respect to the map again. Therefore, this process is called “relocalization.” If the 
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relocalization is not incorporated into vSLAM systems, the systems do not work 

anymore after the tracking is lost and such systems are not practically useful, that`s 

why the algorithms used whitin this project will always work with this module.  

The other module is global map optimization. The map generally includes accumulative 

estimation error according to the distance of camera movement. In order to suppress 

the error, the global map optimization is normally performed. Generally, in this 

process, the map is refined by considering the consistency of whole map information. 

When a map is revisited such that a starting region is captured again after some 

camera movement, reference information that represents the accumulative error from 

the beginning to the present can be computed. Then, a loop constraint from the 

reference information is used as a constraint to suppress the error in the global 

optimization. 

There is another technique called loop closing. It is a technique to acquire the 

reference information. In the loop closing, a closed loop is first searched by matching a 

current image with previously acquired images. If the loop is detected, it means that 

the camera captures one of previously observed views. In this case, the accumulative 

error occurred during camera movement can be estimated.  

So, to summarize, the framework of vSLAM algorithms is composed of five modules: 

initialization, tracking, mapping, relocalization, and global map optimization. Since 

each vSLAM algorithm employs different methodologies for each module, features of a 

vSLAM algorithm highly depend on the methodologies employed as it will be seen in 

the following chapters. 

 

3.2. VSLAM algorithms 
 

In this section we will briefly explain the algorithms that are going to be implemented 

in our system, and studied as an objective of this project. These bunch of SLAM 

algorithms use the camera of the system to map and localize the robot. In the 

following point we will explain three concrete vSLAM algorithms. These particular 

algorithms will be: 

 PTAM 

 ORB-SLAM 

 LSD-SLAM 

So from now on this vSLAM section will be divided in three different subsections, 

defining its features and its implementation in the ErleCopter using Linux. 
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3.2.1 PTAM 

3.2.1.1 Introduction 
 

One of the various implementations that will be carried out of Monocular SLAM is the 

PTAM, mainly developed by Georg Kein and David Murray [18]. 

PTAM stands for Parallel Tracking and Mapping. It is a technology and algorithm that 

estimates the position of a camera in a three-dimensional environment and to map the 

position of the points of the visible objects by analyzing and processing information 

from a video sequence that can be also done at real time. 

As we have just defined, the process is actually split into two different actions: tracking 

and mapping. 

With the camera moving in the 3D space, it is possible to measure its own position via 

triangulation and stereo initialization techniques when the same scene is viewed from 

different points of view. This process is the camera tracking, which aims to calculate as 

accurately as possible its relative position to the other objects and the movement of 

the camera in real-time. 

The second task is the mapping of the 3D environment in which the camera moves. 

The simplest way to do so is to measure the position of certain point-features, while 

other techniques are able to detect straight lines or even extract 3D mesh information 

from the video stream. 

Tracking and mapping are clearly mutually dependent; this means that the camera 

position is expressed in terms of relative distance from some fixed environment points, 

while the camera position needs to be known in order to make the mapping of new 

features possible. 

The objective of PTAM is therefore to perform the tracking and mapping tasks in 

parallel. This method allows a precise and robust real-time tracking, together with an 

accurate points-based map of the environment. 
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Figure 3. 1 PTAM Keypoints tracked. Interface. 

 

An important quality of the PTAM method is the fact that mapping is performed only 

when there are free resources on the background processing thread. This allows the 

tracking system to follow the camera in real-time regardless of the complexity of the 

scene, achieving constant frame-rate output particularly useful for Augmented Reality 

applications. On the other hand, if the camera is stationary in an already-mapped 

environment, the background thread will allocate resources to analyze again old 

information in order to improve the quality of the map.  

3.2.1.2 PTAM Algorithm  
 

The PTAM algorithm will be divided in three main phases: Initialization, Tracking and 

Mapping. 

To initialize the algorithm PTAM uses a standard five-point stereo algorithm between 

two keyframes, developed by Subbaarao ,Meer and Genc. 

This phase is therefore quick and simple, and it consists on the addition of the very first 

points to the map so it can be improved adding new features. 
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It is very important to remark that the distance between the two initialization 

keyframes will affect the internal scale representation of the system. Although this is 

not a crucial factor for tracking purposes: the distance can be set to an arbitrary value. 

The tracking phase works on each frame using 3D point features. Then the acquired 

image is processed to generate a pyramid containing multiple levels of the frame at 

different resolutions. This technique gives the system robustness to scale changes, as 

each point feature can be matched at multiple distances and resolutions.  

Then, after getting the first camera pose estimation, as we already know, based on a 

small number of points, the pose location is computed. Using the new pose location 

estimation it is possible to accurately get or predict the position of a larger number of 

features in the highest resolution level of the pyramid, increasing the accuracy of the 

camera pose estimation. So now, a new more accurate location is computed and 

updated. 

It is remarkable that when the tracking is lost, the system tries to get a new pose initial 

estimation as soon as possible. 

Once the initialization process has finished, the mapping phase starts. In such phase, 

the algorithm adds as many point features as possible. The main characteristics of the 

mapping process are: 

- It works on keyframes rather than on every frame sent by the camera, making 

the calculation very robust, however it won´t be always a real time calculation. 

- The keyframes chosen have better average quality than the other frames. This 

makes it possible to obtain more accurate maps. 

- The keyframes can be revisited when there are no new areas to explore, to 

improve the generated maps. 
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Figure 3. 2 PTAM Block Diagram, ilustrating the monocular worklow steps. 

 

PTAM system is able to map previously unexplored regions automatically. The 

advantage is that creating this new portions of the map won`t affect the performance 

of the tracking system as this is done in parallel, by a different thread, in the 

background. 

Keyframes are separated each other by at least 20 frames and a minimum camera 

distance in order to eliminate stationary camera map corruption. The mapping thread 

is also able to re-project point features that were not taken into account by the 

tracking. 

If the camera is located in an already explored region in the map, a background threat 

reanalyzes it, in order to improve the accuracy of the map, adding more feature points. 

This process allows achieving a good compromise between map expansion speed and 

accuracy. 
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3.2.1.3 Simulation Implementation and launch file 
 

Once the Gazebo simulator is installed, with all the necessary features, the PTAM 

algorithm can be implemented and launched, so any application can be implemented 

now using the information that comes from such algorithm.  

First of all, we need to take a look at the topics provided by the camera using ROS. As 

we defined some chapters before, the Erlecopter has a camera integrated in the brain. 

The problem is that normally the raw image from the camera driver is not what it is 

wanted for visual processing, but rather an undistorted and (if necessary) delayered 

image. Therefore it is necessary to use the package image_proc. If you are running it 

on a robot, it’s highly recommended to run there such package. Generally the driver 

publishes topics /my_camera/image_raw and /my_camera/image_info so the 

command in such general case should be: 

$ ROS_NAMESPACE =my_camera rosrun image_proc image_proc 

 

The topics to which it subscribes in the Erlecopter are 

erlecopter/front/image_front_raw and erlecopter/front/camera_front_info, and that’s 

why it is needed to make a “remap” for such topics as following: 

  <launch> 
<remapfrom="/erlecopter/front/image_front_raw" 
to="/erlecopter/image_raw"/> 
<remap 
from="/erlecopter/front/camera_front_info"to="/erlecopter/camera_info"/> 

 

 

Now, if the simulator is launched and the command rostopic list is executed, it can be 
seen that now the named topics are erlecopter/image_raw and 
erlecopter/camera_info. 
 
So in another terminal we have to execute the following command: 
 

 $ ROS_NAMESPACE=erlecopter rosrun image_proc image_proc 

 
This way will get a black and white image, with its information contained in the topic 
/erlecopter/image_mono. To visualize it, we run the following command: 
 

 $ rosrun image_view image_view image:=/erlecopter/image_mono 
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Figure 3. 3. Erlecopter monocular camera open in the Ubuntu SO. 

 

Finally, to launch the PTAM algorithm it will be necessary to create a launch file, for 

example called Erle_Sim.launch, in order to launch the PTAM algorithm: 

<launch> 
<node name="ptam"pkg="ptam" type="ptam" clear_params="true" 
output="screen"> 
<remap from="image" to="$(optenv IMAGE /erlecopter/image_mono)" /> 
<remap from="pose" to="pose"/> 
<rosparam file="$(find ptam)/Cam_PtamFixParams.yaml"/> 
</node> 
</launch> 

 

So now, once the Gazebo simulator is opened, and the image form the camera is 

converted to black and white, the Erle_Sim.launch file can be run using the following 

command: 

$ roslaunch ptam Erle_Sim.launch 

 

In order to get the PTAM algorithm working, objects must be added to the Gazebo 

world, therefore the PTAM algorithm can detect features and carry out the 

simultaneous mapping and localization. 
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Figure 3. 4. Gazebo simulator with the Erlecopter model with PTAM running on board. 

 

A small window appears, and it can be seen how the PTAM detects the features of the 

image. Pressing the button View map off  we can see the window above, were the axis 

represents the localization of the robot, and the points of the detected features of the 

image in 3d coordinates.  

 

Figure 3. 5. PTAM Map pose estimation view. 
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3.2.1.4 Real implementation within Erlecopter and launch file 
 

Now, we are going to explain how to use the real camera of the Erlecopter robot. This 

simply consists on running the algorithm from an external device such a laptop or a 

simple PC, where the PTAM algorithm must be already installed. The connection 

between the robot and the device in which the algorithm will run will be a wifi 

connection. 

First of all the camera must be opened, to do so a bunch of steps have to be followed.  

In a new terminal, the external device is connected to the robot, and then the on-

board camera is opened. 

$ ssh erle@10.0.0.1 
$ rosservice call /camera/start_capture 

 

To assure that the camera is opened, we can take a look to camera, where a red light 

must be on. 

After getting this first step done, the image obtained from the camera is in a 

compressed format, and all the algorithms studied within this thesis work with raw 

images (particularly PTAM employs raw images in black and white).  So the 

compressed images have to be converted to raw format. 

$ rosrun image_transport republish compressed in:=/camera/image 

_image_transport:=compressed raw out:=/camera/image_raw 

 

So now we can visualize the camera in real time. 

$ source simulation/ros_catkin_ws/devel/setup.bash 
$ rosrun image_view image_view image:=/camera/image_raw 

  

 

mailto:erle@10.0.0.1
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Figure 3. 6. Erelcopter monocular camera launched in Ubuntu. 

 

3.2.1.5   Results obtained 
 

The interface of the algorithm is composed by just one window that contains different 

options which can be clicked on. The default window, showed in figure 3.1, shows the 

keyframes detected by the algorithms. Clicking on the View Map Off , it gets the 

window of figure 3.5, where the axis plotted on such figure, represent the current 

position, and the path generated by the algorithm. Besides, the generated Map of 

points is also represented in this figure. 

 

Now, as it will be done with each of the three algorithms studied in this project, three 

different paths will be implemented for the quadcopter to fly through. This will allow 

taking notice of the main advantages and disadvantages of each one, as well as its 

accuracy and performance in specific conditions. Figures from 3.7 to 3.9 show the 

implemented paths for this study. 
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Path 1: 

 

 

Figure 3. 7. Path 1 built for the monocular test. 

 

 

Path 2: 

 

 

Figure 3. 8. Path 2 built for the monocular test. 
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Path 3: 

 

 

Figure 3. 9. Path 3 built for the monocular test. 

 

The results after carrying out the presented paths and implementing the PTAM within 

the ErleCopter, once the Gazebo simulator has started are shown below.  

  

Result Path 1: 

 

 

Figure 3. 10. Results PTAM path 1 X-Y view. 
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Figure 3. 11.Results PTAM path 1 3D view. 

 

The blue line represents the ground truth of the robot, so to say, the path really 

followed by the quadcopter, gotten from the gazebo simulator, while the black line 

represents the prediction of the localization given by the PTAM algorithm. Thus, we 

can compare the accuracy of the PTAM algorithm, not only for just one case, but for 

three different paths, so a general overview of its performance can be obtained. 

 

Result Path 2: 

 

 

Figure 3. 12. Results PTAM path 2 X-Y view. 
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Figure 3. 13. Results PTAM path 2 3D view. 

The real path followed by the drone seems to be smoother than the predicted 

localization given by PTAM. The algorithm predicts a small movement up and down 

along the path.  

 

Result Path 3: 

 

 

 

Figure 3. 14. Results PTAM path 3 X-Y view. 
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Figure 3. 15. Results PTAM path 3  3D view. 

 

After testing the algorithm using the implemented paths, it can be said that it is 

computationally lighter than the others. The track gets lost, time to time, even though 

the movement of the camera is not fast. Besides, it needs a big amount of features to 

start tracking, and to recover from a loss. Nevertheless, its accuracy will be compared 

to the ORB-SLAM and LSD-SLAM in the following chapters. 

 

3.2.2 ORB-SLAM 

3.2.2.1 Introduction 
 

ORB-SLAM is a widely known method for Monocular SLAM algorithms. This method is 

based on the recognition of features, besides it is able to operate in real time, and 

within environments both small and large, outdoors and indoors. Of course, given the 

purpose of this project it will be used for indoors environments. It uses the same 

features for all the SLAM tasks: tracking, mapping localization, and close- loop 

detection. So it detects the keyframes to generate the maps. These keyframes are 

changing only if the scene content changes. 

ORB aims to estimate the trajectory of the camera while it builds the environment in 

which it “sails”. One of the most important concepts is the bundle adjustment (BA). It 

is a technique able to precisely estimate position and a geometric reconstruction. Its 

importance in the ORB is that it is used to optimize the maps and calculated 

trajectories when a loop closure is detected. Currently, very precise results can be 

obtained without requiring a high computational cost. To summarize, these are the 

most highlighted points of this technique: 
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- It uses the same features for all the SLAM tasks. It makes the system more 

efficient, simple and reliable. 

- It is able to operate in real time.  

- Localization in real time for locations previously “browsed”, independently of 

the existence of illumination or the angle of vision changes. 

3.2.2.2 ORB-SLAM diagram 
 

In figure 3.16 it is shown the diagram of this algorithm. Mainly, five modules can be 

distinguished:  

- Tracking 

- Local Mapping 

- Loop Closing 

- Map 

- Place Recognition 

 

Figure 3. 16. ORB-SLAM Block diagram illustrating the workflow steps. 
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It uses three threads running in parallel: Tracking, Local Mapping and Loop closing. The 

tracking thread locates the position of the camera in each image, and it “decides” 

when it’s necessary to include a new keyframe. When the system lost the tracking, the 

Place recognition module represents a global relocation. Once an initial estimation of 

the camera is achieved and the features are found, the local map is retrieved using the 

previously stored keyframes in the database. 

The second parallel thread is the Local Mapping which processes the new keyframes 

and represents the local BA (bundle adjustment) to get an optimal reconstruction 

around the camera position.  Then a data filtering on the stored information during the 

tracking is carried out, aiming to preserve the points with the highest quality. In this 

module the redundant points are also wiped out. 

The third loop is the Loop closing, which looks for the existence of loops each time a 

new keyframe is gotten. Finally, the closed loop is incorporated to the global map 

graph. 

 After this explanation the information contained in each point and keyframe will be 

briefly remarked below: 

Each point in the map contains the following information: 

- Its 3D location referred to the global reference system. 

- The direction of the view vector. 

- The ORB associated descriptor. 

- The maximum and minimum distance at which the point can be observed. 

Each keyframe contains: 

- The transformation of the real world coordinates system referred to the 

camera reference system. 

- The intrinsic parameters of the camera, such as the focal length. 

- The ORB features extracted from the image, either if they are o not associated 

to a map point. 

The philosophy of this vSLAM technique is to generously create map points and 

keyframes, given the fact that after having done such process, a filtering on these 

keyframes is carried out, wiping the redundant points out. As a result, the obtained 

map is flexible and can be expanded while the environment is being explored.  
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3.2.2.3 Algorithm ORB-SLAM 
 

1. Map initialization 

The objective of such initialization is to obtain the relative position between two 

frames to triangulate a bunch of points that are part of the map. The algorithm has to 

be able to achieve such initialization autonomously and independently of the 

environment. 

To do so, this algorithm stands on the execution in parallel of two geometric models, 

the first one with the homograph matrix (Hcr) for flat scenes and the other one with 

the fundamental matrix (Fcr) for not flat scenes. The method to recognize which model 

is applicable to the image is heuristic and it is the following: 

1) The initial correspondences are found. All the ORB features are extracted 

from the current frame (Fc) and search for matches xc<->xr in the reference 

frame (Fr). If not enough matches are found, reset the reference frame.  

2) Both models are executed at a time. Compute in parallel threads a 

homography Hcr and a fundamental matrix Fcr: 

 

xc=Hcrxr                          xcTFcrxr=0 

 

To make homogeneous the procedure for both models, the number of 

iterations is prefixed and the same for both models, along with the points 

to be used at each iteration, 8 for the fundamental matrix, and 4 of them 

for the homography. At each iteration we compute a score SM for each 

model M (H for the homography, F for the fundamental matrix): 

 

SM=∑ (ρMn
i (dcr2(xci, xri ,M))+ ρM(dcr2(xci, xri, M)) 

 

 

Γ-d2 if d2 < TM 

ρM(d2)= 

0 if d2 ≥  TM 

 

where dcr
2 and dcr

2 are the symmetric transfer errors from one frame to the 

other. TM is the outlier rejection threshold based on the χ test at 95% (TH = 

5.99, TF = 3.84, assuming a standard deviation of 1 pixel in the 

measurement error). Γ is defined equal to TH so that both models score 

equally for the same d in their inlier region, again to make the process 

homogeneous. We keep the homography and fundamental matrix with 

highest score. If no model could be found (not enough inliers), we restart 

the process again from step 1. 
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3) The homography matrix will be chosen if RH>0.45, if not the model of the 

fundamental matrix will be chosen. 

RH=
SH

SH+SF
 

4)  Once a model is selected we retrieve the motion hypotheses associated. The 

system will try to triangulate directly the solutions obtained previously, 

looking for the best one. In case of not finding any accurate solution, it will 

return to the step number 1. 

5)  Finally the BA is represented. 

 

 

2. Tracking 

In order to carry out the tracking module, the first thing that should be done is the 

initial pose estimation. It can start from the previous frame if such frame is 

satisfactory, if not, the tracking is lost, so a candidate has to be found in the keyframes 

database. 

Once the initial camera pose and a bunch of associated features are estimated, the 

local map to which such frame corresponds can be projected, and look for more 

correlations between the points of the map. Once the correlations are found, the map 

is updated. 

Eventually, this module decides if the current frame will become or not a keyframe. To 

insert a new keyframe the following conditions must be accomplished: 

- More than 20 frames must have passed since the last global relocation. 

- The local mapping must been deactivated or more than 20 frames must have passed 

since the last insertion of a new keyframe. 

- The current frame must have located at least 50 points. 

- The current frame must have at least the 90% of te points contained in the reference 

frame. 

These conditions assure that there were visual changes, a good relocation and a good 

tracking. Besides, the second condition assures that there won’t be a new keyframe 

while the local mapping is running. 
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3. Local Mapping 

This module inserts the new keyframes. As it has been observed in previous chapters, 

one of the most characteristics aspects is the exhaustive point and keyframes filtering 

that it does. In order to remain part of the map, the points have to pass several 

conditions during the first three keyframes added after such point became part of the 

map. The conditions are the following: 

- The tracking module must find the treated point in more than the 25% of the frames 

in which such point should be visible. 

- The point must be observed at least in the three following frames, after such point 

was incorporated to the map. 

Once the point is added to the map, it can be wiped out if at any time it is part of less 

than three keyframes. 

Besides, the keyframes must accomplish a bunch of conditions in order to not be 

eliminated. Those keyframes in which the 90% of their points in the map were 

observed with the same or a smaller scale in at least another 3 keyframes will be 

eliminated. This condition assures that the most accurate keyframes will remain. 

This module is also in charge of the local BA that optimizes the current keyframe. 

4. Loop Closing 

The aim of this module is to detect loops between the current keyframe and the last 

one, processed by the local mapping module. 

First, the candidate loops to be closed are detected. Then a transformation between 

the current keyframe and the loop keyframe is calculated. Finally each point of the 

map is transformed according to the corrections obtained from any of the keyframes 

in which this point is observed.  

3.2.2.4 Simulation implementation and launch file 
 

Similarly to the PTAM section, the Gazebo simulator with the ErleCopter has to be 

launched. It is important first to highlight that the ORB algorithm subscribes to the 

topic /camera/image_raw, while the published topic of the ErleCopter camera is 

/erlecopter/front/image_front_raw. So it is needed a simply remap of this topic.  

For example in the provided file erlecopter_spawn.launch, that launches the simulator, 

we can simply add the following command to remap the topic. 
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<launch> 
<remap from="/erlecopter/front/image_front_raw" to="/camera/image_raw"/> 
… 

 

 

After launching the simulator, the ORB SLAM can be executed as follows. 

$  roslaunch ORB_SLAM Erle_Simulador.launch  

 

Where the file Erle_Simulator.launch doesn’t need any changes, and it is shown below.  

 

<launch> 
<node pkg="image_view" type="image_view" name="image_view" respawn="false" 
output="log"> 
<remap from="/image" to="/ORB_SLAM/Frame" /> 
<param name="autosize" value="true"/> 
</node> 
<node pkg="rviz" type="rviz" name="rviz" args="-d $(find ORB_SLAM)/Data/rviz.rviz"  
output="log"> 
</node> 
<node pkg="ORB_SLAM" type="ORB_SLAM" name="ORB_SLAM"  
args="Data/ORBvoc.txtData/Settings.yaml" cwd="node" output="screen"/> 
</launch> 

 

 

Now, that both the simulated world and the ORB algorithm are working, the SLAM 

algorithm can be studied and it can be used to develop applications of mapping and 

localization. 
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Figure 3. 17. ORB-SLAM launched in Gazebo with the Erlecopter Model. 

3.2.2.5 Real implementation within Erlecopter and launch file 
 

Now, as we did in the PTAM section above, the ORB SLAM will be execute from an 

external device in the real Erlecopter. To do so we need a WiFi connection between 

the device and the robot.  

First of all the camera of the robot must be opened, as it was done in the 3.1.2 section. 

Once the camera of the drone is opened the second step is to convert the raw image 

provided to a mono image, given that the algorithm works with mono images. 

$ ROS_NAMESPACE=camera rosrun image_proc image_proc 

After executing this command it can be seen that the topic /camera/image_mono is 

now being published. 

To visualize the image, just execute the following, using the image_view package. 

$ source simulation/ros_catkin_ws/devel/setup.bash 
$ rosrun image_view image_view image:=/camera/image_mono 

 

Finally to get the ORB algorithm running the file below has to be launched to visualize 

the ORB viewer. 
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<launch> 
<node pkg="image_view" type="image_view" name="image_view" 
respawn="false" output="log"> 
<remap from="/image" to="/ORB_SLAM/Frame" /> 
<param name="autosize" value="true"/> 
</node> 
<node pkg="rviz" type="rviz" name="rviz" args="-d $(find 
ORB_SLAM)/Data/rviz.rviz" output="log"> 
</node> 
<node pkg="ORB_SLAM"type="ORB_SLAM" name="ORB_SLAM"  
args="Data/ORBvoc.txt Data/Erle.yaml" cwd="node" output="screen"/> 
</launch> 

 

 

$ source simulation/ros_catkin_ws/devel/setup.bash 
$ roslaunch ORB_SLAM Erle_Wifi.launch 

 

It can be seen now that the ORB slam algorithm is working in real time, carrying out 

the mapping and localization modules. 

 

Figure 3. 18. ORB – SLAM launched on the real robotic platform. 

 

 

 



75 
 

3.2.2.6  Results obtained 
 

As it can be seen in figure 3.18, the interface of this algorithm is composed by two 

windows. The first one (composed by little green squares) shows the current frame of 

the algorithm, from where the following information can be obtained: 

 

- SLAM Mode. 

- Number of Keyframes. 

- Number of points in the Map. 

- Number of found features. 

- X and Y position of the cursor on the window. 

- RGB information of the point on which the cursor is located. 

 

 

Figure 3. 19. ORB-SLAM current frame window, with the detected Keyframes. 

 

The second window, showed in figure 3.20, contains the generated map of points of 

the explored environment. In such window, appear several options that allow the user 

to track the camera. 
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Figure 3. 20. ORB-SLAM tracking and mapping window. 

 

 Besides, it is shown the generated map along the movement of the robot. The 

information given by this second window is: 

- Green rectangle: Current position of the camera. 

- Blue rectangles: Keyframes. 

- Red points: Points of the current local map. 

- Black points: Points of the map. 

 

Following the steps from the PTAM chapter, that is to say, taking the same paths 

developed above, the results after having implemented ORB-SLAM in the simulation 

are now presented. 
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Result Path 1: 

 

 

Figure 3. 21. Results ORB-SLAM path 1 3D view. 

 

 

 

Figure 3. 22. Results ORB-SLAM path 2 X-Y view. 

 

Again, the blue line represents the ground truth of the robotic platform, so to say, the real 

position of the quadcopter. The black line, in this case, represents the predicted localization 

given by the ORB-SLAM algorithm along the path. 
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Result Path 2: 

 

Figure 3. 23. Results ORB-SLAM path 2 3D view. 

 

 

Figure 3. 24. Results ORB-SLAM path 2 X-Y view. 

 

 

Unlike PTAM, the performance of this algorithm turns to be slightly smoother. 

Although having again a small deviation along the path, this time sideways, the 

outcomes of the algorithm, in terms of stability (and not in terms of error) were better.  
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Result Path 3: 

 

 

Figure 3. 25. Results ORB-SLAM path 3 3D view. 

 

 

Figure 3. 26. Results ORB-SLAM path 3 X-Y view. 

 

After taking the results obtained from the algorithm, it comes to the conclusion that 

the ORB algorithm is very sensitive to the strong movements, above all, the rotational 

movements around the Z axis (yaw angle). However, if the camera is moved smoothly 

the algorithm works without any lost. It is very computationally heavy, so it needs a 

high quality processor to be run in.   

In the next sections the error will be calculated and compared with the rest of the 

vSLAM algorithms studied in this project. 
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3.2.3 LSD-SLAM 

3.2.3.1 Introduction  
 

The LSD-SLAM technique presented in this section works completely different than the 

vSLAM techniques studied before. This method called Large Scale Direct Monocular 

SLAM builds maps in big scale. Instead of using features, it works on the contrast of the 

images both for location and mapping. The geometry of the maps is estimated 

applying filters over the acquired images in gray scale. 

Then it takes more information from the geometry and the environment that can be 

very useful for robots or even for augmented reality purposes. 

Like the previous SLAM technique, the world is represented by a number of keyframes 

connected by position restrictions, which can be optimized using an optimization 

graph. 

3.2.3.2 Algorithm LSD-SLAM 
 

The algorithm can be divided in three main modules: tracking, depth map estimation 

and map optimization. 

The algorithm initialization is carried out through a random intensity map. When the 

camera is slightly moved, the algorithm blocks the configuration, and the algorithm 

converges. 

The representation of the map is a keyframe graph. Figure 3.27 shows the algorithm 

scheme. 

 

Figure 3. 27. LSD-SLAM Block Diagram illustrating the workflow steps 
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1. Tracking 

The tracking module tracks the new images obtained by the camera. Such images are 

estimated as a solid rigid regarding the current keyframe, using the position of the 

previous keyframe for the initialization. 

 

2. Depth map estimation 

This module uses the frames obtained to substitute the current keyframe. The 

intensity is defined by a pixel by pixel filtering. 

If the camera is moving too far from the created map, then it creates a new keyframe 

of the last frame obtained by the tracking module. Once such frame is taken, its 

intensity is initialized, projecting its points from the previous keyframe over this one. 

Finally, the keyframe is substituted, and it is used to track new frames. 

 

Figure 3. 28. LSD-SLAM tracking and mapping window. 

Those frames obtained, although not converted in a keyframe are used to redefine the 

current keyframe. The result is incorporated to the depth map; which means that new 

pixels are added to the map. 

3. Map optimization 

The built map, consists in a bunch of keyframes joined by different restrictions, such 

map is continuously optimized at the background by the optimization graph. 
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3.2.3.3 Simulation implementation and launch file 
 

As it was done in the previous chapters, before launching the simulator it is needed to 

do a remap in some published topics. The LSD SLAM looks for two published topics to 

start the algorithm. These topics are /image_raw and /camera_info, that’s why it is 

necessary to carry out the following remap within the file that launches the robot 

simulator. 

 

<launch> 
<remap from="/erlecopter/front/image_front_raw" to="/erlecopter/image_raw"/> 
<remap from="/erlecopter/front/camera_front_info" 
to="/erlecopter/camera_info"/> 

 

 

Converting the image from the simulated camera to grayscale: 

$ ROS_NAMESPACE=erlecopter rosrun image_proc image_proc 

 

Finally the SLAM LSD can be launched: 

$rosrun lsd_slam_core live_slam /image:=/erlecopter/image_mono 
_calib:=/home/usuario/rosbuild_ws/package_dir/lsd_slam/lsd_slam_core/calib/Erle_S
im_calib.cfg 

 

To visualize the LSD viewer the following command must be executed. 

 $ rosrun lsd_slam_viewer viewer 

 

 

Figure 3. 29. LSD-SLAM launched in Gazebo simulator with the Erlecopter model. 
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3.2.3.4 Real implementation within Erlecopter and launch file 
 

As it was done before the drone will be connected to an external device via WIFi, 

where the LSD algorithm will be running in real time. Once the camera is opened , the 

first step is to convert the raw image to mono. 

$ ROS_NAMESPACE=camera rosrun image_proc image_proc 

 

Now it can be visualized that the /camera/image_mono topic is being published in gray 

scale.  

To execute the LSD algorithm: 

$ rosrun lsd_slam_core live_slam /image:=/camera/image_mono 
_calib:=/home/usuario/rosbuild_ws/package_dir/lsd_slam/lsd_slam_core/calib/Erle_
Wifi_Calib.cfg 

 

To visualize the tracking and mapping in the LSD viewer: 

$ rosrun lsd_slam_viewer viewer 

 

 

Figure 3. 30. LSD-SLAM launched  on the real robotic platform. 
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3.2.3.5 Results obtained 
 

As the ORB- SLAM algorithm, the interface is composed by two windows. The first one 

is shown in figure 3.30, in which the intensity map can be seen. In the lowest part of 

the window, important information can be found, such as the actualization of the map, 

the tracking, the number of keyframes among other interesting data.  

 

The second window shows the map built from a cloud of points that is being generated 

along the path followed by the camera. The keyframes selected by the algorithm are 

represented in blue, while the red color represents the current position of the camera, 

and finally, the green color represents the path generated.  

 

Again, following the steps from the PTAM and ORB chapter, that is to say, taking the 

same paths developed above, the results after having implemented LSD-SLAM in the 

simulation are now presented. 

Result Path 1: 

 

 

Figure 3. 31. Results LSD-SLAM path 1 3D view. 
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Figure 3. 32. Results LSD-SLAM path 1 X-Y view. 

 

Again, the blue line represents the ground truth of the robot, so to say , the real position of the 

Erlecopter. The black line represents the localization given by the LSD-SLAM algorithm along 

the path. 

Result Path 2: 

 

 

Figure 3. 33. Results LSD-SLAM path 2 3D view. 
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Figure 3. 34. Results LSD-SLAM path 2 X-Y view. 

 

Apparently, the localization given by the LSD-SLAM is far from the real localization in certain 

sections along the path. This may be due to several losses of tracking during the simulation 

process. 

 

Result Path 3: 

 

 

Figure 3. 35. Results LSD-SLAM path 3 3D view. 
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Figure 3. 36. Results LSD-SLAM Path 3 X-Y view. 

 

After testing the algorithm, it was noticed that the execution time is high, given the 

fact that it is necessary to move the camera extremely slow, or at least it is needed a 

really powerful computer processor. As the movement of the quadcopter is the same, 

no matter the employed algorithm, the results, apparently, are worse than the results 

obtained for the previous algorithms. Plus, the algorithm hardly recovers from a loss of 

the tracking. 

 

3.3. Results 

3.3.1 Simulation Results 
 

In this section, the results obtained from the different tracks developed will be 

discussed. After having talked about the performance of the three visual algorithms, 

now a calculation of the MAD (Mean Absolute Deviation) and MSE (Mean Square 

Error) error will be carried out. 

For a better understanding of what these errors means, a briefly explanation of each 

one is presented: 

- MAD: it takes the absolute value of forecast errors and averages them over the 

entirety of the forecast time periods. Taking an absolute value of a number 

disregards whether the number is negative or positive and, in this case, avoids 

the positives and negatives cancelling each other out. 

The next formula represents the calculation of the MAD error: 
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MAD=
∑ |Ai−Fi|n
i=1

n
 

 
Where A represents, in our particular case, the pose X,Y of given by the Ground 

Truth, so to say, the actual position of the quadcopter, while F represents the 

estimated position of the quadcopter, and n, the number of poses studied. 

 

- MSE: it measures the average of the squares of the errors or deviations—that 

is, the difference between the estimator and what is estimated. The MSE is a 

measure of the quality of an estimator—it is always non-negative, and values 

closer to zero are better. 

The following formula represents the MSE: 

 

 

MSE=
∑ (Ai−Fi)2n
i=1

n
 

 

The terms presented in such formula are the same than the ones explained 

above for the calculation of the MAD error. 

 

Now let’s see the errors for the 3 tracks and the three vSLAM algorithms, to get a 

better understanding of its performance. 

 

VSLAM TRACK MAD MSE 

PTAM Track 1 1.3712 2.7316 

Track 2 1.5177 2.8811 

Track 3 0.6692 0.6650 

Average Score 1.1870 2.0922 

ORB-SLAM Track 1 1.4062 2.3243 

Track 2 0.6791 0.6887 

Track 3 0.7093 0.7313 

Average Score 0.9315 1.2481 

LSD-SLAM Track 1 1.7799 4.5085 

Track 2 0.9317 1.2351 

Track 3 1.0132 1.2481 

Average Score 1.2416 2.3266 
Table 3. 1. Errors obtained for each vSLAM algorithm. 

As pointed in [1], the best results are obtained for the ORB-SLAM algorithm, while LSD-

SLAM and PTAM obtain similar errors. 

So before it was shown the qualitative performance of these three algorithms, now a 

comparison of the errors of such algorithms is shown in the table 3.1. As a conclusion, 
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the ORB gets better performance both for the MSE and the MAD, so if it had to choose 

one of those to be implemented in an actual quadcopter this would be the most 

fittable. 

The problem face at this point, is that on one hand, the ORB-SLAM gets a better 

performance, although on the other hand it is computationally heavier than PTAM. 

LSD-SLAM is also very heavy, by far, heavier than PTAM, and even heavier than ORB-

SLAM. 

As the Erlecopter is the robotic platform studied within this project, it could be said 

that both PTAM and ORB-SLAM are suitable, the problem is that the brain of the 

robotic platform is composed by a simple raspberry pi 2, so ORB-SLAM is too heavy to 

be launched on board (in real time), also noticing that it may have more sensors on the 

robot, that could affect the performance of the robotic platform. 

 

3.3.2 Real results 
 

In this project, a real implementation of the vSLAM algorithms was made using the real 

Erlecopter camera, running off-board in a Lenovo U31, since the on-board CPU 

(Raspberry-Pi 2) was not able to handle ORB-SLAM or LSD-SLAM due to their CPU 

consume. It is important to highlight that one of the main targets of this project, was 

to run the algorithms on board, but the CPU consume, as shown in table X was too 

high to be supported by the Raspberry Pi 2, so the algorithms had to run off-board, 

using a Wi-Fi connection between the quadcopter and the Lenevo U-31 laptop. Thus in 

this subsection, the results of such test will be presented. For that purpose a test was 

recorded within the Politécnica building in the University of Alcalá.  

 

%CPU 
Consume 

PTAM ORB-SLAM LSD-SLAM 

88% 133% 148% 

 

The scale was computed using the downward sonar, using the technique that will be 

explained in the chapter 4. Thus, figure 3.37 shows the performance of each of these 

three algorithms. 
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Figure 3. 37. Real tracking of the 3 vSLAm algorithms on the Erlecopter. X-Y view. 

As extracted from the simulation test, it can be seen again that ORB-SLAM turns to be 

the most accurate algorithm. PTAM is able to follow the tracking, although at the end 

of the corridor a rotational movement around the Z axis, of 45 degrees is developed, 

and it loses completely the tracking. It can be seen that the developed tracking before 

losing the path is very unstable compare it with LSD-SLAM and ORB-SLAM, so it can be 

said that is the most sensitive vSLAm algorithm of all. 

Finally LSD-SLAM tends to easily lose the tracking and increase the error. Besides after 

a rotational movement it cuts the length of the real path. 

Since the tests were made in a corridor of a length of 22m, so it can be extracted from 

figure 3.37 that the estimation of all the algorithms used is slightly shorter than the 

actual length of the path. 
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EXTENDED KALMAN FILTER 
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4.1. Introduction 
 

In 1960 Rudolf E. Kalman developed an algorithm called Kalman Filter (KF), which 

allows the identification of a hidden state, that can’t be measured, within a 

dynamic linear system, even if the system presents some kind of noise. So the 

Extended Kalman Filter [16] (EKF) is a nonlinear version of the KF, which linearizes 

about the estimate of the current mean and covariance, and it is heavily 

entrenched in nonlinear signal processing applications. This approach is used in 

robotics systems, given the fact that it presents a solution to the pose estimation 

problem in SLAM techniques. 

4.2. Extended Kalman Filter algorithm 
 

Therefore, the EKF is an algorithm capable of estimating the position of a robotic 

platform using sensor fusion in nonlinear applications, in this particular case, the  

mathematical model obtained from the Erlecopter kinematics and dynamics, will 

be obviously nonlinear. 

As showed previously, the EKF operates on the same principle as the regular 

Kalman Filter, using a linearized model of the system to predict the quadcopter’s 

state though. 

The EKF algorithm is represented by the following equations: 

 

X̂t-1 = g(ut,ut-1) (1) 

P̂t = Gt  Pt-1  GTt + Qt (2) 

Kt = P̂t  HTt  (Ht  P̂t  HTt + Rt )-1  (3) 

Xt =  X̂t  + Kt  (zt – h(X̂t )) (4) 

Pt = (I- Kt  Ht)  P̂t (5) 

 

The above equations represent the EKF algorithm. The equations (1) and (2) are 

used to predict the state X̂t  and the covariance matrix  P̂t . This step is called 

prediction model. On the other hand the equations (3), (4) and (5) represent the 

observation model, which computes the Kalman gain Kt the current state Xt and 

the covariance matrix Pt. Besides, the covariance matrix of the model is 
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represented by Qt  , the covariance matrix of the measurements is represented by 

Rt and Gt  and Ht are the Jacobian matrixes of the model and measurement 

respectively. 

The following scheme shows the computational flow of the EKF, how the system 

works both in the prediction and observation model: 

 

 

Figure 4. 1. Block Diagram of the EKF. Prediction and correction workflow.  

4.2.1 Prediction Model 
 

First, from the kinematics and dynamics of the quadcopter, we need to solve the 

mathematical model of the Erlecopter in order to get the prediction model. Based 

on the model for the AR Drone, developed by Engel, Sturm and Cremers in [23], we 

got the mathematical model of the Erlecopter: 

State vector: x (t) = { x, y, z, Vx, Vy, Vz, φ,, , ̇} 

where x represents the position of the quadcopter in the x-axis, y represents the 

position of the robot in the y-axis, and finally z represents the position of the robot 

in the z-axis. In addition, Vx represents the linear velocity of the robot on the x axis, 

same happens with Vy for the y axis and Vz for the z axis.Besides, φ is the angle of 

the robot around the y-axis,  is the angle of the robot around the x-axis and  is 

the angle around the z-axis. Finally  ̇ represents the angular velocity around the z-

axis. 
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Control Inputs: u (t) = {�̂�x, �̂�y, �̂�z,  ̂̇} 

where �̂�x represents the control of the linear velocity on the x-axis, �̂�y represents 

the control of the linear velocity on the y-axis and  �̂�z is the control of  linear 

velocity on the z-axis. Finally,  ̂̇ represents the control of the angular velocity 

around the z-axis. 

From now on, the prediction model will be known as a function such as  ẋ = 

h(x,u), where φ,  and , must be Euler angles XYZ.  

 

Figure 4. 2. Yaw, Pitch and Roll angles in the world frame. 

 

The horizontal acceleration is proportional to the projection of the Z axis. 

Therefore R=rotz()*roty()*rotx(φ): 

R = (
cos cos sinφ sin cos− cosφ sin cosφ sin cos+ sinφ sin
cos sin sinφ sin sin + cosφ cos cosφ sin sin − sinφ cos
−sin sinφ cos cosφ cos

) 

 

Taking the third column, it is easy to get the following equations: 

�̈�= C1  (C2  (sin(φ) sin()+cos(φ)  sin()cos()) - Vx) 

�̈�= C1 (C2 (-sin(φ) sin()+cos(φ)  sin()cos()) - Vy) 

φ̇=-C3 (C4�̂�y + φ) 

̇=C3 (C4�̂�x - ) 

̈=C5 (C6 ̂̇−  ̇) 

Vż=C7 (C8�̂�z - Vz) 
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Therefore the prediction model, using the kinematics equations obtained above is 

defined as: 

 

(

 
 
 
 
 
 
 

𝑥
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𝑉𝑦
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C1  (C2  (sin(φ) sin() + cos(φ)  sin()cos())  −  Vx)
C1 (C2 (−sin(φ) sin() + cos(φ)  sin()cos())  −  Vy)

C7 (C8�̂�z −  Vz)

−C3 (C4�̂�y +  φ)

C3 (C4�̂�x −  )
 ̇

C5 (C6 ̂̇ −  ̇) )

 
 
 
 
 
 
 
 

 

 

Where, t is the change in time between the previous model update to the new 

model update.  

4.2.2 Observation Model 
 

Given the fact that the employed algorithms, either PTAM or ORB-SLAM or LSD-

SLAM , can measure directly the 6 DOF of the quadcopter. As shown the obtained 

model for these measurements is linear:  

Zvslam=hvslam(x) = 

(

  
 

𝑥
𝑦
𝑧
φ


)

  
 

 

Thus, the Jacobian for the measurement system Ht is composed by the camera 

measurements. The Ht can be presented as: 

Ht=

(

  
 

1
0
0
0
0
0

 

0
1
0
0
0
0

 

0
0
1
0
0
0

 

0
0
0
0
0
0

 

0
0
0
0
0
0

 

0
0
0
0
0
0

 

0
0
0
1
0
0

 

0
0
0
0
1
0

 

0
0
0
0
0
1)

  
 

 

All in all, the EKF has been explained; now, let’s solve the problem of the scaling 

factor in the vSLAM algorithms, due to the lack of knowledge of the real distance of 

the objects in the pinhole cameras. 
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4.2.2.1 Scaling Factor Problem 
 

The main problem to deal with, in order to get the data information from the 

camera algorithms is the ambiguity of the scale issue. Monocular configurations 

are unable to identify the length of the translational movement only from the 

features correspondences. As shown, the camera itself cannot know the real depth 

of the object in the image, so it is impossible for the vSLAM algorithm to compute 

the tracked movement in a real scale. 

 

 

Figure 4. 3. Relationship between pixel scale and real scale in monocular cameras. 

 

To solve this problem, monocular camera systems need some kind of movement 

from the camera to obtain a couple of frames and compare the features between 

them in order to extract the key points. As the actual distance of the camera’s 

movement is unknown, the system won’t calculate accurately the real scale. 

Given the performance of the vSLAM algorithms, in this particular situation, an 

approach will be done in order to solve the issue. As [5] did in his project,  taking 

the information from the ultrasonic downward sensor, located within the robotic 

system, the measurement of the altitude in the Z axis direction of the world frame, 

can be used to solve the problem of the unknown translational movement, so now, 

the relationship between the frames and the real length is calculated. 

Thus the idea is that if the real height is known, and also the one estimated by the 

vSLAM, then the scale can be calculated as follows: 
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Scale=
hsonar

hvslam
 (1) 

Zreal= Scale Zvslam (2) 

Xreal= Scale Zvslam (3) 

Yreal= Scale Zvslam (4) 

 

After performing several trials, shown in figures from 4.4 to 4.6 , in order to get the 

real scale of the monocular algorithm, it jumps to the conclusion that the scale is 

very changing, this means, that each time that the algorithm is launched, the 

obtained scale is not even close to the one obtained previously. 

 

 

 

Figure 4. 4. First trial . Relationship between the sonar height and the PTAM predicted height. 
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Figure 4. 5. Second trial . Relationship between the sonar height and the PTAM predicted height. 

 

 

 

Figure 4. 6. Third trial . Relationship between the sonar height and the PTAM predicted height. 

 

Then, to get a high quality performance of the vSLAM algorithms, each time that 

the system runs a monocular algorithm, first a pure translational movement in the 

Z axis direction has to be carried out. 

In other projects such as in [5], the scale was calculated with every iteration of the 

system, which worked at 25HZ. For this project, it will be accurate enough to 

calculate the real scale at the beginning of the actuation of the developed system. 
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4.3. Results 
 

At this point the results obtained from the development of the EKF explained above 

and its performance will be presented, and it will take conclusions from the results.  

Not only the performance will be studied, but the MSE and MAD errors, as it was done 

in the previous chapters for the vSLAM algorithms, therefore it will be possible to 

notice the improvement of the pose estimation of the system. 

 Results Path 1: 

 

Figure 4. 7. Results EKF path 1 X-Y view. 

  

 

Figure 4. 8. Results EKF path 1 3D view. 
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 Results Path 2: 

 

 

Figure 4. 9. Results EKF path 2 X-Y view. 

It is important to remark that this EKF is using PTAM as the observation model; as 

consequence it must be compared with the results presented in the chapter number 3 

for such monocular algorithm. 

 

 

 

Figure 4. 10. Results EKF path 2 3D view. 
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 Results Path 3: 

 

Figure 4. 11. Results EKF path 3 X-Y view. 

 

 

 

Figure 4. 12. Results EKF path 3 3D view. 

 

These three paths show the performance developed by the implemented EKF 

algorithm. It can be seen that EKF estimates a position close to the real one, obtained 

from the ground truth system.  

x(m) 

y(m) 

y(m) 

x(m) 

z(m) 
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For this purpose, the table 4.1 stores the MAD and MSE errors calculated for the 

Extended Kalman Filter. 

 TRACK MAD MSE 

EKF Track 1 0.8605 0.9194 

Track 2 0.6297 0.7185 

Track 3 0.8480 1.0358 

Average Score 0.7794 0.8912 
Table 4. 1. Errors obtained for the EKF. 

Comparing this errors with the table 3.1, showed in previous chapters, it can be seen 

that the improvement of the results is highly remarkable. The table 4.2 compares the 

obtained errors after having run the 3 tracks: 

Algorithm MAD MSE 

EKF 0.7794 0.8912 

PTAM 1.1870 1.2922 
Table 4. 2. Average Errors from EKF and PTAM 

Therefore, it can be said that the EKF presented works properly, reducing the error of 

the monocular algorithms, and presenting a more accurate pose estimation for the 

quadcopter, as also shown in figures 4.2 and 4.3. 

 

Figure 4. 13. 3D single-scope view Ground-Truth, EKF and PTAM  
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Figure 4. 14. X-Y single scope view Ground-Truth, EKF and PTAM. 

 

Algorithm MAD MSE 

EKF 1.1251 1.4412 

PTAM 1.2357 1.2357 
Table 4. 3. Errors obtained from EKF and PTAM in the single scope trial. 
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PID CONTROLLER 
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In this section a PID controller for the robot will be designed in order to move and 

control the robot, making possible to develop a trajectory for SLAM algorithm 

purposes, to localize and map the robot and the environment.  

5.1. Introduction 
 

The idea of any control system is to calculate a discrepancy (error) between the 

objective (the desired position introduced by the user) and the reality (the real 

position of the robot). Such error will be used as a feedback to modify the control 

variable (radio control velocity). 

A PID controller is a very well-known controller, used because its simplicity, it doesn´t 

require characterization of the system. It is based in 3 different terms (proportional, 

integral and differential) relating the error with some constants that can be 

determined through a trial and error process. 

5.2. Implementation and results 
 

 In this particular case, Pref will be the desired position, and pos will be the real position 

of the drone, or at least the estimated position. The error will be defined as: 

e(t) = (Pref − pos) 

Using this error, the actuation variables will be modified based on the formula shown 

below: 

pid = Kp e(t) + Ki∫ e(t)dt + Kd
de(t)

dt
 

 

For the moment, the PID can be considered as a simple value, that in case of being 

positive indicates that the robot must move forward and in case of being negative 

backwards. As the radio control variable is the one that has to be controlled, first we 

are going to explain how it works.  
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Figure 5. 1. Scheme of the local frame of the quadcopter 

 

Figure 5.1 shows the different axis of the robot system, x, y, z, roll, pitch, yaw. Now to 

understand how the radio control works to move the drone we are going to present a 

set of examples. The radio control stands on an array of integer numbers, in the range 

from 1100 to 1900, where 1100 means “move the drone as quick as possible to the 

negative position from the local drone frame reference” and 1900 means “move the 

drone as quick as possible to the positive position from the local drone axis” and 1500 

will mean “don’t move, keep your position” (notice that the drone will be working in 

ALT HOLD mode, in each of the different modes the integer used will have a different 

performance). We are going to work in this definition deeper, in order to clarify the 

performance of the robot. So it is time to present the radio control array: 

[Vx, Vy, Vz, Vyaw, 1500, 1500, 1500, 1500, 1500] 

where the last four spots of the array of control are useless and don’t have any 

relevant meaning.  

So let’s move the drone by writing and publishing a topic: 

- Take-off slowly: 

$ rostopic pub -1 /mavros/rc/override mavros_msgs/OverrideRCIn '[1500, 1500, 

1600, 1500, 1500,1500,1500,1500]' 

- Move forward slowly: 

$ rostopic pub -1 /mavros/rc/override mavros_msgs/OverrideRCIn '[1500, 1400, 

1500, 1500, 1500,1500,1500,1500]' 

- Move to the right slowly: 

$ rostopic pub -1 /mavros/rc/override mavros_msgs/OverrideRCIn '[1600, 1500, 

1500, 1500, 1500,1500,1500,1500]' 
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The values within the array are the PWM values of the radio controller. So after seeing 

how this works we can clearly see then, that the PID value from the formula will move 

between [1100, 1900], controlling the position of the drone trough the PWM 

actuators. 

Now it is important to understand and explain each of the terms of this PID expression. 

The first term is proportional to the error, the second one to the integral and the last 

one goes with the derivative term. 

The idea is that the first term aims to reduce the current error. For example for the Z 

axis, if the error is positive (the drone hasn’t arrived to the reference position) pid will 

be positive, therefore the PWM value will increase to get to the reference position. On 

the other hand if the error is negative (the drone has gone further to the reference 

position), then PID will be negative. 

The second term is based on the influence of the “past” of the error: the performance 

won’t be the same if we get a punctual error or if the error has been gotten for a 

while. In the second case the response to this error will be more energetic. 

Finally the third term reflects the “future” of the error, that is to say the prediction of 

this error. Imagine we are 5 units away from our desire position, that is to say, error=5. 

It is not the same if we are getting closer to this desire position or if we are getting 

away from such objective. In the first case probably it won’t be necessary any 

actuation, but in the second one it is needed a correction. 

 

Figure 5. 2. PID controller block diagram. 
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In this particular case, it will be implemented a discrete controller, so the formula 

shown above can be approximated to the following, in which each time the position is 

measured and the error en is calculated: 

 

en = (Pref − posn) 

To get the control term, the instant error is traduced naturally in the error measured at 

the time n, but for the integral part of the formula and the derivative part will need 

some numeric approximations: 

- The integral is substitute for a summation of values previous to the error. 

Besides it is limited in the time, adding N errors, instead of the complete 

amount of errors. The h term (interval of time between samples) but such term 

can be absorbed by the integral constant Ki. 

- The numeric estimation of the derivative part, the quickest is to substitute for 

the difference between consecutives errors, though accurately estimations 

could be found. Again, the factor h that appears can be absorbed by the Kd 

constant, so it won’t be necessary introduce it. 

de(t)

dt
≈
en − en−1

h
 

The discrete variant of the control term will be therefore: 

pidn = Kp en +∑en−k

N

k=1

+ Kd(en − en−1) 

 

Not all the terms explained will be implemented. It will depend on the application, 

that’s why we can simply design a proportional controller, wiping the derivative 

and integral parts out, or a PD controller wiping just the integral part out.  

After explaining how the PID is going to be implemented, it is important to remark 

that in this particular case what will be implemented is a controller for the X, Y and 

Z axis, and also for the yaw positions. So, all in all four controllers will be designed 

for this purpose, one for each position. 

Using a trial an error method, the gaining constants Kp, Ki and Kd have been 

adjusted for each controller. The results obtained are shown below: 

 

 



113 
 

 PID for Z position 

 

Figure 5. 3. Results PID controller Z position. 

 

 

 PID for Y position 

 

Figure 5. 4. Results PID controller Y position. 
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 PID for X position 

 

 

Figure 5. 5. Results PID controller X position. 

 

 P controller for yaw angle 

Figure 5. 6. Results P controller yaw position. 
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The table 5.1 represents the numeric results obtained for each controller. 

Position Type Kp Ki Kd 

Z PID 0.4 1.0 0.7 

Y PID 0.1 0.15 4.0 

X PID 0.1 0.4 4.0 

Yaw Proportional 2.5 - - 
Table 5. 1. Constants of the controllers. 

Now it will be explained how the PID controller for the Z position was 

implemented, this will be enough to understand the behaviour of a PID controller 

and how the others were also implemented. 

First it will be necessary to set the reference and get the real position of the drone. 

Now we can calculate the proportional error: 

Ez=Rz-Pz 

where Rz is the reference and Pz is the real and current position. 

The second step is to get the integral error, to do so, we need to add the last 20 

samples of the current error, and get the average: 

Eavg = ∑ Ezn−k

n=20

k=1

 

And then the integral error is calculated as: 

Eiz =
Eavg

20
 

The last step is to get the derivative error, which can be obtained as the 

subtraction of the current error minus the previous one: 

Edz = Ezn − Ezn−1  

Now the constants Kp, Ki and Kd are set to a random value, and using the trial and 

error method while taking a look at the behaviour of the system the values of the 

constants are updated until a good solution is obtained (Kp =0.4, Ki =1, Kd =0.7). 

Then calculate PIDz from the next formula: 

PIDz = Kpz ∙ Ez + Kiz ∙ Eiz + Kdz ∙ Edz 

As it was explained before, in this chapter, the objective is to set a PWM value to 

control the position of the drone, as it was explained above, this PWM are set in a 

range between 1100 and 1900, where 1500 means “stay in your current position”. 

So this PIDz will return a number between [-1,1] so if the result, for example is 50, 
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automatically the outcome of PIDz will be 1 and if the result is -200 the outcomes 

will be automatically -1. Then to set the required PWM: 

 

PWMz = 1500 + 400 PIDz 

 

Figure 5. 7. Components of the navigation system. 

 

Now that the PID has been developed, the navigation system will consist of three 

major components: a monocular SLAM implementation for visual tracking, an EKF 

for data fusion and prediction and a PID control for pose stabilization, all of it 

implemented in the gazebo simulator as figure 5.7 shows. 
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6.1. Conclusions 
 

In this project it has been employed a low-cost aerial vehicle, the ErleCopter, with ROS 

as a software platform to work with it. Gazebo has been the simulator used to test all 

the algorithms and control the robotic platform. 

As it can be seen it is possible to use commercial low cost quadcopters to perform an 

estimation of the current localization and mapping, of course using the vSLAM 

techniques presented within this project. 

The main limit faced in this project was the lack of resources of the robotic platforms, 

this means, that given the processor (raspberry pi 2) and the vSLAM algorithms studied 

before, it wasn’t able to perform an on board tracking of the robot, mainly, as it was 

said in previous chapters, ORB-SLAM and LSD-SLAM need a powered processor to work 

properly, otherwise the algorithm gets frozen and stuck, losing continuously the 

tracking and mapping of the platform. 

On the other hand, the implemented EKF, as it was shown, works more accurate than 

just using a simple vSLAM algorithm, although, the idea was to fuse such algorithms 

with the data from a laser, that was part of another project. The timing wasn’t correct, 

so it had to be done just using the information obtained from the camera. 

 It is important to remark the importance of the data fusion in order to achieve a 

proper performance of the current system. Adding a sensor such as monocular camera 

brought a feedback of the position helping the system to estimate the pose of the 

robotic platform, and correcting the prediction model took from the ErleCopter 

kinematics and dynamics.  

The real ErleCopter, after several trials turned out to be very unstable, talking in 

controllability terms, besides it has a lot of different modes which change its behaviour 

during the flight. For the simulator a PID was implemented, taking the control of the 

robotic platform using the data obtained from the EKF.  

6.2. Future Work 
 

Thus, it proposes different future works to keep investigating along this path.   

The first proposal consists on the improvement of the controllability of the real 

platform, making possible a real flight of the ErleCopter indoors. 

Another option would be the research of vSLAM algorithms, finding a compromise 

between the weight of the algorithm and its accuracy. In this project PTAM was found 



120 
 

the best option for this purpose, however it might be more algorithms that might 

improve this aspect: lower the computability weight, improving the accuracy of the 

SLAM technique. 

Finding another aerial robotic platform, with a better processor, and implementing on 

it a heavy vSLAM technique could solve the problem of the in real time flight, that 

couldn’t be done in this project. 

Other problem that could be faced following the ErleCopter trend, besides from the 

SLAM, is making such robotic platform autonomous. For this project, several paths 

were built and followed by the quadcopter using the implemented PID, such path was 

treated as a reference of the robotic platform. Therefore an explorer autonomous 

Erelcopter quadcopter as a future application, meshing information from a bunch of 

different sensors cold turn useful. 

All in all it can be said that the objectives for this project were completed: a study of 

the three main vSLAM algorithms, an implementation of an EKF for the robotic 

platform, and an implementation of a PID to improve the controllability of such 

platform.  
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In this chapter, the instructions to use the several packages found in this project will be 

explained. The launch of the vSLAM algorithms both in the real platform and in the 

simulator are explained in chapter 3, so no reference of them will be shown here. 

7.1. Downloading the necessary tools 
 

 Install ROS, Gazebo and the ErleCopter Gazebo models, following the steps: 

http://docs.erlerobotics.com/simulation/configuring_your_environment 

 Install LSD-SLAM following the steps given in the GitHub website: 

https://github.com/tum-vision/lsd_slam 

 Install ORB-SLAM following the steps given in the GitHub website: 

https://github.com/raulmur/ORB_SLAM 

 Install PTAM following the steps given in the GitHub website: 

http://wiki.ros.org/ethzasl_ptam 

 

7.2. Launching the ErleCopter world in Gazebo 
 

Open a terminal and set the following commands: 

source ~/simulation/ros_catkin_ws/devel/setup.bash                                                                                    

cd simulation/ardupilot/ArduCopter                                                       

../Tools/autotest/sim_vehicle.sh -j 4 -f Gazebo --map –console                                                        

param load/home/usuario/simulation/ardupilot/Tools/Frame_params/Erle-

Copter.param 

 

In another terminal: 

source ~/simulation/ros_catkin_ws/devel/setup.bash 
roslaunch ardupilot_sitl_gazebo_plugin erlecopter_spawn.launch 

 
 

 

http://docs.erlerobotics.com/simulation/configuring_your_environment
https://github.com/tum-vision/lsd_slam
https://github.com/raulmur/ORB_SLAM
http://wiki.ros.org/ethzasl_ptam
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7.3. Setting the world 
 

To change the appearance of the world, you can just add objects in it by clicking on the 

left upper corner of the Gazebo simulator, and saving the file as it appears 

ros_catkin_ws/src/ardupilot_stil_gazebo_plugin/worlds/empty.world 

7.4. Arming the ErleCopter 
 

In the ardupilot terminal 

 

Figure 7. 1. Ardupilot terminal. 

 Now type arm throttle, and press intro 

 To change the mode of the Erlecopter you can type in the same terminal: 

 Mode name_of_the_mode, for instance, mode LOITER. 

 All the changes will appear in the Console window, shown in figure 7.2. 

 

Figure 7. 2. Erelcopter Console 
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7.5. Publishing a topic and moving the quadcopter 
 

 Once the simulator is running, (only for the first time) type in the ardupilot 

terminal $ rosrun mavros mavparam set SYSIS_MYGCS 1, you should get 1 

as an answer. 

 Again in the ardupilot terminal (also only for the first time) type param set 

ARMING CHECK 0 and param set SYSID_MYGCS 1. 

 Then arm the quadcopter. 

 To move the drone upwards: rostopic pub -1 /mavros/rc/override 

mavros_msgs/OverrideRCIn '[1500, 1500, 1700, 1500, 1500, 1500, 1500, 

1500]' 

 To move the drone to the right: rostopic pub -1 /mavros/rc/override 

mavros_msgs/OverrideRCIn '[1600, 1500, 1500, 1500, 1500, 1500, 1500, 

1500]' 

 To move the drone forward: rostopic pub -1 /mavros/rc/override 

mavros_msgs/OverrideRCIn '[1500, 1400, 1500, 1500, 1500, 1500, 1500, 

1500]' 

 To move it around the yaw angle: rostopic pub -1 /mavros/rc/override 

mavros_msgs/OverrideRCIn '[1500, 1500, 1500, 1600, 1500, 1500, 1500, 

1500]' 

 To maintain the quadcopter at the same position: :rostopic pub -1 

/mavros/rc/override mavros_msgs/OverrideRCIn '[1500, 1500, 1500, 1500, 

1500, 1500, 1500, 1500]' 

 

7.6. Taking off automatically 
 

 Launch the Gazebo simulator as the point 7.2 

 Arm the quadcopter and set the STABILIZE mode 

 In another terminal run the created package: 

source ~/simulation/ros_catkin_ws/devel/setup.bash 
rosrun ros_despegue ros_despegue 

 

The copter will take off until it reaches 2 meters of height, where it will stop and stay 

stable. 
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7.7. Launching the PID controller 
 

 Follow the steps of the subchapter 7.2 

 Set the path as a reference, in another terminal: 

source ~/simulation/ros_catkin_ws/devel/setup.bash 

rosrun ros_local_reference ros_local_reference 

 

 Run the PID package 

source ~/simulation/ros_catkin_ws/devel/setup.bash 

rosrun ros_pid_erle ros_pid_erle 

 

7.8. Launching the EKF 
 

 Follow the steps of the subchapter 7.2 

 Open PTAM as in chapter 3. Once PTAM is running get the scale factor: 

source ~/simulation/ros_catkin_ws/devel/setup.bash 

rosrun escala_vslam escala_vslam 

 

 Move the drone with a pure translational movement of the z axis, upwards or 

downwards to get the scale using the ultrasonic sensor. 

 Set the path as a reference, in another terminal: 

source ~/simulation/ros_catkin_ws/devel/setup.bash 

rosrun ros_local_reference ros_local_reference 

 

 Run the EKF package to estimate the ErleCopter position and introduce the 

calculated scale. 

source ~/simulation/ros_catkin_ws/devel/setup.bash 

rosrun ekf_erle ekf_erle 

 

7.9. Creating a package 
 

 Create a package folder in the workspace (example package ros_practica_1) 

cd ~simulation/ros_catkin_ws/src   
catkin_create_pkg ros_practica_1 std_msgs rospy roscpp tf 
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 Once the package is created, you should modify the Cmakelists.txt as follows: 

 

cmake_minimum_required(VERSION 2.8.3) 
project(ros_practica_1) 
 
## Find catkin macros and any catkin packages 
find_package(catkin REQUIRED COMPONENTS roscpp rospy std_msgs 
genmsg) 
 
# Generate added messages and services with any dependencies listed here 
 generate_messages(DEPENDENCIES std_msgs) 
 
# Declare a catkin package 
catkin_package() 
 
include_directories(include ${catkin_INCLUDE_DIRS}) 
 
add_executable(ros_practica_1 src/main.cpp) 
target_link_libraries(ros_practica_1 ${catkin_LIBRARIES}) 
add_dependencies(ros_practica_1 ros_practica_1_generate_messages_cpp 
}) 
 
## Mark executables and/or libraries for installation 
install(TARGETS ros_practica_1 
   ARCHIVE DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION} 
   LIBRARY DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION} 
   RUNTIME DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}) 

 

 Now inside the src folder of the created package folder create your main.cpp 

program. 

 Compile the package: 

source ~/simulation/ros_catkin_ws/devel/setup.bash 
catkin_make --pkg ros_practica_1 

 

 Execute the package: 

source ~/simulation/ros_catkin_ws/devel/setup.bash 
rosrun ros_practica_1 ros_practica_1 
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Now, a list containing the main software and hardware tools employed within this 
project is shown:  

8.1. Hardware Specifications 
 

 PC  Intel i5-6500 of 64 bits and 3GHz with 8 GB of RAM

 Erlecopter quadcopter with a monocular camera on board.

 

8.2. Software Specifications 
 

 Operating System Ubuntu 14.04 LTS 64 bits

 Framework ROS Indigo


 Matlab R2017a
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This chapter will describe the theoretical cost of the whole project. It will include the 

equipment cost and the professional fees. Finally, the taxes will be added for getting 

the total cost of the project. 

9.1. Equipment cost 
 

 In this section, the cost of the different materials (hardware and software) is detailed 

and the VAT (21%) is included. 

 

Item Unit price 
(euro) 

Unit Total cost 

 
Hardware 

ErleCopter 
Drone 

1159 1 1159 

Lenovo U31 
Laptop 

749 1 749 

Hardware total cost 1908 

 
 
 
 

Software 

Ubuntu 
v14.04 

0 1 0 

Robot 
Operating 

System 

0 1 0 

ROS 
packages 

0 1 0 

Matlab 
(Student 
edition) 

69 1 69 

Microsoft 
Office 2010 

74.99  74.99 

Software total cost 143.99 

Equipment total cost 2051.99 
Table 9. 1. Equipment cost. 

9.2. Professional fees 
 

In this section the different professional fees are calculated. These fees are calculated 

as gross incomes. The following table includes all the professional activities related 

with the project. 

 

 



136 
 

Activity Price (euro/hour) Time (hours) Total cost (euro) 

Engineering 3.15 400 1260 

Writing up 3.15 65 205 

Fees total cost 1465 
Table 9. 2. Professional fees 

9.3. Total cost  
 

The theoretical total cost of the whole project is itemized in this section and presented 

in below: 

Equipment cost 2051.99 

Professional fees 1465 

Printing 60 

Total 3576.99 
Table 9. 3. Total cost. 
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