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Abstract: The growing demand of ultrafast mode-locked fiber lasers in the near infrared has 

boosted the research activity in this area. One of the most convenient ways to achieve passive 

mode locking consists of inserting a semiconductor saturable absorber in the laser cavity to 

modulate the losses. However, in such a configuration, the limited power range of operation is 

still an unsolved issue. Here we report the fabrication of an ultrafast, high-power, widely power-

tunable and non-polarization-dependent mode-locked fiber laser operating at 1.55 µm, using an 

InN layer as saturable absorber. With post-amplification, this laser delivers 55-fs pulses with a 

repetition rate of 4.84 MHz and peak power in the range of 1 MW in an all-fiber arrangement. 

© 2017 Optical Society of America 

OCIS codes: (060.3510) Lasers, fiber; (140.4050) Mode-locked lasers; (140.7090) Ultrafast lasers; (160.4330) 

Nonlinear optical materials. 
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1. Introduction 
Ultrafast mode-locked fiber lasers are the keystone in many fields of application such as 

telecommunications, industrial, medical processes and scientific research [1, 2]. These lasers 

combine a simple fabrication process with the capability to achieve extremely short pulses with 

moderately high peak power. The fiber ring configuration is the simplest way to achieve self-



starting mode-locking [2, 3]. Ultrafast mode-locked fiber lasers operating in the C-band (1.53 

- 1.57 µm) have been developed since the introduction of the Er-doped fiber amplifier (EDFA) 

[4]. In this sources, passive mode-locking is achieved by insertion of a saturable absorber [5, 

6], which typically consists of InGaAs/GaAsSb [7], and more recently of graphene [8, 9], 

carbon nanotubes [10–12], or CdS/ZnSe/BeTe [13, 14]. However, such materials have shown 

limited power range of operation, with average power typically in the milliwatt range or below.  

III-nitride semiconductors can behave as saturable absorbers within the C-band involving 

either interband (bulk InN [15, 16], InN/InGaN quantum wells [15]) or intersubband transitions 

(GaN/AlN quantum wells or quantum dots [17, 18]). III-nitrides present not only high thermal 

and chemical stability, but also enhanced nonlinearities due to the asymmetry of their 

crystalline structure [19, 20]. However, the application of these materials to the development 

of ultrafast fiber lasers at telecom wavelengths has not been explored so far, to the best of our 

knowledge. 

In this work, we demonstrate an ultrafast passively mode-locked and non-polarization-

dependent fiber laser using InN as saturable absorber, operating at 1.55 µm. The laser shows 

pulsed emission with a repetition rate of 4.84 MHz and pulse width in the range of 240 - 260 

fs, leading to peak power in the order of 4.7 - 8.0 kW. More importantly, the average output 

power is tunable over a range of ~100% without major variations in its performance.  

In order to enhance the pulse peak power in the femtosecond range [21], the laser output is 

amplified using a master oscillator power fiber amplifier configuration (also known as MOPA, 

MOFA or MOPFA)[21–23]. This all-fiber configuration leads to pulses with time width below 

55 fs and average output power about 250 mW, corresponding to peak power close to 1 MW.  

2. Materials and methods 
The saturable absorber consists of a 1-µm-thick In-polar InN layer grown by plasma-assisted 

molecular beam epitaxy (PAMBE) on a commercial 10-µm-thick non-intentionally doped 

GaN-on-sapphire template. The epitaxial process proceeded at a substrate temperature of 

450 °C with a nitrogen-limited growth rate of 280 nm/h (more details can be found in [15], F.B. 

Naranjo et al.).  

The absorption coefficient as a function of wavelength,    , is obtained from the 

transmittance spectrum,  T  , applying,   ln T l   where l  is the layer thickness. 

The energy band gap has been estimated following the Tauc’s approximation [24], leading to a 

value of 0.8 0.1
gap

E eV  ( 1.55 m  ) [see Fig. 1(a)]. Correcting reflection and scattering 

loses, the absorption coefficient of the InN layer at 1.55 µm is   4 1
1.55 1.2 10m cm 


  . 

Figure 1(b) shows the transmittance of the InN layer (T) as a function of the impinging laser 

fluence. A 1.55 µm ultrafast fiber laser (pulse width ~200 fs, temporal pulse spacing = 185 ns, 

maximum average power = 30 mW) has been used as the pump source, focused onto the InN 

sample using a 3-cm-focal achromatic lens. The setup induces a laser beam waist 
0

12 m   

with a Rayleigh length 
0

285 mz  . The transmitted light is collected by a Ge detector 

connected to a multimeter (Agilent 34401A). The change in transmission can be described 

similarly as in [25], M. Haiml et al., but considering a transmittance configuration: 

 

  ln 1 1satF F

lin ns

ns

sat

T T e
T T

F F

 
  (1) 

where F is the impinging fluence, Fsat is the saturation fluence of the material, and Tlin and Tns 

are the linear and non-saturable transmittance, respectively [25,26]. By fitting Eq. (1) to the 



experimental measurements, we obtain 
2

690 50 /satF J cm  (i.e. 
2

3.4 /satI GW cm ), 

28 1%linT   , 53 1%nsT   . These values point to a highly nonlinear absorption (large 

modulation depth) in a material that stands extremely high fluencies (>5000 µJ/cm2, which 

corresponds to a peak power of 35 GW/cm2, the maximum achievable by our system) with no 

apparent damage. It must be noticed that the given values came from the fitting of Eq. (1) to 

the experimental data, which does not reach the maximum absorption saturation of the sample, 

leading to an underestimation of the calculated saturation fluence and non-saturable losses 

values. It should be noted the absence of reverse saturation of the absorption in Fig. 1(b). The 

obtained values are well above those of optimized nanostructures based on InGaAs quantum 

wells (
2

0.6 /satI GW cm , damage threshold at 8 GW/cm2) [7], graphene 

( 
2

0.1 0.5 /satI GW cm  , damage threshold at 2 GW/cm2) [27], and carbon nanotubes 

( 
2

0.05 /satI GW cm , damage threshold at 50 KW/cm2) [27] as saturable absorbers at 1.5 m. 

Furthermore, a relaxation time 10 ps   has been measured in this material using the pump-

and-probe technique [28]. This result is significantly slower than the relaxation time in 

InGaAs-based and graphene materials (below 1 ps [7, 27]).  

 

Fig. 1. Characterization of a 1-µm-thick InN layer: (a) Tauc’s plot, i.e. (Eα)2 vs. E, with 

E = energy, α = absorption coefficient. The dashed line is a linear fit for the determination of the 
band gap. The vertical dotted line marks the operation wavelength of the laser. (b) Variation of 

the optical transmittance as a function of the impinging energy fluence. The solid line is a fit of 

the experimental data to Eq. (1). 

 

The InN saturable absorber is introduced within a fiber ring laser cavity, as shown in Fig. 2, 

at the focus of a system of two achromatic lenses with 3-cm focal length. A collimator lens has 

been used to launch the light from the optical fiber onto the first achromatic lens and a 

microscope objective to collect the light from the second lens into the fiber. A commercial 

EDFA (Accelink TV-Series) with a maximum output optical power of +24 dBm acts as the 

gain medium. A variable optical attenuator is used to control the optical losses within the cavity. 

A 90/10 optical fiber coupler recirculates 90% of the signal inside the cavity while the 

remaining 10% is driven to the laser output. The total length of the cavity was approximately 

43 m, 16 m of which were Er-doped fiber with a normal group velocity dispersion GVD = 0.016 

ps2/m. The rest of the cavity length came from the pigtails of the used components, and was 

essentially single-mode fiber (SMF) with GVD = -0.021 ps2/m. The laser has an estimated 

dispersion of 0.31 ps2, i.e. the laser is operating at anomalous dispersion. Figure 3(a) depicts 

the peak power (in pulsed operation) as a function of the average output power for the different 

laser output regimes attained by varying the optical losses within the fiber ring with a variable 
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optical attenuator, namely continuous wave (CW), a transition range with the simultaneous 

emission of both CW and mode-locked components, and mode-locked. The normalized laser 

spectrum around 1.56 µm is depicted in Fig. 3(a) as an inset for each of the three regimes, 

showing the expected spectral broadening under mode-locked operation (the abscise span is the 

same, 100 nm for the three spectra). The laser is self-starting at a threshold power 

Pout ~ 5.5 mW. The inset of Fig. 3(b) shows the electrical spectrum during mode-locked 

operation, which displays a stable train of pulses with a repetition rate of ~ 4.84 MHz. It has 

been verified that the pulse train maintains stable amplitude in the whole mode-locked regime. 

No multiple-pulse behavior is observed in all the power range studied.  

The repetition rate has been measured with a 20-GHz detector connected to an electrical 

spectrum analyzer with 32 GHz bandwidth (Agilent Technologies N9010A). The average 

power of the laser has been measured with an InGaAs power meter. The laser spectrum was 

recorded by connecting the 1% branch of the 99/1 fiber coupler to an optical spectrum analyzer 

(Yokogawa AQ-6315B) with a resolution of 0.5 nm. Autocorrelation traces are measured using 

the 500 fs scan range from a commercial autocorrelator (APE-Mini). To vary the cavity length, 

three SMF-28 optical fiber rolls with different nominal lengths (30 m, 45 m, 200 m) were used. 

The second EDFA used for the MOPA had double-cladding fiber [29, 30] and v-groove side 

pumping [31] in order to obtain high energy pulses. The maximum average output power is 40 

dBm and including input and output single-mode fibers, it exhibits slightly anomalous 

dispersion (Keopsys KPS-BT2-C).  

 

 

Fig. 2. Scheme of the C-band ultrafast mode-locked fiber laser using InN as saturable absorber. 

 

3. Results and discussion 
For the minimum attenuation, we obtain pulses with a temporal full width at half maximum 

(FWHM) 252 4 fs    [see Fig. 3(b)]. At the same time, a spectral peak centered at 

1563c nm   with spectral width 16.1 0.5nm    is measured [see Fig. 3(c)]. Tuning the 

variable optical attenuator from the minimum attenuation [see Figs. 3(b) and 3(c)] to the mode-

locked threshold [see Fig. 3(a)] results in a variation of the spectral width in the range from 

17.1 ± 0.5 nm to 15.2 ± 0.5 nm, with pulse width varying from 258 ± 4 fs to 239 ± 4 fs. From 

these values, the calculated peak power [right axis of Fig. 3(a)] varies from 7.95 kW to 4.75 

kW, respectively (pulse energy varying from 2 nJ to 1.13 nJ, respectively). 



The spectrum and autocorrelation traces are well described by a hyperbolic-secant-squared 

function (sech2) [see Figs. 3(b) and (c)]. This confirms the soliton nature of the pulse generation 

process [3, 32–36]. Solitons are nearly transform-limited pulses in which the pulse energy and 

duration are inversely related. In soliton lasers, very short pulses in the time domain 

(picoseconds to femtoseconds) are usually achieved, which leads to high peak energies. 

Figure 3(d) presents the Time-Bandwidth Product (TBP) for the previously described operation 

laser conditions. In the mode-locked range, the TBP is in the range of 0.320.35, close to the 

transform-limited value for sech2 pulses (TBP = 0.315).  

In the above-described laser, the InN saturable absorber is placed so that its <0001> 

crystallographic axis is aligned with the laser cavity. In such a configuration, the optical 

asymmetry within the basal plane of InN is too small [37] to induce remarkable changes with 

polarization of the incident light. Thus, the mode-locked threshold is independent of the laser 

polarization. This feature has been confirmed by introducing a polarization control element 

inside the cavity, which does not induce important changes in the emission properties of the 

laser for any polarization state.  

 

Fig. 3. Characterization of the fiber laser described in Fig. 2: (a) Variation of the peak power 

(only under pulsed operation, and zero in continuous wave) as a function of the average output 

power. The various operation regimes are identified: continuous wave (CW) and mode-locking 

(ML), with a ML lower threshold of 5.5 mW of average output power. The normalized linear 

spectra centered at 1.56 µm with a span of 100 nm are shown for each regime. (b) For the 

maximum ring average power (minimum attenuation in the ring, autocorrelation trace with a 

temporal duration of 252 fs. The inset shows the train of pulses generated with a repetition rate 

of 4.84 MHz. (c) Also for the maximum ring average power (minimum attenuation in the ring, 

laser spectrum centered at 1562 nm with a FWHM of 16 nm. (d) Time-Bandwidth Product as a 

function of the ring average power. The solid line represents the sech2 limit. 
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It should be noted that, in our case, the laser is actually not a pure soliton laser but rather a 

dispersion-managed soliton laser (i.e. it has regions of normal and anomalous dispersion, and 

overall a low anomalous dispersion). In this type of laser, the pulse evolution along the cavity 

is breathing, meaning that it stretches and compresses temporally in each roundtrip as it passes 

through each sign of dispersion. The shortest achievable pulses in these fiber lasers occur when 

extracting the light in the single-mode fiber after the Er-doped fiber amplifier [38]. When these 

strongly chirped pulses with high power reach the single-mode fiber, self-phase modulation 

effect (SPM) becomes predominant, inducing a temporal compression, in our case leading to 

the measured ~250 fs FWHM. InN acts as a very efficient, slow saturable absorber, which leads 

to stable mode-locking with pulse duration well below its recovery time due to the formation 

of solitons, providing that the intracavity fluence is well above the saturation fluence of the 

absorber [32]. Considering that the distances between the optical coupler and the 

characterization systems (OSA, power meter, etc) and between the optical coupler and the 

saturable absorber are approximately the same (~2 m), we can expect that the pulse reaching 

the SA is as short as has been measured by the autocorrelator, but 9 times higher in average 

power, because of the optical coupler used. This assumption allows us to estimate the necessary 

fluence to reach the mode-locking threshold in 
2

6770 /F J cm . Values of 239 fs   and 

5.5outP mW  (which implies an average power of 49.5 mW at the 90% branch of the fiber 

coupler) have been considered for this calculation. The maximum fluence handled by the 

saturable absorber in the developed laser system has been calculated in 
2

11940 /F J cm , 

assuming 252 fs   and 9.71outP mW  (which corresponds to an average power of 87.4 

mW at the 90% branch of the fiber coupler). The high linear absorption coefficient, modulation 

depth and damage threshold of InN allow the generation of high-power pulses while keeping 

the CW laser emission blocked. The polarization independence is an advantage over those 

mode-locked fiber lasers whose principle of operation is based on a nonlinear-rotation-

polarization acting as the saturable absorber, which need periodical readjustment of the 

polarization [39–41].  

The study of the laser output properties for high pulse energy conditions is performed by 

inserting additional single-mode fiber between the output coupler and the variable attenuator 

(see Fig. 2), which leads to a reduction of the repetition rate. Figures 4(a) and 4(b) show the 

comparison between the autocorrelation traces and the spectra, respectively, for different 

additional fiber lengths up to 200 m, reaching a reduction of the repetition rate by a factor of 5, 

approximately [see Fig. 4(c)]. Table 1 summarizes the obtained results, showing negligible 

change in pulse duration, spectral width, and average power. This means that the peak power 

(Pp) and pulse energy (Ep) are multiplied by a factor of 5 simply by introducing 200 m of 

additional fiber to the standard configuration.  It should be noted that the additional fiber also 

introduces a change in average dispersion, which could compensate the increase in pulse 

energy, thus maintaining the soliton pulse duration relatively stable. The maximum obtained 

pulse energy is Ep ~ 11 nJ, higher than the 7.3 nJ reported for a similar laser based on graphene 

[42]. Furthermore, the stability in pulse duration and spectral width implies that the TBP 

remains close to the transform-limited value for all these new configurations.  



 
Fig. 4. Laser stability for different cavity lengths (from the standard configuration to +200 m of 

additional fiber): (a) autocorrelation traces (vertically shifted for clarity), (b) normalized spectra 

(vertically shifted for clarity), and (c) repetition rates. 

 

Table 1. Experimental results comparing different laser cavity configurations differing in 

the length of an additional monomode fiber inserted between the output coupler and the 

variable attenuator (see Fig. 2). 

Additional fiber length + 0 m + 30 m + 45 m + 200 m 

Average Power (mW) 9.7 9.7 9.7 9.6 

Repetition Rate (MHz) 4.84 3.54 2.84 0.84 

Δτ (fs) 253 ± 4 265 ± 4 274 ± 4 277 ± 4 

Pp (kW) 7.9 10.3 12.5 25.7 

Ep (nJ) 2.0 2.7 3.4 11.4 

TBP 0.34 0.38 0.36 0.36 

 

 

In order to investigate the maximum achievable peak power, the laser output is amplified 

using a MOPA configuration. A second EDFA (see materials and methods section for more 

information) is connected to the output of the master oscillator while maintaining the original 

laser ring cavity. Figures 5(a) and 5(b) show spectra and autocorrelation traces, respectively, 

for different analyzed cases, maintaining the operation point of the master oscillator near the 

threshold. By changing the gain of the additional amplifier, the average output power can be 

tuned up to 358 mW, keeping the maximum of the emission spectra around 1575 nm. It is 

clearly visible the appearance of side-lobes when increasing the power. Since the appearance 

of these side-lobes, the pulse powers of Fig. 5(b) have been calculated by integrating the actual 

energy in the central peak. It has been estimated that only approximately 50% of the whole 

pulse energy remains in the central peak for the case of maximum average power (358 mW), 
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and 60% for the case when average power is 224avP mW . Figure 5(b) depicts pulse widths 

ranging from 65 ± 4 fs to 53 ± 4 fs. This temporal compression of the pulses results in pulse 

peak power varying from 0.42 MW to 0.7 MW. The temporal pulse compression is attributed 

to self-phase modulation (SPM) in the output amplifier (causing spectral broadening), followed 

by a subsequent compression in the anomalously dispersive output fiber. Figures 5(a) and 5(b) 

also show the spectrum and autocorrelation trace, respectively, for the particular case when the 

output amplification is minimum and the variable attenuator inside the ring laser cavity is totally 

open (mode-locking far from the threshold). The measured spectrum is shifted to larger 

wavelengths (up to 1633 nm). This redshift of the emission is attributed to Raman self-

frequency shift due to stimulated Raman scattering in the output amplifier. In these conditions, 

the measured output average power is 207 mW and the pulse width is 120 4 fs , which implies 

that the peak power reaches 358 kW. Further increasing the power by output amplification leads 

to the appearance of side-lobes around the central emission peak, evidencing the increasing 

effect of SPM.  

The introduction of the described amplification stage after the mode-locked fiber oscillator 

(MOPA) leads to additional temporal compression of pulses, which in turn results in an 

additional enhancement of the peak power. Figure 5(b) illustrates the appearance of pulse 

degradation and side-lobes when applying higher amplification. These are signatures of pulse 

break-up and initial stages of supercontinuum generation. For this reason, the output 

amplification has been limited in this work to values corresponding to high-quality pulses [23]. 

It should be noted, that in our case the soliton is propagating through an Er-doped amplifier 

acts as gain medium. The gain of the amplifier is bounded to approximately 1585-1590 nm. 

Thus, the spectra are somewhat clipped from this wavelength onwards. This distortion in the 

spectrum leads to a laser spectrum shape far from the pure sech2 function, as it is shown in Fig. 

5(a). 

 

Fig. 5. Ultrafast mode-locked fiber oscillator using InN saturable absorber with output fiber gain: 

(a) spectra, and (b) autocorrelation traces for different amplification values operating close to 

the oscillator threshold, with master oscillator output average power of 5.5 mW. The legend 

indicates the average output power in each case. The green line corresponds to the case of 

minimum oscillator attenuation, i.e. far from the threshold with master oscillator output average 

power of 9.7 mW, and minimum output amplification (PAv=207 mW). 

 

4. Conclusions 
In summary, this paper describes the first implementation of an ultrafast mode-locked fiber 

laser working at ~1.5 µm using InN as saturable absorber, which leads to an enhancement of 

the peak power and enlargement of the operation power range. This breakthrough is supported 

by the high energy fluence that InN can afford (
2

11 /F mJ cm ) without any sign of optical 
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damage. Its high nonlinearity, along with the high stability of the InN response even for high 

pumping intensity, allows its use as efficient saturable absorber. The use of this saturable 

absorber within the resonator allows a large tunability in output power while preserving the 

output pulse properties. For a wide range of output powers, the pulses present no major changes 

in both spectrum and autocorrelation trace. This characteristic allows to overcome practical 

limitations shown by other fiber lasers operating at the same wavelength that use graphene [8], 

carbon nanotubes [10], InGaAs [7] or CdS/ZnSe/BeTe [14] as saturable absorbers. The 

simplicity of the InN layer used to mode-lock the laser and its high-tunable-power range of 

operation converts this laser in an appealing candidate for the immediate future of high power 

fiber lasers operating at telecom wavelengths. Furthermore, advantages over schemes based on 

Kerr-lens or nonlinear polarization rotation are evident, as no polarization sensitivity is noticed 

when using InN as saturable absorber. The laser configuration is therefore extremely robust 

against ambient fluctuations and mechanical variations. 
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