

Universidad de Alcalá

Escuela Politécnica Superior

MÁSTER EN INGENIERÍA INDUSTRIAL

Trabajo Fin de Máster

Vision-based SLAM for the aerial robot ErleCopter

Autor: Guillermo Patiño González

Tutor: María Elena López Guillén

2018

UNIVERSIDAD DE ALCALÁ
Escuela Politécnica Superior

MÁSTER EN INGENIERÍA INDUSTRIAL

Trabajo Fin de Máster

SLAM based on vision for the aerial robot ErleCopter

Autor: Guillermo Patiño González

Tutor: María Elena López Guillén

TRIBUNAL:

Presidente: Mª Dolores Rodríguez Moreno

Vocal 1º: Luis Miguel Bergasa Pascual

Vocal 2º: María Elena López Guillén

FECHA: …………………………………..

7

Agradecimientos

Me gustaría en primer lugar agradecer a mi familia, especialmente a mis padres y a mi

hermana, el apoyo recibido durante todas las etapas de mi vida. El esfuerzo que

siempre han realizado por darme lo mejor que podían no tiene palabras.

A mis compañeros y profesores, tanto de la Universidad de Alcalá como de la

Mälardalens University, que han hecho de este camino una experiencia que repetiría

sin dudar. En especial me gustaría mencionar a mi tutora Elena, por abrirme un camino

de la ingeniería que hace que me sienta realizado. Quisiera agradecerle la oportunidad

de hacer este proyecto y todas las cosas que he aprendido gracias a ello, así como su

entrega como profesora.

Por último a mis amigos más cercanos y a Rebeca, por estar siempre para todo en

estos últimos años.

8

9

Contents Index

1. INTRODUCTION ... 21

 1.1 UAV’s State of the Art ... 23

 1.2 Use of cameras .. 24

 1.3 The raise of the SLAM techniques ... 25

 1.4 Objectives .. 31

 1.5 Work Structure .. 32

2. TOOLS ... 35

2.1. Robotic Operating System ... 37

2.2. Gazebo ... 40

2.3 ErleCopter ... 43

2.3.1 Flight modes .. 44

 2.3.2.1 .Hardware .. 45

2.3.3 Erle-Brain .. 46

3. MONOCULAR VISUAL SLAM ... 49

3.1. Introduction .. 51

3.2. VSLAM algorithms ... 52

3.2.1 PTAM ... 53

 3.2.1.1 Introduction .. 53

 3.2.1.2 PTAM Algorithm .. 54

 3.2.1.3 Simulation Implementation and launch file .. 57

 3.2.1.4 Real implementation within Erlecopter and launch file 60

 3.2.1.5 Results obtained .. 61

3.2.2 ORB-SLAM ... 66

 3.2.2.1 Introduction .. 66

 3.2.2.2 ORB-SLAM diagram ... 67

 3.2.2.3 Algorithm ORB-SLAM .. 69

 3.2.2.4 Simulation implementation and launch .. 71

 3.2.2.5 Real implementation within Erlecopter and launch file 73

 3.2.2.6 Results obtained .. 75

3.2.3 LSD-SLAM .. 80

 3.2.3.1 Introduction .. 80

 3.2.3.2 Algorithm LSD-SLAM ... 80

10

 3.2.3.3 Simulation implementation and launch file .. 82

 3.2.3.4 Real implementation within Erlecopter and launch file 83

 3.2.3.5 Results obtained .. 84

3.3. Results ... 87

3.3.1 Simulation Results ... 87

3.3.2 Real results .. 89

4. EXTENDED KALMAN FILTER .. 91

4.1. Introduction .. 93

4.2. Extended Kalman Filter algorithm ... 93

4.2.1 Prediction Model ... 94

4.2.2 Observation Model.. 96

 4.2.2.1 Scaling Factor Problem .. 97

4.3. Results ... 100

5. PID CONTROLLER ... 107

5.1. Introduction .. 109

5.2. Implementation and results .. 109

6. CONCLUSIONS AND FUTURE WORK .. 117

6.1. Conclusions ... 119

6.2. Future Work .. 119

7. USER’S MANUAL .. 121

7.1. Downloading the necessary tools ... 123

7.2. Launching the ErleCopter world in Gazebo ... 123

7.3. Setting the world ... 124

7.4. Arming the ErleCopter .. 124

7.5. Publishing a topic and moving the quadcopter .. 125

7.6. Taking off automatically. ... 125

7.7. Launching the PID controller ... 126

7.8. Launching the EKF ... 126

7.9. Creating a package .. 126

8. SPECIFICATIONS ... 129

8.1. Hardware Specifications .. 131

8.2. Software Specifications ... 131

9. BUDGET ... 133

9.1. Equipment cost ... 135

9.2. Professional fees ... 135

11

9.3. Total cost ... 136

10. BIBLIOGRAPHY .. 139

12

13

Figures Index

Figure 1. 1 Barrucada UAV. ... 23

Figure 1. 2. Military UAV. Boeing. ... 23

Figure 1. 3. AR Drone. Four motor model. .. 24

Figure 1. 4. STABLEY and JUNIOR car ... 26

Figure 1. 5. Experimental Platform with on board computation ... 26

Figure 1. 6. Architecture diagram showing the software modules .. 27

Figure 1. 7. Map generated by flying. ... 27

Figure 1. 8. Fixed wing experimental platform flying indoors . .. 28

Figure 1. 9. The trajectory flown by the vehicle is shown by the red, green, and blue axes 29

Figure 1. 10. Block diagram illustrating the operational steps of the monocular vision system 29

Figure 1. 11. Experimental results of the proposed ranging and SLAM algorithm. 30

Figure 1. 12. Cartesian (x; y; z) position of the MAV in a hallway 30

Figure 1. 13. Saint Vertigo, the autonomous MAV helicopter . .. 31

Figure 2. 1. ROS Icon ... 37

Figure 2. 2. ROS file System Level. .. 38

Figure 2. 3. ROS computation graph Level .. 39

Figure 2. 4. Gazebo software platform with a Turtlebot. ... 41

Figure 2. 5. ErleCopter model in Gazebo downloaded in ErleRobotics. 42

Figure 2. 6. Hardware parts of the ErleCopter. ... 43

Figure 2. 7. Components that model the ErleCopter. ... 45

Figure 2. 8. Defined components of the ErleCopter. .. 46

Figure 2. 9. Erlebrain 2 Units. .. 47

Figure 2. 10. Communication Units of the ErleBrain 2. ... 48

Figure 3. 1 PTAM Keypoints tracked. Interface. .. 54
Figure 3. 2 PTAM Block Diagram, ilustrating the monocular worklow steps. 56
Figure 3. 3. Erlecopter monocular camera open in the Ubuntu SO. ... 58
Figure 3. 4. Gazebo simulator with the Erlecopter model with PTAM running on board. 59
Figure 3. 5. PTAM Map pose estimation view... 59
Figure 3. 6. Erelcopter monocular camera launched in Ubuntu. .. 61
Figure 3. 7. Path 1 built for the monocular test. ... 62
Figure 3. 8. Path 2 built for the monocular test. ... 62
Figure 3. 9. Path 3 built for the monocular test. ... 63
Figure 3. 10. Results PTAM path 1 X-Y view. ... 63
Figure 3. 11.Results PTAM path 1 3D view. .. 64
Figure 3. 12. Results PTAM path 2 X-Y view. ... 64
Figure 3. 13. Results PTAM path 2 3D view... 65
Figure 3. 14. Results PTAM path 3 X-Y view. ... 65
Figure 3. 15. Results PTAM path 3 3D view. ... 66
Figure 3. 16. ORB-SLAM Block diagram illustrating the workflow steps. 67
Figure 3. 17. ORB-SLAM launched in Gazebo with the Erlecopter Model. 73
Figure 3. 18. ORB – SLAM launched on the real robotic platform. ... 74
Figure 3. 19. ORB-SLAM current frame window, with the detected Keyframes. 75
Figure 3. 20. ORB-SLAM tracking and mapping window. .. 76

14

Figure 3. 21. Results ORB-SLAM path 1 3D view. .. 77
Figure 3. 22. Results ORB-SLAM path 2 X-Y view. ... 77
Figure 3. 23. Results ORB-SLAM path 2 3D view. .. 78
Figure 3. 24. Results ORB-SLAM path 2 X-Y view. ... 78
Figure 3. 25. Results ORB-SLAM path 3 3D view. .. 79
Figure 3. 26. Results ORB-SLAM path 3 X-Y view. ... 79
Figure 3. 27. LSD-SLAM Block Diagram illustrating the workflow steps. 80
Figure 3. 28. LSD-SLAM tracking and mapping window. ... 81
Figure 3. 29. LSD-SLAM launched in Gazebo simulator with the Erlecopter model. 82
Figure 3. 30. LSD-SLAM launched on the real robotic platform. .. 83
Figure 3. 31. Results LSD-SLAM path 1 3D view. ... 84
Figure 3. 32. Results LSD-SLAM path 1 X-Y view. .. 85
Figure 3. 33. Results LSD-SLAM path 2 3D view. ... 85
Figure 3. 34. Results LSD-SLAM path 2 X-Y view. .. 86
Figure 3. 35. Results LSD-SLAM path 3 3D view. ... 86
Figure 3. 36. Results LSD-SLAM Path 3 X-Y view. .. 87
Figure 3. 37. Real tracking of the 3 vSLAm algorithms on the Erlecopter. X-Y view. 90

Figure 4. 1. Block Diagram of the EKF. Prediction and correction workflow. 94

Figure 4. 2. Yaw, Pitch and Roll angles in the world frame. .. 95

Figure 4. 3. Relationship between pixel scale and real scale in monocular cameras. 97

Figure 4. 4. First trial . Relationship between the sonar height and the PTAM predicted height.

 ... 98

Figure 4. 5. Second trial . Relationship between the sonar height and the PTAM predicted

height. ... 99

Figure 4. 6. Third trial . Relationship between the sonar height and the PTAM predicted height.

 ... 99

Figure 4. 7. Results EKF path 1 X-Y view. ... 100

Figure 4. 8. Results EKF path 1 3D view. ... 100

Figure 4. 9. Results EKF path 2 X-Y view. ... 101

Figure 4. 10. Results EKF path 2 3D view. ... 101

Figure 4. 11. Results EKF path 3 X-Y view. ... 102

Figure 4. 12. Results EKF path 3 3D view. ... 102

Figure 4. 13. 3D single-scope view Ground-Truth, EKF and PTAM ... 103

Figure 4. 14. X-Y single scope view Ground-Truth, EKF and PTAM. .. 104

Figure 5. 1. Scheme of the local frame of the quadcopter ... 110

Figure 5. 2. PID controller block diagram. ... 111

Figure 5. 3. Results PID controller Z position. ... 113

Figure 5. 4. Results PID controller Y position. ... 113

Figure 5. 5. Results PID controller X position. ... 114

Figure 5. 6. Results P controller yaw position. .. 114

Figure 5. 7. Components of the navigation system. ... 116

Figure 7. 1. Ardupilot terminal. ... 124

Figure 7. 2. Erelcopter Console. .. 124

15

Tables Index

Table 2. 1. Features of the ErleCopter .. 44

Table 3. 1. Errors obtained for each vSLAM algorithm. .. 88

Table 4. 1. Errors obtained for the EKF. .. 103
Table 4. 2. Average Errors from EKF and PTAM .. 103
Table 4. 3. Errors obtained from EKF and PTAM in the single scope trial. 104

Table 5. 1. Constants of the controllers. ... 115

Table 9. 1. Equipment cost. ... 135
Table 9. 2. Professional fees. ... 136
Table 9. 3. Total cost. .. 136

16

17

Resumen

El objetivo principal de este trabajo, es la implementación de distintos tipos de

algoritmos SLAM (mapeado y localización simultáneos) de visión monocular en el robot

aéreo ErleCopter, empleando la plataforma software ROS (Robotic Operating System).

Para ello se han escogido un conjunto de tres algoritmos ampliamente utilizados en el

campo de la visión artificial: PTAM, ORB-SLAM y LSD-SLAM. Así se llevará a cabo un

estudio del funcionamiento de los mismos en el ErleCopter.

Además empleando dichos algoritmos, y fusionando la información extraída por estos

con la información de otros sensores presentes en la plataforma robótica, se realizará

un EKF (Extended Kalman Filter), de forma que podamos predecir la localización del

robot de una manera más exacta en entornos interiores, ante la ausencia de sistemas

GPS.

Para comprobar el funcionamiento del sistema se empleará la plataforma de

simulación robótica Gazebo.

Por último se realizarán pruebas con el robot real, de forma que podamos observar y

extraer conclusiones del funcionamiento de estos algoritmos sobre el propio

ErleCopter.

Palabras clave: SLAM, visión, ROS, robótica, EKF, robot aéreo.

18

19

Abstract

The main objective of this thesis is the implementation of different SLAM

(Simultaneous Localization and Mapping) algorithms within the aerial robot

ErleCopter, using the software platform ROS (Robotic Operating System).

To do so, a bunch of three widely known and used algorithms in the field of the

artificial vision have been chosen: PTAM, ORB-SLAM y LSD-SALM. So a study of the

performance of such algorithms will be carried out in this way.

Besides, working with such algorithms and fusing their information with the one

obtained by other sensors existing within the robotic platform, an EKF (Extended

Kalman Filter) will be carried out, in order to localize the robot more accurately in

indoor environments, given the lack of GPS.

To test the performance of the system, the robotic platform Gazebo will be used in this

project.

Finally tests will be made with the real robot, in order to observe and draw conclusions

from the performance of these algorithms within the ErleCopter itself.

Key words: SLAM, vision, ROS, robotics, EKF, aerial robot.

20

21

CHAPTER 1

INTRODUCTION

22

23

1.1 UAV’s State of the Art

In this chapter it will be exposed the amount of different projects based on SLAM

techniques, and of course VSALM techniques will be highlighted. It is important to

explain how quadcopters and algorithms have been developed in the last years, so the

importance of this project can be understood.

Nowadays the main part of the population has the feeling that these vehicles have

become part of our daily lives, although the fact is that at the beginning these

quadcopters, now considered robots or even toys were made for war purposes, where

a particular military area was secured or attack a conflicted area without any human

help.

Figure 1. 1 Barrucada UAV.[1]

Basically the meaning of these UAV is Unmanned Aerial Vehicle that can be driven by

both an operator or simply autonomously. For instance, a military aeroplane such as

the Barrucada or the combat plane Boeing is also considered an UAV.

Figure 1. 2. Military UAV. Boeing.[2]

24

In the last years, given that the technology is moving forward surprisingly fast, there is

a particular kind of UAV that’s being commercializing, such UAV is a multirotor vehicle

in which its rotors are contained in the same plane. Several models can be found in

the market such as the AR Drone [3] or the Mikrocopter [4] available in different

versions, with four, six and eight coplanar motors.

The four motor models are the most used among researchers all over the world, it can

be seen in a lot of publications made both for visual controllers or proving diverse non-

linear controllers.

Figure 1. 3. AR Drone. Four motor model.[3]

1.2 Use of cameras

The computer vision field has evolved in last years; nowadays a camera is used not

only to take pictures or videos within a robotic platform, but to be used as another

sensor.

Within this area several techniques have been found, for instance there have been

different research projects based on the use of one camera on board [5], two cameras

on board [6] or even the use of cameras out of the platform [7], to localize the robot.

The use of a camera as a sensor is mostly employed in indoors projects [1] [8] [9].

Currently, researchers all around the world are focusing their efforts trying to develop

autonomous vehicles, so they could fly without any human help, being completely

precise and accurate. The first researches were made outdoors [10] given the design

and features of a flying vehicle. Thus the localization of the quadcopter could be

known at any time.

25

The research path has changed with the study of the indoors localization. Now, we are

heading to a different line of research, the GPS signal cannot be used in these types of

projects, so other sensors are needed to localize the robot. Due to the lack of GPS

signals it is highly needed a sensor fusion such as scan, camera, odometer, etc.

So we can find lots of research projects trying to control the robot [11], aiming to build

a map and localize the robotic platform at a time [12]. Most of these projects use

either the camera or the laser or even both of them.

That’s why last trends are based on the idea that using a camera on board, and having

other sensors included within the platform the problem of localizing and mapping the

environment in which the robot is moving can be solved at a time.

These techniques are called SLAM (simultaneous localization and mapping). They came

up to solve the problem that appears if the map in which the drone is going to involve

is known. Not always the map can be known beforehand. So using such techniques, a

robot can be moving in an unknown environment, but it can get enough information to

localize itself using SLAM algorithms. The more information it gets from the sensors

the more precise and accurate will be the mapping and the localization.

1.3 The raise of the SLAM techniques

In 1987 at the IEEE International Conference in Robotics and Automation, Randall

Smith, Matthew Self and Peter Cheeseman presented what is now considered the first

project that describes the representation for spatial information, called the stochastic

map [13]. This map contained the estimates of relationships among objects in the

map, and their uncertainties, given all the available information. The procedures

provided a general solution to the problem of estimating uncertain relative spatial

relationships.

Other pioneering work in this field was conducted by the research group of Hugh F.

Durrant-Whyte in the early 2000s, which showed that solutions to SLAM exist in the

infinite data limit [14]. This finding motivated the search for algorithms which are

computationally tractable and approximate the solution.

26

Figure 1. 4. STABLEY and JUNIOR car [15].

One of the projects that brought SLAM to the worldwide attention was the self-driving

STANLEY and JUNIOR car, which won the DARPA challenge in the 2000s [15]. This

project was led by Sebastian Thrun at the Stanford University.

After this first trial, a lot of researchers all over the world focused their efforts in the

construction and implementation of SLAM techniques within robotics platforms. So in

this section, we will talk about some related projects that use these SLAM techniques

for indoor navigation using MAV’s.

 Autonomous Multi-Floor Indoor Navigation with a computationally

constrained MAV

In 2011 at the IEEE International Conference on Robotics and Automation,

Shaojie Shen, Nathan Michael and Vijay Kumar, presented this project called

“Autonomous Multi-floor Indoor Navigation with computationally constrained

MAV” [8] based on a navigation system for indoor environments.

Figure 1. 5. Experimental Platform with on board computation [8].

27

Its objective was to obtain a system capable of perform an autonomous

navigation in indoor environments, especially in buildings with multiple floors.

The system consists on a MAV equipped with a scan Hokuyo UTM-30LX, and a

camera UI-1220SE and an IMU.

On the other hand, the software consists on a SLAM localization module and a

planification module, which is in charge of the navigation of the MAV.

The localization module based on SLAM, employs a 2.5 D environment model,

which assumes that the environment is just based on horizontal and vertical

planes. It employs an ICP (Iterative Closest Point) algorithm to estimate its

position, using the data from the scan, and fusing them whit the data from the

IMU.

The navigation module employs a RRT (Rapidly-exploring Random Tree)

algorithm to generate trajectories allowing the system to achieve the

objectives, avoiding the presented obstacles. Such trajectories are executed

using a position control loop, taking the robot as a punctual system that counts

with an orientation in the plane.

Figure 1. 6. Architecture diagram showing the software modules [8].

Figure 1. 7. Map generated by flying [8].

28

 State Estimation in GPS-Denied Environments Using On board Sensing

This project was developed by Adam Bry, Abraham Bachrach and Nicholas Roy

at the Massachusetts Institute of Technology.

Figure 1. 8. Fixed wing experimental platform flying indoors [16].

It was developed in 2012 under the name “State Estimation for Aggressive

Flight in GPS-Denied Environments Using On board Sensing” [16]. The objective

of such project was to develop a state estimation method based on an IMU and

a planar laser range finder, suitable for use in a MAV.

The system us capable of accurately estimate the state of a MAV in a 3D

unstructured environment without using an external position system.

The localization algorithm is based on an extension of the Gaussian Particle

Filter. It also employs an EKF to estimate the state of the MAV. So all in all, this

project employs two different filters to get the state of the MAV. First of all, it

employs an EKF for the IMU process model, and the GPF for the laser

measurement update. Particle filters are efficient enough for effective use in

localizing a 2D mobile robot; they require too many particles to be used for the

estimation of a 3D MAV. Fortunately, the best aspects of both algorithms can

be obtained, and a significant speedup can be realized by employing a hybrid

filter that uses an IMU-driven EKF process model with pseudo-measurements

computed from Gaussian Particle Filter (GPF) laser measurement updates.

29

Figure 1. 9. The trajectory flown by the vehicle is shown by the red, green, and blue axes [16].

 Monocular Vision SLAM for Indoor Aerial Vehicles

Developed by Koray Celik, Soon-Jo Chung, Matthew Clausman and Arun

K.Somani, this project named “Monocular Vision SLAM for Indoor Aerial

Vehicles” [9], presents a novel indoor navigation and ranging strategy by using

monocular camera.

The project addresses to get the localization of a MAV, and the mapping of the

environment by using a monocular camera of 1 2 inches in size and less than 2

ounces in mass. The process flow of the proposed method is shown in figure

1.10.

Figure 1. 10. Block diagram illustrating the operational steps of the monocular vision system [9].

This monocular vision SLAM correctly locates and associates landmarks.

30

Figure 1. 11. Experimental results of the proposed ranging and SLAM algorithm [9].

A 3D map is also built by the addition of time-varying altitude and wall-

positions, as shown in Fig 1.12.

Figure 1. 12. Cartesian (x; y; z) position of the MAV in a hallway [9].

The MAV assumes that it is positioned at (0; 0; 0) Cartesian coordinates at the

start of a mission, with the camera pointed at the positive x axis, therefore, the

width of the corridor is represented by the y axis.

To get the project done, they used the Saint Vertigo helicopter, one of the

smallest and fully self-contained autonomous helicopters in the world capable

of both indoor and outdoor operation. This unit performs all image processing

and SLAM computations on-board via a 1GHz x86 architecture CPU with SIMD

instructions, 1GB DDR2 533MHz RAM, 4GB solid-state mass storage, managed

by a performance tuned Linux kernel.

31

Figure 1. 13. Saint Vertigo, the autonomous MAV helicopter [9].

In essence, the MAV features two independent computers. The flight computer

is responsible for flight stabilization, flight automation, and sensory

management, including but not limited to tracking the time-varying altitude via

an ultrasonic altimeter. The navigation computer is responsible for higher

consciousness tasks such as image processing, range measurement, SLAM

computations, networking, mass-storage, and possibly, path planning.

1.4 Objectives

Using the Erlecopter drone, the implementation of VSLAM techniques in the brain

of this robot will be carried out. Different state-of-art algorithms will be computed;

these algorithms are PTAM, LSD-SLAM and ORB-SLAM.

As a software platform, ROS (Robotic Operational System) and GAZEBO will be

used, to control and insert all the algorithms that this project will implement. All

these platforms and algorithms will be far explained within the next chapters.

Both simulation and the real drone trials will be studied using all the algorithms,

locating and mapping the environment at a time. The idea is to use this VSLAM

algorithms indoors having the lack of GPS, fusing the information with other

sensors like the IMU and the ultrasonic, besides given this information, we will try

to make the drone work autonomously. As Sergio García Gonzalo [5] did in his

project, a PID and an EKF filter will be implemented. The main difference with this

project is the computational system, in [5] the algorithm run in a not embedded

CPU or brain, while in this project the algorithm will be running in the drone itself,

32

this means that the ErleCopter has a Raspberry Pi embedded in the robot. So there

is no need to have a wireless connection between the robot and the CPU.

So now the project is defined: Implementation of VSLAM algorithms in the own

CPU of the ErleCopter, also designing a PID and inserting an EKF, using GAZEBO for

the simulation and ROS for both the simulation and the real system.

Summarizing the key objectives of this project:

 Study three different vSLAM techniques: PTAM, ORB-LAM and LSD-SLAM.

 Implement such techniques within the quadcopeter ErleCoper both in the

simulation and the real drone.

 Develop an EKF (Extended Kalman Filter) fusing the data from the vSLAM

techniques and the rest of the sensors.

 Develop a PID controller for the drone.

 Test the EKF and the vSLAM algorithms for both the simulation and the real

quadcopter.

1.5 Work Structure

At this point, it is time to take a look at the structure of this work, so the reader can

localize itself, making easier the understanding of current document.

It is based on 9 different chapters, divide as follows:

 Chapter 1. Introduction: This is the chapter in which we currently are. The

objectives of this project are explained here, and other subjects like the

related works, the raise of the slam techniques, or the use of the cameras in

robotics systems are also explained.

 Chapter 2. Tools: The reader will deal with the tools employed for this

project, both hardware and software.

 Chapter 3. Monocular Visual SLAM: Explanation of the work flow of each of

the three main algorithms, studying their performance and comparing the

results.

 Chapter 4. Extended Kalman Filter: This is the most technical part of the

project. In this chapter the data from the sensors and the algorithms will be

fused to develop an EKF to predict the localization of the robot accurately.

 Chapter 5. PID Controller: Development of a PID to get a better

performance for the robotic system.

33

 Chapter 6. Conclusions and future work: It deals with the extracted

conclusions after the ending of the project, the problems that were faced,

and the future work given the results obtained.

 Chapter 7. User’s Manual: Instructions and needed applications to

comprehend the project and its work flow.

 Chapter 8. Specifications: It contains the specifications of the employed

tools.

 Chapter 9. Budget: Budget of the project.

 Chapter 10. Bibliography: Documentation consulted during the project.

34

35

CHAPTER 2

TOOLS

36

37

In this chapter the software and hardware tools used to develop the project will be

defined and explained.

2.1. Robot Operating System (ROS)

This platform, widely known just as ROS, provides the necessary tools to help us

developing and creating any robot application. It provides hardware abstraction,

device drivers, libraries, visualizers, message passing, package management and more.

ROS is licensed under an open source, BSD license.

Now, it is very important to describe why ROS is so useful for robotic developers. Here

we will define a few specific issues in the development of software for robots that ROS

can help to resolve:

- Distributed computation. Many modern robot systems rely on software that

spans many different processes and runs across several different computers.

- Software reuse. The rapid progress of robotics research has resulted in a

growing collection of good algorithms for common tasks such as navigation,

motion planning, mapping, and many others. Of course, the existence of these

algorithms is only truly useful if there is a way to apply them in new contexts,

without the need to reimplement each algorithm for each new system. ROS can

help to prevent this kind of pain in different ways.

- Rapid testing. One of the reasons that software development for robots is often

more challenging than other kinds of development is that testing can be time

consuming and error-prone. Physical robots may not always be available to

work with, and when they are, the process is sometimes slow and finicky.

Working with ROS provides two effective workarounds to this problem.

All of these issues exist in the project that we are describing. So, all in all, we can now

understand its importance.

Figure 2. 1. ROS Icon

38

For a better understanding it is highly recommended the study of the ROS file system

level, and the ROS computation graph level:

ROS file System Level

Similar to an Operating System, ROS files are organized in a particular way within the

hard disk. Figure 2.2 shows how the ROS files and folder are organized on the disk:

Figure 2. 2. ROS file System Level.

Here is a brief explanation of each component belonging to the file system:

• Packages: Are the most basic unit of the ROS software. Packages are the atomic build

item and release item in the ROS software.

• Package manifest: The package manifest file is inside a package that contains

information about the package such as author, license, dependencies, compilation

flags, and so on. The package.xml file inside the ROS package is the manifest file of that

package.

• Meta packages: The term meta package is used for a group of packages for a special

purpose

• Meta packages manifest: Similar to the package manifest, the main differences are

that it might include packages inside it as runtime dependencies and declare an export

tag.

• Messages (.msg): ROS messages are a type of information that is sent from one ROS

process to the other. The extension of the message file is .msg.

• Services (.srv): The ROS service is a kind of request/reply interaction between

processes. The reply and request data types can be defined inside the srv folder inside

the package (my_package/srv/MyServiceType.srv).

39

 • Repositories: Most of the ROS packages are maintained using a Version Control

System (VCS) such as Git. The collection of packages that share a common VCS can be

called repositories.

ROS computation graph level

The computation in ROS is done using a network of processes called ROS nodes. This

computation network can be called the computation graph. Its structure is shown in

figure 2.3.

Figure 2. 3. ROS computation graph Level

Let´s briefly define each concept of the graph:

• Nodes: Nodes are the processes that perform computation. In a robot, there will be

many nodes to perform different kinds of tasks. Using the ROS communication

methods, it can communicate with each other and exchange data. One of the aims of

ROS nodes is to build simple processes rather than a large process with all

functionality.

• Master: The ROS Master provides name registration and lookup to the rest of the

nodes. Nodes will not be able to find each other, exchange messages, or invoke

services without a ROS Master. In a distributed system, we should run the master on

one computer, and other remote nodes can find each other by communicating with

this master.

• Parameter Server: The parameter server allows you to keep the data to be stored in

a central location. All nodes can access and modify these values. Parameter server is a

part of ROS Master

40

• Messages: Nodes communicate with each other using messages. Messages are

simply a data structure containing the typed field, which can hold a set of data and

that can be sent to another node.

• Topics: Each message in ROS is transported using named buses called topics. When a

node sends a message through a topic, then we can say the node is publishing a topic.

When a node receives a message through a topic, then we can say that the node is

subscribing to a topic. Each topic has a unique name, and any node can access this

topic and send data through it as long as they have the right message type.

• Services: In some robot applications, a publish/subscribe model will not be enough if

it needs a request/response interaction. The publish/subscribe model is a kind of one-

way transport system and when we work with a distributed system, we might need a

request/response kind of interaction. ROS Services are used in this case. We can define

a service definition that contains two parts; one is for requests and the other is for

responses. Using ROS Services, we can write a server node and client node. The server

node provides the service under a name, and when the client node sends a request

message to this server, it will respond and send the result to the client. The client

might need to wait until the server responds. The ROS service interaction is like a

remote procedure call.

• Bags: Bags are a format for saving and playing back ROS message data. Bags are an

important mechanism for storing data, such as sensor data, which can be difficult to

collect but is necessary for developing and testing robot algorithms. Bags are very

useful features when we work with complex robot mechanisms.

Besides, this project will be developed using as a robot the quadcopter ErleCopter,

which will be described within this chapter, in the following points. This quadcopeter

has a raspberry pi, as a brain, with ROS pre-installed in it, so it is far sensible using ROS

to develop a robot application for it.

2.2. Gazebo

Gazebo is a simulator system for 3D environments that makes possible the evaluation

of the behaviour of a robot in a virtual world. It allows, among different options,

personalize the design of a robot, and create virtual worlds using simply tools like CAD

or just importing created models.

Besides, its importance relies on the fact that it’s possible to synchronize this simulator

with ROS, so the emulated robots can publish information from its sensors in the

nodes, and also send commands and orders to the robot.

41

Figure 2. 4. Gazebo software platform with a Turtlebot.

Therefore, a simulation platform is an essential tool in every robotics toolbox. A well-

designed simulator makes it possible to rapidly test algorithms, design robots etc.

Gazebo offers the ability to accurately and efficiently simulate populations of robots in

complex indoor and outdoor environments. It is also a very robust physics engine with

high-quality graphics, and convenient programmatic and graphical interfaces.

The ErleCopter is currently implemented in Gazebo, so it will make our project simpler,

given the fact that it is very easy to import the model from the ErleCopter webpage.

First of all it is needed to configure our environment in our Ubuntu machine, such as

installing ROS, APM/Ardupilot, creating a workspace… To do so just follow the steps

uploaded at the Erlerobotics official webpage, which you can access here:

http://docs.erlerobotics.com/simulation/configuring_your_environment

Anyway, we will explain all the steps needed to install gazebo and how import the

model of the Erlecopter to our environment:

Option 1: Install Gazebo using Ubuntu packages

Setup your computer to accept software from packages.osrfoundation.org

sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-stable
`lsb_release -cs` main" > /etc/apt/sources.list.d/gazebo-stable.list'

Setup keys

wget http://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add -

Install gazebo7

sudo apt-get update

http://docs.erlerobotics.com/simulation/configuring_your_environment
http://docs.erlerobotics.com/simulation/configuring_your_environment#option-1-install-gazebo-using-ubuntu-...

42

sudo apt-get remove .*gazebo.* '.*sdformat.*' '.*ignition-math.*' && sudo apt-get update
&& sudo apt-get install gazebo7 libgazebo7-dev drcsim7 -y

Option 2: Install Gazebo from source

Compile the workspace

Then compile everything together:

cd ~/simulation/ros_catkin_ws
catkin_make --pkg mav_msgs mavros_msgs gazebo_msgs
source devel/setup.bash
catkin_make -j 4

Download Gazebo models

mkdir -p ~/.gazebo/models
git clone https://github.com/erlerobot/erle_gazebo_models
mv erle_gazebo_models/* ~/.gazebo/models

Figure 2. 5. ErleCopter model in Gazebo downloaded in ErleRobotics.

http://docs.erlerobotics.com/simulation/configuring_your_environment#option-2-install-gazebo-from-sou-...
http://docs.erlerobotics.com/simulation/configuring_your_environment#compile-the-workspace
https://github.com/erlerobot/erle_gazebo_models

43

2.3 ErleCopter

TheErleCopter is the first Linux-Based smart drone that uses robotic frameworks such

as the described software ROS, and the award winning APM software autopilot to

achieve different flightmodes.

Although this quadcopter is ideal for outdoor operations, it is very useful for our

research. As we said at the beginning of this project, the aim is to implement a VSLAM

system with an EKF to localize the robot and build a map of the environment. At this

point, it is important to highlight that this is just half of the work of a bigger project.

Nicolás Blanco Fernández [17] is developing a similar project, but using a laser instead

of a camera so the combined job between both projects is the fusion of the

information obtained from the laser and the camera to minimize the error of the

location and the accuracy of the built map. Obviously to carry these sensors, mainly

the laser, we need to handle a weight of, approximately, 2 kilograms. Not all the

quadcopters that have been already launched at the market fulfil this requirement.

That’s why the ErleCopter has been chosen, it was designed with a take-off weight of

up to 2 kilograms.

Figure 2. 6. Hardware parts of the ErleCopter.

44

Table 2. 1. Features of the ErleCopter

2.3.1 Flight modes

It is important to know the different flight modes for the ErleCopter. There are several

ways to flight.

The ones that do not require GPS lock are:

 Stabilize: this mode allows flying the copter manually, but self-levels the roll

and pitch axis.

 Alt Hold: the Erle-Copter will maintain a consistent altitude, allowing roll, pitch,

and yaw to be controlled normally.

 Acro: this mode uses the RC sticks to control the angular velocity of the copter.

It is useful for aerobatics such as flips or rolls.

 Land: Land mode attempts to bring the copter straight down.

The ones that require GPS lock prior to takeoff are:

 Loiter: Loiter mode attempts to maintain the current location, heading and

altitude.

 RTL (Return-to-Launch): the copter navigates from its current position to hover

above the home position.

 Auto: Erle-Copter will follow a pre-programmed mission script stored in the

autopilot which is made up of navigation commands (i.e. waypoints) and “do”

commands (i.e. commands that do not affect the location of the copter

including triggering a camera shutter).

 Guided: allows the Copter to be dynamically guided to a target location

wirelessly using a telemetry radio module and ground station application.

45

 Drift: allows the user to fly a multi-copter as if it were a plane with built in

automatic coordinated turns.

 PosHold: it is similar to Loiter in that the vehicle maintains a constant location,

heading, and altitude the difference is that the pilot stick inputs directly control

the vehicle’s lean angle.

 Follow Me: the Copter will follow the pilot while moving, using a telemetry

radio and a ground station.

 Circle: the vehicle will orbit a point of interest with the nose of the vehicle

pointed towards the center.

2.3.1.1 Hardware

This section aims the understanding of how the quadcopter is made; figure 2.7 gathers

all the components that model the quadcopter.

Figure 2. 7. Components that model the ErleCopter.

In figure 2.8, each of these components is briefly defined.

46

Figure 2. 8. Defined components of the ErleCopter.

2.3.2 Erle-Brain

Drones deployed in real applications have several computational units. Among them

the Flight Control Unit (FCU) (a computer that provides basic flight controls, and

companion computer) a computational device in charge of higher level behaviors such

as image processing or image broadcasting.

Erle-Brain is an all in one Linux brain for drones that provides FCU capabilities and

companion computer. Everything in a simple package.

The Erle- Brain is the artificial brain with which the ErleCopter is made. It includes

gravity sensors, gyroscopes, and a digital compass.

47

Figure 2. 9. Erlebrain 2 Units.

Obviously, the communications of the brain are a key part within the whole on board

unit. These communications are the ones needed to implement all the sensors and the

codes to develop the project that is being carried out.

- WiFi: It is highly recommended to use an external Wi-Fi dongle in order to use a

5GHz bandwidth.

- Dongle: Using a dongle Wi-Fi we can create a hotspot using the brain. This way,

there is no need to use wires to connect the device. The Wi-Fi can be used for

communicate with the ardupilot, transfer files such as logs, plan a mission using

a GCS (Ground Control Station), enable video streaming, even control the

drone.

- Ethernet: An Ethernet wire can be plugged to the Erle-brain to have internet

access, needed to install new software or access the brain from the local

network. This allows the communication with other devices.

- USB: Used to attach the dongle, or to include an external storage.

- I2C: The ErleBrain contains two I2C bus connectors, which gives access to the

I2Cbus. In this bus a bunch of different sensors and devices can be connected.

In this particular an ultrasonic sensor will be plugged to this connector.

- PWM: It has 12 channels of PWM. Each channel has a 25 mA current sink

capability a 5V. In these channels, the most typical devices that can be

connected are: ESCs, servos, gimbal servos… The PWM can be used for

powering the system.

- RC Input: This is the radio controller that must be connected to the channel 14.

- UART: A computer hardware device for asynchronous serial communication in

which the data format and transmission speeds are configurable.

- SD Card: The ErleBrain contains one SD Card slot.

48

Figure 2. 10. Communication Units of the ErleBrain 2.

The points defined above, talk about the basic system. However, the Erlebrain that will

be used for this project also has a Camera integrated in it. It is an 8MP camera with

fixed focus lens, 2592 x1944 pixel static images, supports 1080p30, 720p60 and

640x480p60/90 video record. It will be used to work with the VSLAM algorithms that

will be described in the following section.

49

CHAPTER 3

MONOCULAR VISUAL SLAM

50

51

3.1. Introduction

Aiming to perform our particular objectives, vSLAM different techniques must be used.

The importance of these algorithms stands on the fact that, besides the simple

technical features, it is able to run in real-time.

In general, the technical difficulty of vSLAM is higher than that of other sensor-based

SLAMs because cameras can acquire less visual input from a limited field of views

compared to 360° laser sensing which is typically used in robotics. From such input,

camera poses need to be continuously estimated and the 3D structure of an unknown

environment is simultaneously reconstructed.

Generally, the framework works mainly with three modules as follows:

1. Initialization

2. Tracking

3. Mapping

To start vSLAM, it is necessary to define a certain coordinate system for camera pose

estimation and 3D reconstruction in an unknown environment. Therefore, in the

initialization, the global coordinate system should first be defined, and a part of the

environment is reconstructed as an initial map in the global coordinate system. After

the initialization, tracking and mapping are performed to continuously estimate

camera poses. In the tracking, the reconstructed map is tracked in the image to

estimate the camera pose of the image with respect to the map. In order to do this,

2D–3D correspondences between the image and the map are first obtained from

feature matching or feature tracking in the image. Then, the camera pose is computed

from the correspondences by solving the perspective problem. It should be noted that

most of vSLAM algorithms assume that intrinsic camera parameters are calibrated

beforehand so that they are known. Therefore, a camera pose is normally equivalent

to extrinsic camera parameters with translation and rotation of the camera in the

global coordinate system. In the mapping, the map is expanded by computing the 3D

structure of an environment when the camera observes unknown regions where the

mapping is not performed before.

It is also very important to understand that the vSLAM algorithms have two additional

modules according to the purposes of applications.

- Relocalization

- Global map optimization

The relocalization is required when the tracking fails due to fast camera motion or

some disturbances. In this case, it is necessary to compute the camera pose with

respect to the map again. Therefore, this process is called “relocalization.” If the

52

relocalization is not incorporated into vSLAM systems, the systems do not work

anymore after the tracking is lost and such systems are not practically useful, that`s

why the algorithms used whitin this project will always work with this module.

The other module is global map optimization. The map generally includes accumulative

estimation error according to the distance of camera movement. In order to suppress

the error, the global map optimization is normally performed. Generally, in this

process, the map is refined by considering the consistency of whole map information.

When a map is revisited such that a starting region is captured again after some

camera movement, reference information that represents the accumulative error from

the beginning to the present can be computed. Then, a loop constraint from the

reference information is used as a constraint to suppress the error in the global

optimization.

There is another technique called loop closing. It is a technique to acquire the

reference information. In the loop closing, a closed loop is first searched by matching a

current image with previously acquired images. If the loop is detected, it means that

the camera captures one of previously observed views. In this case, the accumulative

error occurred during camera movement can be estimated.

So, to summarize, the framework of vSLAM algorithms is composed of five modules:

initialization, tracking, mapping, relocalization, and global map optimization. Since

each vSLAM algorithm employs different methodologies for each module, features of a

vSLAM algorithm highly depend on the methodologies employed as it will be seen in

the following chapters.

3.2. VSLAM algorithms

In this section we will briefly explain the algorithms that are going to be implemented

in our system, and studied as an objective of this project. These bunch of SLAM

algorithms use the camera of the system to map and localize the robot. In the

following point we will explain three concrete vSLAM algorithms. These particular

algorithms will be:

 PTAM

 ORB-SLAM

 LSD-SLAM

So from now on this vSLAM section will be divided in three different subsections,

defining its features and its implementation in the ErleCopter using Linux.

53

3.2.1 PTAM

3.2.1.1 Introduction

One of the various implementations that will be carried out of Monocular SLAM is the

PTAM, mainly developed by Georg Kein and David Murray [18].

PTAM stands for Parallel Tracking and Mapping. It is a technology and algorithm that

estimates the position of a camera in a three-dimensional environment and to map the

position of the points of the visible objects by analyzing and processing information

from a video sequence that can be also done at real time.

As we have just defined, the process is actually split into two different actions: tracking

and mapping.

With the camera moving in the 3D space, it is possible to measure its own position via

triangulation and stereo initialization techniques when the same scene is viewed from

different points of view. This process is the camera tracking, which aims to calculate as

accurately as possible its relative position to the other objects and the movement of

the camera in real-time.

The second task is the mapping of the 3D environment in which the camera moves.

The simplest way to do so is to measure the position of certain point-features, while

other techniques are able to detect straight lines or even extract 3D mesh information

from the video stream.

Tracking and mapping are clearly mutually dependent; this means that the camera

position is expressed in terms of relative distance from some fixed environment points,

while the camera position needs to be known in order to make the mapping of new

features possible.

The objective of PTAM is therefore to perform the tracking and mapping tasks in

parallel. This method allows a precise and robust real-time tracking, together with an

accurate points-based map of the environment.

54

Figure 3. 1 PTAM Keypoints tracked. Interface.

An important quality of the PTAM method is the fact that mapping is performed only

when there are free resources on the background processing thread. This allows the

tracking system to follow the camera in real-time regardless of the complexity of the

scene, achieving constant frame-rate output particularly useful for Augmented Reality

applications. On the other hand, if the camera is stationary in an already-mapped

environment, the background thread will allocate resources to analyze again old

information in order to improve the quality of the map.

3.2.1.2 PTAM Algorithm

The PTAM algorithm will be divided in three main phases: Initialization, Tracking and

Mapping.

To initialize the algorithm PTAM uses a standard five-point stereo algorithm between

two keyframes, developed by Subbaarao ,Meer and Genc.

This phase is therefore quick and simple, and it consists on the addition of the very first

points to the map so it can be improved adding new features.

55

It is very important to remark that the distance between the two initialization

keyframes will affect the internal scale representation of the system. Although this is

not a crucial factor for tracking purposes: the distance can be set to an arbitrary value.

The tracking phase works on each frame using 3D point features. Then the acquired

image is processed to generate a pyramid containing multiple levels of the frame at

different resolutions. This technique gives the system robustness to scale changes, as

each point feature can be matched at multiple distances and resolutions.

Then, after getting the first camera pose estimation, as we already know, based on a

small number of points, the pose location is computed. Using the new pose location

estimation it is possible to accurately get or predict the position of a larger number of

features in the highest resolution level of the pyramid, increasing the accuracy of the

camera pose estimation. So now, a new more accurate location is computed and

updated.

It is remarkable that when the tracking is lost, the system tries to get a new pose initial

estimation as soon as possible.

Once the initialization process has finished, the mapping phase starts. In such phase,

the algorithm adds as many point features as possible. The main characteristics of the

mapping process are:

- It works on keyframes rather than on every frame sent by the camera, making

the calculation very robust, however it won´t be always a real time calculation.

- The keyframes chosen have better average quality than the other frames. This

makes it possible to obtain more accurate maps.

- The keyframes can be revisited when there are no new areas to explore, to

improve the generated maps.

56

Figure 3. 2 PTAM Block Diagram, ilustrating the monocular worklow steps.

PTAM system is able to map previously unexplored regions automatically. The

advantage is that creating this new portions of the map won`t affect the performance

of the tracking system as this is done in parallel, by a different thread, in the

background.

Keyframes are separated each other by at least 20 frames and a minimum camera

distance in order to eliminate stationary camera map corruption. The mapping thread

is also able to re-project point features that were not taken into account by the

tracking.

If the camera is located in an already explored region in the map, a background threat

reanalyzes it, in order to improve the accuracy of the map, adding more feature points.

This process allows achieving a good compromise between map expansion speed and

accuracy.

57

3.2.1.3 Simulation Implementation and launch file

Once the Gazebo simulator is installed, with all the necessary features, the PTAM

algorithm can be implemented and launched, so any application can be implemented

now using the information that comes from such algorithm.

First of all, we need to take a look at the topics provided by the camera using ROS. As

we defined some chapters before, the Erlecopter has a camera integrated in the brain.

The problem is that normally the raw image from the camera driver is not what it is

wanted for visual processing, but rather an undistorted and (if necessary) delayered

image. Therefore it is necessary to use the package image_proc. If you are running it

on a robot, it’s highly recommended to run there such package. Generally the driver

publishes topics /my_camera/image_raw and /my_camera/image_info so the

command in such general case should be:

$ ROS_NAMESPACE =my_camera rosrun image_proc image_proc

The topics to which it subscribes in the Erlecopter are

erlecopter/front/image_front_raw and erlecopter/front/camera_front_info, and that’s

why it is needed to make a “remap” for such topics as following:

 <launch>
<remapfrom="/erlecopter/front/image_front_raw"
to="/erlecopter/image_raw"/>
<remap
from="/erlecopter/front/camera_front_info"to="/erlecopter/camera_info"/>

Now, if the simulator is launched and the command rostopic list is executed, it can be
seen that now the named topics are erlecopter/image_raw and
erlecopter/camera_info.

So in another terminal we have to execute the following command:

 $ ROS_NAMESPACE=erlecopter rosrun image_proc image_proc

This way will get a black and white image, with its information contained in the topic
/erlecopter/image_mono. To visualize it, we run the following command:

 $ rosrun image_view image_view image:=/erlecopter/image_mono

58

Figure 3. 3. Erlecopter monocular camera open in the Ubuntu SO.

Finally, to launch the PTAM algorithm it will be necessary to create a launch file, for

example called Erle_Sim.launch, in order to launch the PTAM algorithm:

<launch>
<node name="ptam"pkg="ptam" type="ptam" clear_params="true"
output="screen">
<remap from="image" to="$(optenv IMAGE /erlecopter/image_mono)" />
<remap from="pose" to="pose"/>
<rosparam file="$(find ptam)/Cam_PtamFixParams.yaml"/>
</node>
</launch>

So now, once the Gazebo simulator is opened, and the image form the camera is

converted to black and white, the Erle_Sim.launch file can be run using the following

command:

$ roslaunch ptam Erle_Sim.launch

In order to get the PTAM algorithm working, objects must be added to the Gazebo

world, therefore the PTAM algorithm can detect features and carry out the

simultaneous mapping and localization.

59

Figure 3. 4. Gazebo simulator with the Erlecopter model with PTAM running on board.

A small window appears, and it can be seen how the PTAM detects the features of the

image. Pressing the button View map off we can see the window above, were the axis

represents the localization of the robot, and the points of the detected features of the

image in 3d coordinates.

Figure 3. 5. PTAM Map pose estimation view.

60

3.2.1.4 Real implementation within Erlecopter and launch file

Now, we are going to explain how to use the real camera of the Erlecopter robot. This

simply consists on running the algorithm from an external device such a laptop or a

simple PC, where the PTAM algorithm must be already installed. The connection

between the robot and the device in which the algorithm will run will be a wifi

connection.

First of all the camera must be opened, to do so a bunch of steps have to be followed.

In a new terminal, the external device is connected to the robot, and then the on-

board camera is opened.

$ ssh erle@10.0.0.1
$ rosservice call /camera/start_capture

To assure that the camera is opened, we can take a look to camera, where a red light

must be on.

After getting this first step done, the image obtained from the camera is in a

compressed format, and all the algorithms studied within this thesis work with raw

images (particularly PTAM employs raw images in black and white). So the

compressed images have to be converted to raw format.

$ rosrun image_transport republish compressed in:=/camera/image

_image_transport:=compressed raw out:=/camera/image_raw

So now we can visualize the camera in real time.

$ source simulation/ros_catkin_ws/devel/setup.bash
$ rosrun image_view image_view image:=/camera/image_raw

mailto:erle@10.0.0.1

61

Figure 3. 6. Erelcopter monocular camera launched in Ubuntu.

3.2.1.5 Results obtained

The interface of the algorithm is composed by just one window that contains different

options which can be clicked on. The default window, showed in figure 3.1, shows the

keyframes detected by the algorithms. Clicking on the View Map Off , it gets the

window of figure 3.5, where the axis plotted on such figure, represent the current

position, and the path generated by the algorithm. Besides, the generated Map of

points is also represented in this figure.

Now, as it will be done with each of the three algorithms studied in this project, three

different paths will be implemented for the quadcopter to fly through. This will allow

taking notice of the main advantages and disadvantages of each one, as well as its

accuracy and performance in specific conditions. Figures from 3.7 to 3.9 show the

implemented paths for this study.

62

Path 1:

Figure 3. 7. Path 1 built for the monocular test.

Path 2:

Figure 3. 8. Path 2 built for the monocular test.

x(m)

x(m)
y(m)

z(m)

y(m)

y(m)

x(m)

z(m)

x(m)

y(m)

63

Path 3:

Figure 3. 9. Path 3 built for the monocular test.

The results after carrying out the presented paths and implementing the PTAM within

the ErleCopter, once the Gazebo simulator has started are shown below.

Result Path 1:

Figure 3. 10. Results PTAM path 1 X-Y view.

x(m)

y(m)

z(m)

x(m)

y(m)

x(m)

y(m)

64

Figure 3. 11.Results PTAM path 1 3D view.

The blue line represents the ground truth of the robot, so to say, the path really

followed by the quadcopter, gotten from the gazebo simulator, while the black line

represents the prediction of the localization given by the PTAM algorithm. Thus, we

can compare the accuracy of the PTAM algorithm, not only for just one case, but for

three different paths, so a general overview of its performance can be obtained.

Result Path 2:

Figure 3. 12. Results PTAM path 2 X-Y view.

y(m)

x(m)

z(m)

x(m)

y(m)

65

Figure 3. 13. Results PTAM path 2 3D view.

The real path followed by the drone seems to be smoother than the predicted

localization given by PTAM. The algorithm predicts a small movement up and down

along the path.

Result Path 3:

Figure 3. 14. Results PTAM path 3 X-Y view.

x(m)
y(m)

m)

 y(m)

 y(m)

 y(m)

z(m)

y(m)

m)

)

m)

 y(m)

 y(m)

 y(m)

 y(m)

 y(m)

x(m)

66

Figure 3. 15. Results PTAM path 3 3D view.

After testing the algorithm using the implemented paths, it can be said that it is

computationally lighter than the others. The track gets lost, time to time, even though

the movement of the camera is not fast. Besides, it needs a big amount of features to

start tracking, and to recover from a loss. Nevertheless, its accuracy will be compared

to the ORB-SLAM and LSD-SLAM in the following chapters.

3.2.2 ORB-SLAM

3.2.2.1 Introduction

ORB-SLAM is a widely known method for Monocular SLAM algorithms. This method is

based on the recognition of features, besides it is able to operate in real time, and

within environments both small and large, outdoors and indoors. Of course, given the

purpose of this project it will be used for indoors environments. It uses the same

features for all the SLAM tasks: tracking, mapping localization, and close- loop

detection. So it detects the keyframes to generate the maps. These keyframes are

changing only if the scene content changes.

ORB aims to estimate the trajectory of the camera while it builds the environment in

which it “sails”. One of the most important concepts is the bundle adjustment (BA). It

is a technique able to precisely estimate position and a geometric reconstruction. Its

importance in the ORB is that it is used to optimize the maps and calculated

trajectories when a loop closure is detected. Currently, very precise results can be

obtained without requiring a high computational cost. To summarize, these are the

most highlighted points of this technique:

x(m)

y(m)

z(m)

67

- It uses the same features for all the SLAM tasks. It makes the system more

efficient, simple and reliable.

- It is able to operate in real time.

- Localization in real time for locations previously “browsed”, independently of

the existence of illumination or the angle of vision changes.

3.2.2.2 ORB-SLAM diagram

In figure 3.16 it is shown the diagram of this algorithm. Mainly, five modules can be

distinguished:

- Tracking

- Local Mapping

- Loop Closing

- Map

- Place Recognition

Figure 3. 16. ORB-SLAM Block diagram illustrating the workflow steps.

68

It uses three threads running in parallel: Tracking, Local Mapping and Loop closing. The

tracking thread locates the position of the camera in each image, and it “decides”

when it’s necessary to include a new keyframe. When the system lost the tracking, the

Place recognition module represents a global relocation. Once an initial estimation of

the camera is achieved and the features are found, the local map is retrieved using the

previously stored keyframes in the database.

The second parallel thread is the Local Mapping which processes the new keyframes

and represents the local BA (bundle adjustment) to get an optimal reconstruction

around the camera position. Then a data filtering on the stored information during the

tracking is carried out, aiming to preserve the points with the highest quality. In this

module the redundant points are also wiped out.

The third loop is the Loop closing, which looks for the existence of loops each time a

new keyframe is gotten. Finally, the closed loop is incorporated to the global map

graph.

 After this explanation the information contained in each point and keyframe will be

briefly remarked below:

Each point in the map contains the following information:

- Its 3D location referred to the global reference system.

- The direction of the view vector.

- The ORB associated descriptor.

- The maximum and minimum distance at which the point can be observed.

Each keyframe contains:

- The transformation of the real world coordinates system referred to the

camera reference system.

- The intrinsic parameters of the camera, such as the focal length.

- The ORB features extracted from the image, either if they are o not associated

to a map point.

The philosophy of this vSLAM technique is to generously create map points and

keyframes, given the fact that after having done such process, a filtering on these

keyframes is carried out, wiping the redundant points out. As a result, the obtained

map is flexible and can be expanded while the environment is being explored.

69

3.2.2.3 Algorithm ORB-SLAM

1. Map initialization

The objective of such initialization is to obtain the relative position between two

frames to triangulate a bunch of points that are part of the map. The algorithm has to

be able to achieve such initialization autonomously and independently of the

environment.

To do so, this algorithm stands on the execution in parallel of two geometric models,

the first one with the homograph matrix (Hcr) for flat scenes and the other one with

the fundamental matrix (Fcr) for not flat scenes. The method to recognize which model

is applicable to the image is heuristic and it is the following:

1) The initial correspondences are found. All the ORB features are extracted

from the current frame (Fc) and search for matches xc<->xr in the reference

frame (Fr). If not enough matches are found, reset the reference frame.

2) Both models are executed at a time. Compute in parallel threads a

homography Hcr and a fundamental matrix Fcr:

xc=Hcrxr xcTFcrxr=0

To make homogeneous the procedure for both models, the number of

iterations is prefixed and the same for both models, along with the points

to be used at each iteration, 8 for the fundamental matrix, and 4 of them

for the homography. At each iteration we compute a score SM for each

model M (H for the homography, F for the fundamental matrix):

SM=∑ (ρMn
i (dcr2(xci, xri ,M))+ ρM(dcr2(xci, xri, M))

Γ-d2 if d2 < TM

ρM(d2)=

0 if d2 ≥ TM

where dcr
2 and dcr

2 are the symmetric transfer errors from one frame to the

other. TM is the outlier rejection threshold based on the χ test at 95% (TH =

5.99, TF = 3.84, assuming a standard deviation of 1 pixel in the

measurement error). Γ is defined equal to TH so that both models score

equally for the same d in their inlier region, again to make the process

homogeneous. We keep the homography and fundamental matrix with

highest score. If no model could be found (not enough inliers), we restart

the process again from step 1.

70

3) The homography matrix will be chosen if RH>0.45, if not the model of the

fundamental matrix will be chosen.

RH=
SH

SH+SF

4) Once a model is selected we retrieve the motion hypotheses associated. The

system will try to triangulate directly the solutions obtained previously,

looking for the best one. In case of not finding any accurate solution, it will

return to the step number 1.

5) Finally the BA is represented.

2. Tracking

In order to carry out the tracking module, the first thing that should be done is the

initial pose estimation. It can start from the previous frame if such frame is

satisfactory, if not, the tracking is lost, so a candidate has to be found in the keyframes

database.

Once the initial camera pose and a bunch of associated features are estimated, the

local map to which such frame corresponds can be projected, and look for more

correlations between the points of the map. Once the correlations are found, the map

is updated.

Eventually, this module decides if the current frame will become or not a keyframe. To

insert a new keyframe the following conditions must be accomplished:

- More than 20 frames must have passed since the last global relocation.

- The local mapping must been deactivated or more than 20 frames must have passed

since the last insertion of a new keyframe.

- The current frame must have located at least 50 points.

- The current frame must have at least the 90% of te points contained in the reference

frame.

These conditions assure that there were visual changes, a good relocation and a good

tracking. Besides, the second condition assures that there won’t be a new keyframe

while the local mapping is running.

71

3. Local Mapping

This module inserts the new keyframes. As it has been observed in previous chapters,

one of the most characteristics aspects is the exhaustive point and keyframes filtering

that it does. In order to remain part of the map, the points have to pass several

conditions during the first three keyframes added after such point became part of the

map. The conditions are the following:

- The tracking module must find the treated point in more than the 25% of the frames

in which such point should be visible.

- The point must be observed at least in the three following frames, after such point

was incorporated to the map.

Once the point is added to the map, it can be wiped out if at any time it is part of less

than three keyframes.

Besides, the keyframes must accomplish a bunch of conditions in order to not be

eliminated. Those keyframes in which the 90% of their points in the map were

observed with the same or a smaller scale in at least another 3 keyframes will be

eliminated. This condition assures that the most accurate keyframes will remain.

This module is also in charge of the local BA that optimizes the current keyframe.

4. Loop Closing

The aim of this module is to detect loops between the current keyframe and the last

one, processed by the local mapping module.

First, the candidate loops to be closed are detected. Then a transformation between

the current keyframe and the loop keyframe is calculated. Finally each point of the

map is transformed according to the corrections obtained from any of the keyframes

in which this point is observed.

3.2.2.4 Simulation implementation and launch file

Similarly to the PTAM section, the Gazebo simulator with the ErleCopter has to be

launched. It is important first to highlight that the ORB algorithm subscribes to the

topic /camera/image_raw, while the published topic of the ErleCopter camera is

/erlecopter/front/image_front_raw. So it is needed a simply remap of this topic.

For example in the provided file erlecopter_spawn.launch, that launches the simulator,

we can simply add the following command to remap the topic.

72

<launch>
<remap from="/erlecopter/front/image_front_raw" to="/camera/image_raw"/>
…

After launching the simulator, the ORB SLAM can be executed as follows.

$ roslaunch ORB_SLAM Erle_Simulador.launch

Where the file Erle_Simulator.launch doesn’t need any changes, and it is shown below.

<launch>
<node pkg="image_view" type="image_view" name="image_view" respawn="false"
output="log">
<remap from="/image" to="/ORB_SLAM/Frame" />
<param name="autosize" value="true"/>
</node>
<node pkg="rviz" type="rviz" name="rviz" args="-d $(find ORB_SLAM)/Data/rviz.rviz"
output="log">
</node>
<node pkg="ORB_SLAM" type="ORB_SLAM" name="ORB_SLAM"
args="Data/ORBvoc.txtData/Settings.yaml" cwd="node" output="screen"/>
</launch>

Now, that both the simulated world and the ORB algorithm are working, the SLAM

algorithm can be studied and it can be used to develop applications of mapping and

localization.

73

Figure 3. 17. ORB-SLAM launched in Gazebo with the Erlecopter Model.

3.2.2.5 Real implementation within Erlecopter and launch file

Now, as we did in the PTAM section above, the ORB SLAM will be execute from an

external device in the real Erlecopter. To do so we need a WiFi connection between

the device and the robot.

First of all the camera of the robot must be opened, as it was done in the 3.1.2 section.

Once the camera of the drone is opened the second step is to convert the raw image

provided to a mono image, given that the algorithm works with mono images.

$ ROS_NAMESPACE=camera rosrun image_proc image_proc

After executing this command it can be seen that the topic /camera/image_mono is

now being published.

To visualize the image, just execute the following, using the image_view package.

$ source simulation/ros_catkin_ws/devel/setup.bash
$ rosrun image_view image_view image:=/camera/image_mono

Finally to get the ORB algorithm running the file below has to be launched to visualize

the ORB viewer.

74

<launch>
<node pkg="image_view" type="image_view" name="image_view"
respawn="false" output="log">
<remap from="/image" to="/ORB_SLAM/Frame" />
<param name="autosize" value="true"/>
</node>
<node pkg="rviz" type="rviz" name="rviz" args="-d $(find
ORB_SLAM)/Data/rviz.rviz" output="log">
</node>
<node pkg="ORB_SLAM"type="ORB_SLAM" name="ORB_SLAM"
args="Data/ORBvoc.txt Data/Erle.yaml" cwd="node" output="screen"/>
</launch>

$ source simulation/ros_catkin_ws/devel/setup.bash
$ roslaunch ORB_SLAM Erle_Wifi.launch

It can be seen now that the ORB slam algorithm is working in real time, carrying out

the mapping and localization modules.

Figure 3. 18. ORB – SLAM launched on the real robotic platform.

75

3.2.2.6 Results obtained

As it can be seen in figure 3.18, the interface of this algorithm is composed by two

windows. The first one (composed by little green squares) shows the current frame of

the algorithm, from where the following information can be obtained:

- SLAM Mode.

- Number of Keyframes.

- Number of points in the Map.

- Number of found features.

- X and Y position of the cursor on the window.

- RGB information of the point on which the cursor is located.

Figure 3. 19. ORB-SLAM current frame window, with the detected Keyframes.

The second window, showed in figure 3.20, contains the generated map of points of

the explored environment. In such window, appear several options that allow the user

to track the camera.

76

Figure 3. 20. ORB-SLAM tracking and mapping window.

 Besides, it is shown the generated map along the movement of the robot. The

information given by this second window is:

- Green rectangle: Current position of the camera.

- Blue rectangles: Keyframes.

- Red points: Points of the current local map.

- Black points: Points of the map.

Following the steps from the PTAM chapter, that is to say, taking the same paths

developed above, the results after having implemented ORB-SLAM in the simulation

are now presented.

77

Result Path 1:

Figure 3. 21. Results ORB-SLAM path 1 3D view.

Figure 3. 22. Results ORB-SLAM path 2 X-Y view.

Again, the blue line represents the ground truth of the robotic platform, so to say, the real

position of the quadcopter. The black line, in this case, represents the predicted localization

given by the ORB-SLAM algorithm along the path.

x(m)
y(m)

z(m)

x(m)

y(m)

78

Result Path 2:

Figure 3. 23. Results ORB-SLAM path 2 3D view.

Figure 3. 24. Results ORB-SLAM path 2 X-Y view.

Unlike PTAM, the performance of this algorithm turns to be slightly smoother.

Although having again a small deviation along the path, this time sideways, the

outcomes of the algorithm, in terms of stability (and not in terms of error) were better.

x(m)

y(m)

x(m)
y(m)

z(m)

79

Result Path 3:

Figure 3. 25. Results ORB-SLAM path 3 3D view.

Figure 3. 26. Results ORB-SLAM path 3 X-Y view.

After taking the results obtained from the algorithm, it comes to the conclusion that

the ORB algorithm is very sensitive to the strong movements, above all, the rotational

movements around the Z axis (yaw angle). However, if the camera is moved smoothly

the algorithm works without any lost. It is very computationally heavy, so it needs a

high quality processor to be run in.

In the next sections the error will be calculated and compared with the rest of the

vSLAM algorithms studied in this project.

x(m)
y(m)

z(m)

x(m)

y(m)

80

3.2.3 LSD-SLAM

3.2.3.1 Introduction

The LSD-SLAM technique presented in this section works completely different than the

vSLAM techniques studied before. This method called Large Scale Direct Monocular

SLAM builds maps in big scale. Instead of using features, it works on the contrast of the

images both for location and mapping. The geometry of the maps is estimated

applying filters over the acquired images in gray scale.

Then it takes more information from the geometry and the environment that can be

very useful for robots or even for augmented reality purposes.

Like the previous SLAM technique, the world is represented by a number of keyframes

connected by position restrictions, which can be optimized using an optimization

graph.

3.2.3.2 Algorithm LSD-SLAM

The algorithm can be divided in three main modules: tracking, depth map estimation

and map optimization.

The algorithm initialization is carried out through a random intensity map. When the

camera is slightly moved, the algorithm blocks the configuration, and the algorithm

converges.

The representation of the map is a keyframe graph. Figure 3.27 shows the algorithm

scheme.

Figure 3. 27. LSD-SLAM Block Diagram illustrating the workflow steps

81

1. Tracking

The tracking module tracks the new images obtained by the camera. Such images are

estimated as a solid rigid regarding the current keyframe, using the position of the

previous keyframe for the initialization.

2. Depth map estimation

This module uses the frames obtained to substitute the current keyframe. The

intensity is defined by a pixel by pixel filtering.

If the camera is moving too far from the created map, then it creates a new keyframe

of the last frame obtained by the tracking module. Once such frame is taken, its

intensity is initialized, projecting its points from the previous keyframe over this one.

Finally, the keyframe is substituted, and it is used to track new frames.

Figure 3. 28. LSD-SLAM tracking and mapping window.

Those frames obtained, although not converted in a keyframe are used to redefine the

current keyframe. The result is incorporated to the depth map; which means that new

pixels are added to the map.

3. Map optimization

The built map, consists in a bunch of keyframes joined by different restrictions, such

map is continuously optimized at the background by the optimization graph.

82

3.2.3.3 Simulation implementation and launch file

As it was done in the previous chapters, before launching the simulator it is needed to

do a remap in some published topics. The LSD SLAM looks for two published topics to

start the algorithm. These topics are /image_raw and /camera_info, that’s why it is

necessary to carry out the following remap within the file that launches the robot

simulator.

<launch>
<remap from="/erlecopter/front/image_front_raw" to="/erlecopter/image_raw"/>
<remap from="/erlecopter/front/camera_front_info"
to="/erlecopter/camera_info"/>

Converting the image from the simulated camera to grayscale:

$ ROS_NAMESPACE=erlecopter rosrun image_proc image_proc

Finally the SLAM LSD can be launched:

$rosrun lsd_slam_core live_slam /image:=/erlecopter/image_mono
_calib:=/home/usuario/rosbuild_ws/package_dir/lsd_slam/lsd_slam_core/calib/Erle_S
im_calib.cfg

To visualize the LSD viewer the following command must be executed.

 $ rosrun lsd_slam_viewer viewer

Figure 3. 29. LSD-SLAM launched in Gazebo simulator with the Erlecopter model.

83

3.2.3.4 Real implementation within Erlecopter and launch file

As it was done before the drone will be connected to an external device via WIFi,

where the LSD algorithm will be running in real time. Once the camera is opened , the

first step is to convert the raw image to mono.

$ ROS_NAMESPACE=camera rosrun image_proc image_proc

Now it can be visualized that the /camera/image_mono topic is being published in gray

scale.

To execute the LSD algorithm:

$ rosrun lsd_slam_core live_slam /image:=/camera/image_mono
_calib:=/home/usuario/rosbuild_ws/package_dir/lsd_slam/lsd_slam_core/calib/Erle_
Wifi_Calib.cfg

To visualize the tracking and mapping in the LSD viewer:

$ rosrun lsd_slam_viewer viewer

Figure 3. 30. LSD-SLAM launched on the real robotic platform.

84

3.2.3.5 Results obtained

As the ORB- SLAM algorithm, the interface is composed by two windows. The first one

is shown in figure 3.30, in which the intensity map can be seen. In the lowest part of

the window, important information can be found, such as the actualization of the map,

the tracking, the number of keyframes among other interesting data.

The second window shows the map built from a cloud of points that is being generated

along the path followed by the camera. The keyframes selected by the algorithm are

represented in blue, while the red color represents the current position of the camera,

and finally, the green color represents the path generated.

Again, following the steps from the PTAM and ORB chapter, that is to say, taking the

same paths developed above, the results after having implemented LSD-SLAM in the

simulation are now presented.

Result Path 1:

Figure 3. 31. Results LSD-SLAM path 1 3D view.

x(m)
y(m)

z(m)

85

Figure 3. 32. Results LSD-SLAM path 1 X-Y view.

Again, the blue line represents the ground truth of the robot, so to say , the real position of the

Erlecopter. The black line represents the localization given by the LSD-SLAM algorithm along

the path.

Result Path 2:

Figure 3. 33. Results LSD-SLAM path 2 3D view.

x(m)

y(m)

x(m)
y(m)

z(m)

86

Figure 3. 34. Results LSD-SLAM path 2 X-Y view.

Apparently, the localization given by the LSD-SLAM is far from the real localization in certain

sections along the path. This may be due to several losses of tracking during the simulation

process.

Result Path 3:

Figure 3. 35. Results LSD-SLAM path 3 3D view.

x(m)
y(m)

z(m)

x(m)

y(m)

87

Figure 3. 36. Results LSD-SLAM Path 3 X-Y view.

After testing the algorithm, it was noticed that the execution time is high, given the

fact that it is necessary to move the camera extremely slow, or at least it is needed a

really powerful computer processor. As the movement of the quadcopter is the same,

no matter the employed algorithm, the results, apparently, are worse than the results

obtained for the previous algorithms. Plus, the algorithm hardly recovers from a loss of

the tracking.

3.3. Results

3.3.1 Simulation Results

In this section, the results obtained from the different tracks developed will be

discussed. After having talked about the performance of the three visual algorithms,

now a calculation of the MAD (Mean Absolute Deviation) and MSE (Mean Square

Error) error will be carried out.

For a better understanding of what these errors means, a briefly explanation of each

one is presented:

- MAD: it takes the absolute value of forecast errors and averages them over the

entirety of the forecast time periods. Taking an absolute value of a number

disregards whether the number is negative or positive and, in this case, avoids

the positives and negatives cancelling each other out.

The next formula represents the calculation of the MAD error:

x(m)

y(m)

88

MAD=
∑ |Ai−Fi|n
i=1

n

Where A represents, in our particular case, the pose X,Y of given by the Ground

Truth, so to say, the actual position of the quadcopter, while F represents the

estimated position of the quadcopter, and n, the number of poses studied.

- MSE: it measures the average of the squares of the errors or deviations—that

is, the difference between the estimator and what is estimated. The MSE is a

measure of the quality of an estimator—it is always non-negative, and values

closer to zero are better.

The following formula represents the MSE:

MSE=
∑ (Ai−Fi)2n
i=1

n

The terms presented in such formula are the same than the ones explained

above for the calculation of the MAD error.

Now let’s see the errors for the 3 tracks and the three vSLAM algorithms, to get a

better understanding of its performance.

VSLAM TRACK MAD MSE

PTAM Track 1 1.3712 2.7316

Track 2 1.5177 2.8811

Track 3 0.6692 0.6650

Average Score 1.1870 2.0922

ORB-SLAM Track 1 1.4062 2.3243

Track 2 0.6791 0.6887

Track 3 0.7093 0.7313

Average Score 0.9315 1.2481

LSD-SLAM Track 1 1.7799 4.5085

Track 2 0.9317 1.2351

Track 3 1.0132 1.2481

Average Score 1.2416 2.3266
Table 3. 1. Errors obtained for each vSLAM algorithm.

As pointed in [1], the best results are obtained for the ORB-SLAM algorithm, while LSD-

SLAM and PTAM obtain similar errors.

So before it was shown the qualitative performance of these three algorithms, now a

comparison of the errors of such algorithms is shown in the table 3.1. As a conclusion,

89

the ORB gets better performance both for the MSE and the MAD, so if it had to choose

one of those to be implemented in an actual quadcopter this would be the most

fittable.

The problem face at this point, is that on one hand, the ORB-SLAM gets a better

performance, although on the other hand it is computationally heavier than PTAM.

LSD-SLAM is also very heavy, by far, heavier than PTAM, and even heavier than ORB-

SLAM.

As the Erlecopter is the robotic platform studied within this project, it could be said

that both PTAM and ORB-SLAM are suitable, the problem is that the brain of the

robotic platform is composed by a simple raspberry pi 2, so ORB-SLAM is too heavy to

be launched on board (in real time), also noticing that it may have more sensors on the

robot, that could affect the performance of the robotic platform.

3.3.2 Real results

In this project, a real implementation of the vSLAM algorithms was made using the real

Erlecopter camera, running off-board in a Lenovo U31, since the on-board CPU

(Raspberry-Pi 2) was not able to handle ORB-SLAM or LSD-SLAM due to their CPU

consume. It is important to highlight that one of the main targets of this project, was

to run the algorithms on board, but the CPU consume, as shown in table X was too

high to be supported by the Raspberry Pi 2, so the algorithms had to run off-board,

using a Wi-Fi connection between the quadcopter and the Lenevo U-31 laptop. Thus in

this subsection, the results of such test will be presented. For that purpose a test was

recorded within the Politécnica building in the University of Alcalá.

%CPU
Consume

PTAM ORB-SLAM LSD-SLAM

88% 133% 148%

The scale was computed using the downward sonar, using the technique that will be

explained in the chapter 4. Thus, figure 3.37 shows the performance of each of these

three algorithms.

90

Figure 3. 37. Real tracking of the 3 vSLAm algorithms on the Erlecopter. X-Y view.

As extracted from the simulation test, it can be seen again that ORB-SLAM turns to be

the most accurate algorithm. PTAM is able to follow the tracking, although at the end

of the corridor a rotational movement around the Z axis, of 45 degrees is developed,

and it loses completely the tracking. It can be seen that the developed tracking before

losing the path is very unstable compare it with LSD-SLAM and ORB-SLAM, so it can be

said that is the most sensitive vSLAm algorithm of all.

Finally LSD-SLAM tends to easily lose the tracking and increase the error. Besides after

a rotational movement it cuts the length of the real path.

Since the tests were made in a corridor of a length of 22m, so it can be extracted from

figure 3.37 that the estimation of all the algorithms used is slightly shorter than the

actual length of the path.

x(m)

y(m)

91

CHAPTER 4

EXTENDED KALMAN FILTER

92

93

4.1. Introduction

In 1960 Rudolf E. Kalman developed an algorithm called Kalman Filter (KF), which

allows the identification of a hidden state, that can’t be measured, within a

dynamic linear system, even if the system presents some kind of noise. So the

Extended Kalman Filter [16] (EKF) is a nonlinear version of the KF, which linearizes

about the estimate of the current mean and covariance, and it is heavily

entrenched in nonlinear signal processing applications. This approach is used in

robotics systems, given the fact that it presents a solution to the pose estimation

problem in SLAM techniques.

4.2. Extended Kalman Filter algorithm

Therefore, the EKF is an algorithm capable of estimating the position of a robotic

platform using sensor fusion in nonlinear applications, in this particular case, the

mathematical model obtained from the Erlecopter kinematics and dynamics, will

be obviously nonlinear.

As showed previously, the EKF operates on the same principle as the regular

Kalman Filter, using a linearized model of the system to predict the quadcopter’s

state though.

The EKF algorithm is represented by the following equations:

X̂t-1 = g(ut,ut-1) (1)

P̂t = Gt Pt-1 GTt + Qt (2)

Kt = P̂t HTt (Ht P̂t HTt + Rt)-1 (3)

Xt = X̂t + Kt (zt – h(X̂t)) (4)

Pt = (I- Kt Ht) P̂t (5)

The above equations represent the EKF algorithm. The equations (1) and (2) are

used to predict the state X̂t and the covariance matrix P̂t . This step is called

prediction model. On the other hand the equations (3), (4) and (5) represent the

observation model, which computes the Kalman gain Kt the current state Xt and

the covariance matrix Pt. Besides, the covariance matrix of the model is

94

represented by Qt , the covariance matrix of the measurements is represented by

Rt and Gt and Ht are the Jacobian matrixes of the model and measurement

respectively.

The following scheme shows the computational flow of the EKF, how the system

works both in the prediction and observation model:

Figure 4. 1. Block Diagram of the EKF. Prediction and correction workflow.

4.2.1 Prediction Model

First, from the kinematics and dynamics of the quadcopter, we need to solve the

mathematical model of the Erlecopter in order to get the prediction model. Based

on the model for the AR Drone, developed by Engel, Sturm and Cremers in [23], we

got the mathematical model of the Erlecopter:

State vector: x (t) = { x, y, z, Vx, Vy, Vz, φ,, , ̇}

where x represents the position of the quadcopter in the x-axis, y represents the

position of the robot in the y-axis, and finally z represents the position of the robot

in the z-axis. In addition, Vx represents the linear velocity of the robot on the x axis,

same happens with Vy for the y axis and Vz for the z axis.Besides, φ is the angle of

the robot around the y-axis, is the angle of the robot around the x-axis and is

the angle around the z-axis. Finally ̇ represents the angular velocity around the z-

axis.

95

Control Inputs: u (t) = {�̂�x, �̂�y, �̂�z, ̂̇}

where �̂�x represents the control of the linear velocity on the x-axis, �̂�y represents

the control of the linear velocity on the y-axis and �̂�z is the control of linear

velocity on the z-axis. Finally, ̂̇ represents the control of the angular velocity

around the z-axis.

From now on, the prediction model will be known as a function such as ẋ =

h(x,u), where φ, and , must be Euler angles XYZ.

Figure 4. 2. Yaw, Pitch and Roll angles in the world frame.

The horizontal acceleration is proportional to the projection of the Z axis.

Therefore R=rotz()*roty()*rotx(φ):

R = (
cos cos sinφ sin cos− cosφ sin cosφ sin cos+ sinφ sin
cos sin sinφ sin sin + cosφ cos cosφ sin sin − sinφ cos
−sin sinφ cos cosφ cos

)

Taking the third column, it is easy to get the following equations:

�̈�= C1 (C2 (sin(φ) sin()+cos(φ) sin()cos()) - Vx)

�̈�= C1 (C2 (-sin(φ) sin()+cos(φ) sin()cos()) - Vy)

φ̇=-C3 (C4�̂�y + φ)

̇=C3 (C4�̂�x -)

̈=C5 (C6 ̂̇− ̇)

Vż=C7 (C8�̂�z - Vz)

96

Therefore the prediction model, using the kinematics equations obtained above is

defined as:

(

𝑥
𝑦
𝑧
𝑉𝑥
𝑉𝑦
𝑉𝑧
φ

 ̇)

t+t

=

(

𝑥
𝑦
𝑧
𝑉𝑥
𝑉𝑦
𝑉𝑧
φ

 ̇)

𝑡

 + t

(

𝑉𝑥
𝑉𝑦
𝑉𝑧

C1 (C2 (sin(φ) sin() + cos(φ) sin()cos()) − Vx)
C1 (C2 (−sin(φ) sin() + cos(φ) sin()cos()) − Vy)

C7 (C8�̂�z − Vz)

−C3 (C4�̂�y + φ)

C3 (C4�̂�x −)
 ̇

C5 (C6 ̂̇ − ̇))

Where, t is the change in time between the previous model update to the new

model update.

4.2.2 Observation Model

Given the fact that the employed algorithms, either PTAM or ORB-SLAM or LSD-

SLAM , can measure directly the 6 DOF of the quadcopter. As shown the obtained

model for these measurements is linear:

Zvslam=hvslam(x) =

(

𝑥
𝑦
𝑧
φ

)

Thus, the Jacobian for the measurement system Ht is composed by the camera

measurements. The Ht can be presented as:

Ht=

(

1
0
0
0
0
0

0
1
0
0
0
0

0
0
1
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
1
0
0

0
0
0
0
1
0

0
0
0
0
0
1)

All in all, the EKF has been explained; now, let’s solve the problem of the scaling

factor in the vSLAM algorithms, due to the lack of knowledge of the real distance of

the objects in the pinhole cameras.

97

4.2.2.1 Scaling Factor Problem

The main problem to deal with, in order to get the data information from the

camera algorithms is the ambiguity of the scale issue. Monocular configurations

are unable to identify the length of the translational movement only from the

features correspondences. As shown, the camera itself cannot know the real depth

of the object in the image, so it is impossible for the vSLAM algorithm to compute

the tracked movement in a real scale.

Figure 4. 3. Relationship between pixel scale and real scale in monocular cameras.

To solve this problem, monocular camera systems need some kind of movement

from the camera to obtain a couple of frames and compare the features between

them in order to extract the key points. As the actual distance of the camera’s

movement is unknown, the system won’t calculate accurately the real scale.

Given the performance of the vSLAM algorithms, in this particular situation, an

approach will be done in order to solve the issue. As [5] did in his project, taking

the information from the ultrasonic downward sensor, located within the robotic

system, the measurement of the altitude in the Z axis direction of the world frame,

can be used to solve the problem of the unknown translational movement, so now,

the relationship between the frames and the real length is calculated.

Thus the idea is that if the real height is known, and also the one estimated by the

vSLAM, then the scale can be calculated as follows:

98

Scale=
hsonar

hvslam
 (1)

Zreal= Scale Zvslam (2)

Xreal= Scale Zvslam (3)

Yreal= Scale Zvslam (4)

After performing several trials, shown in figures from 4.4 to 4.6 , in order to get the

real scale of the monocular algorithm, it jumps to the conclusion that the scale is

very changing, this means, that each time that the algorithm is launched, the

obtained scale is not even close to the one obtained previously.

Figure 4. 4. First trial . Relationship between the sonar height and the PTAM predicted height.

99

Figure 4. 5. Second trial . Relationship between the sonar height and the PTAM predicted height.

Figure 4. 6. Third trial . Relationship between the sonar height and the PTAM predicted height.

Then, to get a high quality performance of the vSLAM algorithms, each time that

the system runs a monocular algorithm, first a pure translational movement in the

Z axis direction has to be carried out.

In other projects such as in [5], the scale was calculated with every iteration of the

system, which worked at 25HZ. For this project, it will be accurate enough to

calculate the real scale at the beginning of the actuation of the developed system.

100

4.3. Results

At this point the results obtained from the development of the EKF explained above

and its performance will be presented, and it will take conclusions from the results.

Not only the performance will be studied, but the MSE and MAD errors, as it was done

in the previous chapters for the vSLAM algorithms, therefore it will be possible to

notice the improvement of the pose estimation of the system.

 Results Path 1:

Figure 4. 7. Results EKF path 1 X-Y view.

Figure 4. 8. Results EKF path 1 3D view.

x(m)

y(m)

x(m)

y(m)

z(m)

101

 Results Path 2:

Figure 4. 9. Results EKF path 2 X-Y view.

It is important to remark that this EKF is using PTAM as the observation model; as

consequence it must be compared with the results presented in the chapter number 3

for such monocular algorithm.

Figure 4. 10. Results EKF path 2 3D view.

x(m)

y(m)

x(m)

y(m)

z(m)

102

 Results Path 3:

Figure 4. 11. Results EKF path 3 X-Y view.

Figure 4. 12. Results EKF path 3 3D view.

These three paths show the performance developed by the implemented EKF

algorithm. It can be seen that EKF estimates a position close to the real one, obtained

from the ground truth system.

x(m)

y(m)

y(m)

x(m)

z(m)

103

For this purpose, the table 4.1 stores the MAD and MSE errors calculated for the

Extended Kalman Filter.

 TRACK MAD MSE

EKF Track 1 0.8605 0.9194

Track 2 0.6297 0.7185

Track 3 0.8480 1.0358

Average Score 0.7794 0.8912
Table 4. 1. Errors obtained for the EKF.

Comparing this errors with the table 3.1, showed in previous chapters, it can be seen

that the improvement of the results is highly remarkable. The table 4.2 compares the

obtained errors after having run the 3 tracks:

Algorithm MAD MSE

EKF 0.7794 0.8912

PTAM 1.1870 1.2922
Table 4. 2. Average Errors from EKF and PTAM

Therefore, it can be said that the EKF presented works properly, reducing the error of

the monocular algorithms, and presenting a more accurate pose estimation for the

quadcopter, as also shown in figures 4.2 and 4.3.

Figure 4. 13. 3D single-scope view Ground-Truth, EKF and PTAM

104

Figure 4. 14. X-Y single scope view Ground-Truth, EKF and PTAM.

Algorithm MAD MSE

EKF 1.1251 1.4412

PTAM 1.2357 1.2357
Table 4. 3. Errors obtained from EKF and PTAM in the single scope trial.

105

106

107

CHAPTER 5

PID CONTROLLER

108

109

In this section a PID controller for the robot will be designed in order to move and

control the robot, making possible to develop a trajectory for SLAM algorithm

purposes, to localize and map the robot and the environment.

5.1. Introduction

The idea of any control system is to calculate a discrepancy (error) between the

objective (the desired position introduced by the user) and the reality (the real

position of the robot). Such error will be used as a feedback to modify the control

variable (radio control velocity).

A PID controller is a very well-known controller, used because its simplicity, it doesn´t

require characterization of the system. It is based in 3 different terms (proportional,

integral and differential) relating the error with some constants that can be

determined through a trial and error process.

5.2. Implementation and results

 In this particular case, Pref will be the desired position, and pos will be the real position

of the drone, or at least the estimated position. The error will be defined as:

e(t) = (Pref − pos)

Using this error, the actuation variables will be modified based on the formula shown

below:

pid = Kp e(t) + Ki∫ e(t)dt + Kd
de(t)

dt

For the moment, the PID can be considered as a simple value, that in case of being

positive indicates that the robot must move forward and in case of being negative

backwards. As the radio control variable is the one that has to be controlled, first we

are going to explain how it works.

110

Figure 5. 1. Scheme of the local frame of the quadcopter

Figure 5.1 shows the different axis of the robot system, x, y, z, roll, pitch, yaw. Now to

understand how the radio control works to move the drone we are going to present a

set of examples. The radio control stands on an array of integer numbers, in the range

from 1100 to 1900, where 1100 means “move the drone as quick as possible to the

negative position from the local drone frame reference” and 1900 means “move the

drone as quick as possible to the positive position from the local drone axis” and 1500

will mean “don’t move, keep your position” (notice that the drone will be working in

ALT HOLD mode, in each of the different modes the integer used will have a different

performance). We are going to work in this definition deeper, in order to clarify the

performance of the robot. So it is time to present the radio control array:

[Vx, Vy, Vz, Vyaw, 1500, 1500, 1500, 1500, 1500]

where the last four spots of the array of control are useless and don’t have any

relevant meaning.

So let’s move the drone by writing and publishing a topic:

- Take-off slowly:

$ rostopic pub -1 /mavros/rc/override mavros_msgs/OverrideRCIn '[1500, 1500,

1600, 1500, 1500,1500,1500,1500]'

- Move forward slowly:

$ rostopic pub -1 /mavros/rc/override mavros_msgs/OverrideRCIn '[1500, 1400,

1500, 1500, 1500,1500,1500,1500]'

- Move to the right slowly:

$ rostopic pub -1 /mavros/rc/override mavros_msgs/OverrideRCIn '[1600, 1500,

1500, 1500, 1500,1500,1500,1500]'

111

The values within the array are the PWM values of the radio controller. So after seeing

how this works we can clearly see then, that the PID value from the formula will move

between [1100, 1900], controlling the position of the drone trough the PWM

actuators.

Now it is important to understand and explain each of the terms of this PID expression.

The first term is proportional to the error, the second one to the integral and the last

one goes with the derivative term.

The idea is that the first term aims to reduce the current error. For example for the Z

axis, if the error is positive (the drone hasn’t arrived to the reference position) pid will

be positive, therefore the PWM value will increase to get to the reference position. On

the other hand if the error is negative (the drone has gone further to the reference

position), then PID will be negative.

The second term is based on the influence of the “past” of the error: the performance

won’t be the same if we get a punctual error or if the error has been gotten for a

while. In the second case the response to this error will be more energetic.

Finally the third term reflects the “future” of the error, that is to say the prediction of

this error. Imagine we are 5 units away from our desire position, that is to say, error=5.

It is not the same if we are getting closer to this desire position or if we are getting

away from such objective. In the first case probably it won’t be necessary any

actuation, but in the second one it is needed a correction.

Figure 5. 2. PID controller block diagram.

112

In this particular case, it will be implemented a discrete controller, so the formula

shown above can be approximated to the following, in which each time the position is

measured and the error en is calculated:

en = (Pref − posn)

To get the control term, the instant error is traduced naturally in the error measured at

the time n, but for the integral part of the formula and the derivative part will need

some numeric approximations:

- The integral is substitute for a summation of values previous to the error.

Besides it is limited in the time, adding N errors, instead of the complete

amount of errors. The h term (interval of time between samples) but such term

can be absorbed by the integral constant Ki.

- The numeric estimation of the derivative part, the quickest is to substitute for

the difference between consecutives errors, though accurately estimations

could be found. Again, the factor h that appears can be absorbed by the Kd

constant, so it won’t be necessary introduce it.

de(t)

dt
≈
en − en−1

h

The discrete variant of the control term will be therefore:

pidn = Kp en +∑en−k

N

k=1

+ Kd(en − en−1)

Not all the terms explained will be implemented. It will depend on the application,

that’s why we can simply design a proportional controller, wiping the derivative

and integral parts out, or a PD controller wiping just the integral part out.

After explaining how the PID is going to be implemented, it is important to remark

that in this particular case what will be implemented is a controller for the X, Y and

Z axis, and also for the yaw positions. So, all in all four controllers will be designed

for this purpose, one for each position.

Using a trial an error method, the gaining constants Kp, Ki and Kd have been

adjusted for each controller. The results obtained are shown below:

113

 PID for Z position

Figure 5. 3. Results PID controller Z position.

 PID for Y position

Figure 5. 4. Results PID controller Y position.

114

 PID for X position

Figure 5. 5. Results PID controller X position.

 P controller for yaw angle

Figure 5. 6. Results P controller yaw position.

115

The table 5.1 represents the numeric results obtained for each controller.

Position Type Kp Ki Kd

Z PID 0.4 1.0 0.7

Y PID 0.1 0.15 4.0

X PID 0.1 0.4 4.0

Yaw Proportional 2.5 - -
Table 5. 1. Constants of the controllers.

Now it will be explained how the PID controller for the Z position was

implemented, this will be enough to understand the behaviour of a PID controller

and how the others were also implemented.

First it will be necessary to set the reference and get the real position of the drone.

Now we can calculate the proportional error:

Ez=Rz-Pz

where Rz is the reference and Pz is the real and current position.

The second step is to get the integral error, to do so, we need to add the last 20

samples of the current error, and get the average:

Eavg = ∑ Ezn−k

n=20

k=1

And then the integral error is calculated as:

Eiz =
Eavg

20

The last step is to get the derivative error, which can be obtained as the

subtraction of the current error minus the previous one:

Edz = Ezn − Ezn−1

Now the constants Kp, Ki and Kd are set to a random value, and using the trial and

error method while taking a look at the behaviour of the system the values of the

constants are updated until a good solution is obtained (Kp =0.4, Ki =1, Kd =0.7).

Then calculate PIDz from the next formula:

PIDz = Kpz ∙ Ez + Kiz ∙ Eiz + Kdz ∙ Edz

As it was explained before, in this chapter, the objective is to set a PWM value to

control the position of the drone, as it was explained above, this PWM are set in a

range between 1100 and 1900, where 1500 means “stay in your current position”.

So this PIDz will return a number between [-1,1] so if the result, for example is 50,

116

automatically the outcome of PIDz will be 1 and if the result is -200 the outcomes

will be automatically -1. Then to set the required PWM:

PWMz = 1500 + 400 PIDz

Figure 5. 7. Components of the navigation system.

Now that the PID has been developed, the navigation system will consist of three

major components: a monocular SLAM implementation for visual tracking, an EKF

for data fusion and prediction and a PID control for pose stabilization, all of it

implemented in the gazebo simulator as figure 5.7 shows.

117

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

118

119

6.1. Conclusions

In this project it has been employed a low-cost aerial vehicle, the ErleCopter, with ROS

as a software platform to work with it. Gazebo has been the simulator used to test all

the algorithms and control the robotic platform.

As it can be seen it is possible to use commercial low cost quadcopters to perform an

estimation of the current localization and mapping, of course using the vSLAM

techniques presented within this project.

The main limit faced in this project was the lack of resources of the robotic platforms,

this means, that given the processor (raspberry pi 2) and the vSLAM algorithms studied

before, it wasn’t able to perform an on board tracking of the robot, mainly, as it was

said in previous chapters, ORB-SLAM and LSD-SLAM need a powered processor to work

properly, otherwise the algorithm gets frozen and stuck, losing continuously the

tracking and mapping of the platform.

On the other hand, the implemented EKF, as it was shown, works more accurate than

just using a simple vSLAM algorithm, although, the idea was to fuse such algorithms

with the data from a laser, that was part of another project. The timing wasn’t correct,

so it had to be done just using the information obtained from the camera.

 It is important to remark the importance of the data fusion in order to achieve a

proper performance of the current system. Adding a sensor such as monocular camera

brought a feedback of the position helping the system to estimate the pose of the

robotic platform, and correcting the prediction model took from the ErleCopter

kinematics and dynamics.

The real ErleCopter, after several trials turned out to be very unstable, talking in

controllability terms, besides it has a lot of different modes which change its behaviour

during the flight. For the simulator a PID was implemented, taking the control of the

robotic platform using the data obtained from the EKF.

6.2. Future Work

Thus, it proposes different future works to keep investigating along this path.

The first proposal consists on the improvement of the controllability of the real

platform, making possible a real flight of the ErleCopter indoors.

Another option would be the research of vSLAM algorithms, finding a compromise

between the weight of the algorithm and its accuracy. In this project PTAM was found

120

the best option for this purpose, however it might be more algorithms that might

improve this aspect: lower the computability weight, improving the accuracy of the

SLAM technique.

Finding another aerial robotic platform, with a better processor, and implementing on

it a heavy vSLAM technique could solve the problem of the in real time flight, that

couldn’t be done in this project.

Other problem that could be faced following the ErleCopter trend, besides from the

SLAM, is making such robotic platform autonomous. For this project, several paths

were built and followed by the quadcopter using the implemented PID, such path was

treated as a reference of the robotic platform. Therefore an explorer autonomous

Erelcopter quadcopter as a future application, meshing information from a bunch of

different sensors cold turn useful.

All in all it can be said that the objectives for this project were completed: a study of

the three main vSLAM algorithms, an implementation of an EKF for the robotic

platform, and an implementation of a PID to improve the controllability of such

platform.

121

CHAPTER 7

USER’S MANUAL

122

123

In this chapter, the instructions to use the several packages found in this project will be

explained. The launch of the vSLAM algorithms both in the real platform and in the

simulator are explained in chapter 3, so no reference of them will be shown here.

7.1. Downloading the necessary tools

 Install ROS, Gazebo and the ErleCopter Gazebo models, following the steps:

http://docs.erlerobotics.com/simulation/configuring_your_environment

 Install LSD-SLAM following the steps given in the GitHub website:

https://github.com/tum-vision/lsd_slam

 Install ORB-SLAM following the steps given in the GitHub website:

https://github.com/raulmur/ORB_SLAM

 Install PTAM following the steps given in the GitHub website:

http://wiki.ros.org/ethzasl_ptam

7.2. Launching the ErleCopter world in Gazebo

Open a terminal and set the following commands:

source ~/simulation/ros_catkin_ws/devel/setup.bash

cd simulation/ardupilot/ArduCopter

../Tools/autotest/sim_vehicle.sh -j 4 -f Gazebo --map –console

param load/home/usuario/simulation/ardupilot/Tools/Frame_params/Erle-

Copter.param

In another terminal:

source ~/simulation/ros_catkin_ws/devel/setup.bash
roslaunch ardupilot_sitl_gazebo_plugin erlecopter_spawn.launch

http://docs.erlerobotics.com/simulation/configuring_your_environment
https://github.com/tum-vision/lsd_slam
https://github.com/raulmur/ORB_SLAM
http://wiki.ros.org/ethzasl_ptam

124

7.3. Setting the world

To change the appearance of the world, you can just add objects in it by clicking on the

left upper corner of the Gazebo simulator, and saving the file as it appears

ros_catkin_ws/src/ardupilot_stil_gazebo_plugin/worlds/empty.world

7.4. Arming the ErleCopter

In the ardupilot terminal

Figure 7. 1. Ardupilot terminal.

 Now type arm throttle, and press intro

 To change the mode of the Erlecopter you can type in the same terminal:

 Mode name_of_the_mode, for instance, mode LOITER.

 All the changes will appear in the Console window, shown in figure 7.2.

Figure 7. 2. Erelcopter Console

125

7.5. Publishing a topic and moving the quadcopter

 Once the simulator is running, (only for the first time) type in the ardupilot

terminal $ rosrun mavros mavparam set SYSIS_MYGCS 1, you should get 1

as an answer.

 Again in the ardupilot terminal (also only for the first time) type param set

ARMING CHECK 0 and param set SYSID_MYGCS 1.

 Then arm the quadcopter.

 To move the drone upwards: rostopic pub -1 /mavros/rc/override

mavros_msgs/OverrideRCIn '[1500, 1500, 1700, 1500, 1500, 1500, 1500,

1500]'

 To move the drone to the right: rostopic pub -1 /mavros/rc/override

mavros_msgs/OverrideRCIn '[1600, 1500, 1500, 1500, 1500, 1500, 1500,

1500]'

 To move the drone forward: rostopic pub -1 /mavros/rc/override

mavros_msgs/OverrideRCIn '[1500, 1400, 1500, 1500, 1500, 1500, 1500,

1500]'

 To move it around the yaw angle: rostopic pub -1 /mavros/rc/override

mavros_msgs/OverrideRCIn '[1500, 1500, 1500, 1600, 1500, 1500, 1500,

1500]'

 To maintain the quadcopter at the same position: :rostopic pub -1

/mavros/rc/override mavros_msgs/OverrideRCIn '[1500, 1500, 1500, 1500,

1500, 1500, 1500, 1500]'

7.6. Taking off automatically

 Launch the Gazebo simulator as the point 7.2

 Arm the quadcopter and set the STABILIZE mode

 In another terminal run the created package:

source ~/simulation/ros_catkin_ws/devel/setup.bash
rosrun ros_despegue ros_despegue

The copter will take off until it reaches 2 meters of height, where it will stop and stay

stable.

126

7.7. Launching the PID controller

 Follow the steps of the subchapter 7.2

 Set the path as a reference, in another terminal:

source ~/simulation/ros_catkin_ws/devel/setup.bash

rosrun ros_local_reference ros_local_reference

 Run the PID package

source ~/simulation/ros_catkin_ws/devel/setup.bash

rosrun ros_pid_erle ros_pid_erle

7.8. Launching the EKF

 Follow the steps of the subchapter 7.2

 Open PTAM as in chapter 3. Once PTAM is running get the scale factor:

source ~/simulation/ros_catkin_ws/devel/setup.bash

rosrun escala_vslam escala_vslam

 Move the drone with a pure translational movement of the z axis, upwards or

downwards to get the scale using the ultrasonic sensor.

 Set the path as a reference, in another terminal:

source ~/simulation/ros_catkin_ws/devel/setup.bash

rosrun ros_local_reference ros_local_reference

 Run the EKF package to estimate the ErleCopter position and introduce the

calculated scale.

source ~/simulation/ros_catkin_ws/devel/setup.bash

rosrun ekf_erle ekf_erle

7.9. Creating a package

 Create a package folder in the workspace (example package ros_practica_1)

cd ~simulation/ros_catkin_ws/src
catkin_create_pkg ros_practica_1 std_msgs rospy roscpp tf

127

 Once the package is created, you should modify the Cmakelists.txt as follows:

cmake_minimum_required(VERSION 2.8.3)
project(ros_practica_1)

Find catkin macros and any catkin packages
find_package(catkin REQUIRED COMPONENTS roscpp rospy std_msgs
genmsg)

Generate added messages and services with any dependencies listed here
 generate_messages(DEPENDENCIES std_msgs)

Declare a catkin package
catkin_package()

include_directories(include ${catkin_INCLUDE_DIRS})

add_executable(ros_practica_1 src/main.cpp)
target_link_libraries(ros_practica_1 ${catkin_LIBRARIES})
add_dependencies(ros_practica_1 ros_practica_1_generate_messages_cpp
})

Mark executables and/or libraries for installation
install(TARGETS ros_practica_1
 ARCHIVE DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
 LIBRARY DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
 RUNTIME DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION})

 Now inside the src folder of the created package folder create your main.cpp

program.

 Compile the package:

source ~/simulation/ros_catkin_ws/devel/setup.bash
catkin_make --pkg ros_practica_1

 Execute the package:

source ~/simulation/ros_catkin_ws/devel/setup.bash
rosrun ros_practica_1 ros_practica_1

128

129

CHAPTER 8

SPECIFICATIONS

130

131

Now, a list containing the main software and hardware tools employed within this
project is shown:

8.1. Hardware Specifications

 PC Intel i5-6500 of 64 bits and 3GHz with 8 GB of RAM

 Erlecopter quadcopter with a monocular camera on board.

8.2. Software Specifications

 Operating System Ubuntu 14.04 LTS 64 bits

 Framework ROS Indigo

 Matlab R2017a

132

133

CHAPTER 9

BUDGET

134

135

This chapter will describe the theoretical cost of the whole project. It will include the

equipment cost and the professional fees. Finally, the taxes will be added for getting

the total cost of the project.

9.1. Equipment cost

 In this section, the cost of the different materials (hardware and software) is detailed

and the VAT (21%) is included.

Item Unit price
(euro)

Unit Total cost

Hardware

ErleCopter
Drone

1159 1 1159

Lenovo U31
Laptop

749 1 749

Hardware total cost 1908

Software

Ubuntu
v14.04

0 1 0

Robot
Operating

System

0 1 0

ROS
packages

0 1 0

Matlab
(Student
edition)

69 1 69

Microsoft
Office 2010

74.99 74.99

Software total cost 143.99

Equipment total cost 2051.99
Table 9. 1. Equipment cost.

9.2. Professional fees

In this section the different professional fees are calculated. These fees are calculated

as gross incomes. The following table includes all the professional activities related

with the project.

136

Activity Price (euro/hour) Time (hours) Total cost (euro)

Engineering 3.15 400 1260

Writing up 3.15 65 205

Fees total cost 1465
Table 9. 2. Professional fees

9.3. Total cost

The theoretical total cost of the whole project is itemized in this section and presented

in below:

Equipment cost 2051.99

Professional fees 1465

Printing 60

Total 3576.99
Table 9. 3. Total cost.

137

138

139

10. BIBLIOGRAPHY

[1] Barrucada Documentation [Online]. Available: http://www.army-technology.com

[2] Boeing Documentation [Online]. Available: http://www.boeing.com

[3] Parrot Documentation [Online]. Available: http://www.parrot.com

[4] Mikrocopter Documentation [Online]. Available: http://www.mikrokopter.de

[5] Sergio García Gonzalo,”Visual SLAM Algorithms for Aerial Robots”,University of

Alcalá,2016.

[6] Seung-Hun Kim, Changwoo Park ,” Localization of Robot with Ceiling-View Cameras

in Indoor Environment”, ICMAR ,2012.

[7] Jae-Hong Shima and Young-Im Chob,” A Mobile Robot Localization using External

Surveillance Cameras at Indoor”, HARMS, 2015.

[8] Shaojie Shen, Nathan Michael and Vijay Kumar,” Autonomous Multi-Floor Indoor

Navigation with a computationally constrained MAV”, IEEE International Conference

on Robotics and Automation, 2011.

[9] Koray Celik, Soon-Jo Chung, Matthew Clausman and Arun K.Somani, “Monocular

Vision SLAM for Indoor Aerial Vehicles”, IEEE, 2013.

[10] Cameron Roberts,”GPS Guided Autonomous Drone”, University of Evansville,2016.

[11] Sunhong Park, Shuji Hashimoto,” Indoor localization for autonomous mobile robot

based on passive RFID”, IEEE, 2008.

[12] Rodrigo Munguía, Sarquis Urzua,” Vision-Based SLAM System for Unmanned

Aerial Vehicles”, MDPI, 2015.

[13] Peter Cheeseman, Randall Smith,” Estimating Uncertain Spatial Relationships in

Robotics”, SRI International, 2003.

[14] Gamini Dissanayake, Paul Newman,” A solution to the simultaneous localization

and map building (SLAM) problem”, IEEE , 2001.

[15] Sebastian Thrun, Mike Montemerlo,” Stanley: The Robot that Won the DARPA

Grand Challenge”, Stanford University , 2006.

[16] Adam Bry, Abraham Bachrach and Nicholas Roy,” State Estimation in GPS-Denied

Environments Using On board Sensing”, MIT,2012.

http://www.army-technology.com/
http://www.boeing.com/
http://www.parrot.com/
http://www.mikrokopter.de/

140

[17] Nicolás Blanco Fernández,”SLAM basado en láser para el robot aéreo ErleCopter”,

University of Alcalá.

[18] Klein, Georg, and David Murray. "Parallel tracking and mapping for small AR

workspaces.”, IEEE, 2007.

[19] Lentin Joseph,”Mastering ROS for robotics programming”, Packt Publishing, 2016.

[20] ROS Wiki [Online]. Available: http://wiki.ros.org/es

[21] ErleRobotics Documentation [Online]. Available: http://erlerobotics.com

 [22] López, E., Barea, R., Gómez, A., Saltos, A., Bergasa, L., Molinos, E., Nemra,

A.,”Indoor SLAM for micro aerial vehicles using visual and laser sensor fusion”,Second

Iberian Robotics Conference: Advances in Robotics, Volumen 1 ,2015.

[23] Engel, J., Schöps, T., Cremers, D.,”LSD-SLAM: Large-scale direct monocular SLAM”

In Computer Vision (ECCV), 2014.

[24]] Engel, J., Sturm, J., Cremers,D.,”Accurate Figure Flying with a Quadrocopter

Using Onboard Visual and Inertial Sensing” , TUM,2012.

[25] López Torres,P. “Análisis de algoritmos para localización y mapeado simultáneo de

objetos”, Universidad de Sevilla, 2016.

[26] “Gazebo Website”[Online]Available: http://gazebosim.org/

[27] Brito Domingues,J. “Quadrotor Prototype”,Universidade Técnica de Lisboa,2009.

[28] G.A Einicke and L.B. White “Robust extended kalman filtering”, IEEE Transactions

on Signal Processing,vol. 47,1990.

[29] Saltos Vásquez, Álvaro Andrés. “Desarrollo de un Sistema de SLAM para el robot

AR.Drone”, University of Alcalá, 2015.

[30] Gómez Rubio,Alejandro. “Control de robots aéreos en entornos interiores con

ROS”, University of Alcalá, 2017.

http://wiki.ros.org/es
http://erlerobotics.com/
http://gazebosim.org/

141

142

143

